
AN ALTERNATIVE SOLUTION METHOD FOR TRAJECTORY

OPTIMIZATION FOR MARTIAN DESCENT AND LANDING

by

Kyle Wianecki, B.S.

A thesis submitted to the Graduate Council of
Texas State University in partial fulfillment

of the requirements for the degree of
Master of Science

with a Major in Mathematics
May 2021

Committee Members:

Young Ju Lee, Chair

Gregory Passty

Raymond Treinen

COPYRIGHT

by

Kyle Wianecki

2021

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law
94–553, section 107). Consistent with fair use as defined in the Copyright Laws,
brief quotations from this material are allowed with proper acknowledgment. Use of
this material for financial gain without the author’s express written permission is not
allowed.

Duplication Permission

As the copyright holder of this work I, Kyle Wianecki, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGMENTS

To all of my friends, family, and loved ones who have helped me see this through to

completion. Thank you.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

LIST OF FIGURES. vi

CHAPTER

I. INTRODUCTION . 1

Nomenclature . 5

II. PRELIMINARY WORK . 6

Problem Statement. 10
Relaxation of Nonconvex Constraints . 11
Nondimensionalization . 12
Discretization and Solution Algorithm . 14

III. A NOVEL APPROACH. 18

New Nondimensionalization . 19
New Discretization . 20
Discretization of Cost Functions and Constraints 25
Alternative Solution Approach . 28
Moreau–Yosida Regularization . 30
Well-Posedness . 33
Broyden’s Method . 41
Symmetric Rank Two Update . 42

IV. CONCLUDING REMARKS . 46

REFERENCES . 49

v

LIST OF FIGURES

Figure Page

1. Generic thrust profile. 7

2. Diagram with glide slope and thrust pointing constraint. 10

3. Simple example of the golden search method . 16

vi

I. INTRODUCTION

In this era of rapid technological advancement, space exploration is

beginning to move toward autonomous missions; numerical algorithms and

computation now govern our space vehicles. This rise in automation can be seen

in a range of areas from thrust control, orbit determination, orbital maneuvers,

to atmospheric re-entry, descent and landing. At present, one can witness such

automation by pointing their attention towards the private American aerospace

company Space Exploration and their fully automated vertical takeoff, vertical

landing (VTVL) Falcon 9 rocket. This partially reusable rocket is capable of

delivering cargo and humans safely to orbit and of re-entering the atmosphere and

softly landing on the surface of the planet [10].

Another recent example of autonomous missions is the successful landing

of NASA’s Perseverance rover on the surface of Mars. Following the re-entry into

the Martian atmosphere and the deployment of a parachute to reduce its descent

velocity, the vehicle uses terrain relative navigation to determine the vehicle’s

location above the martian surface followed by the on-board computation to

determine the optimal trajectory to the desired landing location. Great attention is

required in the computation of such an optimal trajectory. The requirements of the

mission and the satisfaction of all the physical constraints and bounds can lead to

infeasible solutions. The speed and accuracy at which the computation is executed

can also present complications, particularly when one is dealing with on-board,

real-time calculations.

The focus of this thesis is in developing a unique robust method for solving

the martian descent and landing algorithm under bounding constraints. This

consists of simultaneously minimizing the space vehicle’s fuel consumption and

the perturbation error incurred in its distance from the targeted landing location.

The problem contains nonconvex thrust bounding constraints and is governed

1

by nonlinear dynamics. We propose the use of the Moreau-Yosida regularization

technique to simplify the state constraints and using Lagrange Multipliers to handle

the control constraints. Additionally, the problem is presented as a decoupled

final-time minimization problem where first the problem is minimized over the state

and controls followed by using a line search algorithm to minimize over the final

time.

The history of landing on Mars can be dated back to the Viking mission

in 1976 where it was the first time a spacecraft was placed safely on Mars [4].

However the historical background relevant to the research contained in this thesis

dates back to 2007 to the work done by Behçet Açikmeşe and Scott Ploen in their

paper “Convex Programming Approach to Powered Descent Guidance for Mars

Landing” [2]. Here the authors present an algorithm for solving the minimum fuel

landing problem with a linear programming technique, particularly a second order

cone programming approach. A major contribution in this paper is a proof that

the non-convex constraint, 0 < ρ1 ≤ T (t) ≤ ρ2, on the bounds of the thrust of the

vehicle can be convexified and the solution to the convex version is equivalent to

the solution of the nonconvex problem. The authors’ methodology is to convexify

the problem, reformulate the problem by simplifying the pieces of non-linearity,

discretize the problem into a finite dimensional second-order cone problem and

solve it using built in MATLAB solvers.

Other sources with heavy contributions to the framework of this thesis

include the 2010 and 2008 papers by Lars Blackmore, Behçet Açikmeşe, and

Daniel Scharf titled “Minimum-Landing-Error Powered-Descent Guidance for

Mars Landing Using Convex Optimization”[3] and “Enhancements on the Convex

Programming Based Powered Descent Guidance Algorithm for Mars Landing”[1].

In these papers the authors introduce the minimum landing error cost functional

used to minimize the error in reaching the target location. In building upon the

2

work done in 2007, the authors present the minimum landing error problem as

a finite dimensional second order cone problem which can be solved in the same

manner as done in the work from 2007. In the 2010 paper the authors introduce

a novel approach which consists of solving a prioritized algorithm that first solves

the minimum fuel landing algorithm for the optimal final time, states and controls,

followed next by solving the minimum landing error algorithm for its subsequent

optimal final time, state and controls.

We reference the work done by John Pearson in his dissertation from the

University of Oxford on “Fast Iterative Solvers for PDE-Constrained Optimization

Problems” [12] for our implementation. We make use of his algorithms involving

the Moreau-Yosida regularization technique and Lagrange multipliers to solve

PDE-constrained problems. We adapt his methodology to solve our problem which

contains much more challenging compound inequality constraints and nonlinear

conic constraints.

Motivated by these current advancements in solution techniques by

Blackmore, Açikmeşe, Scharf and others, we believe that our model will provide

an even faster and more stable algorithm that can be solved in less time and with

fewer iterations than previous methods. Our procedure is as follows. We begin

with the problem formulation by introducing the governing physics, particularly the

dynamic equation governing the position of the vehicle, and the dynamic equation

governing the rate at which the mass of the rocket changes over time. Next is the

determination of what constraints we should impose on the model. The constraints

include upper and lower bounds on the thrust of the vehicle, a conic constraint

to restrict the space in which the rocket can travel, a lower bound on the mass

of the vehicle at the final time, a bound that keeps the vehicle from traveling

subsurface, and the requirement that the position and the velocity of the vehicle

must simultaneously reach zero. Next we alter the relaxation of the nonconvex

3

thrust constraint proven in 2007 [2]. Because the relaxation is feasible for values

on the boundary of the thrust bounds, we introduce a squared slack variable. We

introduce another change of variables needed to reformulate the original L1 cost

function for the minimization of the fuel as a squared L2 cost function. From here

we discretize our dynamical equations into a recursive Euler linear-time invariant

equation with discretizations applied over a bounded interval [0, tf]. We regularize

the problem with the Moreau-Yosida regularization parameter and the introduction

of Lagrange multipliers. The problem is then decoupled into two minimization

problems, one minimizing over the state and the controls and the other minimizing

over the final time. In [2] the authors derive upper and lower bounds on the final

time tf that further reduces the difficulty in determining the optimal final time.

Those bounds are used in this thesis and the resulting novel formulation is solved

using the quasi-Newton Broyden method.

4

Nomenclature

• t0,tf are the initial and final time, and h = ∆t.

• t̄ = t − tf and tk is a time step ∈ [0, tf] k = 0, . . . ,N .

• m(t) is the mass function, z(t) = lnm(t).

• T
∼
(t) is the thrust equation.

• Γ2(t) is the slack variable for the thrust.

• u
∼
(t) and σ2(t) are the mass normalized thrust and slack functions.

• n is the number of engines.

• α is the rate at which fuel is consumed.

• λ is the Tikhonov regularization parameter.

• ε1, ε2, ε3 are Moreau-Yosida regularization parameters.

• g
∼

is the planetary gravitational vector.

• θ is the cant angle on the thrusters.

• γ is the path bounding angle.

• ρ1, ρ2 are the lower bound and upper bound on the thrust.

• mwet is the initial mass of the vehicle which includes the mass of the fuel.

• mdry is the mass of the vehicle without the mass of the fuel.

• e
∼

is a unit vector in IR3 and A
≈

is a matrix in IR3×3.

• ∥⋅∥ is the standard L2 norm.

5

II. PRELIMINARY WORK

Throughout this paper we assume that the force of gravity acting on the

vehicle is uniformly distributed. We will also treat outside forces that affect the

vehicle’s aerodynamics as perturbations. Considering that the landing phase

of a space vehicle takes place at low altitudes and at speeds much slower than

atmospheric re-entry, this is a reasonable decision which also leads to a reduction

in the problem’s difficulty but has no loss in the solution’s accuracy.

Here we begin to describe and formulate the optimal trajectory problem

for planetary landing of space vehicles . Let r
∼
(t) = [r1(t) r2(t) r3(t)]T ∈ IR3 be

the vehicle’s position vector at time t. This model is situated in a surface fixed

reference frame where r1(t) is the outward facing normal vector i.e. the altitude.

Take g
∼

∈ IR3 to be the planetary gravitational constant, let T
∼
(t) ∈ IR3 be the

vehicle’s thrust profile, and let m(t) be the mass of the vehicle as a function

of time. The vehicle’s flight dynamics are expressed as the following dynamic

equations:

r̈
∼
(t) = g

∼

+
T
∼
(t)

m(t)
(1a)

ṁ(t) = −α ∥(T
∼
(t))∥ (1b)

where α is the rate at which the fuel is being exhausted:

α =
1

gIsp cos(θ)
(2)

where Isp is the specific impulse. The thrust equation is given as

T
∼
(t) = ne

∼

TT cos(θ) (3)

where e
∼

T is the canonical unit vector pointed in the direction of the thrust, and

6

θ is the thrusters cant angle, or the degree for which the thrusters are angled

with respect to the body of the space vehicle. The number of thrusters is n, each

assumed to contribute an equivalent amount of thrust T . Figure 1 provides an

example of a generic thrust profile throughout the duration of the flight.

10 20 30 40 50 60 70 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (Seconds)

T
h
ru
st

(%
)

Figure 1.: Generic thrust profile.

In this framework the vehicle is represented as a dimensionless point rather

than a geometric object and the rotational and translational dynamics are treated

as separate. It is common practice to treat rotational and translational dynamics as

separate because any translational maneuver can be done with such speed that any

interaction with the attitude control is negligible.

It is assumed that once a vehicle’s thrusters are ignited they cannot be

extinguished, this is due to the safety concern that if an engine is extinguished,

there is no guarantee of re-ignition. This places a lower bound on the thrust

throughout the vehicle’s flight. Denote Tmax and Tmin to be the respective allowable

maximum thrust and minimum thrust. This gives rise to the following inequalities:

0 < ρ1 = n cos (θ)Tmin ≤ ∥(T (t))∥ ≤ n cos (θ)Tmax = ρ2. (4)

7

Many landing models require that the trajectory of a vehicle have

constraints imposed on the path the vehicle can take, whether it is due to the

need for the vehicle to maintain a low velocity (a strong requirement for manned

vehicles) or for it to avoid certain obstacles. There are several ways to express this

constraint; the choice made in this paper uses a cone to enforce the requirement

that the altitude of the rocket be constrained above the surface at all times during

the descent and landing [5]. The cone constraint is:

tan2(γ)∥E
≈ r
r
∼
(t)∥2 − e

∼

T
1
r
∼
(t)2 ≤ 0. (5)

The matrix E
≈ r

is a projection matrix accessing the last two components of the

position vector r
∼
. This matrix is give as

E
≈ r

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

with tan(γ) > 0 and 0 ≤ γ < π
2 is the path bounding angle. With these constraints

together, Figure 2 below depicts the geometry of the model. You may notice that

simplification of the squares present in each term would provide an equivalent

representation of the required constraint. The point in squaring all of the terms

comes to light in the discretization section, where a finite element approximation

will be applied to the continuous functions, and the square of this standard

euclidean norm can be expressed as a simple quadratic expression. It should also

be noted that the meaning of e
∼

T
1
r
∼
(t)2 represents the component-wise squaring of

vectors. Meaning,

e
∼

T
1
r
∼
(t)2 = (e

∼

T
1
r
∼
(t))2 = (e

∼

T
1
r
∼
(t))T (e

∼

T
1
r
∼
(t)) = e

∼

T
1
(r
∼
(t))T r

∼
(t))

This same notational meaning will hold throughout this thesis.

8

Another constraint is added to represent the lower bound physically present

on the mass, mtf ≥ mdry, where mdry is the mass of the vehicle without any fuel.

This constraint follows from the finite availability of fuel in the vehicle. In [2], the

following compound inequality

(mwet − tαρ2) ≤m(t) ≤ (mwet − tαρ1)

is introduced to place naturally occurring physical bounds on the space vehicle’s

mass. This is equivalent to the constraint m(tf) ≥ mdry. To see this, notice that

the left-hand functions and the right hand functions are both decreasing. Because

ρ2 > 0 represents the maximum upper bound on the thrust, and ρ1 > 0 is the lower

bound, mwet−tαρ2 approaches mdry at a rate faster than mwet−tαρ1 for all t ∈ [0, tf].

Since m(t) is a decreasing function it will always be decreasing at a rate equal to or

less than mwet−tαρ1 thus there is no reason to require it as an upper bound because

the only way m(t) could decrease at a slower rate than mwet − tαρ1 is if the thrust

is less than ρ1 which violates the constraint bounding the thrust. Now, to see the

equivalency between m(tf) ≥ mdry and mwet − tαρ2 ≤ m(t) notice that mdry can be

determined by some t∗ ∈ [0, tf] such that mwet − t∗αρ2 = mdry. Suppose that t∗ = 0

then the equivalency holds trivially. If 0 < t∗ < tf then for the time intervals (t∗, tf]

the problem is infeasible. If t∗ = tf then the equivalency between the inequalities

holds trivially.

It should be assumed that ρ1 ≤ ∥mdryg
∼

∥ and ∥m0g
∼

∥ ≤ ρ2. It does not

represent any additional constraints, but is a physical requirement for soft landing.

It is also always satisfied for feasible solutions to the soft landing problem. Suppose

that the lower bound on the thrust magnitude was less than the gravitational

acceleration. If at anytime during the landing phase the thrusters transition to the

lower bound magnitude, the vehicle will begin to accelerate. In turn this will lead

to infeasible landing solutions, typically subsurface flight. Similarly, if the vehicle is,

9

at the outset, traveling at a speed greater than the maximum thrust, the trajectory

again will result in subsurface flight because the vehicle will not decelerate.

e1

e2

e3γ

θ

∥r(tf)∥
2

Figure 2.: Diagram with glide slope and thrust pointing constraint.

Problem Statement

Presented in [3], the planetary landing problem is stated as the following

two optimization problems. That notation and structure are stated differently and

not verbatim from their publication but has been restated to match the notation

of this thesis. It is possible for there to exist multiple solutions that minimize the

minimum fuel problem, hence the requirement for an additional step of calculating

the minimum landing error solution that also minimizes the distance of the optimal

landing location and the targeted landing location. This first problem is the

Nonconvex Minimum Landing Error Problem (MLEP). The algorithm is sourced

from [3].

Problem 1. min
tf

min
ρ1≤∥T

∼
(t)∥≤ρ2

∥r
∼
(tf)∥

2

subject to:

10

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r̈
∼
(t) = g

∼

+
T
∼
(t)

m(t) , r
∼
(0) = r

∼0
, ṙ

∼
(0) = ṙ

∼0
, r

∼1
(tf) = ṙ∼(tf) = 0,

tan2(γ)∥E
≈ r

(r
∼
(t))∥2 − e

∼

T
1
r
∼
(t)2 ≤ 0, ∀t ∈ [0, tf]

{ ṁ(t) = −α ∥(T
∼
(t))∥ , m(0) =mwet, m(tf) ≥mdry

The next algorithm represents the Nonconvex Minimum Fuel Problem

(MFP). The only point of difference between the MFP from the MLEP is in the

cost functional. Particularly, the MFP is concerned with the following sourced

directly from [2, 3]:

Problem 2. min
tf

min
ρ1≤∥T

∼
(t)∥≤ρ2

∫
tf

0 α ∥T
∼
(t)∥dt

subject to:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r̈
∼
(t) = g

∼

+
T
∼
(t)

m(t) , r
∼
(0) = r

∼0
, ṙ

∼
(0) = ṙ

∼0
, r

∼1
(tf) = ṙ∼(tf) = 0,

tan2(γ)∥E
≈ r

(r
∼
(t))∥2 − e

∼

T
1
r
∼
(t)2 ≤ 0, ∀t ∈ [0, tf]

{ ṁ(t) = −α ∥(T
∼
(t))∥ , m(0) =mwet, m(tf) ≥mdry

Relaxation of Nonconvex Constraints

The first action in solving this problem is to begin by relaxing the

constraints of the nonconvex optimal control problem In [2], the authors prove

that the thrust bounding inequality constraint can be convexified with no loss in

solution accuracy, this fact is very useful in our alternative approach, so the work

done by Behçet Açikmeşe and Scott Ploen in their paper “Convex Programming

Approach to Powered Descent Guidance for Mars Landing” [2], will be summarized

and the techniques used to relax the nonconvex problem as well as the author’s

discretization techniques will also be presented here.

The authors relax the MFP by introducing a slack function Γ(t) that

replaces ∥(T
∼
(t))∥ . Consequently, this imposes the constraint

∥(T
∼
(t))∥ ≤ Γ(t). (7)

11

The main result of [2] is Lemma 1, which is the proof that states that if

there exists a solution to the convex MFP, then there also exists a solution to the

nonconvex MFP and it can be obtained directly from the solution to the convex

problem. The question about the existence of an optimal solution to the relaxed

MFP is also proven in [2].

The modified nonconvex MFP that includes the relaxation of the control

magnitude constraint:

Problem 3. min
tf

min
T,Γ

∫
tf

0 Γ(t)dt

subject to:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r̈
∼
(t) = g

∼

+
T
∼
(t)

m(t) , r
∼
(0) = r

∼0
, ṙ

∼
(0) = ṙ

∼0
, r

∼1
(tf) = ṙ∼(tf) = 0,

tan2(γ)∥E
≈ r

(r
∼
(t))∥2 − e

∼

T
1
r
∼
(t)2 ≤ 0, ∀t ∈ [0, tf]

{ ṁ(t) = −αΓ(t), m(0) =mwet, m(tf) ≥mdry

{ ∥T
∼
(t)∥ ≤ Γ(t), ρ1 ≤ Γ(t) ≤ ρ2 ∀t ∈ [0, tf]

Nondimensionalization

After the convexification of the control magnitude constraint, ∥(T
∼
(t))∥, the

authors proceed to perform a change of variables. The purpose is the standard

process of nondimensionalization. Change of variables:

σ(t) ≜
Γ(t)

m(t)
, u

∼
(t) ≜

T
∼
(t)

m(t)
(8a)

By the change of variables, the additional constraint imposed after the

relaxation of the thrust constraint becomes

∥u
∼
(t)∥ ≤ σ(t), ∀t ∈ [0, tf],

12

and the lower and upper bounds on the thrust profile become

ρ1

m(t)
≤ σ(t) ≤

ρ2

m(t)
∀t ∈ [0, tf].

Notice that 1
m now posses an additional point of nonconvexity. In particular

σ(t) and u
∼
(t) defined above are bi-linear functions because the treatment of m(t) is

that of a problem variable. To handle this case of minor nonconvexity the authors

of [2] introduce the following change of variable: z(t) ≜ lnm(t). Now the differential

equation for ṁ(t) is reformulated as:

ṁ(t)

m(t)
= −ασ(t) Ô⇒ ż(t) = −ασ(t)

This substitution physically poses no issue seeing as the mass of the vehicle

is always much larger than zero. Since α > 0 is the rate of fuel being consumed,

minimizing the amount of fuel used is the same as minimizing this integral equation

∫

tf

0
σ(t)dt.

The inequality constraints on the control input has a lower and upper bound

that can be stated as:

ρ1e
−z(t) ≤ σ(t) ≤ e−z(t)ρ2 ∀t ∈ [0, tf] (9)

The authors of [2, 3] rewrite (9) involving a Taylor expansion. Particularly, for the

lower thrust bound the authors use the first three terms of the Taylor expansion

and the first two terms of the Taylor expansion for the upper thrust bound. Define

µ1 = ρ1e
−z(t), µ2 = ρ2e

−z(t) (10)

13

such that

µ1(t) [1 − (z(t) − z0(t)) +
(z(t) − z0(t))2

2
] ≤ σ(t) ≤ µ2(t) [1 − (z(t) − z0(t))]

for all time steps t in [0, tf], where the initial value of z(t) is

z0(t) = ln (mwet − αρ2t).

The following optimization problem represents the Relaxed MFP with the

necessary change of variables:

Problem 4. min
tf

min
T,Γ

∫
tf

0 Γ(t)dt

subject to:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r̈
∼
(t) = g

∼

+ u
∼
(t), r

∼
(0) = r

∼0
, ṙ

∼
(0) = ṙ

∼0
, r

∼1
(tf) = ṙ∼(tf) = 0,

tan2(γ)∥E
≈ r

(r
∼
(t))∥2 − e

∼

T
1
r
∼
(t)2 ≤ 0, ∀t ∈ [0, tf]

{ ż(t) = −ασ(t), z(0) = lnmwet, z(tf) ≥ lnmdry

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥u
∼
(t)∥ ≤ σ(t)

µ1(t) [1 − (z(t) − z0(t)) +
(z(t)−z0(t))

2

2] ≤ σ(t)

σ(t) ≤ µ2(t) [1 − (z(t) − z0(t))]

Discretization and Solution Algorithm

In [2, 3, 5], the authors use a standard discretization process to reduce the

problem to a finite dimensional problem by fixing the final time tf , discretizing it

into evenly space intervals and inducing the state and control constraints at each

node, where N represents the number of nodes. For an in-depth look at the details

of previous standard discretizations, the reader is referred to [2], otherwise the

reader is directed to an alternative discretization derivation which is carried out

in the proceeding chapter.

14

There are known upper and lower bounds that can be placed on the final

time tf . These bounds are presented in [2]. In our alternative approach these

bounds will also be relevant.

mwet −mdry ∥ṙ∼(0)∥

ρ2

≤ tf ≤
mfuel

αρ1

. (11)

With these known bounds, the authors of [2, 3, 1]argue that the problem expressed

as a decoupled minimization problem can be solved by solving the first the problem

is minimized over the state and controls, followed by a line search algorithm used

to minimize over the final time, tf . In [2], the authors experimentally prove that

the first cost functional ∫
tf

0 σ(t)dt has only one minimizer. The authors of [3] prove

experimentally that the cost functional ∥r
∼
(tf)∥

2

2
contains only one minimizer. In

both cases the authors of [2] and [3] make use of the unimodality and the new

upper and lower bounds on the final time to implement the golden line search

algorithm to their respective cost functionals to minimize over the final time.

The method for obtaining a numerical solution to the minimum-fuel landing

problem, presented in [2, 3, 1] begins by defining a space that consists of all the

feasible thrust values that satisfy all of the aforementioned constraints for every for

tk ∈ [0, tf]. Call this set F. This more commonly can be thought of as the active

set, or within the framework of this problem, the set of all σ values that live inside

the feasible region defined by the given state and control constraints. If the set F

is empty then the minimum fuel problem has no feasible solution where the issue

arises in the thrust. If the set is not empty, solve f(tf) = min
σ∈F ∫

tf
0 σ(t)dt. Now

apply a line search on tf over f(tf) to generate the optimal pair (t∗f , σ
∗). Finally,

perform a final validity test by checking if the optimal pair (t∗f , σ
∗) satisfy the

fuel availability constraint, that is some form of m(tf) ≥ mdry. If the constraint

is satisfied the the pair (t∗f , σ
∗) is a feasible solution. Otherwise if the constraint

is not satisfied, the minimum fuel problem has no feasible solution caused by a

15

limitation in the fuel.

A similar approach is taken to solve the minimum-fuel landing problem,

for which the authors of [3] develop an algorithm to solve the minimum-fuel and

minimum-landing error problems in a prioritized fashion. Begin by performing

the method as outlined above the generate a feasible optimal solution pair for the

MFP (t∗f , σ
∗). If no solution exists, terminate the process. Else, take the value t∗f

and now solve the MLEP using the same outlined method for the cost functional

defined as ∥r
∼
(t∗f)∥

2

2
to generate an optimal solution pair (t†f , σ

†).

tmin t1t2

f(t1)

f(t2)

tmax

f(tmin)

f(tmax)

d

Figure 3.: Simple example of the golden search method.

The software used to simulate the results in [2] is a primal dual path

following interior point method called SeDuMi, or Self-Dual Minimization. The

software is compatible with a MATLAB interface.

Remark: The golden search method is an iterative method used to find the

minimizer of a function where an upper and lower bound must be known for what

you are optimizing over. The golden search method works by using the golden ratio

φ = 1
2(

√
5 − 1) to determine a value denoted d = φ(tmin − tmax). Now, consider for

some function f(t), where t1 = tmin + d and t2 = tmax − d, as depicted in Figure 3,

such that tmin < t2 < t1 < tmax. These values t2, t1 corresponds to output values

f(t2), f(t1) and if f(t2) < f(t1) then t2 ≜ tmin and t1 ≜ t2 with no change to tmax.

16

Finding the updates for the case when f(t1) < f(t2) follows mutatis mutandis. This

process is repeated until convergence is achieved. One attributable benefit to such a

line search method is the main to requirements are (1) upper and lower bounds and

(2) a unimodal cost function.

17

III. A NOVEL APPROACH

A point of separation between the work stated above and the work of this

thesis is with the handling of the slack function Γ(t), and with the inequality

constraints on the thrust bounds. We opt to square the right-hand side to make

for better implementability later down the line.

∥T
∼
(t)∥ ≤ Γ2(t). (12)

The typical nature of the thrust function is one that is max-min-max. This follows

from the application of Pontrygan’s maximum principle. The proof of such a

claim is omitted here but can be found in the main result of [2]. This very useful

fact is used in justifying that the convexificaiton term is lossless. Additionally by

Pontrygan, the points of concern regarding the validity of a solution exists on the

boundary. Lemma 2 in [2] proves that the convexification is lossless. The lemma is

stated as follows and the reader is referred to [2] for the poof.

Lemma 5. Consider a solution of Problem 3 given by [t∗f , T∼
∗
(⋅),Γ∗(⋅)]. Then

[t∗f , T
∗(⋅)] is also a solution to Problem 1 and ∥T

∼

∗
(t)∥ = ρ1 or∥T

∼

∗
(t)∥ = ρ2 fort ∈

[0, t∗f].

Therefore, because the convexification is lossless and that any solution to the

trajectory optimization problem involving the slack variable Γ2 is also a solution

to original non-convexified problem with ∥T
∼
∥, even on the boundary, rewriting this

constraint as an inequality constraint poses no concern.

This new convexification affects the inequality constraint on the upper and

lower bounds on the thrust magnitude and appears in the dynamical equation

modeling the mass. All other constraints remain the same. Careful scrutiny is

required with the change of variables. The consequences of this relaxation has little

18

effect on the constraints seen in [2] except that the convex representation of the

thrust bounds takes the form

ρ1 ≤ Γ2(t) ≤ ρ2 ∀t ∈ [0, tf]. (13)

As an alternative to computing the optimization problems in a prioritized

but separate fashion as done in [3], we propose the introduction of λ > 0, the

regularization parameter commonly known as the Tikhonov parameter. When

λ >> 0, emphasis is placed on minimizing the MLEP. When λ is small, emphasis is

placed on minimizing the fuel. Our relaxation of the nonconvex formulation results

in the following optimization problem.

Problem 6. min
tf

min
Γ,r

∫
tf

0 Γ2(t)dt + λ ∥r
∼
(tf)∥

2

2

subject to:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r̈
∼
(t) = g

∼

+
T
∼
(t)

m(t) , r
∼
(0) = r

∼0
, ṙ

∼
(0) = ṙ

∼0
, r

∼1
(tf) = ṙ∼(tf) = 0,

tan2(γ)∥E
≈ r

(r
∼
(t))∥2 − e

∼

T
1
r
∼
(t)2 ≤ 0, ∀t ∈ [0, tf]

{ ṁ(t) = −αΓ2(t), m(0) =mwet, m(tf) ≥mdry

{ ∥T
∼
(t)∥ ≤ Γ2(t), ρ1 ≤ Γ2(t) ≤ ρ2 ∀t ∈ [0, tf]

New Nondimensionalization

In order to implement our chosen fast numerical solver using the

Moreau-Yosida regularization, the cost functionals both must be expressed as an

L2 norm. To satisfy this requirement we redefine the normalized slack variable as

a square function. Considering Γ and the mass are both always greater than zero,

this change of variables poses no issue. Define the following:

σ2(t) ≜
Γ2(t)

m(t)
, u

∼
(t) ≜

T
∼
(t)

m(t)
. (14)

19

Rewriting the relaxed equality constraint on the thrust profile in terms of these

nondimensionalized variables yields:

∥u
∼
(t)∥ ≤ σ2(t), ∀t ∈ [0, tf]. (15)

Recall that z(t) = lnm(t), and after repeating the steps outlined in the summary of

the previous work, the inequality constraint on the thrust magnitude becomes

ρ1e
−z(t) ≤ σ2(t) ≤ ρ2e

−z(t) ∀t ∈ [0, tf]. (16)

The updated nondimensionalized MLEP can now be stated as the following

minimization problem

Problem 7. min
tf

min
σ,r

∫
tf

0 σ2(t)dt + λ ∥r
∼
(tf)∥

2

2

subject to:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

r̈
∼
(t) = g

∼

+ u
∼
(t), r

∼
(0) = r

∼0
, ṙ

∼
(0) = ṙ

∼0
, r

∼1
(tf) = ṙ∼(tf) = 0,

tan2(γ)∥E
≈ r
r
∼
(t)∥2 − e

∼

T
1
r
∼
(t)2 ≤ 0, ∀t ∈ [0, tf]

{ ż(t) = −ασ2(t), z(0) = lnmwet, z(tf) ≥ lnmdry

{ ∥u
∼
(t)∥ ≤ σ2(t), ρ1e−z(t) ≤ σ2(t) ≤ ρ2e−z(t) ∀t ∈ [0, tf] .

New Discretization

The first step on the discretization process is to convert the second-order

differential equation for r̈
∼
(t) into a system of first-order differential equations by

performing a reduction of order. Then the differential equations for the spacecraft

dynamics are

r̈
∼
(t) = g

∼

+ u
∼
(t)

ż(t) = −ασ2(t)

20

. Let v
∼
(t) = ṙ

∼
(t) and perform the substitution

ṙ
∼
(t) = v

∼
(t)

v̇
∼
(t) = g

∼

+ u
∼
(t)

ż(t) = −ασ2(t)

Now applying the explicit Euler Method where h = ∆t, and k = [0, . . . ,N] represents

the number of time steps:

r
∼k+1

− r
∼k

= hv
∼k

v
∼k+1

− v
∼k

= h(g
∼

+ u
∼ k

)

zk+1 − zk = h(−ασ2(t)).

For each of these components r
∼
, v
∼
, z, etc., lump all iterates of each variable

into a single vector where r̂
∼
, v̂
∼
, û
∼
, ĝ
∼

are in IR3(N+1), to account for each spacial

direction. The vectors z
∼
, σ
∼

are in IRN+1. For example,

r̂
∼

= [r
∼0

r
∼1

. . . r
∼N

]
T

, (17a)

σ̂
∼

= [σ2
0 σ2

1 . . . σ2
N
]
T

. (17b)

With this new representation, each ODE can be rewritten as these matrix

equations

A
≈
r̂
∼
−B

≈
v̂
∼
= c
∼1

(18a)

A
≈
v̂
∼
−B

≈
û
∼
= c
∼2

(18b)

D
≈
ẑ
∼
− F
≈
σ̂
∼
= 0. (18c)

The matrices A
≈
,B
≈

are in IR3N×3(N+1). Also, here the matrix h
≈
∈ IR3 is a diagonal

21

matrix with scalar value h along the diagonal. These matrices have the structure

A
≈

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−I
≈

I
≈

0 ⋯ 0

0 −I
≈

I
≈

⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ −I
≈
I
≈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B
≈
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h
≈

0 0 . . .

0 h
≈

0 . . .

⋮ ⋮ ⋱ ⋮

0 0 ⋯ h
≈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19a)

Recall that the mass is not vectorized, as the direction the vehicle is traveling does

not influence the rate of change of the mass. So D
≈
, F
≈

are in IRN×N+1, given my

D
≈

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 ⋯ 0

0 −1 1 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F
≈
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−αh 0 0 . . .

0 −αh 0 . . .

⋮ ⋮ ⋱ ⋮

0 0 ⋯ −αh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (20a)

Furthermore, c
∼1

and c
∼2

are meticulously chosen to include the initial and final

conditions for the respective initial and final time steps. Here a
∼
, d
∼

are the

placeholder vectors for the remaining unknown values of r
∼
, v
∼
, respectively, for

all other time steps. The matrix M̄
≈

is the resulting mass matrix from the finite

element discretization addressed in this next subsection. We find

c
∼1
= [(M̄

≈
r
∼0
+ a
∼
) a

∼
⋯ a

∼
(M̄
≈
r
∼N

+ a
∼
)]
T

, (21a)

c
∼2
= [(M̄

≈
v
∼0
+ d
∼
) d

∼
⋯ d

∼
(M̄
≈
v
∼N

+ d
∼
)]
T

. (21b)

Now with each differential equation written as a matrix equation, it is worth

showing that each of these matrix equations is invariant with respect to time.

22

Consider matrix differential equation of the form

ẋ
∼
(t) = A

≈
x
∼
(t) +B

≈
u
∼
(t) (22a)

x
∼ 0

= β, (22b)

where x
∼ 0

∈ IRn, u
∼ 0

∈ IRm and A
≈
,B
≈
∈ IRn×m. Notice that:

ẋ
∼
(t) −A

≈
x
∼
(t) = B

≈
u
∼
(t)

e−A≈ t[ẋ
∼
(t) −A

≈
x
∼
(t)] Ô⇒

d

dt
[e−A≈ tx

∼
(t)] = e−A≈ tB

≈
u
∼
(t).

Now integrate from the known initial time t1 to an instant t > t1:

∫

τ=t

τ=t1

d

dτ
[e−A≈ τx

∼
(τ)]dτ = e−A≈ tx

∼
(t) − e−A≈ t1x

∼
(t1) = ∫

τ=t

τ=t1
e−A≈ τ(B

≈
u
∼
(τ))dτ.

Next multiplying by the matrix exponential eA≈ t yields the exact solution to (22):

x
∼
(t) = eA≈ (t−t1)x

∼
(t1) + ∫

τ=t

τ=t1
eA≈ (t−τ)(B

≈
u
∼
(τ))dτ. (23)

To convert this problem from a continuous model to a discrete model, we

seek to evaluate x
∼
(t) at x

∼
(tk) ≜ x∼(tk−1 +∆t) for k = 0,1,2, Begin with t = t1 then

integrate from t1 to t2 = t1 +∆t. Next, integrate from t2 to t3 = t2 +∆t and continue

iteratively from tk−1 to tk. This gives

x
∼
(tk) = e

A
≈
(tk−tk−1)x

∼
(tk−1) + ∫

τ=tk

τ=tk−1

eA≈ (tk−τ)(B
≈
u
∼
(τ))dτ. (24)

Until now it should be stated that the solution is exact. To introduce the

approximation, assume that u
∼
(τ) ≈ u

∼
(tk−1) for tk−1 ≤ τ < tk. With this, we can

23

express the integral above as:

x
∼
(tk) = e

A
≈

∆tx
∼
(tk−1) + [∫

τ=tk−1+∆t

τ=tk−1

eA≈ (tk−1+∆t−τ) dτ] (B
≈
u
∼
(tk−1)). (25)

We make the following two substitutions:

ξ = tk−1 +∆t − τ. (26a)

eA≈ ξ ≈ I +A
≈
ξ. (26b)

The Taylor approximation for the matrix exponential is used here and the integral

in (25) with these substitutions becomes,

∫

ξ=0

ξ=∆t
eA≈ ξ d(−ξ) = ∫

ξ=∆t

ξ=0
eA≈ ξ dξ

≈ ∫

ξ=∆t

ξ=0
I +A

≈
ξ dξ

= I∆t +A
≈

∆t2

2

= ∆t(I +A
≈

∆t

2
).

Substituting this above expression in for the integral, we have

x
∼
(tk) ≈ (I +A

≈
∆t)x

∼
(tk−1) +∆t(I +

A
≈
∆t

2
)B
≈
u
∼
(tk−1). (27)

By letting Φ = (I + A
≈
∆t) and Ψ = ∆t(I +

A
≈

∆t

2)B
≈

, we can arrive at the following

explicit recursive representation for the discrete dynamics of the space vehicle:

x
∼
(tk) ≈ Φx

∼
(tk−1) +Ψu

∼
(tk−1). (28)

Which, melds with the derivation of each of our dynamic equations, and (28) can

be rewritten in a identical manner to (18).

24

Discretization of Cost Functions and Constraints

The cost function for the trajectory optimization problem must also be

discretized. To discretize the cost functional, represented as ∫
tf

0 σ2(t)dt and

∥r(tf)∥
2

for the respective minimum fuel landing problem and the minimum

landing error problems proceeds as follows. For the MFLP cost functional, the

authors of [2] use piece-wise constant step functions and the left-endpoint rule to

approximate the cost function. For the MLEP cost functional, a standard direct

discretization approach is taken.

We choose to approximate the cost function, dynamic equations and

constraints using a finite element method. Before we get started, a few definitions.

The inspiration for this is from [12], where such techniques are applied to PDE type

problems. We consider the time-space domain Ω × [0, tf] where Ω ⊂ IRd for d ∈ N.

To simplify the notation as much as possible we will simply use Ω to represent this

time-space domain. Define

L2(Ω) = {x
∼
∶ ∫

Ω
∣x
∼
∣
2
dΩ <∞}

and consider a subspace of finite dimension VN ⊂ L2(Ω) consisting of the span of

finite dimensional basis functions {φ1, . . . , φN}. Then any xn ∈ VN can be given as

xn =
N

∑
i=0

xiφi

We are now set to express a norm on L2(Ω) as

∥x
∼
∥

2

L2(Ω)
=

N

∑
i=0

N

∑
j=0

xixj ∫
Ω
φi(t)φj(t)dt ∶= x∼

TM̄
≈
x
∼

(29)

Where M̄
≈

is the mass matrix defined to be M̄ij = ∫Ω φi(t)φj(t)dt. Let us see how

this can be applied to our cost function. Recall that our cost functional, as stated

25

prior to our updated discretization, was

J(r
∼
, σ) = ∫

tf

0
σ2(t)dt + λ ∥r

∼
(tf)∥

2

2
. (30)

Given the new definitions of r̂
∼

and σ̂
∼
, defined in (17), define the sparse matrix

E
≈ N

∈ IR3N×3(N+1) to access the final-time entry for the position vector r
∼
. The cost

functional transforms into

J(r
∼
, σ
∼
) = ∥σ̂

∼
∥

2

L2(Ω)
+ λ ∥E

≈ N
r̂
∼
∥

2

L2(Ω)
.

Let’s multiply each term by 1
2 to make for simpler computation later down the

line. Naturally this is no issue as the minimizer for the original cost function

is equivalent to the minimizer with a constant multiplied to it. Now with our

definition (29), we have our discretization, and an updated representation of the

trajectory optimization problem. Define Λ
≈ σ

∈ IRN×N+1 to be the diagonal matrix

with the entries of σ̂
∼

entered along the diagonal. In similar fashion as for the

position vector, define Ê
≈ N

∈ IRN×N+1 to access the value at the final time for the

mass as of the vehicle.

Problem 8. min
N

min
r,σ

1
2 ∥σ̂

∼
∥

2

L2(Ω)
+ λ

2
∥E
≈ N
r̂
∼
∥

2

L2(Ω)

subject to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
≈
r̂
∼
−B

≈
v̂
∼
= c
∼1
, (Governing Dynamics)

A
≈
v̂
∼
−B

≈
û
∼
= c
∼2
, (Governing Dynamics)

D
≈
ẑ
∼
− F
≈
σ̂
∼
= 0, (Governing Dynamics)

Ê
≈ N
ẑ
∼
≥ lnmdry, (Lower Bound on Mass)

tan2(γ)∥E
≈ r
r̂
∼
∥2 −E

≈ 1
r̂
∼

2
≤ 0, (Cone Constraint on Position)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∥û
∼
∥

2
≤ Λ
≈ σ
σ̂
∼
, (Convexification Slack Variable)

(1
∼
− ẑ
∼
∼

)ρ1 ≤ σ̂∼ ≤ (1
∼
− ẑ
∼
)ρ2, (Thrust Bound)

26

This updated representation of the convexificaiton slack variable will

be addressed here. Squaring both sides allows for promising results once the

optimality conditions for this problem are found and the resulting matrix equation

of optimality conditions can take on a symmetric form. Let’s see how we arrived at

the above representation. We began with the constraint having the form

∥u
∼
(t)∥ ≤ σ2(t).

After the discretization and reformulation of the components of this constraint into

a lumped matrix involving û
∼

and σ̂
∼

we have

∥û
∼
∥ ≤ σ̂

∼
.

Once the square of both sides is applied, notice that the left hand side can be

rewritten using some of the results above from the finite element method, (û
∼
)TM

≈
u
∼

and the right hand side is similar in nature to the square of of a function, but in

this instance it is more in line with component-wise squaring, which in turn can

be expressed as Λ
≈ σ
σ̂
∼

where the matrix Λ
≈ σ

is a diagonal matrix with the entries

of σ̂
∼

along its diagonal. Because M̄
≈

is a diagonal matrix, it can be rewritten as

M̄
≈
= G

≈

TG
≈

(say) where G
≈
= G

≈

T is a matrix with the entries of M̄
≈

along its diagonal.

Now then,

û
∼

TM̄
≈
û
∼
−Λ
≈ σ
σ̂
∼

≤ 0

û
∼

TG
≈

TG
≈
û
∼
−Λ
≈ σ
σ̂
∼

≤ 0

27

By the properties of the transpose and diagonal matrices,

(G
≈
u
∼
)TG

≈
u
∼
−Λ
≈ σ
σ̂
∼

≤ 0

(G
≈
u
∼
)2 −Λ

≈ σ
σ̂
∼

≤ 0

M̄
≈
u
∼

2 −Λ
≈ σ
σ̂
∼

≤ 0

M̄
≈

Λ
≈ u
û
∼
−Λ
≈ σ
σ̂
∼

≤ 0

where Λ
≈ u

is the diagonal matrix with the entries of u
∼

being along the diagonal.

Alternative Solution Approach

For a moment let us ignore the inequality constraints presented in the model

and focus on the equality constraints. This action is taken to identify the discrete

Lagrangian. Following this, we will return to handle the inequality constraints

with the application of the Moreau-Yosida regularization. The discrete Lagrangian

consists of the sum of the cost functional J(σ̂
∼
, r̂
∼
) and Lagrange multiplier terms

p
∼1
, p
∼2
, p
∼3

which will be used to enforce the constraints in the problem. By applying

(29), our finite element discretization of our cost functional:

J(σ̂
∼
, r̂
∼
) = 1

2 σ̂∼
TM̄
≈
σ̂
∼
+ λ

2(E≈ N r̂∼)
TM̂
≈
E
≈ N
r̂
∼
.

The discrete Lagrangian is found by rewriting the equality constraints equal to

zero and multiplying the resulting expression by a Lagrange multiplier. This new

Lagrange multiplier term is added to the original cost functional. For instance,

consider our cost functional and only one equality constraint. Let’s use the

dynamics of the mass of the vehicle and consider the Lagrange multiplier p
∼3

. The

dynamics of the mass vehicle is D
≈
ẑ
∼
= F

≈
σ̂
∼
. First, set it equal to zero and multiply

by a Lagrange multiplier p
∼

T

3
(D
≈
ẑ
∼
− F

≈
σ̂
∼
) = 0. Combining this with the cost functional

28

gives the discrete Lagrangian for one equality constraint as

L(σ̂
∼
, r̂
∼
, ẑ
∼
, p
∼3
) = 1

2 σ̂∼
TM̄
≈
σ̂
∼
+ λ

2(E≈ N r̂∼)
TM̂
≈
E
≈ N
r̂
∼
+ p
∼

T

3
(D
≈
ẑ
∼
− F
≈
σ̂
∼
).

Extending this for all such equality constraints will yield this discrete Lagrangian

L(σ̂
∼
, r̂
∼
, v̂
∼
, û
∼
, ẑ
∼
, p
∼1
, p
∼2
, p
∼3
) = 1

2 σ̂∼
TM̄
≈
σ̂
∼
+ λ

2(E≈ N r̂∼)
TM̂
≈
E
≈ N
r̂
∼
+ p
∼

T

1
(A
≈
r̂
∼
−B

≈
v̂
∼
− c
∼1
)

+ p
∼

T

2
(A
≈
v̂
∼
−B

≈
û
∼
− c
∼2
) + p

∼

T

3
(D
≈
ẑ
∼
− F
≈
σ̂
∼
). (31)

To determine the optimality conditions for this problem, we take the derivative

of L with respect to r̂
∼
, σ̂
∼
, v̂
∼
, û
∼
, ẑ
∼
, p
∼1
, p
∼2
, p
∼3

set to zero. These first order necessary

conditions represent the Karush-Kuhn Tucker, or KKT conditions.

∂L

∂r̂
∼

= λE
≈

T
N
M̂
≈
E
≈ N
r̂
∼
+ p
∼

T

1
A
≈
= 0 (32a)

∂L

∂σ̂
∼

= M̄
≈
σ̂
∼
− p
∼

T

3
F
≈
= 0 (32b)

∂L

∂v̂
∼

= −p
∼

T

1
B
≈
+ p
∼

T

2
A
≈
= 0 (32c)

∂L

∂û
∼

= −p
∼

T

2
B
≈
= 0 (32d)

∂L

∂ẑ
∼

= p
∼

T

3
D
≈
= 0 (32e)

∂L

∂p
∼1

= A
≈
r̂
∼
−B

≈
v̂
∼
− c
∼1
= 0 (32f)

∂L

∂p
∼2

= A
≈
v̂
∼
−B

≈
û
∼
− c
∼2
= 0 (32g)

∂L

∂p
∼3

= D
≈
ẑ
∼
− F
≈
σ̂
∼
= 0 (32h)

29

Combining these optimality conditions into a single matrix equation gives

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λE
≈

T
N
M̂
∼
E
≈ N

0 0 0 0 A
≈

T 0 0

0 M̄
∼

0 0 0 0 0 −F
≈

T

0 0 0 0 0 −B
≈

T A
≈

T 0

0 0 0 0 0 0 −B
≈

T 0

0 0 0 0 0 0 0 D
≈

T

A
≈

0 −B
≈

0 0 0 0 0

0 0 A
≈

−B
≈

0 0 0 0

0 −F
≈

0 0 D
≈

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r̂
∼

σ̂
∼

v̂
∼

û
∼

ẑ
∼

p
∼1

p
∼2

p
∼3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

0

0

0

c
∼1

c
∼2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (33)

Moreau–Yosida Regularization

To begin to handle the inequality constraints, a digression is needed to

discuss the theory overlaying the Moreau-Yosida regularization. This discussion

is heavily influenced by [7], where I refer the reader who is seeking a more in-depth

understanding of Moreau-Yosida Regularization.

Definition 9. From [7]. Let f ∶ IRn
→ R⋃{+∞} be a proper closed convex function.

The Moreau-Yosida regularization of a given function f , associated to the metric

defined by M , denoted by F , is defined as follows and can otherwise be termed an

infimal convolution:

F (x) ∶=min
y∈IRn

f(y) +
1

2
∥y − x∥

2
M . (34)

Theorem 10. The infimal convolution of a convex function is a convex function.

The proof of this theorem is found on p.50 of [13].

Proposition 11. The infimal convolution, as defined in (34), is always

differentiable.

The proof is found in [9].

30

Proposition 12. The following statements are equivalent:

1. x∗ is the minimizer for f .

2. x∗ is the minimizer for F .

3. ∇F (x∗) = 0.

4. F (x) = f(x) for all such x.

I refer the reader to [6, 7, 9] for the proof of this proposition.

With some of the mechanics of the Moreau-Yosida regularization established,

we may return to trajectory optimization problem at hand. To begin applying the

regularization technique, the active sets associated with our bounded constraints

must be determined. Define

A + = {i ∶ σ̂
∼ i
> (1

∼
− z
∼
)ρ2}, A − = {i ∶ σ̂

∼ i
< (1

∼
− z
∼
)ρ1} (35a)

B = {i ∶ tan2(γ) ∥E
∼ r
r̂
∼i
∥

2
> E

≈ 1
r̂
∼

2
i
} (35b)

C = {Ê
≈ N
ẑ
∼ i
< lnmdry} (35c)

D = {û
∼

T
i
M̄
≈
û
∼ i
> Λ
≈ σ
σ̂
∼ i
} (35d)

With these, introduce χA + , χA − , χB, χC , and χD to be the characteristic functions

for the respective indices of σ̂
∼
,r̂
∼

and ẑ
∼
. Let ε1, ε2, ε3, ε4 > 0 be regularization

parameters that penalize any dissatisfaction of what will be their respective

inequality constraint. (1
∼
− ẑ

∼
)ρ1 ≤ σ̂

∼
≤ (1

∼
− ẑ

∼
)ρ2, the terms needed for the

Moreau-Yosida regularization are

1

2ε1
∥min{0, σ̂

∼
− (1

∼
− ẑ
∼
)ρ1}∥

2
(36a)

1

2ε1
∥max{0, σ̂

∼
− (1

∼
− ẑ
∼
)ρ2}∥

2
. (36b)

Here ε1 acts to provide a high penalty when the lower bound on the thrust is

violated. A similar situation for ε2. For the cone constraint, the replacement

31

Moreau-Yosida expression is

1

2ε2
∥max{0, tan2(γ)(E

∼ r
r̂
∼
)TM̂

≈
(E
∼ r
r̂
∼
) −E

≈ 1
r̂
∼

2
}∥

2
. (37a)

Again, for Ê
≈ N
ẑ
∼
≥ lnmdry, we introduce

1

2ε3
∥max{0, lnmdry − Ê

≈ N
ẑ
∼
}∥

2
. (38)

This leaves the convexification variable û
∼

TM̄
≈
û
∼
≤ Λ
≈ σ
σ̂
∼
, its representation is

1

2ε4
∥max{0, û

∼

TM̄
≈
û
∼
−Λ
≈ σ
σ̂
∼
}∥

2
. (39)

Combining this with (31), the Lagrangian, including the Moreau-Yosida

regularization parameters becomes

L(σ̂
∼
,r̂
∼
,v̂
∼
,û
∼
,ẑ
∼
,p
∼

1, p
∼2
, p
∼3
) = 1

2 σ̂∼
TM̄
≈
σ̂
∼
+ λ

2(E≈ N r̂∼)
TM̂
≈
E
≈ N
r̂
∼
+ p
∼

T

1
(A
≈
r̂
∼
−B

≈
v̂
∼
− c
∼1
)

+ p
∼

T

2
(A
≈
v̂
∼
−B
≈
û
∼
− c
∼2
) + p

∼

T

3
(D
≈
ẑ
∼
−F
≈
σ̂
∼
+ 1

2ε1
max{0, σ̂

∼
− (1

∼
− ẑ
∼
)ρ2}

TM
≈

′max{0, σ̂
∼
− (1

∼
− ẑ
∼
)ρ2}

+ 1
2ε1
min{0, σ̂

∼
− (1

∼
− ẑ
∼
)ρ1}

TM
≈

′min{0, σ̂
∼
− (1

∼
− ẑ
∼
)ρ1}

+ 1
2ε3
max{0, lnmdry − Ê

≈ N
ẑ
∼
}TM

≈

′′max{0, lnmdry − Ê
≈ N
ẑ
∼
}

+ 1
2ε4
max{0, û

∼

TM̄
≈
û
∼
−Λ
≈ σ
σ̂
∼
}M
≈

′′′

max{0, û
∼

TM̄
≈
û
∼
−Λ
≈ σ
σ̂
∼
}

+ 1
2ε2
max{0, tan2(γ)(E

∼ rr̂∼)
T M̂
≈
(E
∼ rr̂∼)−E≈ 1

r̂
∼

2}T M̂
≈
max{0, tan2(γ)(E

∼ rr̂∼)
T M̂
≈
(E
∼ rr̂∼)−E≈ 1

r̂
∼

2}.

Differentiating each Moreau-Yosida parameter for placement into the KKT

system results in these three additional equations that can be added to (32).

c
∼3
=
∂

∂r
∼

= −2ε−1
2 χBM̂

≈
max{0, tan2(γ)(E

∼ r
r̂
∼
)TM̂

≈
(E
∼ r
r
∼
) −E

≈ 1
r̂
∼

2
}(tan2(γ)E

≈ r
M̂
≈
E
≈ r
r̂
∼
−E

≈ 1
r̂
∼
)

c
∼4
=
∂

∂z
∼

= ε−1
3 χCM

≈

′′max{0, lnmdry − Ê
≈ N
ẑ
∼
}Ê
≈ N

−
ρ2

ε1
χA +M

≈

′

c
∼5
=
∂

∂σ
∼

= −ε−1
1 χA +M

≈

′max{0, σ̂
∼
− (1

∼
− ẑ
∼
)ρ2} − ε

−1
1 χA −M

≈

′min{0, σ̂
∼
− (1

∼
− ẑ
∼
)ρ1}

c
∼6
=
∂

∂û
∼

= −ε−1
4 χDM

≈

′′′max{0, û
∼

TM̄
≈
û
∼
−Λ
≈ σ
σ̂
∼
}M̄
≈
û
≈

32

The KKT system is now given to be

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λE
≈

T
N
M̂
∼
E
≈ N

0 0 0 0 A
≈

T 0 0

0 M̄
∼

0 0 0 0 0 −F
≈

T

0 0 0 0 0 −B
≈

T A
≈

T 0

0 0 0 0 0 0 −B
≈

T 0

0 0 0 0 0 0 0 D
≈

T

A
≈

0 −B
≈

0 0 0 0 0

0 0 A
≈

−B
≈

0 0 0 0

0 −F
≈

0 0 D
≈

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r̂
∼

σ̂
∼

v̂
∼

û
∼

ẑ
∼

p
∼1

p
∼2

p
∼3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c
∼3

c
∼5

0

c
∼6

c
∼4

c
∼1

c
∼2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (40)

Notice that the matrix on the left-hand-side can be expressed as the form

P
≈
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
≈

K
≈

T

K
≈

0
≈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (41)

The dimension of the entire matrix P
≈

in is (18n+11)× (18n+11). Where the size of

M is 11(n + 1) × 11(n + 1), K is 11(n + 1) × 7n and the size of 0
≈

is 7n × 7n.

Well-Posedness

At face value, it is unclear if such a matrix P
≈

in (41) is cosistant,

particularly with zeros along the diagonal in M
≈

. In order to ensure that this matrix

equation can be inverted, two things must be established. The matrix K
≈

T must

be injective, and the intersection of the null space of K
≈

and the null space of M
≈

must be empty. To better understand the first requirement, a dissection into the

structure of K
≈

T is a good place to begin. Let’s analyze the base case for N = 1.

33

The expanded matrix K
≈

T is expressed as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
−h 0 0 −1 0 0 0
0 −h 0 0 −1 0 0
0 0 −h 0 0 −1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 αh
0 0 0 0 0 0 0
0 0 0 −h 0 0 0
0 0 0 0 −h 0 0
0 0 0 0 0 −h 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To place this into reduced row echelon form, the following actions are taken:

1. R1 ← R1 ÷ −1

2. R4 ← R4 −R1

3. R7 ← R7 + hR1

Now repeat this pattern involving the next respective row at each step, namely

4. R2 ← R2 ÷ −1

5. R5 ← R5 −R2

6. R8 ← R8 + hR2

34

and we can begin to see a pattern emerging. Continue this process iteratively until

complete and it is easy to check that the resulting process will result in

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

So as we can see for the base case, the rank(K
≈

T
) = dim(col(K

≈

T
)) = 7 and therefore

the matrix K
≈

T , for N = 1 is injective and the columns of the matrix are linearly

independent. With this exercise in mind, it would suffice to prove that for all N ∈

N, the columns of the resulting matrix K
≈

T are always linearly independent.

Theorem 13 (The Rank Nullity Theorem). For any m × n matrix A
≈

,

rank(A
≈
) + null(A

≈
) = n

I refer the reader to any number of undergraduate textbooks for a proof of

this common theorem.

Proposition 14. For all N ∈ N, The matrix K
≈

T
∈ IR11(N+1)×7N as defined above is

an injective matrix.

35

Proof. Recall that the matrix K
≈

T
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A
≈

T 0 0

0 0 F
≈

T

−B
≈

T A
≈

T 0

0 B
≈

T 0

0 0 D
≈

T

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and x
∼
=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p
∼1

p
∼2

p
∼3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. Also,

A
≈

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−I
≈

I
≈

0 ⋯ 0

0 −I
≈

I
≈

⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ −I
≈
I
≈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B
≈
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h
≈

0 0 . . .

0 h
≈

0 . . .

⋮ ⋮ ⋱ ⋮

0 0 ⋯ h
≈

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D
≈

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 ⋯ 0

0 −1 1 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F
≈
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−αh 0 0 . . .

0 −αh 0 . . .

⋮ ⋮ ⋱ ⋮

0 0 ⋯ −αh

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

To see that K
≈

T is injective it must be that if K
≈

Tx
∼
= 0

∼
then x

∼
= 0

∼
. Notice that

F
≈

Tp
∼3

= 0
∼

only when p
∼3

≡ 0
∼
. Also B

≈

Tp
∼2

= 0
∼

only when p
∼3

≡ 0
∼
. This follows because

0 < h < 1 is imposed for the time-step. Now A
≈

Tp
∼2
− B

≈

Tp
∼1

= 0
∼

this is because it

is already shown that p
∼2

≡ 0
∼

and it must be that p
∼1

≡ 0
∼

because of the restriction

on h. Thus. p
∼1
, p
∼2
, p
∼3

must be equal to zero to satisfy K
≈

Tx
∼
= 0

∼
. Therefore K

≈

T
∈

IR11(N+1)×7N as defined above is an injective matrix. This completes the proof.

Returning to the case for N = 1 can provide the basis for the argument that

the intersection of the null spaces of K
≈

and M
≈

is in fact the zero vector. Through a

lengthy computation, the span of the null space for K
≈

defined as N(K
≈
) = S where S

36

is

S = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−h
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
−h
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
−h
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h2

0
0
0
0
0
0
0
−h
0
0
0
0
0
1
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
h2

0
0
0
0
0
0
0
−h
0
0
0
0
0
1
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
h2

0
0
0
0
0
0
0
−h
0
0
0
0
0
1
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
1
αh
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
−1
αh
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The mass matrix M
≈

, for the case N = 1 is a diagonal matrix in IR22×22 with values

along the diagonal corresponding only to the first component of the final time of r̂
∼

and the two values corresponding to σ̂
∼
.

M
≈
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 λm̂r2 0 0 0 0 . . .

0 0 0 0 0 λm̂r3 0 0 0 . . .

0 0 0 0 0 0 m̄σ1 0 0 . . .

0 0 0 0 0 0 0 m̄σ2 0 . . .

0 0 0 0 0 0 0 0 0 . . .

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Computing M
≈
(S) will generate a collection of vectors. Within this collection, the

zero vectors present will correspond to vectors ξ
∼i

in S that satisfy M
≈
ξ
∼i
= 0 and as

such, the zero vectors correspond to the vectors living in the intersection of these

37

null spaces. Now, M
≈
(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

λm̂r2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0

λm̂r3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0

mσ2
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0

m̄σ1
αh
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0

−m̄σ1
αh
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

From this collection we can determine that,

N(M
≈
) ∩ S = span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−h
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
−h
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
−h
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h2

0
0
0
0
0
0
0
−h
0
0
0
0
0
1
0
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
h2

0
0
0
0
0
0
0
−h
0
0
0
0
0
1
0
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
h2

0
0
0
0
0
0
0
−h
0
0
0
0
0
1
0
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(42)

when N = 1. With all of these pieces in place, it appears as though the intersection

is non-empty and as such poses a problem for the invertibility of the entire block

matrix P
≈

. However, a deeper look into the physical interpretation behind these

null spaces can shed some new light. Looking back at (), notice that any linear

combination of any of those vectors will result in K
≈
ξ
∼i

= 0. These even involve

free values for z1 and z2 depicted in the last two entries of each vector- namely the

last two vectors in S. With this in mind, notice that within the intersection of M
≈

and K
≈

, the vectors containing non-zero values for z1 and z2 do not appear. This

is of significant importance because we see that in order for a vector to be within

the intersection of the M
≈

and K
≈

null spaces, seen in (42), the values for z1 and z2

38

must be zero. Recall that during the nondimensionalization step, z = lnm. This

means z is undefined at m = 0 and is zero when m = 1. Physically, this is infeasible

because the mass of any space vehicle will never be 1. In fact, you would expect

the minimum mass value to be the mass of the vehicle without any fuel (mdry)

and values of mdry are in the thousands of kilograms. Therefore it is reasonable to

conclude that

N(M
≈
) ∩ S = {0

∼
}

because, physically, there are no such vectors in the span of the intersection to

account for non-zero values of z1 and z2. A similar argument holds for values of û
∼

which is bounded below by ρ1 > 0.

To address this concern regarding ẑ
∼
> 0, the following adjustment to the

KKT system can be made. Redefine the values c
∼3
, c
∼4
, c
∼5
, c
∼6

to be

c
∼4
≜ ε−1

3 G≈ C
Ê
≈ N
M
≈

′′ lnmdry −
ρ2

ε1
G
≈ A +

M
≈

′

c
∼3
≜ −2ε−1

2 G≈ B
M̂
≈
max{0, tan2(γ)(E

∼ r
r̂
∼
)TM̂

≈
(E
∼ r
r
∼
) −E

≈ 1
r̂
∼

2
}(tan2(γ)E

≈ r
M̂
≈
E
≈ r
r̂
∼
−E

≈ 1
r̂
∼
)

c
∼5
≜ −ε−1

1 G≈ A +
M
≈

′max{0, σ̂
∼
− (1

∼
− ẑ
∼
)ρ2} − ε

−1
1 G≈ A −

M
≈

′min{0, σ̂
∼
− (1

∼
− ẑ
∼
)ρ1}

c
∼6
≜ −ε−1

4 G≈ D
M
≈

′′′max{0, û
∼

TM̄
≈
û
∼
−Λ
≈ σ
σ̂
∼
}M̄
≈
û
≈

Where G
≈
,G
≈ C
,G
≈ A +

,G
≈ A −

,G
≈ B
,G
≈ D

are projection matrices onto the respective

active sets C ∪ C c,C ,A +,A −, B, and D . This means that each G
≈

is a matrix with

1’s along the diagonal corresponding to indices where the constraint is violated. As

a result of this, the other term now left out of c
∼4

, the term involving ẑ
∼
, is moved

to the right-hand side. By the nature of these Moreau-Yosida regularization terms,

this constraint, when placed in the large block matrix M
≈

, ensures that all values of

z
≈

remain greater than zero and therefore ensures that N(M
≈
) ∩N(K

≈
) = {0

∼
}. These

39

alterations result in this KKT system.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λE
≈

T
N
M̂
∼
E
≈ N

0 0 0 0 A
≈

T 0 0

0 M̄
∼

0 0 0 0 0 −F
≈

T

0 0 0 0 0 −B
≈

T A
≈

T 0

0 0 0 0 0 0 −B
≈

T 0

0 0 0 0 ε−1Ê
≈

T

N
G
≈
M
≈

′′G
≈
Ê
≈ N

0 0 D
≈

T

A
≈

0 −B
≈

0 0 0 0 0

0 0 A
≈

−B
≈

0 0 0 0

0 −F
≈

0 0 D
≈

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r̂
∼

σ̂
∼

v̂
∼

û
∼

ẑ
∼

p
∼1

p
∼2

p
∼3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c
∼3

c
∼5

0

c
∼6

c
∼4

c
∼1

c
∼2

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(43)

Theorem 15. Given A
≈
=

⎛
⎜
⎜
⎝

M BT

B 0

⎞
⎟
⎟
⎠

. Define V0 ∶= {u
∼
∈ V ∣B

≈
u
∼
= 0
∼
}. If B is surjective

and if (M
≈
v
∼
, v
∼
) > 0, ∀v

∼
∈ V0 then the matrix is invertible.

Proof. Let V be the space for u and Q be the space for p. From the assumption

that B ∶ V ↦ Q is onto. We see that B ∶ V ⊥0 ↦ Q is isormorphic, i.e., it is invertible

and also we see that B⊺ ∶ Q ↦ R(B⊺) = N(B)⊥ = V ⊥0 is isormorphic. Under the

additional condition that M is positive on V0, we shall now show that the columns

of A are linearly independent, which is equivalent to the invertibility. Basically, we

assume that A
≈
x
∼
= 0
∼
. It is enough to show x

∼
= 0
∼
. With x

∼
= (u

∼
, p
∼

)⊺, we assume that

M
≈
u
∼
+B⊺

≈
p
∼

= 0
∼

and B
≈
u
∼
= 0
∼
.

Since B
≈
∶ V ⊥0 ↦ Q is an isomorphism, we see that since B

≈
u
∼
= 0
∼
, it holds u

∼
∈ V0. We

now see that with Π ∶ V ↦ V0,

0
∼
= Π(M

≈
u
∼
+B⊺

≈
p
∼

) = ΠM
≈
u
∼
. (44)

This gives that u
∼
= 0
∼

since M0
≈

= ΠM
≈
∶ V0 ↦ V0 is isomorphic. Lastly, we see that

40

B⊺
≈
p
∼

= 0
∼

gives p
∼

= 0
∼
. This completes the proof.

With the problem condensed to a matrix equation shown to be consistent,

fast solvers can be used to compute the solution. We intend to use a Broyden class

quasi- Newton method. This choice rests on the fact that the Broyden method

avoids computing derivative matrices at each iteration in the numerical solver. This

next section covers the Broyden method with rank-two update. Once a solution set

is found for our matrix equation, a line search algorithm will be used to compute

the optimal final time, t∗f .

Broyden’s Method

Now that this problem boils down to solving the matrix equation(43), we

use a version of a quasi-Newton (secant) method to solve it. This section will be

dedicated to describing the method. A major advantage of quasi-Newton methods

is that it does not require the computation of the Jacobian subsequently denoted

Bk for k iterations. Instead, these quasi-Newton methods use an approximate form

of the Jacobian is updated each iteration. The following material provides some

introductory theory for the Broyden method. It is sourced from [11] and the reader

is directed there for a more in-depth discussion.

Theorem 16. Given a vector s ≠ 0, v ∈ IRn, C ∈ IRn×n, there is a unique matrix

B ∈ IRn×n such that

Bs = v, Bz = Cz, ∀z such that z⊺s = 0.

Then B is defined to be:

B = C +
1

sT s
(v −Cs)sT .

41

Let w = v−Cs
sT s

, and notice that B is an rank one update of C. Namely,

B = C +wsT .

The proof of this theorem can be found in [11] Chapter 6.

With this representation for the Jacobian using a rank-one update, the

algorithm for Broyden’s method is given as:

Algorithm 17. Choose x0 ∈ IRn and B0 ∈ IRn×n.

For i = 0,1, . . .

xi+1 = xi +B
−1
i (−∇J(xi))

si = xi+1 − xi

vi = ∇J(xi+1) −∇J(xi)

Bi+1 = Bi +
1

sTi si
(vi −Bisi)s

T
i .

Symmetric Rank Two Update

A useful theorem that will be applied below is the Sherman-Morrison-

Woodbury theorem which provides a computationally cheap and efficient way to

compute the inverse of a matrix. The theorem is presented here, sourced from [11].

Theorem 18 (Generalized Sherman-Morrison-Woodbury Formula). Let B = C +

UV T with C ∈ IRn×n is invertible , U ∈ IRn×k, and V ∈ IRn×k. Assume also that

I + V TC−1U is invertible. Then, B is invertible and the inverse of B is given as:

B−1 = C−1 −C−1U(Ik + V
TC−1U)−1V TC−1. (45)

where Ik is the identity matrix in IRk×k.

The symmetric rank two update for the Broyden method, known as the

42

Davison-Fletcher-Powerll (DFP) method is chosen for the implementation of our

particular problem. The symmetric rank two update of a matrix can be given as:

B = C + αuuT + βwwT . (46)

We impose the condition v = Bs = Cs which is known to be the quasi-Newton

condition [11]. This condition together with (46) gives

αuuT s + βwwT s = v −Cs. (47)

Let αuT s = 1 and βwT s = 1, we have

u +w = v −Cs.

Set u = v and w = −Cs, then

α = 1/vT s and β = −1/(sTCs).

Therefore, the rank 2 correction is given as the following equation:

B = C +
vvT

vT s
−
CssTC

sTCs
. (48)

If we define the vectors U = [αuβw] ∈ IRn×2 and V = [uw] ∈ IRn×2. Then, we can

find out the formula of B−1 in terms of C−1, u and w. With the following identities

in mind : u = v and w = −Cs, α = 1/uT s = −1/uTC−1w and β = −1/(wTC−1w), we

can derive the following:

43

By applying Theorem 18 above to (48), we begin with

B−1
= C−1

− [αC−1u βC−1w]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + αuTC−1u βuTC−1w

αwTC−1u 1 + βwTC−1w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uT

wT

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

C−1

= C−1
− [αC−1u βC−1w]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + αuTC−1u βuTC−1w

αwTC−1u 1 + βwTC−1w

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1 ⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uTC−1

wTC−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= C−1
−

1

βwTC−1u
[αC−1u βC−1w]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + βwTC−1w −βuTC−1w

−αwTC−1u 1 + αuTC−1u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uTC−1

wTC−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= C−1
+

wTC−1w

uTC−1w
[αC−1u βC−1w]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −βuTC−1w

1 1 + αuTC−1u

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uTC−1

wTC−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= C−1
+

wTC−1w

uTC−1w
[αC−1u βC−1w]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−βuTC−1wwTC−1

uTC−1
+wTC−1

+ αuTC−1uwTC−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= C−1
+

−1

uTC−1w
[C−1uwTC−1

+C−1wuTC−1
+C−1wwTC−1

+ αC−1wuTC−1uwTC−1
]

= C−1
+

1

uT s
[−C−1usT − suTC−1

+ ssT +
uTC−1u

uT s
(ssT)]

= C−1
+ [1 +

uTC−1u

uT s
]

ssT

uT s
−

[C−1usT + suTC−1
]

uT s

= C−1
+ [1 +

vTC−1v

vT s
]

ssT

vT s
−

[C−1vsT + svTC−1
]

vT s
.

An important theorem for Broyden class quasi-Newton methods is that the

Broyden method converges locally and at least linearly [11]. Let xi and Bi denote

the sequence of vectors and matrices produced by Broyden’s method. Set

ei = xi − x∗, and Mi = Bi −H(J)(xi).

and take note of the following equivalencies:

ei+1 = −B−1
i [∇J(xi) −∇J(x∗) −H(J)(x∗)(xi − x∗)] +B

−1
i Miei

44

Mi+1 = Mi (I −
1

sTi si
sis

T
i) +

1

sTi si
(vi −H(J)(x∗)si)s

T
i .

Theorem 19. Let ∇J be differentiable in a ball Ω about a root x∗ ∈ IRn whose

derivative has a Lipschitz constant γ on the ball. Suppose that H(J)(x∗) is

invertible, with ∥H(J)(x∗)−1∥ ≤ β. Let x0 ∈ Ω and B0 ∈ IRn×n be given satisfying

∥M0∥ + 2γ∥e0∥ ≤
1

8β
.

Then the iterates xi, Bi given by Broyden’s method are well defined, and the errors

satisfy

∥ei+1∥ ≤
∥ei∥

2
, ∀i = 0,1,

This theorem is proven by Broyden, Dennis, and More [8].

Theorem 20. Considering Bi+1, the DFP symmetric rank two update of Bi is

positive if Bi is positive and an exact line search is used to obtain the step length

λi, i.e.,

xi+1 = xi + λiB
−1
i (−∇F (xi)).

45

IV. CONCLUDING REMARKS

In this thesis, a novel solution method is provided to solve the trajectory

optimization problem for Martian descent and landing. In chapter one a summary

of previous solution methods involving the relaxation of non-convex constraints,

the linearization of components, the discretization and the solution method using

interior-point linear programming techniques is given. Chapter two is the bulk of

the novel contributions. Here, the decision is made to simultaneously minimize

the minimum fuel and minimum landing error problems, rather than treat them

as separate but prioritized problems. Additional alterations are made to the

nondimensionalization which involve the introduction of squared slack variables.

A reworking of the discretization of the cost functionals, dynamical equations and

the constraints are made. When working with a system of differential equations, as

done in prior work such as [2, 3, 1], for which only a few components are needed to

be optimized, the resulting KKT system becomes exceptionally sparse and singular.

By leaving the differential equations separated during the discretization rather than

lumping them into a system of differential equations removes several obstacles that

would arise in the determination of the optimality conditions.

Our method expands upon the research done in [2, 3] and implements a

new method for handling these mixed inequality constrained trajectory problems

through the application of Moreau-Yosida regularization techniques. Some

introductory material of Moreau-Yosida regularization is given to merit its use.

For the rest of the equality constraints, Lagrange multipliers are used and the

first order necessary conditions, optimality conditions, or better known KKT

conditions are found and arranged into a large block matrix that takes the form

of a saddle-point matrix.

Some analysis of the well-posedness of the problem is undertaken to provide

some reasoning as to why the matrix system can be solved. Within the large block

46

matrix, because the matrix B
≈

is shown to to surjective, and because N(M
≈
) ∩

N(K
≈
) = 0

≈
, then the matrix P

≈
is proven to be invertible. With invertibility shown,

the quasi- Newton Broyden method will be used to quickly solve the resulting

optimization problem. The symmetric rank two update is used to reduce the

computation time needed to solve the optimization problem. This is because the

symmetric rank two updated provides a fast means of computing the the next

iteration of the inverse of a matrix. Some theorems related to the super-linear

convergence of the Broyden method is stated to justify to the reader that the

resulting problem and solution method will guarantee a solution under appropriate

conditions.

To completely establish this novel approach to solving the trajectory

optimization problem, there are a few additional tasks needed to be undertaken.

Further analysis of the nonlinear constraints seen on the right-hand side of (43) will

be done. This solution technique also needs to be implemented and tested against

the current benchmarks. Additionally, adding a thrust-pointing constraint such as

Γ2(t) ≤ −e
∼1
T
∼
(t) sec(θ)

would enhance this model’s on-board implementability and would provide

additional safety measures that would accommodate human cargo. Having

a thrust-pointing constraint ensures that the direction of the space vehicle is

always pointing in the direction of the landing surface. This further ensures

that unorthodox trajectories are avoided that would, say, place the vehicle on a

horizontal trajectory close to the planetary surface for extended periods of time.

Such a trajectory is in some instances a feasible solution to the problem. This

constraint is also a requirement for terrain relative navigation (TRN). TRN is

software that uses real-time image data procured from downward facing cameras

and sensors on the space vehicle. These images are then used to provide the vehicle

47

with location and other telemetry data needed to locate the vehicle in relation with

the targeted landing location. This software is needed especially when landing on a

surface with no active/real-time GPS data.

48

REFERENCES

[1] B. Acikmese, L. Blackmore, D.P. Scharf, and A. Wolf. Enhancements on

the convex programming based powered descent guidance algorithm for mars

landing. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit,

number AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Jet

Propulsion Laboratory, California Institute of Technology, M/S 198-326, 2008.

[2] Behcet Acikmese and Scott R. Ploen. Convex programming approach to

powered descent guidance for mars landing. Journal of Guidance, Control &

Dynamics, 30(5):1353 – 1366, 2007.

[3] Lars Blackmore, Behcet Acikmese, and Daniel P. Scharf.

Minimum-landing-error powered-descent guidance for mars landing using

convex optimization. Journal of Guidance, Control & Dynamics, 33(4):1161 –

1171, 2010.

[4] William R. Corliss. The Viking mission to Mars. NASA SP: 334. Scientific and

Technical Information Office, National Aeronautics and Space Administration,

1974.

[5] Daniel Dueri, Behcet Acikmese, Daniel P. Scharf, and Matthew W. Harris.

Customized real-time interior-point methods for onboard powered-descent

guidance. Journal of Guidance, Control & Dynamics, 40(2):197 – 212, 2017.

[6] A. Fuduli. Metodi numerici per la minimizzazione di funzioni convesse

nondifferenziabili, phd thesis. 1998.

[7] Milanka Gardasevic-Filipovic and Nada Duranovic-Milicic. An algorithm using

moreau-yosida regularization for minimization of a nondifferentiable convex

function. Filomat, 27(1):15 – 22, 2013.

49

[8] Chi-Ming Ip and Jerzy Kyparisis. Local convergence of quasi-newton methods

for b-differentiable equations. Mathematical Programming, 56(1-3):71, 1992.

[9] C. Lemarechal and C. Sagastizabal. Practical aspects of the moreau-yosida

regularization: Theoretical preliminaries. SIAM Journal on Optimization,

7(2):367–385, 1997.

[10] Olivia Lowenberg. Falcon 9 sticks second sea landing, another victory for

spacex’s reusable rockets. The Christian Science Monitor, 2016.

[11] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer series

in operations research and financial engineering. Springer, 2006.

[12] John W. Pearson. A dissertation titled: Fast iterative solvers for

pde-constrained optimization problems. Oxford University, 2013.

[13] R. Tyrrell Rockafellar. Convex analysis. Princeton landmarks in mathematics

and physics. Princeton University Press, 1997.

50

