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BLOW-UP CRITERIA AND INSTABILITY OF STANDING
WAVES FOR THE INHOMOGENEOUS FRACTIONAL
SCHRODINGER EQUATION

BINHUA FENG, ZHIQIAN HE, JIAYIN LIU

ABSTRACT. In this article, we study the blow-up and instability of standing
waves for the inhomogeneous fractional Schréodinger equation
0w — (—A)%u + |z|~b|ulPu =0,

4s=2b Ip the L2-critical

where s € (%,1)7 0 < b < min{2s, N} and 0 < p < F=57.
?{;:5:: we establish general blow-
up criteria for non-radial solutions by using localized virial estimates. Based

on these blow-up criteria, we prove the strong instability of standing waves.

and L2-supercritical cases, i.e., % <p<

1. INTRODUCTION

Over the past decade, there has been a great deal of interest in studying the
fractional Schrodinger equation

10 = (—A)°u + f(u), (1.1)

where 0 < s < 1 and f(u) is the nonlinearity. The fractional differential oper-
ator (—A)® is defined by (—A)*u = F¢|?*F(u)], where F and F~! are the
Fourier transform and inverse Fourier transform, respectively. Equation was
first deduced by Laskin in [24] 25] by extending the Feynman path integral from
the Brownian-like to the Lévy-like quantum mechanical paths. The fractional
Schrédinger equation also arises in the description of Bonson stars as well as in
water wave dynamics (see [16]) and in the continuum limit of discrete models with
long-range interactions (see [23]).

In this article, we consider the blow-up criteria and instability of standing waves
for the inhomogeneous fractional Schrodinger equation

i0pu — (—A)*u + || |ufPu =0, (t,z)€[0,T*) x RY,

u(0, 2) = uo(x), (12)

where u : [0,T*) x RV — C is the complex valued function, N > 1, ug € H?,

: 4s5—2b
0<s<1,0<b<min{2s, N}, 0<p< F=.
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This equation enjoys the scaling invariance. That is, if u(¢,z) is a solution of

[2), then
2s—b

un(t,x) = A77 u(A*t, Ax)  for all A > 0,
is also a solution of (|1.2). By simple calculations, we have

2s—b

S - s
lux(®)ll g = X777 7% Ju(W*1) | ..

Thus, the critical Sobolev index is given by

N 2s-b
Se 1= — — . 1.3
my - (13)
When s, < 0, equation ((1.2) is L2-subcritical. The smallest power for which blow-
up may occur is p = %, which is referred to L2-critical case corresponding to

s = 0. When 0 < s, < s, (1.2) is L?-supercritical and H*-subcritical. When
s. = s, (1.2]) is H*-critical. In this paper, we are interested in the L2-critical and
L2%-supercritical cases. Therefore, we restrict our attention to the case 0 < s. < s.
Rewriting this condition in terms of p, we obtain

4s — 2b < 4s — 2b

N SPSN o

If one considers initial data in H?®, then the equation enjoys mass and energy
conservation laws:

M(u(t)) := [[u()][z2 = [luollz2, (1.4)
and
B(u(t)) ::é /RN (=AY 2u(t, 2)|2dz — }% [l e

Before entering some details of our results, let us recall known blow-up results
. For the classical Shrodinger equation, i.e., s = 1, the Variance-Virial Law holds,

that is
1d

2dt Jg~
provided initial data ug € ¥ := {up € H'! and zuy € L?}. Combining
and the virial identity, one can obtain blow-up results for the classical Schrédinger
equation with negative energy F(ug) < 0 and finite variance, see [2]. Ogawa and
Tsutsumi [26] removed the assumption ug € ¥ for the radial symmetry initial data.
Applying similar ideas, when s = 1, Farah [10] and Dinh [7] established the blow-up
criteria for equation with initial data ug € ¥ := {v € H! and zv € L?} and
radial symmetry initial data. However, when s < 1, identity fails and these
arguments cannot work. However, a generalization of the variance for the fractional
Schrodinger equation is given by

|2|u(t, ©)|*dz = 2Tm /]RN a(t,x)z - Vu(t, z)dz, (1.6)

1—s

VO [u(t)] := /RN a(t, z)z - (—A) " Szu(t, v)dr = ||z(—=A) = u(t)|,. (1.7)

Let u(t) be the solution of equation i0;u = (—A)*u, a formal calculation yields

1d
—— VO [u(t)] ;= 2Tm / u(t, x)x - Vu(t,z)dx. (1.8)
2 dt RN
Based on this identity, the authors in [3],[4] B3] successfully obtained blow-up results
for (1.1]) with radial initial data and Hartree-type nonlinearity, i.e., f(u) = —(Jz| 7%
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|u|?)u with v > 1. Because it is very hard to control the nontrivial error terms, this

method fails to work for the local nonlinearities f(u) = —|ulPu, see [1]. Using the
Balakrishman’s formula
sinws [ —A
—A) = sth = g 1.9
(-ay = [t i, (19)

Boulenger, Himmelsbach and Lenzmann [I] established the differential estimate

d

%(Im /RN w(t)Ver - Vu(t)da:)

< 4pN E(ug) — 26 (~A)Pu(t) 32 + or(1)(1+ | (~A)2u(t) [15),

where § = pN — 2s. Based on this key estimate and a standard comparison ODE
argument, they proved the existence of radial blow-up H® solutions.

For the inhomogeneous fractional Schrodinger equation (1.2)), Peng and Zhao
in [27] obtained the existence of radial blow-up solutions. In this paper, by using
localized virial estimates and the ideas of Du, Wu and Zhang [9], we remove this
assumption, and establish general blow-up criteria for non-radial solutions in the
L2-critical and L2-supercritical cases. The main difficulty is the appearance of the
fractional order Laplacian (—A)® and the singular potential |z|~°. When s = 1, it
easily follows that the time derivative of the virial action

1d o(x)|u(t,z)*dz = 2Tm a(t,z)Vo(z) - Vu(t, z)d. (1.10)
By applying this identity, Du, Wu and Zhang [9] established an L?-estimate in the
exterior ball. Based on this L2-estimate and the virial estimates, they established
blow-up criteria for the classical Schrédinger equation. In the case s € (%,1),
the identity does not hold. However, by using the Balakrishman’s formula
and exploiting the ideas in [I], we can obtain the time derivative of the virial
action. We consequently obtain the following general blow-up criteria for non-radial
solutions in both L2-critical and L2-supercritical cases.

Theorem 1.1. Let N > 1, s € (1,1), ‘LST_% <p< jl\}”’:gg, and ug € H®. Assume

that w € C([0,T*), H?) is a solution of (1.2)). Furthermore, we assume that either
E(up) <0, or, if E(ug) >0 and

s 2(s—sc¢ s 2(s—s¢
B (o)™ [uoll 75~ < B(Q)** QI ™,
1(=2)*2ug 3 l[uoll 32 > 1(=2)*Q| 52 Q="
where s. is defined by (1.3) and Q is the ground state of the elliptic equation
(—A)°Q+Q — |2]7"|QIPQ = 0. (1.12)

Then one of the following statements holds:

. (1.11)

e u(t) blows up in finite time, i.e. T* < +00;
o u(t) blows up infinite time, i.e., there exists (tn)n>1 Such that t, — +oo
and
lm [[(—A)*?u(ty)]| 2 = co.
n—oo
Our blow-up criteria also hold for with s = 1, which to our knowledge is
new. When s = 1, similar blow-up criteria for with radial solutions or initial
data ug € ¥ := {v € H' and zv € L?} have been established in [7} [I0]. Here, we
remove the assumption of radial solutions and ug € ¥ := {v € H' and zv € L?}.
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So our results improve some previous results. Based on blow-up criterion ,
we can prove the strong instability of standing waves of .

Firstly, we introduce some notation. Throughout this paper, we call a standing
wave solution of of the form e**Q,,, where w € R is a frequency and Q,, € H*
is a nontrivial solution to the elliptic equation

(—=A)*Qu + wQu — |2 7°|Qu|PQ., = 0. (1.13)

s—b
Let Q,(x) = w%TPQ(wix) in ((1.13)), then @ satisfies equation ([1.12)). In particular,
by some basic calculations, we have

Se 2(s—sc) _ Se S—S¢

B(Qu)I1QulS B(Q) ||Q||L g (1.14)
1(=2)"*Qul32]1Qull5=" = [(=4) 727 (1.15)

In fact, these two quantities are scaling invariant of (|1.2] .

Definition 1.2. A function Q € H*\{0} is called a ground state for (1.12) if it is

a minimizer of the Weinstein’s functional

el ||v||p+2‘
J(v) = T O (1.16)
that is,
J(Q) = inf{J(v) : v € H\{0}}. (1.17)

The existence of ground states related to (1.12]) has been established in Lemma
In addition, a direct computation shows that

2sp— Np44s—2b

4s—2b—Np <
[Qullz =w™ =7 [|QllL2, [[Qullg: =w™ = [[Qll g,
2sp— Np+4s—2b

L Qe e =B el
RN o

These imply that
J(Qu) = J(Q).
That is, @, is also a minimizer of the Weinstein’s functional. Thus, we can define

the ground states related to (1.13)) as follows: A function @, € H*\{0} is called

a ground state solution of (1.13)) if it is a minimizer of the Weinstein’s functional

(1.16). We can derive ground states of (|1.13]) from ground states related to (1.12)).
This implies the existence of ground states related to (1.13)) when w > 0. In

addition, the uniqueness of ground states related to ([1.12)) is an open problem.
Note also that (1.13) can be written as S/ (Q,,) = 0, where

w
5.(Q) =E(Q) + 5 QI3
1 2 w 2 1 —b p+2
== . — - d
51QU. + 51Q1% — = [ R 7Q@ s,
is the action functional. We also define the following functional

Np+2b _
K(Q) = 0x8u(Q")rmr = s/|Q|I%, — =2 / 2 ~°|Q(x) [P Pdx,  (1.19)
2p+ 4 RN
where

(1.18)

QM) == AV2Q(\x). (1.20)
To the best of our knowledge, the general method to investigate the strong in-
stability of standing waves for the classical Schrédinger equation is to apply the
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variational characterization of the ground states as minimizers of the action func-
tional and derive the key estimate K (u(t)) < 2(S,(uo) — Sw(Qw)). Then, it follows
from the virial identity that

S lu)3 = SK(u(t) < 16(S. (o) ~ 5.(Qw))

where K (u(t)) is defined by with s = 1. Finally, one can choose the initial
data ug such that S, (ug) — Sw(Qu) < 0. This implies that the solution wu(t) of
with s = 1 blows up in finite time. Thus, one can prove the strong instability of
ground state standing waves, see |2} [6, 12}, T3] 14, [15], 22 29| 30].

Here, we present a simpler method to study the strong instability of standing
waves, which is based on the blow-up criterion .

Theorem 1.3. Let N > 1, s € (%,1) ds— Qb <p< ‘]1\‘; Si’, w >0, Q, be the ground

state related to . Then, the standmg wave u(t,r) = e“'Q,(x) is strongly
unstable in the following sense: there exists {ugn} C H® such that ug, — Q. in
H?® as n — oo and the corresponding solution u, of with initial data uon
blows up in finite or infinite time for any n > 1.

In previous results, to construct blow-up solutions around the ground state
solution, one needs to assume that the ground state solution @, is radial or
Qo €Y :={v € H' and zv € L?}. Here, we remove these assumptions, so our
result greatly improve some previous results.

This article is organized as follows: in Section 2, we recall and prove some
lemmas such as the local well-posedness theory of , Brezis-Lieb’s lemma, the
sharp Gagliardo-Nirenberg type inequality and the localized virial estimate
related to . In section 3, we establish blow-up criteria for . In section 4,
we prove the strong instability of standing waves.

Throughout this article, we use the following notation. C' > 0 stands for a
constant that may be different from line to line when it does not cause any confusion.
For any s € (0,1), the fractional Sobolev space H*(R™) is defined by

HYRY) = {u e 2RY) / (1+ [€[2*)|a(€)Pd < oo}
endowed with the norm

[ull e vy = Nlull 2@y + llull gro vy

where up to a multiplicative constant,

2 1/2
e, = { ] WL dray)
RN xRN \95* |N+2a

is the so-called Gagliardo semi-norm of w. In this paper, we often use the abbrevi-
ations L" = L"(RN), H* = H*(RY).

2. PRELIMINARY LEMMAS

In this section, we recall some preliminary results that will be used later. Firstly,
let us recall the local theory for the Cauchy problem . By applying Strichartz’s
estimates and the contraction mapping argument, Hong and Sire in [21] first studied
the local well-posedness for the fractional Schrédinger equation in H®. Because
Strichartz’s estimates have a loss of derivatives in the non-radial symmetry case,
a weak local well-posedness follows in the energy space compared to the classical
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Schrodinger equation, see [5, 21] for more details. In the radial symmetry case,
one can remove the loss of derivatives in Strichartz’s estimates. But it needs a
restriction on the validity of s, namely % <s< 1.

For the inhomogeneous Schrédinger equation with s = 1, Genoud and

Stuart [I7] first studied the well-posedness by using the argument of Cazenave
[2]. By using Strichartz’s estimates and the contraction mapping argument, Guz-
man [I9] also established the local well-posedness as well as the small data global
well-posedness in Sobolev spaces. By using radial Strichartz’s estimates and the
contraction mapping argument, we can obtain the following local well-posedness
for with radial H® initial data. The proof is standard, see [5, [19 2I]. So we
omit it.
Theorem 2.1. Let N > 2, V- <s<1,0<p< £2 and 0 < b < min{2s, N}.
If uog € H® is radial, then there exists T = T(”'U/O”H.s) such that admits a
unique solution u € C([0,T],H®). Let [0,T*) be the mazimal time interval on
which the solution w is well-defined, if T* < oo, then |u(t)| z. — oo ast T T*.
Moreover, for all 0 < t < T*, the solution u(t) satisfies the conservations of mass
and energy.

Next, we recall the following sharp Gagliardo-Nirenberg inequality, which has
been established in [27].

Lemma 2.2 ([27]). Let 0 <s<1,0<p < =22 and 0 < b < min{2s, N}. Then,
for allu e H?,

_ 2—
/RN ol () "2 < Copellull, & Nl (21)
where the best constant Copy 1s given by
o _( Np+2b )% 2s5(p+2)
P \2s(p+2) — (Np+2b) (Np+20)[Q|%.”

where Q is the ground state of (1.12). Moreover, the following Pohozaev’s identities
hold
Np+2b / _ Np+2b
2 _ b1OIP+2, 7, — 2
O z dr = . 2.2
Q1. = gy [ el T 22

Lemma 2.3 ([1]). Let N > 1, ¢ : RY — R and Vi € WL (RN). Then, for all
uw e HY?, it follows that

| / Vu(@)da| < CIVellw (I191"2ull3z + llull 2 [912ull 2 ),

where C' > 0 depends only on N.

To study localized virial estimates for ([1.2)), we introduce an auxiliary function

R T
————u(z) = s F l(m2 = m>’ > 0, (2.3)

where ¢, 1= y/sin(ms) /.

Lemma 2.4 ([I]). Let N > 1, s € (0,1), ¢ : RN — R and Ap € W2>(RY).
Then, for all uw € L?,

o0
[ [ A% P dodm| < AR Al
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where C' > 0 depends only on s and N.
Applying the identity

sinwms [ ms
dm = s[¢|**2,
T /0 (1§ +m)?

we deduce form the Plancherel’s and Fubini’s theorems that

>~ s 2 . sin s o0 msdm 21 5
/0 m /RNWum| d dm = RN( = /0 (‘§|2+m)2)|g| () [2de

= /RN(8|€|28_2)\€|2|ﬁ(£)|2d£ = s/|(=2)"ull7,

for any u € H*.

Lemma 2.5 ([§]). Let N > 1,5 € (1/2,1), ¢ : RN — R and Vo € WH*°. Then
for any u € L?,

[t [ (ol dedm] < ClAGIE Vol
0
where C' > 0 depends only on s and N.

Lemma 2.6 ([§]). Let N > 1,5 € (1/2,1), ¢ : RN — R and Vo € WH*°. Then
for any v € H'Y/?,

|/ ms/ Un Ve - Vi, dzdm| < CIVellwies|ull3)2,

0 RN

where C' > 0 depends only on N.

Lemma 2.7 (Virial identity). Let N > 1,s € (1/2,1) and ¢ : RV — R be such
that ¢ € W2°°. Assume that u € C([0,T*), H®) is a solution to (1.2). Then

LV, futt)) =~ / e / (A (1) da dm s

- 22'/ m® / U, (£)Vp - Vg, (t) dedm
0 RN

for any t € [0,T*), where
Volu(t)] = [ oot o)Pds

is the localized virial action of u associated to ¢ and u,(t) = cs(—A +m)~tu(t).
Proof. Because the general case follows by an approximation argument, we only
prove (2.5) for u € C§°(RY). Since u(t) satisfies (1.2)), it easily follows that

d d . s

SV, ult)] = S tu(e), pu(e) = iu(e), [(~A)", elu(e),

where [X,Y] = XY — Y X is the commutator of X and Y. To study [(—A)®, ¢], we
use the fact that for operators A > 0, B and m > 0 any positive real number,

A B:[l— 1 1

il ", B] = —m Mo A Bl

1
o _ - B =
A+m’ A+m’ } A+m
see [I]. Using this identity with A = (—A)® and B = ¢, by the Balakrishman’s
formula we have

s 4 sinms [ . —A
(ayel = 2 [ [ am
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sinms [ 1 1
- s A, ¢ ———dm.
T /0 " —A—f—m[ 7('0]—A—|—m "

Thus,
(u(t), [(=4)*, U(t)
Sln7r 1
= ; m —A—|—m[ A7<p]mdm>u(t)>
1
= / m(u(t). = A IR tdm
= [ ek )t A8 m) )
:/ / Uy (1) (—Aup, (t) — 2V - Vu,(t)) dedm
0 RN
:/O me /RN (— At (B)? — 20 () Vg - Vi (£)) dz dim.
The proof is complete. O

The following estimate is a direct consequence of Lemmas [2.5] 2.6] and 2.7}
Corollary 2.8. Let N > 1,5 € (1/2,1) and ¢ : RN — R be such that p € W?°°.

Assume that u € C([0,T*), H®) is a solution to (1.2)). Then for anyt € [0,T*),

0, u(®)]] < CIV w3

for some constant C > 0 depending only on s and N.

Now we define the localized Morawetz action of u associated to ¢ by
M [u(t)] :=2Im . a(t,x)Veo(z) - Vu(t, z)dx. (2.6)
By Lemma [2.3] we obtain the bound
(M[u(®)]] < C(IIVellpe, [|A¢] o) [u®) 172

Hence the quantity M, [u(t)] is well-defined, since u(t) € H® with some s > 1/2 by
assumption. By a similar argument as that in [I, Lemma 2.1}, we have the following

time evolution of M [u(t)].

Lemma 2.9 (Morawetz identity). Let N > 1,s € (1/2,1) and ¢ : RY — R be such

that Vi € W3, Assume that u € C([0,T*), H®) is a solution to (1.2). Then for
any t € [0,T%), it holds that

d
M)

_ / m? / {40 (D) (D310 (1) — (A2 e (1)} iz i
R b . (2.7)
p+2/ Aplz| P |u(t, z) [P dx
4b
2
where U, (t) = up,(t, ) is defined by (2.3).

2| ™" 2a - Velu(t, )P da,
N
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Proof. 1t follows from an integration by parts that

(u(t), [~z ~*Ju(®)?, il Ju(t))
= —(u(t), [le| )P, Vi - V + V- Velu(t))

- 2/ || ult, )PV - Vlu(t,z)|Pde + 2/ u(t, 2)|PH2V o - Vx| Pda
RN RN

4b

p+2 |x|_b_233 - Velu(t, z) [P da,

_ p+2/ Aglz|tlult, z) [P 2da —

where we used the identities
2
Ve = —bla| "2z and V]ulP*? = P20 ufpluf?.
p
Following the method used in [I], we complete the proof. a

3. BLOW-UP CRITERIA
In this section, we will prove Theorem [I.I] Firstly, we establish the following
blow-up criteria for (1.2]).

Lemma 3.1. Let N > 1, s € (%, 1), 45 2 < p< 45 2b . Assume that ug € H® and
u € C([0,T*), H®) is the corresponding solutzon of . If there exists 6 > 0 such
that

K(u(t)) < -6 (3.1)
for allt € [0, T*), then one of the following two statements holds:
o u(t) blows up in finite time, i.e. T* < +00;

o u(t) blows up infinite time and there exists (t,)n>1 such that t, — +oo and

T [[(~A)2u(t,)] 2 = oo, (3.2)

Proof. If T* < +o00, then the proof is done. If T* = +oo, we prove (L.1) by
contradiction. If not, the solution u(t) exists globally and there exists Cjy > 0 such
that

Co:= sup |[(=A)¥2u(t)| > < co. (3.3)
t€[0,4+00)

This, together with the conservation of mass, implies that

Cy:= sup |u(®)||g: < 0. (3.4)
t€[0,400)

Now, we claim that for every n > 0, R > 1, there exists a constant C' > 0 indepen-

dent of R and C; such that for any ¢ € [0, 052]

/ lu(t, z)|?dx < n+ or(1). (3.5)
|z|>R
To this end, we define a smooth function 6 : [0,00) — [0, 1] that satisfies

fo<r<1/2
0(r) — 0 ?O_T_ /2,
1 ifr>1.

For R > 1, we define the radial function

or(z) = or(r) :=0(r/R), r=|z|
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It easily follows that

_ i / _ L " (Nfl) /
Von(@) = 0 (r/R), Adr(x) = =0"(r/R) + ——20'(r/R).
In particular, we have
IVorlwre ~[[Vor|L~ + |A¢p|L= < CR™. (3.6)

Now, we can define the localized virial potential

Vi lu(t)] == /R on(a)lu(t, o).
We have

Vonlu(8)] = Vgl + [ 5-Vialu(r)lir

<Vuluol + (sup |V, fu(r)])] )t

T€[0,t]
By Corollary (3-4) and (3.6)), we obtain

d _
sup |d*V¢R [u(7)]] < C|IVorlwre sup [u(r)|}. < COFR™,
refo,t] AT T€[0,t]
for some constant C' > 0 independent of R and C. We thus obtain

V¢R [u(t)] < V¢R [U’O] + CC%R_ltv
for all ¢ > 0. By the choice of 6 and the conservation of mass, we have
Vonlu] = [ on@luo(@)de < [ juo(a)fPdz 0,
RN |z|>R/2
as R — 0o or Vg, [ug] = or(1l). On the other hand, we have

/| )P < Vo, o)

Collecting the above estimates, we can obtain the control on the L?-norm of the
solution outside a large ball, i.e., claim (3.5)).
Next, we assume that p(z) = ¢(r) is radial and satisfies

r?/2  forr <1,
p(r) =
const. for r > 10,

and ¢’ (r) < 1forr > 0. Given R > 0, we define the rescaled function pr : RV — R
by
x
¢r(z) = R*p(3)- (3.7)

We readily verify the inequalities

for all > 0 and all z € RY. Tt is easy to see that
|V ¢og|lLe < CR>F k=0, ,4,
and
{z:|z| < 10R} for k =1,2,

Vkpr) C
supp(Vior) {{x ‘R < || <10R} for k =3,4.
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By Lemma [2.9] we have

d
o)

_ / m? / {40 ) Do) Or1im (1) — (A2 i (1)[2 }
RN
p+2 L [ Aerlelfutt. o) e

- p+2 =l 2w Veglu(t,z) P de

where uy,(t) = (¢, ) is defined in (2.3). Since supp(A2pr) C {|z| > R}, by
Lemma [2:4] we have
[ [ (%m0 drdm] < CIA%pnl | Al 10O 1210

< CR™*||u(t)|12(a> )
(3.9)
Since @ is radial, we use

92 = (‘Sﬂ _ Ijxk)ar x1$k32

J r r3

to write

/ m?® E)kum(t) (5‘?kch)8lum(t) dz dm

/ / (pR|Vum( )|2dxdm
RN
—|—/ / ng |a: YV (t)|* dz dm.
0 RN
Using ([2.4), we write

oo !
/ ms/ @|Vum(t)|2 dxdm
0 RN
=S8 O+ [ [ (2 1) D0 dedn
Since ¢/, < 1, the Cauchy-Schwarz inequality implies

oo /
/ ms/ SD—R - 1)|Vum(t)\2dz dm
0 RN

0 RN

Therefore,

4/ m® 8kum(t)(8?kgpg)alum(t) dzdm < 4s|/(=A)* 2u(t)||2.. (3.10)
0 RN
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‘We next write

2 _

— ZTPQ - || b|u(t,ac)|p+2AgoRdx
2pN

=Pt @) P 2de (3.11)
p+2 /gy

2p _
— m x || b|u(t,x)\p+2(A¢R — N)dz.

The second term can be estimated as follows:

- — A — N)|z| 7 u(t, z)|PT2dx
o [ Ben = Mlalult. )l
<C |m|_b\u(t,x)|p+2dm

lz|>R

<CR™" / lu(t, z)|PT2dx
|z|>R

(3.12)
—b p+2—- 52
< CR ) Sy O ey,
—b p+2_7 25
<CR Hu<t)||L2(\m|>R)||“(t)HHS
Np
< CCP R™°|fult )||L2 |a:|>R)
Thus, we have
2
- = et o) A rda
2pN —b p+2 22 b p+2—3F .
<25 [ el e o) 2o+ €0 R, 5
For the last term in (3.8)), we have
4b
T 573 Jo @ VRl T ut, o) de
4b
=——— | || "u(t,2)[PPda
p"' 2 ]RN
4b .
- j/ (ngTf(r) — D)z~ fult, z)|PT2dx .
p |z|>R z
By the similar method as (3.12]), we deduce
4b x-Vogr(r) _
|~ | el e
p : |z|>R (3.14)
T +2
<CC*R b”u( )Hizqmp]{
Collecting (3.9)-(3.14]), we obtain
d s 2Np+4b _
GMenlu(®)] < (-8 Pu(olf - ZELZ [ o ute e
p RN (3.15)

—2s Lf - +2-57
+ CR™>u(®)||72(z)> 1) + CC> R b||u(t)||i2(|z\>R)
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By (3.5)), we see that for any 1 > 0 and any R > 1, there exists C' > 0 independent
of R and Cy such that for any ¢ € [0, Tp] with Tp = ko

ccC
d _9g Np N
s Merlu(®)] < 4K (u(t)) + CR **(n+or(1))* + CC* R~ (n+op(1)PH* =
Np
< —45+ CR™> (i + op(1)) + CC= R (P23 + og(1)).
We first choose 1 > 0 small enough and R > 1 large enough so that
d
& Mlul)] < ~5 <0, (3.16)
for any t € [0, Tp] with Ty = C"—éi. Note that > 0 is fixed, so we can choose R > 1
1

large enough so that Ty is as large as we want. By (3.16)), it follows that
M¢R[u(t)] < —ct,

for all t € [to,Tp] with some sufficiently large to € [0,7p]. The constant ¢ >
0 depends only on 6. On the other hand, we deduce from Lemma [2.3] and the
conservation of mass that

(Mo lu(®)]l < Clon) (I1V1Y2u(®)3: + llu(®)llz2 1V 2u()] 2
< Cler) (VI 2u®)l3 + a3 )
< Clen) (V1232 + 1)),
for every t € [0, 4+00). By interpolating between L? and HS, we obtain
ct < —Mo,[u(t)] = My, [u(t)]l < Clon) (I(=A)"2ut)l}, +1),
for any t € [to, Tp]. This implies that
I(=A)*2u(t)] = > O, (3.17)

for all ¢ € [t1,Tp] with some sufficiently large t; € [to,Tp]. Taking ¢ close to

Ty = %’ we see that ||(—A)*/2u(t)||z2 — oo as R — oo, which contradicts (3.4)).
1

The proof is complete. U

Applying Lemma [3.1] we can prove blow-up criteria for (1.2).

Proof of Theorem[I.1. We only check that holds under the assumptions of
this Theorem. In the L2-critical case, i.e., s, = 0. The blow-up condition
implies that ||ugllzz < ||Q|lzz and |luol|rz > ||@|z2, which is impossible. Thus, for
s¢ = 0 the only admissible condition is E(ug) < 0. It follows from the conservation
of energy and p = % that

K(u(t) sl ~ Sy [ el Mt o) 2o

2p+4 R

4s — Np —2b

B el ) s
RN

=2sE(u(t)) + 5+ d

=2sE(up),
for all ¢ € [0,7*). Hence, when E(ug) < 0, (3.1) follows with § = —2sE(uy).
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Next, we consider the case E(ug) > 0. The assumption (1.11]) implies

E(uo)|uol7% < E(@Q)IQIIEE,

Y . " (3.18)
1(=2)*"2u | 2 [[uol|F= > [|(=A)*2Q| 2| Q7
where
s$—58. 2sp— Np+4s—2b
0= =
Sc Np+2b—4s

We notice that the sharp constant in Gagliardo-Nirenberg inequality (2.1)) can be

written as . )
- P+ d
P p+2— Mot
HQII HQII
which, by (2.2), can be rewritten as
2s(p+2) 1
;= - (3.20)
NP2 QI QI T
It easily follows that
s Np+2b—4s -
EQ)QI72 = m(”@“m Qll72)% (3.21)

Multiplying both sides of E(u(t)) by ||u(t)||3%, we deduce from the sharp Gagliardo-
Nirenberg inequality (2.1]) that

o 1 1 - g
E(u(t))|lu(t)]|7 =*|IU(t)H2- u(t)]|72 +2/ |t 2) [P 2| u(t) |75
1 - Copt o\ Npt2b
2 5 (e - u(t)]|72)? ~ jrp2(\| w()l| e llu()l72) 2
= f(llu®)l g [lu(®)IZ2),
where f(z) := %xz - %xzvgt%. It is easy to see that f is increasing on (0,zq)

and decreasing on (xg, 00), where

2sp +4s Nprer—Ts .
0= (Copt(Np+ 2b)> - ||C?HHg Q”L?a

where the last equality follows from . It follows from and - that

FUIQN g Q||L2): E@Q)QIE

Thus the conservation of mass and energy together with the first condition in (|1.11))
imply

u()l|72) < E(u(®))llut)ll7% = E(uo)luol73
B@)IQlz5 = fQllz-IQNIZ-),

for all t € [0,T*). Using the second condition (|1.11]), the continuity argument shows
that

FUlu(@®l g

[ o [z > Q- 1Rl 72 (3.22)
for any ¢ € [0,7%). On the other hand, since E(uo)||uo2% < E(Q)||Q|3%, we pick
1 > 0 small enough so that

E(uo)[luollz% < (1 = mE(Q)IIQIF
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Thus, by the conservation of energy, (3.21)) and (3.22)), we have
Np+2b Np +2b—4s

K () ()35 = “2 2 Bl u() 135 — 2272 )3, (o) 123
- WE%)HUOH%% - qumnm u(t)||72)?
<M E20 @i - R o). Q1)
= P2 pQ)lQl,

for all ¢+ € [0,7%). This implies (B.I) with § = ™22 E(Q)||Q||?3. Thus, the
solution wu(t) of (1.2)) blows up in finite or infinite time. This completes the proof.
U

4. STRONG INSTABILITY

In this section, we apply the blow-up criteria in Theorem [I.1] to prove Theorem

3l

Proof of Theorem[1.3. We divide the proof into two cases: (1) p = %222 and (2)
dooth o p o da=2b

Case (1) p = %. Firstly, we deduce from Pohozaev’s identities (2.2) that
E(Q.) = 0, where @, is the ground state solution of (L.13). Thus, if we can
construct initial data ug , such that E(ug,) < 0 and ug, — Q. in H®, as n — oo,
then the corresponding solution u,, blows up in finite or infinite time by applying
Theorem This implies that the standing wave u(t, z) = e“!Q,, () is unstable.

Let {c,} € C be such that |c,| > 1 and lim,_ |c,| = 1, and {\,} C R* be
such that lim, _, . A, = 1. We take the initial data

o, () 1= anT]y/2Qw()\nx).

Then, we have

tim o, 12 = JimJeul[Qullze = [Qullee
n—oo n—oo
Jim ol = T o N1Quli = Qe

Thus, from Brezis-Lieb’s lemma we deduce that ug, — Q. in H® as n — oo.
On the other hand, from Pohozaev’s identities (2.2]) we deduce that

1

1 _
E(“O,n) =§Hu0,n||2' s m ‘JZ| b|u0,n(x)|p+2dx

b+ 2
" 2 ‘Cn|p+2>‘n 2 / —b p+2
L S, d
1Qully. = [ el Qu(@) P
c 2_ c p+2 )\25

Applying Theorem [1.1] the solution w, of . with initial data ug, blows up in
finite time.

|Cn|2
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Case (2) 45sz1> <p< ‘ﬁ:;g. Let Q,, be the ground state related to (1.13)), a direct
computation shows

Np iy,

Azt
p+2

1.5 w -
Su@2) = 5 1Qulfy. + S1Qullte = 2 [ lel Q).

and

Np
Ay \25—1 2 (Np+2p)A 72+t
aASW(Qw) - S)‘ HQWHH~ 2p+4

_K(Q))

P

It is easy to see that the equation 9\S,,(Q2) = 0 has a unique non-zero solution,

/ 2] |Qu (2)P 2 da
RN

(( s(2p + 4)Qu % )* _.

Np + 2b) f]RN |$‘_b|Qw({L‘)|p+2dl‘
The last inequality comes from the fact that K(Q,) = 0, which follows from Po-
hozaev’s identities (2.2)). We thus obtain
>0 if Ae(0,1),

A
NS (Q3) {< 0 if A€ (1,00).

This implies that S,,(Q}) < S.(Q.) for any A > 0 and X\ # 1. This, together with
QM2 = |Qullz2, implies that for any A > 1,
E(Q3) < B(Qu)- (4.1)
Let A\,, > 1 such that lim,,_,. A\, = 1. We take the initial data
uo.n(2) = QL (1) = A2 Qu(An).

By Brezis-Lieb’s lemma, we have ug, — Q. in H® as n — oo. We deduce from

that
E(uon) < E(Qu),
and
1(=2)"uonllz = A I(=A)"2QullLz > (=A)**Qull 2
Thus, by ||uonllr2 = [|Qwl L2, and (L.15), we have

E(uon)*|[uonll2S 75 < B(Qu)*|Qul?S ™) = B(Q)* Q35 *,

and
1(=A)2ug 5% luomlI52% > 1(=A)?Qulli% 1Qulliz® = [(=A)* Q|52 Q5=

where s, = % — QSTTI’. Applying Theorem , the solution u,, of (1.2]) and initial

data ug,, blows up in finite time. This completes the proof. ([l
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