
EXPERIMENTAL STUDY ON THE USE OF SEMANTIC WEB CONCEPTS

FOR MATCHING AND ASSEMBLING RICH CLIENT

COMPOSITE APPLICATIONS

THESIS

Presented to the Graduate Council of

Texas State University-San Marcos

in Partial Fulfillment

of the Requirements

for the Degree

Master of SCIENCE

by

Michael Pierre Carlson, B.S.

San Marcos, Texas

May 2008

EXPERIMENTAL STUDY ON THE USE OF SEMANTIC WEB CONCEPTS

FOR MATCHING AND ASSEMBLING RICH CLIENT

COMPOSITE APPLICATIONS

Committee Members Approved:

Anne Ngu, Chair

Xiao Chen

Rodion Podorozhny

Approved:

J. Michael Willoughby

Dean of the Graduate College

COPYRIGHT

By

Michael Pierre Carlson

May 2008

DEDICATION

To my wonderful parents, Pierre and Marlene Carlson, for whom I have no words to

express my thanks for everything they have helped me to achieve.

To my amazing wife and life partner Holly Riedelbach. I have loved you from the

beginning, over ten years now. I could not imagine my life without you.

v

ACKNOWLEDGEMENTS

 I would like to thank the chair of my thesis committee, Dr. Ngu of the Computer

Science Department of Texas State University-San Marcos. Her continued assistance,

guidance, and review allowed me to complete this work. Additionally, I would like to

thank the other members of my committee, Dr. Chen and Dr. Podorozhny for their review

and assistance with this work.

 I also would like to express my appreciation to Kristen Riedelbach, friend and

sister-in-law, for her help in reviewing and editing this thesis. Kristen has given much of

her personal time reviewing my many drafts.

 Finally, I wish to thank my amazing wife Holly. She has been wonderfully

understanding of the time I have spent over the last few years working on this degree.

We have certainly missed out on a lot of opportunities over the years because of my

work. Without her support, I would not have been able to finish.

vi

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS.. v

LIST OF FIGURES ... viii

ABSTRACT.. x

CHAPTER

 I. INTRODUCTION... 1

 1.1 Composite Applications.. 1

 1.2 Eclipse and SOA... 2

 1.3 Lotus Expeditor... 5

 1.4 Component Catalogs... 9

 1.5 Thesis Contributions ... 10

 II. BACKGROUND.. 12

 2.1 The Semantic Web.. 12

 2.2 Web Services .. 13

 2.3 Semantic Web Service Matching.. 14

 2.4 Other Composite Application Frameworks .. 15

 III. COMPOSITE APPLICATION MATCHING .. 19

 3.1 Existing Techniques for Assembling Composite Applications 19

 3.2 Modeling Rich Client Components .. 21

 3.3 Modeling Graphical User Interfaces in RCP .. 27

 3.4 Enhancing Web Service’s Methods .. 33

 IV. RCP COMPOSITE APPLICATION ASSEMBLY.. 38

 4.1 Building a Component .. 38

 4.2 Annotating Components with Semantic Information 41

 4.3 Sample Applications ... 42

 V. EXPERIMENTAL RESULTS... 49

vii

 5.1 Introduction... 49

 5.2 Experiment One – Basic Matching ... 51

 5.3 Experiment Two – Merged WSDL Matching .. 51

 5.4 Experiment Three – Assembling Travel Scenario via Matching.................... 53

 5.5 Experiment Four – Assembling the Order Tracking Scenario via Matching . 56

 5.6 Experiment Five – Adding GUI Characteristics to Matching 61

 5.7 Experiment Analysis... 63

 VI. CONCLUSIONS .. 67

 6.1 Findings... 67

 6.2 Feasibility.. 69

 6.3 Composite Application Usefulness... 71

 6.4 Future Direction .. 72

APPENDIX A... 73

APPENDIX B ... 76

APPENDIX C ... 82

APPENDIX D... 83

WORKS CITED ... 88

viii

LIST OF FIGURES

FIGURE PAGE

1: Eclipse IDE Workbench with Sample menu item .. 4

2: Architecture of Lotus Expeditor with Lotus Notes plug-in .. 5

3: Lotus Expeditor Workbench... 6

4: Wiring of two components as shown in the composite application editor 9

5: OrderRequest element with semantic model reference .. 14

6: Yahoo! Pipe for Lotus Expeditor.. 17

7: CityState Picker component.. 24

8: WSDL with semantic markup for CityState Picker component 25

9: WSDL describing user interface... 29

10: User Interface WSDL using semantic annotations ... 30

11: OWL model for display .. 32

12: WSDL message showing multiple model references ... 32

13: OWL class diagram for ViewType... 33

14: WSDL message with two unique types and actions ... 35

15: WSDL message with one common type and two unique actions............................... 36

16: Complete travel scenario application.. 44

17: Completed order tracking application... 47

18: Order owl model ... 48

ix

19: Analysis Results Dialog.. 50

20: Results of individual matching in experiment 2 ... 52

21: Results of merged matching in experiment 2 ... 53

22: Matching of CityPicker component .. 54

23: Matching of CityPicker and HotSpot Finder .. 55

24: Matching of CityState Picker, HotSpot Finder, and GoogleMapper.......................... 56

25: Matching with TrackingDetail.. 57

26: Matching with TrackingDetail and CustomerDetail... 58

27: Matching with TrackingDetail, CustomerDetail, and Orders..................................... 59

28: Matching with TrackingDetail, CustomerDetail, Orders, and OrderDetail................ 60

29: Matching with All Order Detail components ... 61

30: Search results with SWT selected as View Filter ... 62

31: Search results with Portlet selected as View Filter... 63

x

ABSTRACT

EXPERIMENTAL STUDY ON THE USE OF SEMANTIC WEB CONCEPTS

FOR MATCHING AND ASSEMBLING RICH CLIENT

COMPOSITE APPLICATIONS

by

Michael Pierre Carlson, B.S.

Texas State University-San Marcos

May 2008

SUPERVISING PROFESSOR: ANNE NGU

 Composite applications are a line of business applications constructed by

connecting, or wiring, disparate software components into combinations that provide a

new level of function to the end user without the requirement to write any new code. The

components that are used to build a composite application are generally built within a

Service Oriented Architecture (SOA). Many of the first SOA platforms exclusively

relied on web services (WSDL-based) as components in the composite application. With

xi

the emergence of new standards, such as OSGi, the components used in composite

applications have grown to include more than just web services. Components can be

built from web applications, portlets, native widgets, legacy software, and Java

technologies.

 One of the most widely distributed SOA platforms is the Eclipse Rich Client

Platform (RCP), which is built on the OSGi standard. Eclipse and OSGi provide a means

for developers to create components in an SOA environment and declaratively extend the

function of existing components. IBM Lotus Expeditor extends Eclipse’s RCP by

providing a composite application framework, which allows end users to construct

composite applications from separately developed components and declaratively wire

those components so that they can communicate and execute together. This provides for

new levels of functionality not available in any of the individual components and

provides the end user with the ability to customize their applications to meet their

business needs.

 There are challenges to combining components into composite applications,

especially when components are developed at different times, by different groups, using

different technologies, naming conventions, and structures. Similar to web services’

UDDI registry, a catalog of components could contain many separately developed

components that use different naming conventions. A given enterprise may have

hundreds of similar components available for reuse in a catalog, but manually searching

and finding compatible and complementary components could be a tedious and time-

consuming task. Additionally, none of the existing SOA environments, including RCP

and server based implementations, provide a way to leverage the search techniques that

xii

have been developed to assist the user in locating compatible non-web service

components for composite applications. Unlike web services, many components used in

RCP have graphical user interfaces built from technologies such as portlets, Eclipse

Views, and native application windows. Depending on the technology used or the type of

user interface being presented, certain components may not be valid for use in a

particular composite application. For example, in a portal based environment, such as

BEA WebLogic Portal, only portlet based user interfaces would be valid selections when

assembling a composite application. Discerning this could be a difficult process up front,

or could result in repeated cycles of trial and error, especially when the target

environment supports a variety of technologies.

The main contributions of this thesis are as follows. First it is shown that existing

techniques, technologies, and algorithms used for finding and matching web service

components (WSDL-based) can be reused, with only minor changes, for the purpose of

finding compatible and complementary non-web service based components for composite

applications. These components may include graphical user interfaces, which are not an

artifact in web service components. By building on the techniques initially developed for

web services matching, the problems associated with finding useful and valid

components for composite applications using high level concepts is possible. This

enables the progressive construction of composite applications from a catalog of

available components without deep knowledge of the components in the catalog. Second,

it will be shown that the additional characteristics of non-web service based components,

specifically graphical user interface details, can be categorized, described, and matched in

a similar fashion to the programmatic inputs of the components. Though similar in some

xiii

respects to web services, these additional characteristics of a component allow for further

match processing logic to be used to provide better results for the novice user when

searching for components to integrate into the composite application. Finally, it will be

shown using sample applications and scenarios that by taking into account the unique

characteristics of an RCP composite application (i.e. coexistence of user interface

components), new techniques of merging descriptions can be leveraged to provide better

results when searching for new components to add to the composite application.

1

Chapter I

INTRODUCTION

1.1 Composite Applications

 Composite applications are a line of business applications constructed by

connecting, or wiring, disparate software components into combinations that provide a

new level of function to the end user without the requirement to write any new code.

Generally deployed on a Service Oriented Architecture (SOA) platform, the various

components are often built without knowledge of the other components with which they

will interact at runtime. Components in most server-based SOA platforms are generally

headless – meaning they provide no graphical user interface. Popular component models

include web services, Enterprise Java Beans (EJB), and Common Object Request Broker

Architecture (CORBA).

Each of these technologies provides methods of describing their Application

Programming Interface (API) to developers. Using these APIs, developers can build

applications that make use of the services provided by the components. EJBs are specific

to the Java programming language and therefore the programmatic interface is generally

specified using a Java Interface (e.g. Home and Remote Interface). For web services, the

implementation of the web service, be it Java, .NET, C++, etc. is abstracted from the

API. The API is described using Web Services Description Language [1] (WSDL),

which is a format of Extensible Markup Language [2] (XML). Graphical User interface

 2

components (menus, buttons, navigation links which are generally known as GUI) are

typically decoupled from EJB and web services specifications. Work has been done to

create tools that can create a basic client user interface from a web service WSDL file [3].

There have also been several standards developed for web services by the World Wide

Web Consortium (W3C) and other standards organizations. For these reasons,

interoperability between web services is greater than interoperability between any

preceding systems. This standardization has led to many additional standards and

technologies for describing, finding, and matching web services.

 The components of RCP composite applications as discussed in this work are

more than just headless, server side logic components. In this context, components

generally contain a user interface, built from technologies such as JSPs and HTML,

Eclipse Standard Widget Toolkit (SWT), Swing, native windowing systems, etc. Like

web services and EJBs, components can take programmatic inputs and provide

programmatic outputs. In our components, programmatic inputs will generally cause

changes in the graphical user interface, and user interaction with the graphical user

interface will cause the programmatic outputs to be fired. An example of this type of

component is a Portlet [4], though components are not limited to this technology or the

Java programming language.

1.2 Eclipse and SOA

The Eclipse [5] Rich Client Platform (RCP) provides a SOA environment for

building client side applications. Starting with Eclipse 3.0, an implementation of the

OSGi [6] specification has been used as the core framework for building separately

 3

manageable components in Eclipse. In OSGi, the smallest manageable piece of code is a

bundle. For historical reasons, Eclipse uses the term “plug-in” instead of the term

“bundle,” though for all intents and purposes these terms are equivalent. In addition to

the SOA capabilities that are defined by OSGi, Eclipse also provides an extension point

framework. This framework allows components to extend the capabilities of other

components. For example, the Eclipse workbench (an example workbench is shown in

Figure 1) is the primary controlling user interface component. In order to add a menu

item to the workbench the developer will define an extension to the

org.eclipse.ui.actionSets extension point. The developer can define the characteristics of

the item, such as the category to add the item to, the label for the item, and the action to

take when the item is selected by the user. In this example, the Sample Menu item and

Sample Action item have been added to the standard workbench.

 4

Figure 1: Eclipse IDE Workbench with Sample menu item

The extension point mechanism provides a clean way of declaratively extending the

functionality of a component (the workbench in this example), though it does require

knowledge of the component and extension point at development time. This required

build time knowledge is a limitation that can affect the ways in which a component can

be used, and further restrict their usage in RCP composite applications. For example, if

the component being extended, say the Outline view shown in Figure 1, is not available

in the final deployment environment, then the new component that extends the Outline

 5

view may not run, even if it is providing other services not related to the Outline view.

So while the extension point method can remove some of the internal dependencies

between components, it does not completely solve the problem of building loosely

coupled components for deployment in an SOA environment.

1.3 Lotus Expeditor

 The IBM Lotus Expeditor [7] platform extends the Eclipse Rich Client Platform

with an additional framework called the Composite Application Infrastructure (CAI). A

high level architecture diagram for Lotus Expeditor including the Lotus Notes plug-in is

shown in Figure 2.

Figure 2: Architecture of Lotus Expeditor with Lotus Notes plug-in

 6

Figure 3 shows the Lotus Expeditor Client default workbench and several sample

applications installed under the Open button. Using a custom workbench and set of

extension point, the look has been significantly changed from the Java IDE workbench

shown in Figure 1, though the same extension point concepts are used to build this user

interface.

Figure 3: Lotus Expeditor Workbench

The CAI framework is used to assemble, lay out, and wire RCP composite applications

without the need for the underlying components to be aware of each other at development

time. The components being assembled generally have a GUI, though this is not a

requirement. The components also provide a collection of programmatic inputs and

 7

outputs, though this is not an absolute requirement. The programmatic outputs are

usually fired as the user interacts with the component’s GUI. When the programmatic

inputs are activated, the GUI is generally updated to reflect the inputs. The programmatic

output of a component is declaratively wired to the programmatic input of one or more

other components in the RCP composite application, thus allowing the components to

communicate without prior knowledge of each other.

Similar to web services, the programmatic inputs and outputs of a component in

IBM Lotus Expeditor are described using WSDL. The programmatic inputs can be

simple types or complex types defined using XML Schema [8] (XSD). In the current

implementation, CAI does not provide a means of declaring the graphical user interface

type (e.g. web, SWT, Swing, etc.) of a component. The RCP composite application

assembler must have previous knowledge of this if they are restricted in the types of GUI

technologies they can use. For example, if the deployment platform does not provide

support for portlet interfaces, then an assembler must know which components are built

from portlets and specifically avoid those when assembling the RCP composite

application.

The layout and wiring of an RCP composite application is executed in a tool

called the Composite Application Editor (CAE) by a business analyst or an application

assembler. With CAE, the assembler does not need to know how a component was built

in order to use it. The desired components can simply be dragged and dropped to add

them to an RCP composite application. Once the assembler has decided on a set of

components to be included in the RCP composite application, the tool provides a simple

method of connecting programmatic inputs to outputs across the application. The adding,

 8

removing, and wiring can be done in an iterative fashion to allow the assembler to refine

the RCP composite application.

However, finding and using compatible and complementary components from a

catalog of existing components is still a problem for the assembler, though this thesis

describes methods to simplify that process. Figure 4 shows an RCP composite

application with two components. The CityState Picker component (labeled “City View”

below) provides a single output, labeled cityState. The HotSpot Finder component

provides a single input named SetLocationCityState. The dotted line indicates that the

cityState output has been linked to the SetLocationCityState input. Therefore, when the

output cityState is fired, the argument of that output will be sent as the argument to the

SetLocationCityState input. So even though these two components could have been

developed independently, they can be wired together using the CAE tool.

CAE processes the WSDL file that is provided by the component developer to

display the available inputs and outputs of a component. WSDL elements, such as

message, portType, and binding, together describe the programmatic inputs and outputs

of the component. This is advantageous because, as will be shown, we can apply web

services matching techniques to find compatible components during the assembly of RCP

composite applications.

 9

Figure 4: Wiring of two components as shown in the composite application editor

1.4 Component Catalogs

 In order to assemble a composite application, the user must have a list of

available components from which to select. The standard locations that can be searched

are the locally installed system and external component catalogs. In the case of Lotus

Expeditor, one of the preconfigured external catalogs is IBM WebSphere Portal. By

connecting to WebSphere Portal, the assembler can select from any of the portlets that

are installed. By default, WebSphere Portal provides nearly two hundred portlets from

which to select. As administrators begin to install more portlets onto the system, the

number of selections can increase dramatically. This proves to be a large problem for the

assembler, but one we will show how to help solve. There are hundreds of components

available, but the only information an assembler may have about them is a title and a

short description. By combining the techniques of the semantic web with existing web

service matching logic, we will show that the number of available selections can be

matched against the existing application and ranked for the assembler. This ranking can

simplify the process of finding compatible and complimentary components for the RCP

composite application being assembled.

 10

1.5 Thesis Contributions

The main contributions of this thesis are as follows. First it is shown that existing

techniques, technologies, and algorithms used for finding and matching web service

components (WSDL-based) can be reused, with only minor changes, for the purpose of

finding compatible and complementary non-web service based components for RCP

composite applications. These components may include graphical user interfaces, which

are not an artifact in web service components. By building on the techniques initially

developed for web services matching, the problems associated with finding useful and

valid components for RCP composite applications using high level concepts are possible.

This enables the progressive construction of RCP composite applications from a catalog

of available components without deep knowledge of the components in the catalog.

Second, it will be shown that the additional characteristics of non-web service based

components, specifically graphical user interface details, can be categorized, described,

and matched in a similar fashion to the programmatic inputs of the components. Though

similar in some respects to web services, these additional characteristics of a component

allow for additional match processing logic to be used to provide better results for the

novice user when searching for components to integrate into the RCP composite

application. Finally, it will be shown using sample applications and scenarios that by

taking into account the unique characteristics of an RCP composite application (i.e.

coexistence of GUI components), new techniques of merging descriptions can be

leveraged to provide better results when searching for new components to add to the RCP

composite application.

 11

The structure of this thesis is as follows. Chapter II provides background

information on the technologies used in this thesis along with information about related

and alternative technologies. Chapter III details the primary contributions of this thesis,

specifically the concepts of RCP composite application matching, merging components

into a single descriptive format, and modeling of other component characteristics.

Chapter IV describes the sample applications that are used to show the viability of the

techniques described in this thesis. Chapter V provides a set of experiments, results, and

analysis using the sample application components in conjunction with the described

techniques. Chapter VI provides a summary of the thesis along with additional

information related to the feasibility of the techniques, possible alternatives, and future

work in this area.

12

Chapter II

BACKGROUND

2.1 The Semantic Web

 The definition of the semantic web, as given by the World Wide Web

Consortium, is “a common framework that allows data to be shared and reused across

application, enterprise, and community boundaries” [9]. In practice, this means

enhancing software resources with metadata that describes the software in more detail. In

order to be useful, the metadata must be in a format that is standardized and machine

readable. The two most common formats for the metadata are Resource Description

Framework (RDF) [10] and Web Ontology Language (OWL) [11]. Both of these formats

provide a method of describing software processes, data types, relationships, and

restrictions. There are various arguments for using one format or the other, though those

reasons are not important in the context of this thesis. The goal of the semantic web is to

describe software resources and data in such a manner that different combinations of

software can be assembled automatically based on the characteristics defined in the

associated RDF or OWL model.

 13

2.2 Web Services

 The primary purpose of a web service is to expose certain pieces of application

logic that might be useful in other applications as independent components. A simple

example is a currency exchange web service. Such a web service takes a numeric value,

an input currency, and an output currency. When the web service is called with these

three valid parameters, it returns the equivalent value of the input currency in the output

currency. A more complicated web service may be a credit card processing interface that

takes an account number, a total cost, and perhaps several other pieces of information in

order to create a charge against a credit card. This technology has proven to be very

valuable in creating applications that make use of these basic services and do not require

each application owner to implement and manage these functions.

As the number and types of web services have expanded, methods have been

created to provide developers with better means to search for web services that can be

used in their applications. Universal Description, Discovery, and Integration (UDDI)

registries often provide a simple search interface that allows a developer to enter

keywords and find matches in the text of the WSDL files in the registry. This method has

expanded to the creation of a search engine for web services called Woogle [12]. The

search engine uses various algorithms that find similar web services operations and sets

of operations that can be composed to meet the search criteria. While useful, these

methods rely on the WSDL containing similar terms to the given search criteria.

 14

2.3 Semantic Web Service Matching

One of the first and most successful uses of semantic web concepts is being used

in web services. Because web services already provide a standard metadata file to

describe their programmatic interfaces, adopting that metadata model to incorporate

semantic web concepts has not been difficult. The Semantic Annotations for WSDL

Working Group [13] at the W3C has developed a standard called the Semantic

Annotations for WSDL and XML Schema [14] (SAWSDL). This standard defines a

method of including semantic model information into a WSDL document [15]. The

semantic model is used to describe all or part of a particular web service using a

modeling language. In order to be useful, the modeling language needs to be machine

readable and describe the concepts of the web service in ways that can be reasoned about

and compared to other models. The model may be added directly to the WSDL, or the

WSDL may contain a URL reference to the model (see Figure 5). The standard does not

prescribe any particular modeling language, though RDF and OWL are common choices.

As an example, a WSDL that describes an XML Schema type named “OrderRequest”

could be annotated to reference an “OrderRequest” class in a “purchaseorder” model.

Figure 5: OrderRequest element with semantic model reference

 15

Because the standard does not define any specific language for the model, the

“purchaseorder” model can be in any format. The specification does assume that the

format used for the model is something that the requester can process.

 By enhancing the WSDL with these semantic annotations, the process of

searching and finding web services for use with existing applications is improved and

better results are provided. No longer does the search have to rely on similar terms and

syntax being used in the WSDL file and the search criteria, but the semantic annotations

can be used to improve the matching between the inputs and outputs of the web services

being considered. In fact, it has been shown [16] that using the two search methods

together provides better results when looking for matching web services.

2.4 Other Composite Application Frameworks

 In addition to the RCP composite application technologies that are mentioned in

this thesis, there are other alternatives available. Two of those include Yahoo! Pipes [17]

and the various “Mashup” products, such as Intel Mash Maker [18] and Mash-o-matic

[19]. While interesting in their own respects, there are limitations in these technologies

that are solved through the use of RCP composite applications running in Lotus

Expeditor. Yahoo! Pipes provides a web-based means of pulling data from various data

sources, merging and filtering the content of those sources, transforming the content, and

finally outputting the content for users to view or for use as input to other pipes. Figure 6

shows an example of a Yahoo! Pipe that pulls data from four RSS and atom feeds,

merges the feeds together, filters the feeds based on certain keywords, and finally outputs

the results to an HTML page. While certainly interesting and useful, there are several

 16

limitations in this platform. The first is the limited set of inputs and outputs. There is no

way to use arbitrary inputs or outputs when using this application. There are a limited

number of input types and output types from which the user can select. A component in

an RCP composite application should be able to accept many different types of inputs and

provide many different types of outputs. Secondly, the flow of a pipe is static and

sequential. While a user can configure many different inputs, all of the connections are

executed in a sequential manner until the single output is reached. With RCP composite

applications, the different components in the application can communicate with each

other in any manner that the assembler chooses. Finally, Yahoo! Pipes is a server-based

technology that makes use of only a web user interface. There is no way for a user to

construct and execute a pipe without a network connection and execute the pipe using

locally stored data. A pipe can be accessed programmatically, like a web service, but in

order to execute the pipe the user must be able to connect to the Yahoo! Pipes server.

These same limitations exist in other web portal type solutions such as iGoogle and My

Yahoo.

 17

Figure 6: Yahoo! Pipe for Lotus Expeditor

Products like Mash-o-matic and the Intel Mash Maker have a similar set of

limitations. These products provide a method of taking arbitrary web pages and

combining them for use in a single browser view. This imposes the limitation that only

web-based technologies can be used. Also, since the data are being pulled from multiple

websites, you must be connected to the web and all of the associated websites must be up

 18

and functional. These tools also provide means of pulling data from one web page and

using it in conjunction with another page that is in the mashup. However, the technique

usually used for this is screen scraping. Using this tool, the assembler selects pieces of

data from the pages and creates outputs that can be fed to sections of other web pages.

While useful, the technique generally uses the Document Object Model (DOM) of the

page in conjunction with XPath [20] expressions. These techniques will work, as long as

the structure of the web page does not change. For example, if a web page is being used

to include stock prices in a mashup and the structure of the stock quote page were to

change, it could mean that the function would stop working. Even worse, if the function

kept working but was slightly off, stock prices might still be displayed but perhaps

associated with the wrong company names. Because there is no concept of API between

the provider and the users, as there is in the case of WSDL, these types of applications

are prone to breakage and the long-term value remains to be proven [21].

RCP composite applications in Lotus Expeditor solve these problems by

providing a method of assembling and executing applications using local application

logic. Data can be retrieved from either local or remote data sources. GUIs can be built

from a variety of technologies, including portlets, SWT, AWT, Native interfaces, etc.

The component author decides on the programmatic inputs and outputs that are exposed

by the component and specifies these in a specification (e.g. WSDL), similar to declaring

API using public Classes and Interfaces in Java.

19

Chapter III

COMPOSITE APPLICATION MATCHING

3.1 Existing Techniques for Assembling Composite Applications

Searching for and finding compatible and complementary components for a non-

web service based RCP composite application is a difficult problem. Unlike web

services, there is currently no standard way of categorizing and cataloging components

for use in an RCP composite application. Rather, components are discovered by

assemblers who must hunt around the web, in documentation, and searching the locally

installed system. This does not provide an easy and manageable means of finding and

selecting components. In a portal environment, such as IBM WebSphere Portal, it is

possible to query the system for the available components, though the list is returned

based on criteria that have no relevance to the application assembler (e.g. alphabetical or

last update time). As with large UDDI installations, a large repository of components,

such as in a Portal server, can be difficult to search using only text-based search

techniques and keywords specified in the components. Interfaces like Google Code

Search [22] allow the developer to search application code, but it does not allow you to

search using the higher level concepts of a component or a model. On the other end of

the problem, having to manually classify and describe every aspect of components for

browsing and searching can be a painstaking task when handling a large number of

components. However, semantic web techniques have been used successfully for the

 20

modeling and matching of web services. The key question we want to address in this

thesis is whether we can also leverage semantic web techniques for finding and matching

appropriate components for use in Lotus Expeditor composite applications.

After suitable components have been discovered, the assembly of RCP composite

applications should not require tedious and detailed programming as required of a typical

software developer. End users, at least the savvier end users, should be able to compose

RCP composite applications with minimal training. For a call center in an enterprise, this

may simply mean being able to assemble an RCP composite application on the fly that

takes a caller’s information in one window and has the input reflected in other

components that are used in the call center. For the savvy end user at home or in a small

business, this may mean creating a routing application together with the list of errands or

deliveries for the day and producing a more optimized route. However, without the

ability to find a mapping component that can consume the available input, it could be

very difficult for end users to assemble an RCP composite application.

In addition to programmatic inputs, components generally have a graphical user

interface. These user interfaces can be built from different technologies, have different

deployment requirements, and be usable only in certain human languages. In order to

find components for users of RCP composite applications, these additional characteristics

may need to be taken into account. For example, if the deployment platform does not

support GUIs built using Swing, then Swing-based components should not be given in

the search results, or they should be classified lower in the results. It will be shown that

these GUI characteristics can be represented using web service and semantic web

techniques. When used in combination with the existing web services matching logic,

 21

component search capabilities are enhanced. This results in better choices of components

for the user in RCP composite applications.

3.2 Modeling Rich Client Components

 In Chapter II we described how semantic annotations are used in conjunction with

web services to provide developers additional tools to find compatible web services from

a collection of available web services. In this thesis we demonstrate that similar

techniques, technologies, and algorithms can be leveraged to provide similar function and

support for RCP composite application construction. The programmatic inputs and

outputs of a component defined in WSDL can be further modeled using semantic web

techniques. Additionally, the implementation technology (e.g. SWT, Swing, etc) used to

create the graphical user interface can be modeled to further describe the platforms that

the component can support.

Most components used in RCP composite applications provide a collection of

programmatic inputs and/or outputs, though this is not strictly required. For example, a

user profile component may display a user’s contact information stored in a Customer

Relationship Management (CRM) system. Unlike a web service, a component for an

RCP composite application may only take programmatic inputs or only provide

programmatic outputs or neither. Similar to web services, the programmatic inputs and

outputs of components in Lotus Expeditor are defined using WSDL. Because these

components make use of standard WSDL, components for use in RCP composite

applications can be annotated to include the additional metadata necessary for them to be

matched using existing web services matching technologies and algorithms. One such set

 22

of algorithms for web services matching is described by T. Syeda-Mahmood [16]. This

work describes combining the use of semantic and ontological matching for the purposes

of matching web services. (It should be noted that the use of the term “semantic” [16]

refers to text based matching. In this thesis that term is used to mean matching based on

semantic markup, such as that defined by the W3C Semantic Web activity [9]). In fact,

the matching code that was used to produce the results shown by T. Syeda-Mahmood is

the same matching code that is used to conduct the experiments in this thesis. In brief,

the matching algorithm works as follows:

1. Using a single input WSDL and a collection of target WSDLs, a score is

calculated based on the number of matching terms found between the input

WSDL and each target WSDL. A thesaurus, in this case WordNet [23], is used to

expand the matching to include synonyms. Thus, this phase is focused on

keyword matching.

2. A second search is then invoked using the same input and targets as above. This

time the semantic annotations specified in the WSDL files are considered. The

semantic models for each component are compared using a custom ontology

matching algorithm. This algorithm takes into account the relationships between

the elements given, such as inheritance, hasPart, hasProperty, etc. A score for

each combination is calculated based on the number of attributes that are matched

for each combination.

3. The final score is calculated using a winner-takes-all approach. The maximum of

the first score and the second score is reported as the overall matching score for

each input and target combination.

 23

Even though we can reuse much of the same logic and algorithms, there are a few

fundamental differences when dealing with non-web services based composite

applications. In many cases, when searching for a web service, the developer is looking

for APIs that can either:

1. Match – Using the output from a single web service and finding a second web

service that can take that as input. The developer can continue this process and

string together several web services in order to complete a business process.

2. Compose – Starting with a known output and a known input, the developer uses

search techniques that can allow them to find one or more services that will

transform the output of the first web service into something that can be consumed

by the final web service.

The difference with respect to RCP composite applications is that in most cases

the goal is not to put together a single business process or tightly link fragments of

software processes; rather, the goal is to integrate separately created components together

“on the glass” [24] and provide the ability for those applications to communicate or

interact without prior knowledge of each other. This means that an RCP composite

application may bring together a human resources vacation planning component with a

project management component. By linking the two applications together, the project

management component could potentially use vacation data in the vacation planning

component to adjust project schedules. In no way, however, does the process of

scheduling vacation need to be modified in order to use the data. Additionally, the

 24

developer of each of these components does not need to have knowledge of the

implementation of the other component or the programmatic interfaces.

The markup required for RCP composite application matching is similar to the

markup required for web services, at least with respect to data inputs and outputs. A

simple example is a CityState Picker component shown in Figure 7. In this component a

user can select a state from a list of states and then a city from a list of cities in that state.

Figure 7: CityState Picker component

When the city is selected, the component outputs (or fires) the city and state that the user

selected via the PropertyBroker interface of Lotus Expeditor. The PropertyBroker is

responsible for delivering messages between components that have been wired together

using the CAE tool. For this component, the state and city are output as a single string

encoded using JavaScript Object Notation (JSON). The output definition, including the

semantic annotations for this component, is shown in Figure 8.

 25

Figure 8: WSDL with semantic markup for CityState Picker component

Lines 5 and 9 import the necessary namespaces used to add the semantic

annotations. Lines 15 – 17 define a new message named “cityState,” which defines the

name of the JSON string that will be output. On line 16 you will see that this message

has been annotated with a reference to an element in a semantic model. This is shown as

wssem:modelReference="TravelOnt#City" in the WSDL file. With this annotation, we

are describing the message in terms of an OWL class in an OWL model. Continuing

along the web services methodology, this message is set as an output of the

 26

“pubCityState” operation in a portType (lines 18 – 22) and included in a portlet type

binding (lines 23 – 35). With this markup using the standard grammar defined by WSDL

and SAWSDL, the component’s output can now be matched against other components’

programmatic inputs using existing matching technologies. By including the annotation,

the matching engine is able to match based on capabilities of the component as described

in the OWL model. For example, assume the “cityState” component were to be

compared against another component that contained the element “county.” The text-

based matching would not count these as a possible match because the two strings are not

equal (i.e. “cityState” != “county”). However, if the “county” element had a semantic

annotation of “TravelOnt#County” in its modelReference attribute, the matching logic

would be able to compare the model types City and County. If the model described a

relationship between a City and a County, perhaps using the hasProperty OWL attribute,

it could be determined that a city is in a county and both are part of a state. Thus, the

match would score higher because the modeling analysis would show that these two

elements are very closely related.

 While this example component provides only a basic GUI, more complicated

components can be modeled using the same techniques. Components may provide

multiple programmatic inputs and programmatic outputs as well as multiple portTypes

and bindings. Each of these can cause something different to happen in the component.

As such, the messages, portTypes, and bindings can be annotated using any of the

available options defined in the SAWSDL specification.

 27

3.3 Modeling Graphical User Interfaces in RCP

Another difference between component and web services is the fact that in

general, components are not faceless bits of processing logic. Most components provide

some type of GUI, though this is not an absolute requirement. Components that do not

provide a graphical user interface may still be useful in a RCP composite application.

For example, a currency converter may be useful in an order processing application even

though it has no GUI. Prices may be stored in the back-end system in U.S. dollars, but

the user could wire the RCP composite application to transform the prices displayed into

the local currency of the user.

However, components can have GUIs and it may be necessary to filter or restrict

the components found during a search based on the characteristics of the graphical user

interface. Such characteristics may include the language the GUI is available in, the

technology the GUI is built on, or the complexity of the GUI. For the purposes of this

work, two concepts are used to enhance the searching and matching of GUI components:

technology used to build the GUI (web, native, Java, etc.) and the recommended display

size of the component (projector, desktop monitor, mobile device screen, etc.). The

implementation technology used is an important distinction from a technologist point of

view because some GUI types, such a GTK+ interface, will not run on a Windows

Mobile device. While this type of distinction may not be something an end user thinks

about, it is something that will affect them when they attempt to use or build a RCP

composite application using incompatible technologies. An obvious characteristic that

would be important to an end user is the language in which the component runs. If the

RCP composite application is expected to be run in Spanish, a component that only

 28

provides a GUI in English may not be usable by the end user. Fortunately, the graphical

user interface can be modeled as one or more types of outputs for the component, and the

matching technologies can be used to find results that meet the requirements of the RCP

composite application. In fact, many characteristics could potentially be modeled using

the same technologies, though “graphical user interface” is used in this thesis as a

concrete example of one of those characteristics.

Figure 9 shows an example of a WSDL file that is describing the GUI for a given

component. In this case, the GUI is being described by two characteristics: Display and

View. The Display is described using a combination of type, message, portTypes, and

binding. There are two simple types defined, named Display (lines 12 – 14) and View

(lines 15 – 17). A message named UI (lines 20 – 23) is then created with two members:

an instance of the Display type, named SWT, and an instance of the View type, named

Monitor. The portType (lines 23 – 28) marks the UI message as an output with an

operation name of Interface. Finally, the Interface operation is added to a binding (lines

29 – 39) so it can be seen by the other members of the RCP composite application.

 29

Figure 9: WSDL describing user interface

If the designer specified that they wanted only components that were written in

SWT (the View type) and that worked on a normal computer monitor (the Display type),

then this component could be presented to the user as a possible addition to their RCP

composite application. However, this matching would only work if we were using a

standard vocabulary to describe the interface. Programmers from all over the world may

 30

use different terms for the concept of view (e.g. GUI, UI, Interface, UA, etc.). If relying

on text-based matching, there would only be moderate success.

 Rather than assuming this is the case, we can use some of the techniques

described earlier to annotate this WSDL with semantic references. By adopting owl

models for GUI and semantic references in the WSDL, we will be able to better reason

about what this WSDL is describing. This type of WSDL markup is shown in Figure 10.

Figure 10: User Interface WSDL using semantic annotations

 31

In this case, the WSDL has been updated with two new namespaces. Line 10

declares the W3C Semantic Annotations for WSDL namespace and line 11 defines where

the Display OWL model can be located, if needed. Note line 10 uses “wssem” for the

namespace. This was the original acronym for the W3C proposal that became SAWSDL.

It is used here due to dependencies in the matching code being used for the experiments.

On lines 17 and 19 you will see the “wssem:modelReference” attribute has been added to

the part elements. This is done to indicate that these parts are described by a reference in

an external model. Specifically, the part zzzSWTzzz is described by the class SWT in

the Display OWL model, and zzzMonitorzzz is described by the StandardMonitor class

in the Display OWL model. Finally, on line 22 a model reference to the UI class in the

Display OWL model has been added. With this semantic markup we are now able to

describe the characteristics of the graphical user interface and display in a non-arbitrary

way. Also, as long as consistent or compatible models are used to describe the display,

view, and UI concepts, the web services matching code and OWL reasoning engine will

be able to find components with appropriate characteristics. You will also notice that

many of the names, such as SWT and Display, have had “zzz” added to the name. This is

to indicate that the actual name is no longer critical to understand what the WSDL is

describing.

 Figure 11 shows the common UI model used in our experiment set. This model

describes a single top-level OWL class named Display. There are three subclasses of

Display, namely Device, Monitor, and Projector. Further, there are two subclasses of

Device, p352x288 and p480x320. For the device case, the two resolutions describe

 32

certain types of device interfaces. The p352x288 represents many Windows Mobile

smart phones and the p480x320 represents Apple’s first generation iPhone. The Monitor

class is further subclassed to StandardMonitor and LargeMonitor.

Figure 11: OWL model for display

Because the classes are not entirely hierarchical, one might assume that you could not

describe a view as being appropriate to both a Monitor and a Projector or that it would

require two separate GUIs. That is not correct. The SAWSDL spec has solved this

problem by allowing multiple model references to be included in an element of a WSDL.

So in order to describe a display as supporting both a Monitor and a Projector, it would

only be necessary to specify both references, as shown on lines 19 and 20 of Figure 12.

Figure 12: WSDL message showing multiple model references

Similar to the Display model defined above, a basic ViewType class structure can be

defined, as shown in Figure 13. In this case the OWL class list is fairly flat due to the

 33

fact that a single component GUI is generally only created from a single type. It is

conceivable that additional subclasses could be built. Because Java5 supports Swing and

the Abstract Window Toolkit, it would be reasonable to include those as subclasses of the

Java5 class.

Figure 13: OWL class diagram for ViewType

3.4 Enhancing Web Service’s Methods

In the previous section we looked at how components can be modeled using

similar techniques to those that are used for web services matching. When used with

components applications, the existing web services matching functions can be used

without any change. However, there are key differences between an assembly of web

services and RCP composite applications. A RCP composite application can include

many different components that work together, though not in a predefined order. Users

can potentially interact with any member component of the RCP composite application at

any point in time. This means that inputs can be received and outputs broadcast at any

point in time. This particular characteristic of RCP composite applications works in our

favor when looking to find compatible and complementary components. Since the entire

UI can be presented to the user at any point in time and the user can interact with any

 34

component in the RCP composite application, we can treat the entire RCP composite

application as a single component with respect to matching. This allows us to use more

advanced techniques during the searching process.

All of the programmatic inputs and outputs from the different components can be

merged together prior to a search being executed. Generally, web service matching is

done using a single web service WSDL as the input to the matching algorithm. In order

to meet the requirement of finding compatible and complementary components that can

make use of any of the available programmatic inputs and outputs, the search for

components can be structured slightly differently. Rather than using multiple search

WSDLs, the components that have already been added to a RCP composite application

can be merged together to form a single WSDL to represent the entire set of

programmatic inputs and outputs available in that RCP composite application. For

example, a RCP composite application that consists of two components with one output

each would be represented by a single WSDL that contains both outputs, if they are

unique. This can be seen in Figure 14. In the case where the two components share a

single output type, only a single instance of that output would be needed in the merged

WSDL, though two portType and binding entries may be necessary to indicate the unique

actions, as shown in Figure 15.

 35

Figure 14: WSDL message with two unique types and actions

 36

Figure 15: WSDL message with one common type and two unique actions

 While the merging of WSDLs is a good solution, it is not without its own

limitations. The matching algorithm being used takes into account two characteristics

during matching: the semantic annotations in the “wssem” attributes and the name

attributes of the elements. When merging WSDLs, the name that is used can come from

any of the input WSDLs, if the elements are determined to be equal. As will be seen in

the experimental results, it is possible to get different matching scores depending on

which name is used to create the merged WSDL. The results of experiment three in

 37

chapter V show that the merging of the WSDLs can provide better results than processing

the WSDLs independently. We found that the best way to avoid the problem of different

results based on the name selected is to always use semantic annotations. When semantic

annotations are used to annotate a component, the name that is used during the search

does not affect the score.

 38

38

Chapter IV

RCP COMPOSITE APPLICATION ASSEMBLY

 In order to validate the usefulness of the enhanced RCP composite application

matching with semantic web technology, experiments have been conducted using two

separate and different RCP composite applications. This chapter will describe in more

detail how to create components and annotate them with semantic attributes to allow

them to be used in conjunction with the semantic web matching functions described in

this thesis. The sample applications selected for the experiments were chosen because

they represent two different types of valid RCP composite applications. The travel

scenario represents a hybrid RCP composite application that includes Eclipse SWT GUI

and a web application accessed via a web browser. This is the type of application that

would be constructed when selecting from a list of existing components. The order

tracking application represents a composite application that could be deployed to an RCP

product like Lotus Expeditor or to a cooperative portal environment like IBM WebSphere

Portal or BEA WebLogic Portal. This is the type of application that would be built with

the original intent of deploying to an SOA environment.

4.1 Building a Component

 In order to create a component for reuse in a RCP composite application, a few

additional steps are required beyond what is necessary to create a stand-alone application

 39

or component. However, the majority of the process is similar to creating standard

applications.

One of the first steps that any developer will need to take when building an

application is to decide on the interface technology. This may be Java Swing, Flex,

native, portlets, etc. This is no different than when creating components for a composite

application. In composite application environments like BEA WebLogic Portal, the only

choice for a GUI may be portlets. If the developer is building components for use in

composite applications that will be deployed to Lotus Expeditor, the user can select from

many technologies, including SWT, Java Swing, native interface, portlet, etc. The next

step in building a component for an application is locating the data that is to be presented

in the GUI. Often this information consists of records from a relational database or some

other back-end data source. Up to this point there is no difference in the process between

creating components for an RCP composite application and creating a standard

application.

If the developer decides that they would like to expose their newly created

components such that they can be reused in an RCP composite application, then a few

additional steps must be taken. The first step is to decide which programmatic inputs and

outputs should be exposed. In a view that displays a user’s contact information, the

developer may choose to publish the user ID of the person displayed in the view. Also,

the developer may decide that the component will take an email address as an input.

When the input is received, the GUI will be updated to show the contact information for

the user associated with the email address. In order to make this functionality work, the

developer is required to do a couple of things. First the developer must create a WSDL

 40

file that describes the programmatic input and output of the component – in this case one

input for email address and one output for user ID. This WSDL is used to notify the

composite application framework of the inputs and outputs associated with this

component.

The second step is to write a bit of code to deal with the programmatic input and

the output. The interface used to programmatically send and receive components is

provided by the PropertyBroker component of Lotus Expeditor. (The same interface is

available on IBM WebSphere Portal for Portal based composite applications.) Using the

PropertyBroker interface, the code can be notified of incoming email addresses. When

an email address is received, the code can respond in some way. In this example, a good

response might be to update the GUI with the contact information for the user associated

with the given email address. Using a similar set of APIs, the developer can also publish

the user ID of the person shown in the contacts view. It should be noted that the

developer does not require any knowledge of other components that may decide to make

use of these inputs and outputs.

At this point, the component is ready for use in an RCP composite application.

The assembler then uses the Composite Application Editor (CAE) tool to find and select

components for use in the RCP composite application and wire together their

programmatic inputs and outputs. Components can be added from an associated Portal

based catalog, from the running instance of the Lotus Expeditor Client, or from Eclipse

update sites. However, this is where our primary problem lies. With all of these possible

repositories and numerous components that can exist in each repository, how is an

assembler to know which components to add to their RCP composite application without

 41

deep knowledge of the catalogs and the separately developed components. This is where

semantic annotations and the matching logic can be used to simplify the process of

finding compatible and complementary components for a RCP composite application.

Before this can be done though, the components need to be annotated with additional

semantics.

4.2 Annotating Components with Semantic Information

While creating a component for use in a RCP composite application may seem

like a long, arduous process, it is fairly straightforward and repeatable among all different

types of components. In order to perform semantic matching of components, the

developer should add semantic annotations to the WSDL that describe the programmatic

inputs and outputs of their component. As discussed in this thesis and other papers on

web services matching, the semantic annotations can provide better matching results then

straight text-based matching. The developer should therefore update the WSDL with

references to semantic models that describe the programmatic inputs and outputs of their

component. Additionally, the developer should describe the GUI of their component by

using the previously mentioned methods for describing the graphical user interface (see

Chapter III). Semantic annotations only work if there is a unified ontology model.

Therefore, it may be necessary to create semantic models for the components. Tools such

as the Protégé-OWL [25] editor can be used to create OWL-based semantic models if

none exist. However, a given enterprise may have a collection of models that already

exist to describe the data and processes used in the enterprise. Further, a given industry

may have a collection of models already created that describe the unique characteristics

 42

of that industry. If the component being built is intended for use in a given enterprise or

industry, care should be taken to use existing semantic models where it makes sense.

Since the SAWSDL specification allows multiple models to be attached to a given

element, it may be appropriate to provide one or more enterprise, industry, and custom

models to a particular element in the component.

4.3 Sample Applications

 Chapter V will describe how the two sample applications below can be assembled

progressively using semantic annotations and adopting semantic web service matching

logic to find compatible and complementary components. In what follows, the function

of the two chosen applications are discussed.

 The travel scenario RCP composite application consists of three separate

components. The first component is the CityState Picker described to a small extent

previously. The CityState Picker allows a user to first select a state from a select box and

then select a city from a second select box. When the city is selected, the component

publishes the city and state selected as a JSON encoded string. The second component is

a HotSpot Finder component. This component is coded as an instance of the Eclipse

SWT Browser, which is programmatically driven to different URLs based on the inputs.

In order to provide interesting content, the JiWire [26] website is accessed by the browser.

The HotSpot Finder takes as input a city and state encoded as a JSON string. When this

input is received, the browser is directed to a URL on the JiWire website, which provides

a listing of wireless Internet access points in the given city and state. The HotSpot Finder

also provides one output, an address. When a user double-clicks on an address shown in

the HotSpot Finder, the address selected with the double-click is published as a JSON

 43

encoded string. The third component is also coded using an instance of the Eclipse SWT

browser. In this case, the component takes as input an address. Based on this address,

the browser loads a map for the address using Google Maps to provide the actual content.

This Google Maps component does not provide any outputs. The picture of the complete

RCP composite application can be seen in Figure 16.

 44

Figure 16: Complete travel scenario application

 45

 Each of the WSDLs associated with these components has been created based on

the inputs and outputs they define using the Wiring Properties Editor provided with the

Lotus Expeditor Toolkit [27]. The WSDLs have been annotated with semantic

information using the SAWSDL defined attributes to WSDL. An existing travel related

OWL model created by Holger Knublach was used to annotate this new application. The

travel model is shown in more detail in “Ontology-Driven Software Development in the

Context of the Semantic Web: An Example Scenario with Protégé/OWL” [28]. A single

subclass named Address was added to this model as a subclass of destination. This is not

absolutely necessary, as the existing ContactAddress class could have been used. This

was done only to provide a simplification of the OWL model. The complete WSDLs for

the three components can be found in Appendix A.

 The second scenario is an order tracking scenario. In this scenario, there are five

individual components, with several inputs and outputs. The individual components are

built as portlets configured to communicate as part of a RCP composite application. The

base code for this scenario was taken from the Cooperative Portlets sample provided as

part of Rational Application Developer 7.0. The same sample is described in detail in the

article “Developing JSR 168 compliant cooperative portlets” [29]. The code was reused

with only minor changes; small errors were corrected in the application code. The

WSDLs provided also had many errors that were corrected by creating new WSDLs from

scratch. The sample consists of five components with a different collection of inputs and

outputs. Those components are as follows:

 46

1. Orders Portlet – Displays a list of existing orders for a specific month. The

component will accept a month input and will output a month, an order_id, and a

customer_id.

2. Order Detail Portlet – Displays the details of a specific order. The component

will accept an order_id as an input and will output a tracking_id.

3. Tracking Detail Portlet – Displays the tracking information related to a specific

order. The component will accept a tracking_id as input and will output a

customer_name.

4. Customer Detail Portlet – Displays customer information. The component will

accept a customer_id and a customer_name as input and does not provide any

outputs.

5. Account Detail Portlet – Displays the account details of a particular order. The

component will accept an order_id as input and does not provide any outputs.

The completed application can be seen in Figure 17. The layout is arbitrary and can be

adjusted in any manner without affecting functionality.

 47

Figure 17: Completed order tracking application

 In order to semantically annotate this application, a new OWL model was created

and the WSDLs for each of the components were annotated with the appropriate markup.

The new model, named Order.owl, contains classes to represent each of the

programmatic inputs and outputs of this application. For a larger order tracking system, a

 48

more complex model would be required. The model used for this application can be seen

in Figure 18. The complete WSDLs for this application can be found in Appendix B.

Figure 18: Order owl model

49

Chapter V

EXPERIMENTAL RESULTS

5.1 Introduction

The experiments described in this section were completed using the sample

applications previously described in conjunction with the IBM Lotus Expeditor 6.1.2

release. The experiments were conducted on a Lenovo ThinkPad T60p running

Microsoft WindowsXP SP2. An Apache HTTP server in conjunction with an IBM

WebSphere Portal Server 6.0 was used to simulate the component library.

In order to drive the test cases and report results, a graphical user interface

component was created (see Figure 19). This component reads the currently executing

composite application and drives the test cases. The “View Filter” and “Display Filter”

sections allow the user to set the graphical user interface search criteria. The main table

displays the score associated with each of the target WSDLs that were included in a

search request. The “Find Matches” button starts the search process. Finally, the “Use

individual matching” checkbox allows the user to specify which type of matching will be

used. If checked, each of the components’ WSDLs in the current RCP composite

application will be matched individually to the target WSDLs in the respository. If not

checked, a merged search WSDL will be used in the matching process.

 50

Figure 19: Analysis Results Dialog

In addition to the application components described in Chapter IV, section 4.3, an

additional four WSDLs with semantic annotations were included in the target component

repository. These WSDLs are named SourceInterface.wsdl, SourceInterfaceV1.wsdl,

TargetInterface.wsdl, and TargetInterfaceV1.wsdl. The full listing of these WSDLs can

be seen in Appendix D. These additional WSDLs were added to the repository in order

to simulate other components of composite application. These WSDLs describe

components for a retail order system, which would be a valid RCP composite application,

though not applicable as components in two applications being constructed as part of this

thesis.

 51

5.2 Experiment One – Basic Matching

 The first experiment shows simple matching using two component WSDLs and

the matching logic. The input for this scenario is the CityStatePicker.wsdl and the target

is the HotSpotFinder.wsdl, both shown in Appendix A. When run through the matching

logic, a score of 50 is produced. This is a reasonable score because of the differences in

the two WSDLs. The CityStatePicker.wsdl file defines a single message, cityState, and

the HotSpotFinder.wsdl defines two messages, city and address. As will be seen later,

this is a fairly high score when matching. In order to show the results of the semantic

matching only, a modified version of the HotSpotFinder.wsdl is used. In the modified

version, the identifying names such as city and address are replaced with non-descriptive

strings such as vvv and ddd. Because these do not match fields in the

CityStatePicker.wsdl, the ontological score is always returned. The resultant score in this

case is 37.50. This lower score can be accounted for based on the fact that only the

message elements have models attached to them.

5.3 Experiment Two – Merged WSDL Matching

 The second experiment shows the effect of using the merged WSDL process to

find compatible components for a RCP composite application. The two inputs for this

experiment will be the Orders.wsdl and TrackingDetail.wsdl. These will be matched

against the other three WSDLs that are part of the Order Tracking scenario, specifically

AccountDetail.wsdl, OrdersDetail.wsdl, and CustomerDetails.wsdl. Given this setup,

any of the three target WSDLs could be a good match because each of them have inputs

that can be satisfied by the available outputs of the Orders and Tracking Details

components.

 52

 First the two input components are individually matched against the other three.

The results are shown in Figure 20. The first four entries in the list are the result of

matching against the Orders.wsdl; the second four results, grouped in the box, are the

result of matching against the TrackingDetails.wsdl. As you can see, the Customer Detail

component has the highest overall match value of the possible choices. This makes sense

because the single output of the Tracking Details component matches one of the two

inputs to the Customer Details component. When we look at the results for the Orders

component, we see the Customer Detail component is ranked lower than either the

Account Detail or the Order Detail component and equally scored against the Tracking

Detail component. The Account Detail and Order Detail components also scored fairly

well in the match against the Tracking Details component, so perhaps those are better

choices.

Figure 20: Results of individual matching in experiment 2

 53

 Given this ambiguity, how do we decide which component to add to the RCP

composite application? This is where the merged WSDL search can assist. If we do a

merge WSDL search, we combine the inputs and outputs of the two given components

and match those against the remaining components in the catalog. The results of this

search are shown in Figure 21. In this case, we can now see that the Customer Detail

component is probably the best component to add to the RCP composite application. It

has scored the highest value when compared against the complete application.

Figure 21: Results of merged matching in experiment 2

5.4 Experiment Three – Assembling Travel Scenario via Matching

 The third experiment involves building the complete travel RCP composite

application. In this case, the target WSDLs will be the complete collection of WSDLs for

 54

both application scenarios and four additional WSDLs. The four additional WSDLs are

provided as examples with the IBM Semantic Tools for Web Services [30]. These four

WSDLs describe a collection of services related to the retail industry. Some of them

contain semantic annotations and some of them do not. The full listing of these WSDLs

can be found in Appendix D.

 In order to start the RCP composite application, we must have a starting point.

The CityState Picker component is added as the first component. The RCP composite

application is then matched against the complete catalog of components. The results, as

shown in Figure 22, tell us that the HotSpot Finder component has the highest score and

should be added to the application.

Figure 22: Matching of CityPicker component

 55

 Once the HotSpot Finder component is added to the application, the analysis is

run again. This time, as shown in Figure 23, the highest ranking component is the

GoogleMapper component. In fact, not only is this component now the highest scoring

component, but it has also shown a substantial jump from its previous score of 20 to the

new score of 50. This result indicates that the GoogleMapper component is a good

candidate to add to the application.

Figure 23: Matching of CityPicker and HotSpot Finder

 Once the GoogleMapper component is added to the application, the matching is

run again. This time, as shown in Figure 24, the highest score is a 30 for the Account

Details component. Looking back at the previous scores, we can see that the Account

Details component score has been steadily decreasing. None of the other components has

shown much increase in score. Therefore, we can conclude that there are no more

 56

appropriate components for this application. Using the matching process and incremental

refinement, we have now been able to build the Travel applications, as show in Figure 16,

section 4.2.

Figure 24: Matching of CityState Picker, HotSpot Finder, and GoogleMapper

5.5 Experiment Four – Assembling the Order Tracking Scenario via Matching

 The fourth experiment will show how the order tracking RCP composite

application can be built using a similar process as that shown in experiment three. From

looking at the possible starting points, the Orders component would be the most obvious

one to use since it contains several outputs. However, instead we will use the Tracking

Detail component to show how we can build the complete application. This is a

reasonable choice to begin with because we are building an order “tracking” application.

 57

The first step is to add the Tracking Detail component to the application and run the

search. The results, as shown in Figure 25, tell us that the Customer Detail component

would be a good one to add at this point.

Figure 25: Matching with TrackingDetail

 Once the Customer Detail component is added to the application, we can run the

matching again. Figure 26 shows the results of this process. Looking at the scores, the

average scores have decreased, though only by ten points. You will also observe that the

score for the Orders component has actually increased by a small amount. Given that

there are three possible components to choose from with equal scores, we will choose the

Orders component because it has shown a consistent increase in value over the last two

searches.

 58

Figure 26: Matching with TrackingDetail and CustomerDetail

 The Orders component is added to the application and the matching analysis is

run again. This time, in Figure 27, we observe that the overall scores have decreased

again, but there is still a significant difference between the two highest scores and the

third score. There is no real drive to choose one over the other based on the scores, so we

need to choose one. Because we are building an order tracking application, the name

Order Detail seems like a better choice than Account Detail. In other experiments not

detailed here, it was seen that choosing the Account Detail component eventually lead to

the same final RCP composite application described in this section. Additionally, the

iterative nature of RCP composite application assembly allows assemblers to try out

components and remove them if they do not prove to be useful. In this case, if the

 59

Account Detail was found to not be usable in the application, the assembler could remove

it and instead add the Order Detail component.

Figure 27: Matching with TrackingDetail, CustomerDetail, and Orders

We add the Order Detail component to the application and run the analysis again. As we

see in Figure 28, the top score has again dropped, but it is significantly higher than the

other scores. We therefore decide to add the Account Detail component.

 60

Figure 28: Matching with TrackingDetail, CustomerDetail, Orders, and OrderDetail

 With the Account Detail component added to the application, we run the analysis

again and get the results as shown in Figure 29. The top ranking score is now 9.5238 –

much lower than what we started with and also much lower than the last component we

added. It is reasonable to assume that the application is now complete. We can now

customize the layout of the application to suit the user’s needs based on the component

we have selected. When completed, the GUI of the application can be seen in Figure 17

in section 4.3.

 61

Figure 29: Matching with All Order Detail components

5.6 Experiment Five – Adding GUI Characteristics to Matching

In this experiment we will show the effects of adding GUI information to the

WSDL. In order to do this, a new message entry will be added to the search WSDL and

each of the target WSDLs. For this experiment, the Customer Details component is

marked as having an SWT UI, the Order Details component is marked as having a Portlet

UI, and the Account Details is marked as having a Web UI. The test scenario is the same

as experiment two with the merged WSDL search. Initially, the Orders and Order

Tracking components are added to the application and a matching search is executed. By

selecting one or more of the checkboxes at the top of the search dialog for SWT, Web,

Portlet, Native, or All, the search WSDL will be enhanced with this additional criteria. In

the first run we will select SWT checkbox. As can be seen in Figure 30, the match score

 62

for the Customer Detail component has increased slightly and the scores for the other

components have decreased. Customer detail was originally the best match and it

remains so with this additional filter. The original results can be found in Figure 21 in

section 5.3.

Figure 30: Search results with SWT selected as View Filter

 In experiment two, the second highest score was returned by the Order Detail

component. Now the matching search will be run again with Portlet selected as the View

Filter, since Order Detail was marked in the repository as having this type of GUI. Not

unexpectedly, this causes the score for the Order Detail component to rise, as seen in

Figure 31, while the Customer Detail component shows a small drop in score.

Interestingly, the Account Detail score rises slightly, from 30.7692 to 33.3333. This rise

is discussed in more detail in the experiment analysis section below.

 63

Figure 31: Search results with Portlet selected as View Filter

5.7 Experiment Analysis

 Before any conclusions can be made regarding the experiments, the environment

must be validated. Without validation, it is difficult to draw any meaningful conclusions.

In order to validate the environment, experiment one was run using WSDLs that do not

include the semantic annotations. Also, keywords such as city and state have been

changed to random letter combinations. In this experiment, the matching score drops to

25. Additional changes to the WSDL that remove other keywords, but leave it otherwise

functional cause the score to drop even more. This shows that the matching algorithm is

working as expected in the experiments and that we have a valid environment.

 64

Experiments one and two have shown that the function provided by existing web

services matching code can be used in conjunction with RCP composite applications.

Because the matching logic uses both text-based matching and semantic matching, the

function can be used without adding the semantic markup. However, as we saw in

experiment two, the semantic matching provides better results. For example, when two

components are named differently yet provide the same functionality, the semantic

matching is able to find the match.

 Experiments three and four have shown that it is possible to build a RCP

composite application from a collection of different components using semantic

annotations and semantic web service matching logic. While there is no automatic way

to start the building process, once a starting point is selected, the remaining compatible

components begin to stand out in the repository searches. As the travel scenario

application was composed, the initial results did not show as much difference in scores as

might be expected, but with the addition of the HotSpot Finder component, the

GoogleMapper component jumped out as the next obvious addition. With the assembly

of the Order Tracking application, the components that could be added to this application

really stood out with scores three or more times greater for the expected components. In

both of these cases, the additional Source and Target WSDLs that were added to the

repository continue to score low in all cases. This is not surprising as these components

describe functions unrelated to the applications being built.

 Experiment five provides interesting results that require additional analysis to

understand. What is immediately clear is that the addition of the View Filter to the

search input and the candidate components does improve the score for those components

 65

with matching view types. What is not as clear is why one component, Account Detail,

increased in score when it did not match the given filter. Through closer examination of

the algorithm, the score increase can be accounted for by the fact that the Account Detail

component specified a view type. The addition of the view element in the search WSDL

and all UI components in the repository caused the matching algorithm to detect an

additional potential match. Therefore, the score increases slightly because the view is

specified, but it does not rise as much as the component that had a matching GUI view

type of Portlet. The experiments have shown that the score of a component can be

impacted by the addition of the view element. It can therefore be surmised that any

potential metadata could be added to the WSDL and used in the semantic matching logic.

So, does the matching code work as expected with the additional view element?

The answer is, not surprisingly: It depends on what is expected. The addition of the new

metadata is treated at the same level of importance as the other components of the

WSDL. This may or may not be what is expected. The selection of a view type as a

filter could be meant as a preferred view. In this case, because of the equal weighting,

the view types filter works as a preferred filter. If the assembler is stating their

preference for a particular interface type, then the filter function is working as expected.

However, this selection of a filter could also be a hard requirement of the RCP composite

application. This means that if selected, only these types of components should be

available to the application. If this is the expected result, then the filtering logic would

need to be applied differently. Rather than including the View Filter in the search

WSDL, the target WSDLs could be processed prior to the matching logic. Before the

resource-intensive matching logic is run, the list of target WSDLs could be filtered to not

 66

include any components that do not meet the restriction. In this case, the element would

provide an all-or-nothing match, meaning only components that specify the selected view

type would be run through the matching logic and be available as possible matches.

Since the view is represented in the WSDL as an element with semantic annotations,

finding the appropriate elements to discard would require only a single pass through each

of the potential target WSDL files.

67

Chapter VI

CONCLUSIONS

6.1 Findings

The assembly of RCP composite applications from a catalog of components can

be a difficult task to accomplish, particularly for non-programmers who would like to

assemble RCP composite applications. One of the most difficult problems faced by these

users is finding compatible and complementary components in a large catalog of

components that have been built by different groups, at different times, using different

technologies and programming conventions. This thesis demonstrated that this problem

can be largely solved by applying technologies related to the semantic web and web

services matching. Because the programmatic inputs and outputs of components are

already described using WSDL, it is a natural extension to apply web services

technologies to these components.

 The first technology that can be applied is Semantic Annotations for WSDL

(SAWSDL), as standardized by the W3C. By adding semantic model references to the

message elements of the WSDL, the properties exposed by the component can be better

described using modeling languages. Since the modeling attributes can be added to the

other elements of the WSDL, the definition of the component could be further refined

and described using the concepts of SAWSDL.

 68

 The second technology group that can be applied is the searching and matching

algorithms created for use with web services. These algorithms provide a powerful

method for scoring the compatibility of an RCP component from a large set of possible

component choices. This scoring simplifies the application creation process for the RCP

composite application assembler by providing a ranking of potential components. This

allows the assembler to focus on the highest ranked components, skipping over the lower

ranked components, when considering which items may be compatible in the application

being created.

 The searching process is further improved based on the fact that a RCP composite

application can be viewed and described as a single component when searching against a

repository of components. This is done by creating a merged WSDL from each of the

member WSDLs of the RCP composite application. In order to produce the most

valuable results, the merged WSDL is filtered to not include duplicate elements. As seen

in the experiment results, the use of individual matching may still be valuable, especially

when attempting to distinguish between components that score very closely to each other.

A potential improvement to the analysis results window, as shown in this thesis, would be

to display the score for each target component using both the merged matching and

individual matching, when the collection of scores is relatively close.

 Finally, it has been shown that additional characteristics of components can be

described using the WSDL file and that additional semantic annotations of those

properties can be used to enhance the search results. When GUI descriptions are added to

the WSDL with the appropriate semantic annotations, the matching logic was able to

consider these additional attributes when searching for compatible components. Through

 69

a slight modification of the search logic, it may be possible to change this filtering

selection from an equally weighted attribute to an all-or-nothing attribute. In the all-or-

nothing approach, if the selected view is not described in the target component, it would

not be considered for the application.

6.2 Feasibility

 An important aspect to consider when using the methods described in this thesis is

how feasible this solution is. In general, the process of creating components is not an

easy one. It requires creating chunks of software that can potentially be wired to all sorts

of other pieces of software. Since the component developer has no prior knowledge of

these other pieces of potential software, creating and describing meaningful inputs and

outputs is difficult. The choice of names may seem like a minor issue when creating the

component, but this becomes a very important piece of information to a RCP composite

application assembler. That said, the additional work necessary to annotate the

components for matching as described in this thesis is only a minimal amount of delta

work.

 The choice of using RDF or OWL as the modeling language makes sense when

looking at the entire semantic web. When focusing directly on RCP composite

applications, this may not make the most sense. A better choice of modeling languages

may be the Unified Modeling Language (UML) [31]. Although RDF and OWL provide

powerful features for describing relationships, these languages and features are not

generally used or necessary when creating components for RCP composite applications.

UML diagrams, on the other hand, are commonly used to architect software components

 70

designed for SOA and reuse. One could argue that RDF and OWL are better choices

because they are designed to allow reasoning about relationships between objects in the

models. However, it has been shown by A. Evans [32] that reasoning can be done with

UML class diagrams. Additionally, UML is easily generated from existing code.

Therefore, it is not necessary to create the UML separately if it is created as part of the

architecture. Further, the UML could be automatically generated using reverse analysis

techniques and a bottom-up approach. While these options may also be possible with

RDF and OWL, it is not nearly as common or widely used. Alternatively, it has also

been shown [33] that OWL models can be generated from UML. This may provide

another practical and automated approach to using ontologies with components for RCP

composite applications.

 Another potential method of automating the process would be to automatically

inject the view type elements into the WSDL. In order to build a component, the

developer must associate the properties and actions in the WSDL file with a Java class.

Using this mapping and the support for introspection provided by the Java language, the

class can be analyzed to determine the type of view that it provides. If the view extends

the Eclipse ViewPart class, it is reasonable to assume that the view type is SWT. If the

Java class extends the Browser, AWT classes, or Swing classes, it would be reasonable to

assume the view type and inject the appropriate data into the WSDL. This could be done

at development time, or a batch process could be run across the complete catalog to

analyze all member components and be updated as needed.

 71

6.3 Composite Application Usefulness

 Composite Applications look to become more useful and popular as the ability to

reuse existing components is improved. By allowing non-technical assemblers to create

applications on the fly, as-needed, business has the ability to leverage existing assets in

new ways. Simple changes like automatically duplicating entries between application

components reduces the amount of time it takes to enter data and reduces the possibilities

of introducing data errors into the system. This time and error savings should provide to

save a significant amount of expense savings over existing applications.

 As tooling improves, the ability to create new components will be simplified. By

simplifying the development process, more reusable components can be constructed to

grow the number of available components. This should allow businesses to create a tool

chest of reusable assets that can be deployed and assembled by non-technical users, when

needed, to solve immediate business needs. This can further lead to a reduction in the

time needed to solve customer problems, complete projects, and reduce custom

development expense.

 Assembling applications remains one of the key drivers to the success of RCP

composite applications. Non-technical users can quickly build and wire applications

from existing components. If a component does not fit into a specific application or

scenario, it can just as easily be removed from the application. The iterative approach to

building RCP composite applications allows assemblers to replace components when

different, perhaps more advanced, components become available.

 72

6.4 Future Direction

 As with web services and EJBs, the number, diversity, and complexity of

components will continue to expand. As more businesses begin to see the value provided

by allowing non-technical employees to compose applications to solve business needs,

the number and types of components will grow. In order to handle this growth, new

repositories, cataloging techniques, and validation processes will be needed. For the non-

technical person to understand these components, they will need to be self explanatory.

 The work being done in the web services world can be used as a foundation for

RCP composite application components. Catalogs similar to UDDI registries will be

needed to allow developers and assemblers to store, catalog, and find components.

However, given that non-technical users will need to access these catalogs, the interface

used for matching will need to be simplified.

As has been shown, modeling of components using ontologies and other semantic

web technologies will make it easier for non-technical users to find components. In order

to make this matching even more valuable to end users, standard industry ontologies will

need to be developed and applied to components (for example, GUI ontologies).

Additionally, the current algorithms may need to be improved. The improvements may

include: 1) allowing the user to specify only a specific set of inputs or outputs to

consider; 2) allowing a user to specify a weight on certain sets of inputs or outputs that

affect the overall score of the matching; 3) providing ways to better generate the

ontologies based on the component code and a user’s knowledge of a particular industry;

and 4) using only inputs and outputs that are not currently being utilized in the RCP

composite application.

73

APPENDIX A

CityStatePicker.wsdl

 74

HotSpotFinder.wsdl

 75

GoogleMapper.wsdl

76

APPENDIX B

 77

Orders.wsdl

 78

OrderDetail.wsdl

 79

TrackingDetail.wsdl

 80

CustomerDetail.wsdl

 81

AccountDetail.wsdl

82

APPENDIX C

Interface.wsdl

83

APPENDIX D

 84

SourceInterface.wsdl

 85

SourceInterfaceV1.wsdl

 86

TargetInterface.wsdl

 87

TargetInterfaceV1.wsdl

88

WORKS CITED

1 The WSDL standard is defined by the W3C at http://www.w3.org/TR/wsdl.

2 The XML standard is defined by the W3C at http://www.w3.org/XML.

3 He, J. & Yen, I (2007). Adaptive User Interface Generation for Web Services.

Proceedings from the IEEE International Conference on e-Business Engineering,

536 – 539.

4 Portlets as implemented in the Java programming language are defined by JSR 168,

http://jcp.org/en/jsr/detail?id=168.

5 http://www.eclipse.org.

6 OSGi originally stood for Open Service Gateway Initiative. This term is no longer used

and the alliance is now known simply as OSGi. http://www.osgi.org.

7 http://www.ibm.com/software/lotus/products/expeditor/.

8 The XML Schema standard is defined by the W3C at

http://www.w3.org/XML/Schema.

9 http://www.w3.org/2001/sw/.

10 RDF is defined by the W3C at http://www.w3.org/TR/rdf-syntax-grammar/.

11 OWL is defined by the W3C at http://www.w3.org/2004/OWL/.

12 Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., & Zhang, J. (2004) Similarity

Search for Web Services. Proceedings from the Very Large Databases

conference.

13 http://www.w3.org/2002/ws/sawsdl/.

 89

14 http://www.w3.org/TR/sawsdl/.

15 Verma, K., Sheth, A. (2007) Semantically Annotating a Web Service, Internet

Computing, IEEE Publication, March-April, 83-85.

16 Syeda-Mahmood, T., Shah, G., Akkiraju, R. Ivan, A., & Goodwin, R. (2005).

Searching Service Repositories by Combining Semantic and Ontological

Matching. Third International Conference on Web Services (ICWS).

17 http://pipes.yahoo.com/pipes/.

18 http://softwarecommunity.intel.com/articles/eng/1461.htm.

19 Murthy, S., Maier, D., & Delcambre, L. (2006). Mash-o-matic, Proceedings of the

2006 ACM Symposium on Document Engineering, 205-214.

20 http://www.w3.org/TR/xpath.

21 Comella-Dorda, S., Wallnau, K., Seacord, R., & Robert, J. (2000). A Survey of Black-

Box Modernization Approaches for Information Systems. 16th IEEE

International Conference on Software Maintenance (ICSM'00), 173

22 http://www.google.com/codesearch.

23 Miller, G. (1983) WordNet: A lexical database for the English language.

Communications of the ACM.

24 Phifer, G. (2005). Portals Provide a Fast Track to SOA. Business Integration Journal,

Nov/Dec.

25 Knublauch, H. Fergerson, R., Noy, N., & Musen, M. (2004). The Protégé OWL

Plugin: An Open Development Environment for Semantic Web Applications.

http://protege.stanford.edu/plugins/owl/publications/ISWC2004-protege-owl.pdf.

26 http://www.jiwire.com/.

27 http://www.ibm.com/developerworks/lotus/library/expeditor-toolkit/.

 90

28 Knublauch, H. (2004) Ontology-Driven Software Development in the Context of the

Semantic Web: An Example Scenario with Protégé/OWL. International

Workshop on the Model-Driven Semantic Web.

29 Roy-Chowdhury, A. & Wu, Y. (2005) Developing JSR 168 compliant cooperative

portlets.

http://www.ibm.com/developerworks/websphere/library/techarticles/0412_roy/04

12_roy.html

30 http://www.alphaworks.ibm.com/tech/wssem.

31 http://www.uml.org/.

32 Evans, A. (1998). Reasoning with UML Class Diagrams. Proceedings from the

Workshop Industrial-Strength Formal Specification Techniques.

33 Gasevic, D., djuric, D., Devedzic, V., & Damjanovic, V. (2004). From UML to

ready-to-use OWL ontologies. Proceedings from the 2
nd

 International IEEE

conference on Intelligent Systems, 485 – 490.

