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COEXISTENCE AND STABILITY OF SOLUTIONS FOR A
CLASS OF REACTION-DIFFUSION SYSTEMS

ZHENBU ZHANG

Abstract. In this paper we consider the situation of two species of predators
competing for one species of prey. We use comparison principles to study the

global existence, the existence of non-trivial steady states and their stability.

1. Introduction

It is well-known that the study of coexistence problem of competing species is
one of the main topics in mathematical ecology. The object of this paper is to study
the problem of coexistence for three interacting species, among which two species
of predators compete for one species of prey. We assume that the two competing
species have different diffusion rates d1 < d2. The model is

∂u

∂t
= d04u+ F0(u, v1, v2), on Ω× R+,

∂v1
∂t

= d14v1 + F1(u, v1, v2), on Ω× R+,

∂v2
∂t

= d24v2 + F2(u, v1, v2), on Ω× R+,

∂u

∂ν
(x, t) + r0(x)u(x, t) = u0(x), x ∈ ∂Ω, t > 0,

∂vi

∂ν
(x, t) + ri(x)vi(x, t) = 0, i = 1, 2, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), vi(x, 0) = vi0(x), i = 1, 2, in Ω,

(1.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω. 4 is the Laplacian.
ν denotes the outer unit normal to ∂Ω. u is the population density of the prey, and
v1, v2 are the population densities of two competing predator species. di > 0 are
the diffusion rates with d1 < d2. r0(x) > 0, r2(x) ≥ r1(x) ≥ 0 6≡ 0, u0(x) ≥ 0 6≡ 0,
u0(x) ≥ 0, vi0(x) ≥ 0. Fi are given by

F0(u, v1, v2) = −f1(u)v1 − f2(u)v2,

F1(u, v1, v2) = v1(f1(u)− v1 − v2),

F2(u, v1, v2) = v2(f2(u)− v1 − v2).
(1.2)
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Here fi(u) is the consumption rate of the prey per predator. The forms of F1 and
F2 represent that, at the constant level of the prey u, the predators have logistic
growth. A similar model has been investigated by Wang and Wu in [16] by using
bifurcation theory when the predators have a Malthusian (or exponential) growth.
The fact that predator species have different diffusion rates makes it hard to study
this model. If assuming equal diffusion rates, the model can be simplified to a much
simpler model (e.g see [8]). We assume that

(i) fi : R+ → R+ and fi(0) = 0;
(ii) fi is continuously differentiable and f ′i ≥ 0 6≡ 0.

A typical example of fi is the monotone Monod function, fi(u) = miu/(ai +u) (see
[8], [10] ), where ai and mi are positive constants. mi is the maximal growth rate
and ai is the Michaelis-Menten (or half-saturation) constant.

Since u and vi are population densities, so only non-negative solutions are of
physical interest. Observe that F0(0, v1, v2) = 0 and Fi(u, v1, v2) = 0 if vi = 0 for
i = 1, 2, therefore

R3
+ = {(u, v1, v2)| u ≥ 0, vi ≥ 0, i = 1, 2}

is an invariant region of (1.1) (see [14]). Therefore in this paper we consider only
nonnegative solutions of (1.1) without further explanation.

This paper is organized as follows: In Section 2, we will prove the global existence
of solutions. In Section 3, we consider one predator population case in detail. In
Section 4, we will study the existence of steady states. In Section 5, we study the
local stability of equilibrium solutions.

2. Existence of a global solution

By standard existence theory, e.g. see [1], [2] and [3], (1.1) has a unique
nonnegative smooth local solution U(x, t) = (u(x, t), v1(x, t), v2(x, t)) existing for
0 ≤ t < Tmax and it is well-known that local existence together with L∞ a priori
bounds ensure the global existence of classical solutions.

Lemma 2.1. The boundary value problem

4S = 0, on Ω,
∂S

∂ν
(x, t) + r0(x)S(x) = u0(x), x ∈ ∂Ω,

(2.1)

has a unique strictly positive solution S(x) > 0 for all x ∈ Ω.

For the proof of this Lemma see [10] and the references therein.

Remark 2.2. The importance of this Lemma lies in that:
(i) It implies that (1.1) has an equilibrium solution (u, v1, v2) = (S(x), 0, 0). This
is so-called washout equilibrium solution. In practice, attaining this equilibrium is
undesirable.
(ii) It provides an a priori bound for u, which ensures the existence of the global
solution.

Lemma 2.3. For any solution of the form (0, v1(x, t), v2(x, t)) of (1.1), we have
vi(x, t) → 0 as t → ∞. That is, if there is no prey, then the predators will be
extinct.
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Proof. From our assumptions about fi, if u = 0, the equation for vi(i = 1, 2)
becomes

∂vi

∂t
= di4vi + vi(−

2∑
j=1

vj) ≤ di4vi − v2
i .

Let Ai = maxx∈Ω vi0(x) and compare vi with the solution of the initial value
problem of ODE:

dwi

dt
= −w2

i , t > 0,

w(0) = Ai,

we have
0 ≤ vi(x, t) ≤ wi(t).

But wi(t) → 0 as t→∞, therefore, vi(x, t) → 0 as t→∞. �

By virtue of S(x) in Lemma 2.1 and comparison principle (e.g. see [12], [13],
[17]), it is easy to prove the following global existence and uniqueness theorem. We
omit the proof here.

Theorem 2.4. For any smooth nonnegative functions u0(x), u0(x) and vi0(x),
(1.1) has a unique smooth bounded global solution.

This theorem implies that the solutions of (1.1) generate a semidynamical system
on C+ × C+ × C+, where C+ is the set of nonnegative, continuous functions on Ω̄
with the usual supremum norm. This semidynamical system is denoted by Φ(t, x0),
where t ≥ 0 and x0 represents the triple of initial conditions given by (1.1).

3. One Predator Case

In this section, we consider a special case when there is only one predator pop-
ulation, or equivalently, vi ≡ 0 for i = 1 or i = 2. Without loss of generality, we
assume that v2 ≡ 0 and write v1 as v and f1 as f respectively, then (1.1) becomes

∂u

∂t
= d04u− f(u)v, on Ω× R+,

∂v

∂t
= d14v + v(f(u)− v), on Ω× R+,

∂u

∂ν
(x, t) + r0(x)u(x, t) = u0(x), x ∈ ∂Ω, t > 0,

∂v

∂ν
+ r1(x)v(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω.

(3.1)

3.1. Steady States. First, from Lemma 2.1, (3.1) has a steady state solution
Uw = (u, v) = (S(x), 0) with S(x) > 0. The following theorem says that (3.1)
has a positive steady state solution Up = (u, v) = (ũ(x), ṽ(x)) with ũ(x) > 0 and
ṽ(x) > 0.

Theorem 3.1. (3.1) has a positive steady state solution (u, v) = (ũ(x), ṽ(x)) with
ũ(x) > 0 and ṽ(x) > 0 provided that

∫
∂Ω
r1(x)dx is small enough.
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To prove this Theorem, we need some preparations. Consider the eigenvalue
problem

d4φ+ q(x)φ = λφ, x ∈ Ω,
∂φ

∂ν
+ r(x)φ = 0, x ∈ ∂Ω,

(3.2)

where d > 0, q(x) ∈ C2+α(Ω̄) for some α > 0. It is well-known that there is a unique
eigenvalue λ1 = λ(q, d, r), called the ‘principal eigenvalue’, such that the associated
‘principal eigenfunction’ (unique up to a multiplicative constant) is strictly positive.
Furthermore, we have the following Lemma.

Lemma 3.2. The principal eigenvalue λ(q, d, r) of (3.2) is a continuous non-
increasing function of d, and is strictly decreasing if q(x) is not a constant. Fur-
thermore, the following hold:

(a) λ(q, d, r) ↑ Q = maxΩ̄ q(x) as d→ 0;
(b) λ(q, d, r) ↓ ω = 1

|Ω|
∫
Ω
q(x)dx− 1

|∂Ω|
∫

∂Ω
r(x)dx as d→∞;

(c) If q1(x) ≥ q2(x) for x ∈ Ω, then λ(q1, d, r) ≥ λ(q2, d, r) with strict inequality
if q1(x) 6≡ q2(x);

(d) If r1(x) ≤ r2(x) for x ∈ ∂Ω, then λ(q, d, r1) ≥ λ(q, d, r2).

For the proof of the above Lemma, see [4] and the references therein.

Remark 3.3. From this Lemma we can see that if
∫
Ω
q(x)dx > 0 and

∫
∂Ω
r(x)dx

is small such that ω > 0, then for any d > 0, the principal eigenvalue λ(q, d, r) of
(3.2) is positive. In particular, if q(x) ≥ 0 6≡ 0 and r(x) ≡ 0, i.e. for Neumann
boundary condition, the principal eigenvalue of (3.2) is always positive.

By using this Lemma, we can prove the following Lemma.

Lemma 3.4. If the principal eigenvalue λ(q, d, r) of (3.2) is positive, then the
boundary-value problem

d4u+ u(q(x)− u) = 0, x ∈ Ω,
∂u

∂ν
+ r(x)u = 0, x ∈ ∂Ω,

(3.3)

has a unique, strictly positive solution.

Proof. Let ψ(x) > 0 be the principal eigenfunction of (3.2) corresponding to λ1,
and let u(x) = δψ(x), where δ > 0 is a small number to be determined, then for
δ > 0 small enough,

d4u + u(q(x)− u) = λ1δψ − δ2ψ2 > 0, x ∈ Ω,
∂u
∂ν

+ r(x)u = δ(
∂ψ

∂ν
+ r(x)ψ) = 0, x ∈ ∂Ω.

Therefore, u(x) is a sub-solution of (3.3). It is easily seen that ū(x) = Q =
maxΩ̄ q(x) is a sup-solution of (3.3). Hence (3.3) has a strictly positive solution
u(x) satisfying 0 < δψ ≤ u(x) ≤ Q.

Now we prove the uniqueness. Suppose that u1 and u2 both are positive solutions
of (3.3). Let w = u1

u2
> 0, then w satisfies

d4w +
2dOu2

u2
Ow + wu2(1− w) = 0, x ∈ Ω,

∂νw|∂Ω = 0.
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Then using the maximum principle, we have w ≡ 1. This completes the proof of
the Lemma. �

Proof of Theorem 3.1. To prove the Theorem, we need to prove the existence of
positive solutions of the boundary-value problem

d04u− f(u)v = 0, x ∈ Ω,

d14v + v(f(u)− v) = 0, x ∈ Ω,
∂u

∂ν
+ r0(x)u = u0(x), x ∈ ∂Ω,

∂v

∂ν
+ r1(x)v = 0, x ∈ ∂Ω.

(3.4)

For notational convenience, we write (3.4) as
−d04u = g1(u, v), x ∈ Ω,

−d14v = g2(u, v), x ∈ Ω,
∂u

∂ν
+ r0(x)u = u0(x), x ∈ ∂Ω,

∂v

∂ν
+ r1(x)v = 0, x ∈ ∂Ω,

(3.5)

where g1(u, v) = −f(u)v, g2(u, v) = v(f(u) − v). Then we can see that for u ≥ 0
and v ≥ 0,

∂g1
∂v

= −f(u) ≤ 0,
∂g2
∂u

= vf ′(u) ≥ 0.

That is g1 is quasi-monotonic decreasing and g2 is quasi-monotonic increasing.
Therefore, (3.5) is a so-called mixed quasi-monotonic system. For such a system,
we have the following definition of upper and lower solutions (e.g. see [12] and [17]).

Definition: If U(x) = (ū(x), v̄(x)) and V (x) = (u(x), v(x)) satisfy
∂ū

∂ν
+ r0(x)ū ≥ u0(x) ≥ ∂u

∂ν
+ r0(x)u, on ∂Ω,

∂v̄

∂ν
+ r1(x)v̄ ≥ 0 ≥ ∂v

∂ν
+ r1(x)v, on ∂Ω,

−d04ū− g1(ū, v) ≥ 0 ≥ −d04u− g1(u, v̄), in Ω,

−d14v̄ − g2(ū, v̄) ≥ 0 ≥ −d14v− g2(u, v), in Ω,

then (U(x), V (x)) is said to be a pair of upper and lower solutions of (3.5).
Then we have the following result.

Theorem 3.5. If (3.5) has a pair of upper and lower solutions (U(x), V (x)) such
that V (x) ≤ U(x), then (3.5) has at least one solution (u(x), v(x)) satisfying

V (x) ≤ (u(x), v(x)) ≤ U(x).

The proof of this theorem can be found in [17].
Now we construct a pair of upper and lower solutions U(x) = (ū(x), v̄(x)) and

V (x) = (u(x), v(x)) as follows: First observe that, by the definition, we need U(x) =
(ū(x), v̄(x)) and V (x) = (u(x), v(x)) satisfy

−d04ū+ vf(ū) ≥ 0 ≥ −d04u + v̄f(u), (3.6)

−d14v̄ − v̄(f(ū)− v̄) ≥ 0 ≥ −d14v− v(f(u)− v). (3.7)
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Let ū(x) = S(x) be the unique positive solution of (2.1), then, for any v(x) ≥ 0,
the left-hand side of (3.6) is satisfied. We take v̄(x) = M1 to be a positive constant
such that M1 ≥ f(maxΩ̄ S(x)), then the left-hand side of (3.7) is satisfied. With
v̄(x) = M1, the right-hand side of (3.6) becomes

−d04u +M1f(u) ≤ 0.

We take u = u(x) > 0 to be the positive solution of the boundary-value problem

−d04u +M1f(u) = 0, x ∈ Ω,
∂u
∂ν

+ r0(x)u = u0(x), x ∈ ∂Ω.
(3.8)

Now we prove that (3.8) has a positive solution. In fact, since f(0) = 0, 0 is a lower
solution of (3.8). Since f ≥ 0, any constant K satisfying

K ≥ 1
γ

max
Ω̄

u0(x),

where γ = minΩ̄ r0(x) > 0, is an upper solution of (3.8). Therefore (3.8) has a
solution u(x) satisfying 0 ≤ u(x) ≤ K. By strong maximum principle, we have

u(x) > 0, for x ∈ Ω̄.

We claim that ū(x) ≥ u(x). In fact, let w = ū(x)− u(x), then w satisfies

−d04w = M1f(u) ≥ 0, x ∈ Ω,
∂w

∂ν
+ r0w = 0, x ∈ ∂Ω.

By the maximum principle
min

Ω̄
w = min

∂Ω
w.

Now we prove that min∂Ω w ≥ 0. Indeed, if w(x0) = min∂Ω w < 0, then, by
Hopf’s Lemma, at x0, we have ∂w

∂ν < 0. But from the boundary condition, we
have ∂w

∂ν |x0 = −r0w(x0) > 0. This is a contradiction. Therefore w ≥ 0. That is
ū(x) ≥ u(x). With u = u(x) > 0, f(u) ≥ 0 6≡ 0. Therefore,

∫
Ω
f(u(x))dx > 0. By

Lemma 3.4, if
∫

∂Ω
r1(x)dx is small enough, then the boundary-value problem

−d14v− v(f(u)− v) = 0, x ∈ Ω,
∂v
∂ν

+ r1(x)v = 0, x ∈ ∂Ω,
(3.9)

has a unique positive solution v = v(x) > 0.
Now we claim that v ≤ M1 = v̄. In fact, from the proof of Lemma 3.4, we can

see that the positive solution of (3.9) is bounded from above by any constant that
is greater than or equal to f(maxΩ̄ u(x)). Since u(x) ≤ ū(x) and f ′ ≥ 0, we have

v(x) ≤ f(max
Ω̄

u(x)) ≤ f(max
Ω̄

ū(x)) ≤M1.

Thus we have constructed a pair of upper and lower solutions U(x) = (ū(x), v̄(x))
and V (x) = (u(x), v(x)) of (3.5) satisfying V (x) ≤ U(x), then from Theorem A we
know that (3.5) has a solution (ũ(x), ṽ(x)) satisfying

V (x) ≤ (ũ(x), ṽ(x)) ≤ U(x).

�
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For the rest of this article, we assume that
∫

∂Ω
r1(x)dx is small enough such

that the related eigenvalue problem with Robin boundary condition has a positive
principal eigenvalue, without further explanation.

Now we prove some properties of positive solutions of (3.5).

Proposition 3.6. Suppose that (u1, v1) and (u2, v2) are two positive solutions of
(3.4). If u1 ≥ u2, then v1 ≥ v2.

Before proving the above proposition, we cite the following Lemma whose proof
can be found in [4].

Lemma 3.7. Consider the initial boundary value problem
ut = d4u+ u(q(x)− u), x ∈ Ω, t > 0,

∂u

∂ν
+ r1(x)u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x).

(3.10)

If λ(q, d, r1) ≤ 0, then 0 is the global attractor for positive solutions of (3.10). If
λ(q, d, r1) > 0, then the unique, strictly positive steady-state solution is a global
attractor for non-trivial positive solutions of (3.10), the convergence in both cases
being in ‖ · ‖∞.

Proof of Proposition 3.6. We consider the following initial-boundary-value prob-
lems:

V1t = d14V1 + V1(f(u1(x))− V1), x ∈ Ω, t > 0,
∂V1

∂ν
+ r1(x)V1 = 0, x ∈ ∂Ω, t > 0,

V1(x, 0) = v0(x),

(3.11)

and
V2t = d14V2 + V2(f(u2(x))− V2), x ∈ Ω, t > 0,

∂V2

∂ν
+ r1(x)V2 = 0, x ∈ ∂Ω, t > 0,

V1(x, 0) = v0(x).

(3.12)

From the positivity of f(ui) and Lemma 3.7 we know that V1(x, t) → v1(x) as
t → ∞ and V2(x, t) → v2(x) as t → ∞. u1 ≥ u2 implies that f(u1) ≥ f(u2).
Therefore, from (3.11), we have

V1t ≥ d14V1 + V1(f(u2(x))− V1).

Thus V1(x, t) is an upper solution of (3.12). So we have V1(x, t) ≥ V2(x, t). There-
fore, v1 ≥ v2. �

Proposition 3.8. Suppose that (u1, v1) and (u2, v2) are two positive solutions of
(3.4). If u1 ≥ u2, then u1 ≡ u2, v1 ≡ v2.

Proof. Let w = u1 − u2, then we have w ≥ 0. u1 and u2 satisfy

d04u1 = f(u1)v1 ≥ f(u2)v2 = d04u2.

Therefore, w satisfies

−d04w ≤ 0, x ∈ Ω,
∂w

∂ν
+ r0w = 0, x ∈ ∂Ω.
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Hence, if w 6≡ 0, by the maximum principle,

max
Ω̄

w = max
∂Ω

w > 0.

Assume that x0 ∈ ∂Ω such that

w(x0) = max
∂Ω

w > 0,

then, by Hopf’s Lemma, at x0, we have ∂w
∂ν > 0. This contradicts to the boundary

condition. Therefore we have w ≡ 0, i.e. u1 ≡ u2. Then we must have v1 ≡ v2. �

Proposition 3.9. Suppose that (u1, v1) and (u2, v2) are two positive solutions of
(3.4). If f(u1)− f(u2) ≥ v1 − v2, then u1 ≡ u2, v1 ≡ v2.

Proof. From Proposition 3.8, we need only to prove that u1 ≥ u2. In fact, due to
the positivity of vi, vi can be looked as the principal eigenfunction of the eigenvalue
problem

d14φ+ qi(x)φ = λφ, x ∈ Ω,
∂φ

∂ν
+ r1(x)φ = 0, x ∈ ∂Ω,

with qi(x) = f(ui) − vi, and then associated with the principal eigenvalue λ =
λ(qi(x), d1, r1) = 0, i = 1, 2. Since f(u1)− f(u2) ≥ v1 − v2, we have

f(u1)− v1 ≥ f(u2)− v2.

Therefore, by Lemma 3.2, we have f(u1)− v1 ≡ f(u2)− v2, that is f(u1)− f(u2) ≡
v1 − v2. Let w = u1 − u2, then w satisfies

−d04w + f ′(θ)(v1 + f(u2))w = 0, x ∈ Ω
∂w

∂ν
+ r0w = 0, x ∈ ∂Ω.

Therefore, if w < 0 somewhere, by maximum principle,

min
Ω̄
w = min

∂Ω
w < 0.

Assume that x0 ∈ ∂Ω such that

w(x0) = min
∂Ω

w < 0,

then, by Hopf’s Lemma, at x0, we have ∂w
∂ν < 0. This contradicts to the boundary

condition. Therefore, w ≥ 0, that is u1 ≥ u2. �

3.2. Stability of Steady States.

Theorem 3.10. Uw = (S(x), 0) is unstable.

Proof. The linearized system of (3.1) around Uw is

w0t = d04w0 − f(S)w1, x ∈ Ω,

w1t = d14w1 + f(S)w1, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = u0(x), x ∈ ∂Ω,

∂w1

∂ν
+ r1(x)w1 = 0, x ∈ ∂Ω.



EJDE-2005/137 COEXISTENCE AND STABILITY 9

Now we study the eigenvalue problem
d04w0 − f(S)w1 = ηw0, x ∈ Ω,

d14w1 + f(S)w1 = ηw1, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = 0, x ∈ ∂Ω,

∂w1

∂ν
+ r1(x)w1 = 0, x ∈ ∂Ω.

(3.13)

To prove the Theorem, we need to prove that the largest eigenvalue of (3.13) is
positive. Let η be an eigenvalue of (3.13) with eigenfunction (w0, w1). If w1 6≡ 0,
then η is an eigenvalue of d14+f(S) with homogeneous Robin boundary condition.
Therefore, η must be real. If w1 ≡ 0, then w0 6≡ 0. So η is an eigenvalue of d04
with homogeneous Robin boundary condition. Therefore, η is also real. So we know
that all eigenvalues of (3.13) are real. Let η1 be the largest eigenvalue of (3.13).
Since f(S) > 0, the principal eigenvalue λ1 of

d14w1 + f(S)w1 = λw1, x ∈ Ω,
∂w1

∂ν
+ r1(x)w1 = 0, x ∈ ∂Ω,

is positive and the associated eigenfunction w̃1 > 0 . We claim that λ1 is also an
eigenvalue of (3.13). In fact, let w̃0 be the solution of the linear boundary-value
problem

d04w0 − f(S)w̃1 = λ1w0, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = 0, x ∈ ∂Ω,

then (w0, w1) = (w̃0, w̃1) satisfies (3.13) with η = λ1. So λ1 > 0 is an eigenvalue of
(3.13). Therefore, η1 ≥ λ1 > 0. Hence Uw is unstable. �

Lemma 3.11. Suppose that (u, v) is a positive solution of (3.4), then we have

0 < u(x) ≤ S(x) ≤ Ŝ,

0 < v(x) ≤ v̂ ≤ V̂ ,

where Ŝ = maxΩ̄ S(x), and V̂ = maxΩ̄ v̂(x), where v̂(x) is the unique positive
solution of the boundary-value problem

d14v̂ + v̂(f(S(x))− v̂) = 0, x ∈ Ω,
∂v̂

∂ν
+ r1(x)v̂ = 0, x ∈ ∂Ω.

Since the proof the above Lemma is quite standard, we omit it here.

Theorem 3.12. Assume that f ′′ ≤ 0, then there exist constants K0 and K1 de-
pending on f , u0 and ri such that if d0 ≥ K0 and d1 ≥ K1, Up = (ũ(x), ṽ(x)) is
asymptotically stable.

Proof. We prove that Up = (ũ(x), ṽ(x)) is asymptotically stable by constructing a
pair of upper and lower solutions

Ū = (ū, v̄) = (p1(t)φ1(x) + ũ(x), p2(t)ψ1(x) + ṽ(x)),

U = (u, v) = (ũ(x)− p1(t)φ1(x), ṽ(x)− p2(t)ψ1(x))
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of (3.1), where p1(t) and p2(t) are two positive (small) functions and φ1(x) > 0 and
ψ1(x) > 0 are the normalized principal eigenfunctions of the eigenvalue problems

−4φ = λφ, x ∈ Ω,
∂φ

∂ν
+ r0(x)φ = 0, x ∈ ∂Ω,

and

−4ψ = µψ, x ∈ Ω,
∂ψ

∂ν
+ r1(x)ψ = 0, x ∈ ∂Ω,

associated with the eigenvalues λ1 > 0 and µ1 > 0. By the definition of upper and
lower solutions, pi(t), i = 1, 2, should satisfy

(p1(t)φ1(x) + ũ(x))t − d04(p1(t)φ1(x) + ũ(x))

+ (ṽ(x)− p2(t)ψ1(x))f(p1(t)φ1(x) + ũ(x))
≥ 0

≥ (ũ(x)− p1(t)φ1(x))t − d04(ũ(x)− p1(t)φ1(x))

+ (p2(t)ψ1(x) + ṽ(x))f(ũ(x)− p1(t)φ1(x)),

(3.14)

and
(p2(t)ψ1(x) + ṽ(x))t − d14(p2(t)ψ1(x) + ṽ(x))

− (p2(t)ψ1(x) + ṽ(x))(f(p1(t)φ1(x) + ũ(x))− (p2(t)ψ1(x) + ṽ(x)))
≥ 0

≥ (ṽ(x)− p2(t)ψ1(x))t − d14(ṽ(x)− p2(t)ψ1(x))

− (ṽ(x)− p2(t)ψ1(x))(f(ũ(x)− p1(t)φ1(x))− (ṽ(x)− p2(t)ψ1(x))).

(3.15)

From the left-hand side of (3.14), we need

p′1(t)φ1(x)− d0p1(t)4φ1(x)− d04ũ(x) + ṽ(x)f(p1(t)φ1(x) + ũ(x))

− p2(t)ψ1(x)f(p1(t)φ1(x) + ũ(x)) ≥ 0;

that is,

p′1(t)φ1(x) + λ1d0p1(t)φ1(x)− ṽ(x)f(ũ(x)) + ṽ(x)f(p1(t)φ1(x) + ũ(x))

− p2(t)ψ1(x)f(p1(t)φ1(x) + ũ(x)) ≥ 0.

Therefore, we need only

p′1(t)φ1(x) + λ1d0p1(t)φ1(x)− p2(t)ψ1(x)f(p1(t)φ1(x) + ũ(x)) ≥ 0.

By Taylor’s Theorem, we have

f(p1φ1 + ũ) = f(ũ) + f ′(ũ)p1φ1 +
f ′′(θ)

2
p2
1φ

2
1 ≤ f(ũ) + f ′(ũ)p1φ1.

Therefore, we need only

p′1φ1 + λ1d0p1φ1 − p2ψ1f(ũ)− p2ψ1f
′(ũ)p1φ1 ≥ 0,

or
p′1φ1 + λ1d0p1φ1 − p2ψ1f(ũ) ≥ f ′(ũ)p1p2φ1ψ1. (3.16)

Similarly, from the right-hand side (3.14), we need

p′1φ1 + λ1d0p1φ1 − p2ψ1f(ũ) ≥ 0. (3.17)
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From the left-hand side of (3.15), we need

p′2ψ1 + µ1d1p2ψ1 − p2ψ1f(ũ)− ṽf ′(ũ)p1φ1 ≥ f ′(ũ)p1p2φ1ψ1, (3.18)

and from the right-hand side of (3.15), we need

p′2ψ1 + µ1d1p2ψ1 − ṽf(ũ) + ṽf(ũ− p1φ1)− p2ψ1f(ũ) ≥ 0.

By Taylor’s Theorem, we have

f(ũ− p1φ1) = f(ũ)− f ′(θ)p1φ1 ≥ f(ũ)− f ′(0)p1φ1.

Therefore, we need

p′2ψ1 + µ1d1p2ψ1 − ṽf ′(0)p1φ1 − p2ψ1f(ũ) ≥ 0. (3.19)

Combining (3.16) to (3.19), observing that φ1 ≤ 1 and ψ1 ≤ 1, we need

p′1φ1 + λ1d0p1φ1 − p2ψ1f(ũ) ≥ f ′(ũ)p1p2,

and
p′2ψ1 + µ1d1p2ψ1 − p2ψ1f(ũ)− ṽf ′(0)p1φ1 ≥ f ′(ũ)p1p2.

Let ρ = minΩ̄ φ1(x) > 0, σ = minΩ̄ ψ1(x) > 0, and take p1 = p2 = p. Then, by
Lemma 3.11, we need p to satisfy

p′ + (λ1d0 −
f(Ŝ)
ρ

)p ≥ f ′(0)
ρ

p2,

p′ + (µ1d1 −
f(Ŝ)
σ

− V̂ f ′(0)
σ

)p ≥ f ′(0)
σ

p2.

Therefore, if there exists an ε > 0 such that

λ1d0 −
f(Ŝ)
ρ

≥ ε, and µ1d1 −
f(Ŝ)
σ

− V̂ f ′(0)
σ

≥ ε,

then we need only take p such that

p′ + εp ≥Mp2,

where M = max{ f ′(0)
ρ , f ′(0)

σ }. In particular we take p such that p′ + εp = Mp2,
then we have

p(t) =
1

M/ε+ (1/p(0)−M/ε)eεt
,

where 0 < p(0) < ε/M .
It is easily seen that p(t) → 0 as t → ∞. Therefore, if the initial values u0(x)

and v0(x) satisfy

ũ(x)− p(0)φ1(x) ≤ u0(x) ≤ ũ(x) + p(0)φ1(x),

ṽ(x)− p(0)ψ1(x) ≤ v0(x) ≤ ṽ(x) + p(0)ψ1(x),

then we have

|u(x, t)− ũ(x)| ≤ p(t)φ1(x),

|v(x, t)− ṽ(x)| ≤ p(t)ψ1(x).

So we have u(x, t) → ũ(x) and v(x, t) → ṽ(x) as t → ∞. Therefore Up is asymp-
totically stable. �
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4. Steady States

In this section, we study the existence of steady states of (1.1). The steady states
of (1.1) satisfy

d04u+ F0(u, v1, v2) = 0, x ∈ Ω,

d14v1 + F1(u, v1, v2) = 0, x ∈ Ω,

d24v2 + F2(u, v1, v2) = 0, x ∈ Ω,
∂u

∂ν
+ r0(x)u = u0(x), x ∈ ∂Ω,

∂vi

∂ν
+ ri(x)vi = 0, i = 1, 2, x ∈ ∂Ω.

(4.1)

As mentioned before, by Lemma 2.1, (4.1) has a washout solution U1 = (u, v1, v2) =
(S(x), 0, 0) with S(x) > 0. From Theorem 3.1, we have the following theorem

Theorem 4.1. Equation (4.1) has two nonnegative solutions:

U2 = (ũ(x), ṽ1(x), 0) with ũ(x) > 0, ṽ1(x) > 0,

U3 = (ũ(x), 0, ṽ2(x)) with ũ(x) > 0, ṽ2(x) > 0.

Theorem 4.2. Assume that f1 = f2 = f , then (4.1) has no positive solution.

Proof. If f1 = f2 = f and (4.1) has a positive solution U = (u(x), v1(x), v2(x))
with u(x) > 0 and vi(x) > 0, then v1(x) > 0 and v2(x) > 0 satisfy

d14v1 + (f(u)− v1 − v2)v1 = 0, x ∈ Ω,

d24v2 + (f(u)− v1 − v2)v2 = 0, x ∈ Ω,
∂vi

∂ν
+ ri(x)vi = 0, i = 1, 2, x ∈ ∂Ω.

Because of the positivity of vi(x), we can look vi(x) as the principal eigenfunction
of the eigenvalue problem

di4φ+ q(x)φ = λφ, x ∈ Ω,
∂φ

∂ν
+ ri(x)φ = 0, x ∈ ∂Ω,

with q(x) = f(u(x)) −
∑2

j=1 vj(x), associated with the principal eigenvalue λ =
λ(q(x), di, ri) = 0. So we have

λ(q(x), d1, r1) = λ(q(x), d2, r2).

Since q(x) = f(u(x))−
∑2

j=1 vj(x) is not constant, by Lemma 3.2, this contradicts
the assumption d1 < d2. This completes the proof of the Theorem. �

Same as the proof of Theorem 4.2, we can prove that (4.1) has no solution of the
form U = (0, v1(x), v2(x)) with v1(x) > 0 and v2(x) > 0 if f1 = f2. Thus we know
that if u0(x) 6≡ 0 and f1 = f2, (4.1) has only the following three types of solutions

(S(x), 0, 0), (ũ(x), ṽ1(x), 0), (ũ(x), 0, ṽ2(x)),

with S(x) > 0, ũ(x) > 0 and ṽi(x) > 0.
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5. Stability Analysis

In this section, we study the stability of equilibrium solutions of (1.1) under the
assumption f1 = f2 = f .

From Section 4, we know that, if f1 = f2 = f , all equilibria of (1.1) are U1 =
(S(x), 0, 0), U2 = (ũ(x), ṽ1(x), 0) and U3 = (ũ(x), 0, ṽ2(x)), where S(x) > 0 is the
positive solution of (2.1), ũ(x) > 0 and ṽi(x) > 0 satisfy

d04ũ− f(ũ)ṽi = 0, x ∈ Ω,

di4ṽi + ṽi(f(ũ)− ṽi) = 0, x ∈ Ω,
∂ũ

∂ν
+ r0(x)ũ = u0(x), x ∈ ∂Ω,

∂ṽi

∂ν
+ ri(x)ṽi = 0, x ∈ ∂Ω.

(5.1)

Observe that, because of the positivity of ṽi(x), from the second equation of (5.1),
we can look ṽi(x) as the principal eigenfunction of the eigenvalue problem

di4φ+ q(x)φ = λφ, x ∈ Ω,
∂φ

∂ν
+ ri(x)φ = 0, x ∈ ∂Ω,

with q(x) = f(ũ)− ṽi, associated with the principal eigenvalue λ = λ(q(x), di, ri) =
0, i = 1, 2.

Now we study the stability of Ui. It is well-known (see [9]) that the stabil-
ity question for Ui is answered by considering the corresponding eigenvalue prob-
lem for the linearized operator around Ui. Namely, let us substitute U(x, t) =
(u(x, t), v1(x, t), v2(x, t)) = Ui + W (x, t) = Ui + (w0(x, t), w1(x, t), w2(x, t)) into
(1.1) and then pick up all the terms which are linear in W :

∂W

∂t
= D4W + F ′(Ui)W, (5.2)

where

D =

d0 0 0
0 d1 0
0 0 d2


and

F ′(Ui) =

−f ′(u)(v1 + v2) −f(u) −f(u)
v1f

′(u) f(u)− 2v1 − v2 −v1
v2f

′(u) −v2 f(u)− v1 − 2v2


Ui

.

Theorem 5.1. The solution U1 = (S(x), 0, 0) is unstable.

The proof is similar to that of Theorem 3.10, therefore, we omit it.

Theorem 5.2. Assume that f ′′ ≤ 0, then there exist constants K0 and K1 depend-
ing on f , u0 and ri such that if d0 ≥ K0 and d1 ≥ K1, U2 = (ũ(x), ṽ1(x), 0) is
asymptotically stable.
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Proof. From (5.2), the linearized system of (1.1) around U2 is

w0t = d04w0 − f ′(ũ)ṽ1w0 − f(ũ)w1 − f(ũ)w2, x ∈ Ω,

w1t = d14w1 + ṽ1f
′(ũ)w0 + (f(ũ)− 2ṽ1)w1 − ṽ1w2, x ∈ Ω,

w2t = d24w2 + (f(ũ)− ṽ1)w2, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = u0(x), x ∈ ∂Ω,

∂wi

∂ν
+ ri(x)wi = 0, i = 1, 2, x ∈ ∂Ω.

Therefore, we need to study the eigenvalue problem:

d04w0 − f ′(ũ)ṽ1w0 − f(ũ)w1 − f(ũ)w2 = ηw0, x ∈ Ω,

d14w1 + ṽ1f
′(ũ)w0 + (f(ũ)− 2ṽ1)w1 − ṽ1w2 = ηw1, x ∈ Ω,

d24w2 + (f(ũ)− ṽ1)w2 = ηw2, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = 0, x ∈ ∂Ω,

∂wi

∂ν
+ ri(x)wi = 0, i = 1, 2, x ∈ ∂Ω.

(5.3)

Let η1 be the largest eigenvalue of (5.3) and (w0, w1, w2) be the corresponding
eigenfunctions. If w2(x) 6≡ 0, then η1 is an eigenvalue of d24 + (f(ũ) − ṽ1) with
Robin boundary condition. So, by Lemma 3.2, we have

η1 ≤ λ(f(ũ)− ṽ1, d2, r2) < λ(f(ũ)− ṽ1, d1, r1) = 0.

If w2(x) ≡ 0, it is easily seen that we must have w1(x) 6≡ 0 and w0(x) 6≡ 0. In this
case, η1 satisfies

d04w0 − f ′(ũ)ṽ1w0 − f(ũ)w1 = η1w0, x ∈ Ω,

d14w1 + ṽ1f
′(ũ)w0 + (f(ũ)− 2ṽ1)w1 = η1w1, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = 0, x ∈ ∂Ω,

∂w1

∂ν
+ r1(x)w1 = 0, x ∈ ∂Ω.

Therefore, η1 is also an eigenvalue of the eigenvalue problem

d04w0 − f ′(ũ)ṽw0 − f(ũ)w1 = ηw0, x ∈ Ω,

d14w1 + ṽf ′(ũ)w0 + (f(ũ)− 2ṽ)w1 = ηw1, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = 0, x ∈ ∂Ω,

∂w1

∂ν
+ r1(x)w1 = 0, x ∈ ∂Ω.

(5.4)

This is the linearized system of (3.1) around Up. From Theorem 3.12, we know
that all eigenvalues of (5.4) are negative. Therefore, η1 < 0. Hence all eigenvalues
of (5.1) are negative. Therefore, U2 is asymptotically stable. �

Theorem 5.3. The solution U3 = (ũ(x), 0, ṽ2(x)) is unstable.
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Proof. As in the proof of the previous theorem, we need to study the eigenvalue
problem

d04w0 − f ′(ũ)ṽ2w0 − f(ũ)w1 − f(ũ)w2 = ηw0, x ∈ Ω,

d14w1 + (f(ũ)− ṽ2)w1 = ηw1, x ∈ Ω,

d24w2 + ṽ2f
′(ũ)w0 − ṽ2w1 + (f(ũ)− 2ṽ2)w2 = ηw2, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = 0, x ∈ ∂Ω,

∂wi

∂ν
+ ri(x)wi = 0, i = 1, 2, x ∈ ∂Ω.

(5.5)

Let λ1 = λ(f(ũ)− ṽ2, d1, r1) and φ1(x) be the principal eigenpair of

d14φ+ (f(ũ)− ṽ2)φ = λφ, x ∈ Ω,
∂φ

∂ν
+ r1(x)φ = 0, x ∈ ∂Ω,

then we have λ1 > λ(f(ũ) − ṽ2, d2, r2) = 0. Let (w̃0, w̃2) be the solution of the
following linear boundary value problem

d04w0 − (f ′(ũ)ṽ2 + λ1)w0 − f(ũ)w2 = f(ũ)φ, x ∈ Ω,

d24w2 + ṽ2f
′(ũ)w0 + (f(ũ)− 2ṽ2 − λ1)w2 = ṽ2φ, x ∈ Ω,
∂w0

∂ν
+ r0(x)w0 = 0, x ∈ ∂Ω,

∂w2

∂ν
+ r2(x)v2 = 0, x ∈ ∂Ω,

then it is easily seen that λ1 > 0 is an eigenvalue of (5.5) with eigenfunction
(w0, w1, w2) = (w̃0, φ1, w̃2). Therefore, U3 is unstable. �
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