
EVALUATION AND ADAPTATION OF A CONSTRAINT OPTIMIZATION AND

DISTRIBUTED, ANYTIME A* ALGORITHM TO

DESIGN-TO-CRITERIA SCHEDULING

PROBLEM

by

Muhammad Asif Shiraz

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Software Engineering

May 2016

Committee Members:

Rodion Podorozhny, Chair

Guowei Yang

Mina Guirguis

COPYRIGHT

by

Muhammad Asif Shiraz

2016

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law

94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief

quotations from this material are allowed with proper acknowledgment. Use of this

material for financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Muhammad Asif Shiraz, authorize duplication of

this work, in whole or in part, for educational or scholarly purposes only.

DEDICATION

Dedicated to my Teachers and Professors, especially Dr. Rodion Podorozhny

v

ACKNOWLEDGEMENTS

Acknowledgements are due to all the scientists whose work was referenced in

preparation for this thesis.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. ix

ABSTRACT .. x

CHAPTER

 1. INTRODUCTION .. 1

 The Design-To-Criteria scheduling problem 1

 Distributed Constraint Optimization ... 4

 2. LITERATURE REVIEW ... 8

 3. PROBLEM DESCRIPTION ... 11

 TAEMS Features .. 12

 Sample Problem .. 14

 4. SOLUTION DESIGN ... 19

 A* Based Schedule Calculation .. 20

 FSM Expansion ... 21

 A* Calculation .. 24

 Constraint Optimization Based Allocation 26

 Solver Mapping ... 27

 Execution Example ... 32

vii

 5. EVALUATION & EXPERIMENTAL RESULTS 45

 6. FUTURE WORK .. 54

LITERATURE CITED ... 56

viii

LIST OF FIGURES

Figure Page

1 TAEMS structure example .. 11

2 A Sample TAEMS task structure represented in XML format...................................... 14

3 Example Task Execution scenario after injection of new tasks 17

4 Agent and Scheduler simplified class diagram .. 21

5 Finite State Machine of possible execution paths .. 23

6 Initial Task and Agent Locations ... 33

7 Expanded FSM for three tasks ... 34

8 Expanded FSM for two tasks ... 34

9 Expanded FSM for seventh step .. 35

10 Additional injected tasks and new agent locations .. 40

11 Expanded FSM for step twenty six .. 41

12 Two Agent calculations ... 47

13 Three Agent calculations ... 48

14 Four Agent calculations ... 49

15 Five Agent calculations.. 50

16 Six Agent calculations ... 51

ix

LIST OF ABBREVIATIONS

Abbreviation Description

TAEMS - Task Analysis, Environmental Modeling and Simulation

FSM - Finite State Machine

DTC - Design-To-Criteria

APO - Asynchronous Partial Overlay

DCOP - Distributed Constraint Optimization Problem

SPAM - Scalable Periodic Anytime Mediation

QAF - Quality Accumulation Function

MQTT - Message Queuing Telemetry Transport

SAT - Propositional Satisfiability Problem

PB - Pseudo Boolean

x

ABSTRACT

Scheduling complex problem solving tasks where tasks are interrelated and there

are multiple different ways to go about achieving a particular task is a computationally

challenging problem. In this thesis, we study current approaches to solving such complex

scheduling problems, and propose two new optimization techniques, which exploit A*

based optimization, and constraint based optimization. We then perform an analytical

comparison and computational complexity estimate for the efficiency enhancement

achieved by these approaches, as compared against a base line case of “god’s view”

based optimal policy evaluation for same problems.

1

1. INTRODUCTION

Scheduling complex problem solving tasks where tasks are interrelated and there

are multiple different ways to go about achieving a particular task is an imprecise science

and the justification for this lies soundly in the combinatorics of the scheduling problem.

Intractable problems require approximate solutions. Tom Wagner and Alan Garvey have

developed a domain-independent approach to task scheduling called Design-to-Criteria

(DTC) that controls the combinatorics via a satisficing methodology and custom designs

schedules to meet a particular client’s goal criteria. In their original approach to solve the

Design-to-Criteria scheduling problem, criteria directed focusing approximation and

heuristics in conjunction with soft goal criteria are used to make the scheduling problem

tractable. Due to recent advances in efficient algorithms for solving distributed constraint

optimization problems it might be much more efficient to solve the DTC scheduling

problem using an approach that employs a distributed constraint optimization algorithm.

An example of such an algorithm might be a Simplex method with some distributed

negotiation algorithm such as Max-Sum, Adopt or APO. Mapping the DTC scheduling to

a distributed constraint optimization algorithmic approach is non-trivial. It is the focus of

the suggested proposal to create and evaluate such a mapping. Enhancing DTC

scheduling using multiple optimization techniques based on constraint optimization is the

focus of this study.

The Design-To-Criteria scheduling problem

This scheduling problem implies that execution constraints are defined in a goal

tree in which each activity is described with domain independent attributes: duration of

2

the activity, quality of the activity’s result and cost of the activity. The goodness of a

schedule is defined via a utility function that calculates a quantitative evaluation of a

schedule based on these three attributes of the activities in the schedule. The utility

functions are domain-dependent, they are designed by a developer to express which

schedule is more preferable, to introduce a way to compare schedules. The methods for

choosing utility functions is not the focus of this work though. The nature of the problem

domain dictates the nature of the utility function and, hence, the computational

complexity of the algorithm that would deliver an optimal schedule. In practice,

algorithms that would deliver an optimal schedule are intractable. This is due to the

combinatorics mentioned above and this is also due to the fact that scheduling has a real-

time constraint – it has to be done at certain frequency for iterations of the main control

loop in case it is used for control of a robot or a team of robots.

The problem is called design-to-criteria because the utility function essentially

adjusts the importance of the three attributes – criteria – in their contribution to the

function’s value for a particular schedule.

For this kind of problem, the computational complexity is dependent on the

number of tasks and methods or subtasks present. If there are m subtasks of a parent task,

and the sum QAF is employed, then the upper bound on all possible schedules is

∑(
𝑚

𝑖
) 𝑖!

𝑚

𝑖=0

This is obviously an intractable problem for a brute-force methodology.

As mentioned, the original algorithmic approach by Wagner and Garvey to

solving a DTC problem implied a state space search. First, the state space search

3

algorithm would generate alternative sets of activities recursively from the leaves to the

root of a goal tree. At each node of a goal tree it would use a criteria-directed-focusing

heuristic to avoid generating and propagating all possible alternatives. Next, the top

alternative by the criteria-directed-focusing heuristic is used to build a schedule. The end-

to-end schedule is built from the unordered activities contained in the alternative.

Heuristic decision making is used to cope with the combinatorics and reason about the

execution constraints expressed in the goal tree. This is the gist of the state space search

based algorithmic approach.

Instead, this proposal suggests to map the goal tree and the utility function to a set

of constraints that can serve as input to a constraint optimization solver. This mapping is

the main contribution of this work. It will be evaluated in a realistic problem domain, for

instance, distributed scheduling of robot activities to reach a combined goal.

Instead, this study suggests to augment the search of a mapped goal tree and

utility functions with additional constraint optimization techniques using standard solvers

like Sat4J to allow a mediating agent to resolve and minimize the impact of conflicts in a

distributed schedule. Thus, our resulting algorithm combines the benefits of State Space

Pruning and Constraint Optimization and A* shortest path search to deliver a vertically

optimized distributed scheduling solution for autonomous multi-agent scheduling

problems. It addition, the study goes a step further from mere simulation to deliver an

enterprise class Java implementation, which was evaluated in a realistic problem domain

denoting tasks that real robotic agents may need to solve in emergency assistance and

associated vertical domains.

4

Distributed Constraint Optimization

 Interacting agents, with design-to-criteria based goal trees for knowledge

representation, will have local current schedules with constraints between activities that

belong to different agents. For instance a constraint that some activity of agent A must be

finished before some activity of agent B can be started (hard constraint). Each such inter-

agent constraint has a number of satisfying solutions (e.g. times when activity of agent A

can be done such that it is still finished before the given activity of agent B). A utility

function for the combined schedules is likely to give different values based on different

solutions to inter-agent constraints. That is, a combined schedule utility function has the

solutions to inter-agent constraints as parameters. It is the job of a negotiation mechanism

for a set of agents to converge to those solutions of inter-agent constraints that would

maximize the utility function, in an environment where each agent holds a partial goal

tree of the over-all problem set. One of the more obvious algorithmic approaches is

binary search in the space of schedules. It works well for two agents. In case of more than

two agents the binary search approach needs to be chained, this is not a good solution

considering the real-time constraints for scheduling. Recent work in the distributed AI

community has focused on mediation based approaches. A single agent from some

neighborhood of agents (e.g. close by Euclidian distance) is chosen to “mediate”. It polls

the agents for their inter-agent constraints (not the complete goal trees, i.e. it does not

create combined schedule for a set of agents). Once the mediator gets the constraints

from all the neighborhood agents it, it works towards formulating a solution which

combines constraint optimization techniques to develop a conflict free or reduced conflict

allocation of tasks. Additional work is done by the mediation algorithm to accommodate

5

the nature of the utility function. The mediation agent uses an abstract utility function,

which in our study, we have implemented using a few simplifying assumptions explained

in detail later, but which do not compromise the quality and functioning of the algorithm

if replaced by more complex logic.

So far most of the work linearized the utility functions because the simplex

method does linear programming optimization. Even linearized optimization problem is

very costly in time while most realistic utility functions are not linear.

In this work we propose to map the DTC problem into a distributed optimization

from the start. Originally, DTC problem was solved locally and some binary search in

space of schedules was used to arrive at combined, distributed schedules. We propose a

novel approach in which the problem is divided into two separate stages, one of which

provides a linearized abstraction of the underlying complex problem. We show that in

this stage, optimization techniques can be plugged into the solution, to arrive at an

approximate, high-level abstracted allocation of tasks to agents. We demonstrate this

stage with a problem mapping that can then use standard third party libraries for the Max

Sum algorithm to return a suggested allocation. The way to map the DTC problem to

distributed constraint optimization is non-trivial.

Once this allocation is obtained, the agents then used an additional internal

optimization based on an heuristic based enhanced Anytime formulation of the Dijkstra

Algorithm, to efficiently develop an internal local schedule. The main differentiator in

this algorithm is that

1) Creative distribution of the problem into two abstractions, one optimized via a

constraint optimization technique, and the other optimized via Anytime task

6

scheduling

2) A unique mediation protocol that is not communication and data intensive, but

provides sufficient information to the mediating agent to efficiently extract the

heuristics it needs for applying at the optimization stage. This ensures conflict

reduction in tasks shared by different agents.

3) An efficient internal scheduling algorithm for an individual agent to choose the

best path for its local schedule, in real time manner.

Evaluation

In this thesis, we show how various inter-agent constraints can be separated from

the constraints that can be solved locally by an agent.

While we demonstrate a mediator based approach, the criteria for an agent to

become a mediator is not critical to the functioning of the algorithm, and thus,

deployment can be adapted for a peer-to-peer environment where mediation becomes a

dynamically assigned role.

The evaluation of the approach is done based on a realistic domain for control of a

team of robots. For instance, the realistic domains can be transport and escort problem or

distributed sensor problem or distributed mapping problem. It will be done by calculating

am optimal schedule off-line, using a global constraint optimization (goal trees of all

participating agents are combined). For instance, we modeled a transport and escort

problem, which is more challenging and completely covers with in the simpler sensor

problems discussed in some of the reviewed literature. This algorithm will run for the

amount of time unacceptable for real time control but it will provide an optimal schedule,

7

but will be ill-suited for deployment in real time environment. Next we use the created

distributed scheduling algorithm for the same scheduling problem. We collect the data

about goodness of the schedules and amount of time taken, and build graphs that show

how close the approximating distributed scheduling is to the baseline optimal one. Thus

we obtain the quantitative evaluation of the developed algorithms are part of the

comparison and evaluation of this work’s result.

8

2. LITERATURE REVIEW

Roger Mailler has done extensive research on the subject of cooperative,

distributed problem solving, in his notable doctoral dissertation [1]. He rightly notes that

most of the prior work on mediation based approaches to problem solving focused on

resolving conflicts, rather than developing cooperative synergies. In contrast, he proposed

three new approaches for distributed problem solving, (APO), its optimized version

(OptAPO), and real-time tailored Scalable, Periodic, Anytime Mediation (SPAM)

algorithm.

In using the concept of a mediator in his literature, Mailler distinguishes between

Competitive, Layered, and Cooperative Mediators, and it is this later type of competitive

mediation, to which both his and our work focuses on.

Out of these three approaches, the one most relevant for our study is the SPAM

algorithm, because it abandons solution convergence and optimization for sake for

efficiency using “Anytime” characteristics, and targeting for deployment in a real time

environment. The two major techniques used for this purpose are time boxing of the time

to let the algorithm converge, and then dividing up the problem into discrete stages, each

bringing a certain degree of quality to the solution, even if suboptimal.

One way in which this algorithm differs, or falls short of “as is” deployment in

our target scenario is that its scheduling function is periodic, assuming that all agents start

a particular task at the same time, thus leveraging a certain order in the events. In our

case, tasks are continuously coming in and are handled as and when they arrive, thus

covering a more realistic scenario than the abstract sanitized case of order triangulation

measurements dealt with in Mailler’s Thesis.

9

Another significant manner in which the SPAM algorithm differs from our

solution is the restriction that mediating agents can only resolve conflicts among their

immediate neighbors. This ensures that the size of the problem does not keep expanding

to become unwieldy and time and resource intensive. In our case, however, we show how

the need for such a restriction is obviated, because conflict resolution in our case follows

a different pattern. Our agents are continuously moving (drones e.g.), as opposed to static

agents (sensors e.g.) in case of SPAM. Thus the notion of immediate neighbors does not

hold, and we allow our mediator agent to mediate for any one of its subordinates.

Farinelli et. al. (Farinelli 2014) have considered the problem of having physically

distributed and computationally constrained devices make coordinated decisions to

increase the effectiveness of the overall network of such devices. Their solution proposed

the use of MaxSum algorithm, and similarly relied on DCOP heuristic to tame the

computational complexity. Their work focused on multi-agent coordination using

Distributed Stochastic Algorithm and Max Sum based message passing algorithm, both

of which have comparable performance. In a similar study, (Fave, et al. 2012), the same

approach was employed for unmanned aerial vehicles for disaster management, which is

similar to the autonomous agents we consider in our work. Additionally, in their work,

they also develop a framework to identify the different choices that need to be made

when applying the solution. Our work focuses on those situations which they identified in

their framework as modelling decisions as tasks, (rather than actions of the agent).

However, since this paper only models aerial vehicles in the simulation, we cannot

compare performance of a higher number of agents with our work. A similar study is

done by (Ramchurn 2010) where the simulation environment was changed to RoboCup

10

Rescue Disaster Simulation Platform.

Since we are employing a constraint solver, the algorithms their optimization

algorithms were also relevant to our research, notably (Rayside, Estler and Jackson, The

guided improvement algorithm for exact, multi-purpose many-objective combinatorial

optimization 2009)

Tambe et. al. (Tambe, Nair and Yokoo 2005) have presented a model which

synthesizes Distributed Partially Observable Markov Decision Problems (Distributed

POMDPs) with .Distributed Constraint Optimization to capture real world uncertainty of

agent environments with the benefits gained by the knowledge of local interactions.

We also looked at approaches which employ decentralization without needing any

communication between the agents, as discussed by (Berman, Kumar and Halasz 2009).

In terms of the architecture of the individual agents envisioned to act in a

coordinated fashion, (Muscettola and al. 1998) have suggested interesting architectural

and design insights that are useful to consider for implementation.

Macarthur et. al. (Macarthur and al. 2011) have introduced a novel distributed

algorithm for multi-agent task allocation problem, which allows better scaling of the

problem by utilizing pruning and reducing of the search space.

Kim et. al. (Kim and Lesser 2013) have presented some optimization techniques

for multi-agent distributed constraint optimization, by performing a more efficient

inference on which subset of values to consider without loss of accuracy.

11

3. PROBLEM DESCRIPTION

The problem we try to address in our research is a specific formulation of the

more general scheduling problem. We have a number of agents, all working together to

perform different tasks, with each task being composed of multiple sub-Tasks and

methods. All the methods have a utility, giving the parent task a total utility which is an

aggregate of the utility of the subtasks and methods.

We allow these problems to be specified in a standard TAEMS format (Horling,

1999), which is a way of modeling problem solving activities of intelligent agents,

independent of domain specific semantics.

Figure 1 TAEMS structure example

In TAEMS environments, agents may be required to perform tasks which have

specific deadlines, where information required for the optimal performance of a

computational task may not be available and the results of multiple agent’s computations

12

may need to be aggregated together in order to solve a high level goal. TAEMS

representation is able to specify that there are multiple ways to accomplish a goal that

trades off the time and resource cost for a certain result quality.

In TAEMS, the effect of an agent’s activities may not be available from a local

perspective. Instead, it must be measured from the perspective of how it contributes to the

solution of a high level goal.

The goal of an agent is to maximize the quality achieved for each task group,

before its deadline. A task group consists of a set of tasks related to one another by a

subtask relationship that forms a graph. Tasks at the leaves of the tree represent

executable amount of quality.

TAEMS Features

Tasks in a group may have different rules governing their execution and

contribution to the goal quality, which are called Quality Accumulation Functions, or

QAFs. Our solution supports three different QAFs, which are:

1) SumAll: Utility of all sub-tasks are added to determine the parent task quality. An

example of such a task is a cooking recipe

2) SeqSum: Utility of all sub-tasks determines the parent task’s quality, with the

condition that all tasks must be executed in the sequence in which they are

specified. Otherwise, no quality is accumulated.

3) ExactlyOne: Utility of the parent task is determined by the quality of any one of

the sub tasks, and any one of the subtasks can be executed.

The implementation of additional QAFs is easily possible in the code base, since

13

the class architecture employs a generic interface that exposes the QAF’s functionality.

Another important feature of TAEMS standard is the ability to define

dependencies of tasks on each other. This can be at a task level, as well as at individual

method level. Thus, one task must be completed before another can be started, otherwise

the later will not accumulate any quality.

Yet another feature of TAEMS structures is ability to specify deadlines, which

means that a certain task must be completed before a set duration. Thus, if there are a

number of tasks to be scheduled, then those whose deadlines expire earlier, should be

scheduled first, otherwise, after expiry, they will not accumulate any quality.

The goal in solving a TAEMS scheduling problem is to maximize the utility of all

agents, which is measured by both the quality and quantity of the tasks which execute.

The quality of a task is dependent on multiple factors, and is typically abstracted away

from the primary scheduling algorithm, into a separate, pluggable, and extendable

function which can be domain dependent and algorithm independent. Thus, the

contribution of different factors into quality calculation can vary with different

deployments of the algorithm to a real world problem. E.g. task of transporting a patient

to a hospital will have the time factor playing a major role in its quality determination,

but the task of filling up a gas tank will have gasoline price and distance from station as

the main determinants of quality when comparing two possibilities. TAEMS supports the

concept of duration, cost and quality, which constitute a tuple, whose values can be

combined according to any custom rules defined in a utility function.

14

Sample Problem

Here is a sample problem, specified in TAEMS format. In real world, there would

be a large number of tasks that need to be done, and more than one agent might be able to

perform a task e.g. in the below example, in certain situations, a Police car may also be

used to transport a patient to a hospital, while other tasks, like putting out a fire, are such

that only a specific type of agent can do.

Figure 2 A Sample TAEMS task structure represented in XML format

In our solution, we employ a number of steps to calculate the best solution, using

a distributed approach. Results of this distributed calculation is then aggregated and

evaluated to find an optimum assignment.

In order to remain focused on the main problem at hand, we have made a number

of simplifying assumptions which do not impact the functioning of the algorithms, but

still allow the Java implementation to be remain manageable by reducing tangential

features. Thus, our experiments and implementation employs the following conceptual

elements, each of which conforms to their TAEMS based abstraction for scheduling

problem solving. Above and beyond conformance to their TAEMS description, we

further enhance the denotation of these entities in our analysis according to following

descriptions.

1) Agents. Our agents are mobile, autonomous computing entities that implement the

15

IAgent interface, which defines some required functions which an agent must

implement to be able to effectively participate in this problem solving approach

described. However, actual details may vary depending on the real world vertical

domain in which the agent is situated. Our Agent implementation veers towards

mobile, autonomous agent similar to a vehicle or drone.

2) Communication. Agents can communicate with each other via standard, well defined

messages, which require exchange of certain required data as part of the solution

algorithm. The protocol can vary, and our tests were conducted over direct inter-

thread communication, as well as MQTT (OASIS 2014) protocol based exchanges.

MQTT is a light weight, open, and simple Client Server publish/subscribe messaging

transport protocol, which is geared particularly for the emerging IoT (Internet of

Things) applications. Our implementation can thus be deployed on multiple JVMs,

each running an agent that can communicate over this protocol to collaborate for task

scheduling and execution.

3) Tasks. Tasks are well defined activities which one or more agents must complete.

Each task can be subdivided into multiple sub-tasks. And each Task has a utility

value, which it contributes to the over-all schedule value if completed successfully. In

our modelling, we have situated tasks for performance at particular locations, but this

is not necessarily required in a generalized implementation of the algorithm.

However, for such location free tasks, there must exist some other measure which

determines when the cost of executing a task is higher than that of another one, which

in our model is determined by the distance of its execution location from the Agent.

Moreover, the tasks also have two more features supported by TAEMS, which are

16

quality (if that task is executed properly within it deadline) and a duration, which is

the time it takes for an agent to perform it. The final utility value to be used in

schedule computations is a combination of all of these factors, and the deployment

domain determines how these relate to each other. E.g. tasks modelled in medical

industry may attach high utility to minimizing duration, while industrial applications

may attach higher utility to minimized resource consumption or cost.

4) Mediation. Since our algorithm falls in the category of a medication-based distributed

problem solving technique, mediation is an important role which certain agents can

perform. The elevation of an agent to this status, in our solution, can be owing to a

number of factors, e.g. its location, its computational capacity or any other domain

specific factor. All agents have the capability of becoming mediators, and so

assignment of medication role to any particular agent as opposed to another does not

impact the solution performance.

To illustrate the problem domain, we can create a very simple example. Assume

there are two agents, A1 and A2 and three tasks need to be completed, T1, T2, T3. Task

and Agent locations are shown in the figure below.

17

Figure 3 Example Task Execution scenario after injection of new tasks

 In this diagram, there are two agents, A1, and A2, and there are different tasks

that need to be performed. The time it takes for an Agent to reach the location for task

execution is marked on the lines connecting the agent with the various tasks.

Utility of an agent performing a task is an abstraction for which any concrete

domain dependent implementation can be plugged into the system. We follow a

simplified example of making it directly proportional to task quality but inversely

proportional to the time taken to reach its location and perform it. Thus, we define Utility

in our implementation as:

𝑈𝑡𝑎 = {
0, 𝑡 < 𝐿 − 𝑇

𝑄𝑡 − 𝐷𝑡𝑎, 𝑡 ≥ 𝐿 − 𝑇

Where Uta is the Utility of task t when performed by agent a, Dta is the distance

(or cost) of agent a performing task t, L is the deadline for the task and T is the current

time.

If we set a uniform quality for all tasks to be equal to 50 units, then, intuitively we

can tell that the best path in this scenario is for Agent A1 to take up T1, and Agent A2 to

18

take up T2 and T3. However, this is not always the case, if such simplifying assumptions

are not made. Some of these complex scenarios in a real world application might be:

1. Task quality has an impact of which agent is performing it, e.g. a patient can be

better transported in an ambulance, than a police car, as it can provide some

interim care on the way to the hospital. Thus, when one agent calculates the

quality, a higher value comes, offsetting a larger distance or cost.

2. There may be deadlines associated, so a task closer to an agent may wait, while it

attends to a task much further away because its deadline is expiring.

3. TAEMS also supports interdependencies between tasks, which work pretty much

like a deadline, so that a task’s quality would be zero if performed before its

prerequisite, but its full value if performed after it.

Algorithmically, however, the solution we have developed is independent of these

vertical considerations which an agent may consider while calculating utility values. In

real world, modern agent software will implement the IAgent interface which we have

defined, and then some dependency injection based inversion of control mechanism

might be employed to use our system for steering these agent’s operations.

19

4. SOLUTION DESIGN

Our solution implementation starts with a dedicated task issuer, which is external

to the system, and uses the MQTT protocol to receive new tasks into the system. This

constitutes the boundary of the system, from where an external controller can feed tasks,

either periodically, by human intervention (e.g. Console Input is also supported), or by

invoking the interface based on events in another consuming system. In order to develop

a fully functional system which can be deployed in the real world, we gave our task

issuer the capability to directly assign a task to an agent, using the ASSIGN event type.

This is because some tasks will have hard constraints that it can be performed by only a

particular agent e.g. the example of a fire which can only be put out by a fire truck, and

hence no negotiation is necessary if there is one fire truck type of agent. Obviously, if

there are multiple fire trucks, then again, this task would not be directly assigned but

entered for negotiation. Such direct assignment bypasses the system’s capability of

devising an optimal execution schedule itself, and so, for purposes of illustrating the

functioning of our system, we will have the Task Issuer use the NEGOTIATE event type,

when injecting new tasks. These custom events are broadcasted to all subscribers of

MQTT, however, they are ignored by all agents, except the managing agent itself, who is

responsible for conducting the negotiation.

Once these tasks arrive at the managing agent, it can process the tasks

immediately, or queue them for periodic processing, if the rate of incoming tasks is too

high. This can be set by an arbitrary configuration e.g. time to wait before initializing

negotiation on tasks accumulated so far.

The managing agent has a list of all the agents which it is managing, and so it

20

issues a new message broadcast, requesting all agents to communicate to it what their

incremental schedule qualities would be if they take up any combination of these new

tasks.

Thus, if there are three agents being managed, an injection event by the Task

Issuer results in three more messages by the managing agent, which are directed to each

of the agents being managed. This brings us to the first portion of our scheduling

solution, an A* based algorithm to calculate the best local schedule.

One additional enhancement possible in the mediation protocol is for an agent to

query the mediating agent for new tasks if all of its current schedule is completed. In such

a case, if no new tasks are available, then the mediating agent can poll all agents to “give

up” one of their allocated tasks which are of lesser utility to them, or not of a critical

nature. However, this step is useful from a practical standpoint, but not much from

algorithmic research undertaken by us. So we did not implement this option. In our high

traffic deployments, it may also not serve a useful purpose, as most agents are expected

to remain busy.

A* Based Schedule Calculation

An agent’s calculation of best local schedule is performed in two steps.

1) FSM Expansion. Transformation of TAEMS task representation into a Finite

State Machine (FSM) of all valid execution paths respecting the given the

TAEMS constraints.

2) A* application. In this step, we apply a customized Dijkstra based A* algorithm

to this FSM, to find out the optimal path through this FSM, which will result in

21

the maximum schedule utility.

This algorithm is applied to the input tasks at two different times.

Once, when the managing agent requests cost calculation, and second, when an

agent’s cost calculation has “won” as task to be assigned to it, and so the same algorithm

is applied during actual execution.

It remains a possible implementation optimization to cache results from a

previous calculation. However, given the possibility that additional tasks may have been

assigned between a cost feedback and eventual assignment, it is not necessary that the

same schedule may necessarily have been valid. Thus, in our implementation, we reapply

the algorithm in both stages separately.

Let’s look at the two steps separately.

FSM Expansion

The TAEMS structure is a condensed representation of the tasks that need to be

performed. It is possible for there to be multiple actual execution paths, all of which

satisfy the constraints of a certain TAEMS structure.

Figure 4 Agent and Scheduler simplified class diagram

22

In our implementation, an Agent object will have a separate scheduler, executing

in parallel, so that the agent thread can continue executing the tasks, and a scheduler

thread can continue calculating the best optimum schedule for the new threads that keep

arriving, eventually to replace the reference in the Agent object, when it is in between

two task executions.

Agent has a list of pending tasks, which are all Java entities representing the XML

task structure of TAEMS. When the schedule is invoked to process these tasks, it

performs the following operation, described in pseudo code:

Given: PendingTasks

Set CurrentTasks = Unexecuted Current Tasks

Set PendingTasks = Union PendingTasks and CurrentTasks

Set G = new Task Graph

For each (TaskXml in PendingTasks)

 Call ExpandTask(TaskXml)

Function ExpandTask(TaskXml)

 Set JavaTaskObject = Task Object Parsed from TaskXml

 Add JavaTaskObject to Graph G

 For each (ChildTaskXml in JavaTaskObject)

 Call ExpandTask(ChildTaskXml)

In our implementation, we have also used a third party library, GraphViz to

visually illustrate the transformation of xml tasks into a Task Graph which the program

expects. Such an FSM graph is illustrated below for the TAEMS structure in Figure 2.

23

Figure 5 Finite State Machine of possible execution paths

As we can see from the task structure in figure 2, there is a base task with a QAF

of SumAll, which means that all subtasks must be executed, and in any order. The main

task has two sub tasks, to fill gas, and to drop a patient from his house to the hospital. The

one two fill gas has a QAF of ExactlyOne, which means gas needs to be filled only once,

and thus, either one of the two gas stations can be visited. The second task, is of type

SeqSum, which means both must be executed in sequence: A patient must first be picked

before he can be dropped.

Based on these QAFs, we see that the FSM expansion in Figure 6 respects all of

these constraints. If we do the patient task first, and then we can finish by doing one more

gas filling task. Or if we do one of the two gas filling tasks, then both of them lead on to

dropping the patient task.

As may be obvious, as the number of tasks increase, the complexity of the FSM

24

keeps on increasing.

A* Calculation

Once the FSM has been expanded, then any path through that FSM is a valid

execution path, and the only thing remains is to find the most optimal path through it. We

use an adaption of the Dijkstra / A* based algorithm, which performs as follows:

Function A*(Method Source)

 settledNodes = new Set<Method>

 unSettledNodes = new Set<Method>

 predecessors = new Map<Method, Method>

 distance = new Map<Method, Cost>

 distance.put(source, Cost(source))

 unSettledNodes.add(source)

 while (Exist(unSettledNodes))

 Method node = getMaximumUtility(unSettledNodes, source)

 settledNodes.add(node);

 unSettledNodes.remove(node);

 findMaximumUtilities(node);

Function findMaximumUtilities(Method node)

 long accumulatedDuration = 0

 List<Method> adjacentNodes = getNeighbors(node)

 for (Method target in adjacentNodes)

 Cost highestUtilityToNode = getHighestUtility(node)

 Cost singleStepCost = getCost(node, target, highestUtilityToNode)

 Cost currentHighestUtility = getHighestUtility(target)

 Cost newUtility = singleStepCost

 If newUtility > currentHighestUtility Or IsFinalPoint(target)

 distance.put(target, newUtility)

25

 PutPredecessor(target, node)

 unSettledNodes.add(target)

Most of the features in this algorithm are standard A* steps, with a few

customizations.

First off, the structure of the algorithm has been changed from calculating

“minimum distance” between two points, to having “maximum utility” between two

points on the graph. This is done by introducing a new construct for representing a

“distance” for use in the algorithm, which is actually the utility based on any custom

combination of the Task quality. It is an interface, whose concrete implementation can

vary depending on the Agents and Tasks involved, making the algorithm generic.

Second, we introduce a conditional to check if the point is final point of the graph,

where all paths are supposed to combine, and the best path will be measured from this

end task, a hypothetical task representing completion of all others.

Lastly, we introduce a heuristic which again will be dependent on the vertical

domain in which the solution is deployed. It denotes the expected utility of performing a

certain action, with its value adjustable to balance optimality vs time performance,

desired by the application. Our research focuses on distributed selection of best

combination of Task assignments, and thus works on the proposed schedules which the

agents return. How the agents themselves arrive at this number is a parallel concern to

our primary focus. We have developed an efficient A* implementation, but it can be

replaced by any other calculation including plain Dijkstra based solution, or the various

other variations of A* proposed by (Likhachev 2005).

26

The output of this algorithm is a schedule, which contains all Methods to be

executed and in the order in which they will be executed. This method chain will span all

the tasks, and will be a linearized view of the path.

For any set of tasks received by an agent, it is unknown which subset of these

tasks would be optimal for execution by this agent. Thus, the agent calculates a

combination of all possible tasks, and performs the above calculation for each of them.

And finally, it communicates back to the managing agent, a list of Qualities, along with

the Task subset, which the managing agent then uses to decide an allocation. This quality

chart is broadcast via an MQTT message.

Constraint Optimization Based Allocation

When the mediation agent has received feedback from all agents, regarding their

respective schedule qualities for a task set, then it concludes the session by examining

these results, and deciding which agents would be the best ones to be given which task.

The negotiation thus ends with a hard assignment event, which results in the assigned

agent executing the task.

This is done by mapping the results into a standardized constraint optimization

problem, which is one of the primary contributions of this thesis. We propose a novel

mechanism of using pseudo Boolean optimization technique to determine optimal

assignment.

We researched different approaches to optimizing this step, and initially tried

using Max Sum algorithm, using a third party library developed by Marc Pujol called

jmaxsum (Pujol, 2015) (Pujol, 2015). However, as our research progressed, we further

27

improved our solution by using Sat4J Pseudo Boolean Satisfiability library (Parrain

2010).

Sat4J performs optimization by the strengthening procedure, where it calculates a

satisfaction solution, and then introduces a constraint to prevent calculation of solutions

greater than that. Once a solver cannot find any better solution, it returns the best solution

found.

There are other distributed SAT approaches also (Ruiz 2011), however, the

library we chose does not work distributedly.

In order to use the Sat4J solver to our problem, we first need to transform our

problem as input to the solver, and then transform the solver output back into a solution

to the problem.

A standard formalization of our problem input, which consists of the data

collected by the managing agent, can be expressed as the set S such that:

S = {D1, D2 … Da} where

A = {Set of all agents}, a = |A|

T = {Set of all tasks to be executed}, t = |T|

Di = {C1, C2, C3…Cn} where n = 2t - 1

Ci = {U, T} where U is the utility when tasks T are executed by this agent, with

T ∈ (𝑇
𝑘
) and k ∈ {1, 2 … t}

Solver Mapping

Now with this input data set, we need to map it into an input for the PB solver.

The Sat4J solver we use accepts a variant of the OPB format (Roussel 2007). This format

28

requires the input to be divided into three sections.

1) Comments: The first line has to be comments, which can contain any descriptive data,

but has one required metadata portion which tells the solver how many variables we

have in our problem, and how may constraints we are supplying. This allows the

solver to function more optimally instead of having to reflect on this data from the

problem. An example of this metadata comment is:

* #variable= 5 #constraint= 4

Comments always start with a * symbol.

2) Second section contains the objective statement, which we need to minimize. The

objective statement must contain variables less than or equal to the number of

variables we declared in the comments. E.g. following is an objective function

min: +1 x1 +2 x2 +4 x3;

Here the first signed number is the coefficient, whose variable is expressed after a

space, and using a variable name that must start with an x with any number, usually

kept sequential.

3) Last section consists of constraint statements. Each constraint appears on a single

line, and express an inequality which must be satisfied by the solution. A constraint

looks like this following:

+1 x7 -1 x1 -1 x4 >= -1;

The output of the solver is of the form [1|0] x1, [1|0] x2 … [1|0] xi where all

variables are prefixed with a 0 or a 1, depending on which of these values allow the

objective function to be minimized, and simultaneously satisfy the constraints.

In order to map our task scheduling problem to an input for the solver, we need to

29

transform it in such a way that the output can help us extract an optimal scheduling.

 This implies that the variables should represent all possible agent and task

allocations, and the objective function should be such that once a subset of these

variables are selected for the function’s minimization, that selection should correspond to

the best possible schedule.

The solution we have devised uses one variable to represent the allocation for one

individual agent. Thus, if there are two tasks to be assigned, an agent can perform either

one of them, or both. Thus, we introduce three variables, each representing the allocation

of tasks to one single agent. Our variables are thus the sets of different tasks that can be

performed by a particular agent. The number of variables will be equal to number of

agents times all possible combination of tasks which that agent can perform. The

coefficient will be the sum of the utilities when the agent performs those particular tasks.

Since the utilities are positive values, and the solver supports minimization, so we reverse

the sign of the utilities values in the objective function, to make minimization simulate

maximum utility.

The number of constraints in our mapping, will be equal to the number of tasks.

One constraint will express the fact that one task can only be executed by one agent, and

that multiple agents cannot be asked to perform the same task, otherwise, its quality will

be accumulated twice. The variables participating in a constraint will be only those

variables, whose corresponding Task sets contain the task being represented in this

constraint.

For the example scenario discussed earlier, we can look at the table below to

understand how this mapping works.

30

Table 1 – Agent and Task mapping to PB Format

Agent A1 A1 Utility Mapping Agent A2 A2 Utility Mapping

T1 (50x1)-10=40 x1 T1,T2,T3 (50x3)-22-20-10=98 x8

T2 (50x1)-22=28 x2 T2,T3 (50x2)-10-10=80 x9

T3 (50x1)-28=22 x3 T1, T3 (50x2)-22-22=56 x10

T1, T2 (50x2)-10-20=70 x4 T1, T2 (50x2)-22-20=58 x11

T1, T3 (50x2)-10-22=68 x5 T3 (50x1)-20=30 x12

T2, T3 (50x2)-22-10=68 x6 T2 (50x1)-10=40 x13

T1,T2,T3 (50x3)-10-20-10=110 x7 T1 (50x1)-22=28 x14

* #variable= 14 #constraint= 3

* this is a sample PB input format

min: -40 x1 -28 x2 -22 x3 -70 x4 -68 x5 -68 x6 -110 x7 -98 x8 -80 x9 -56 x10 -58 x11 -

30 x12 -40 x13 -28 x14;

1 x1 1 x4 1 x5 1 x7 1 x8 1 x10 1 x11 1 x14 = 1;

1 x2 1 x4 1 x6 1 x7 1 x8 1 x9 1 x11 1 x13 = 1;

1 x3 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x12 = 1;

The data in this table is held in memory before the solver is invoked, and after the

solver returns a preferred combination of variables, we map those variables back into the

task allocations represented by them. The constraints ensure two things:

1) That each task is considered in the solution. This is because each constraint must have

one variable selected from it, so that its Boolean value becomes 1. If a variable from

each constraint is selected, then it ensures that each task is represented, because one

constraint only contains variables that have one particular task commonly appearing

31

among them.

2) That each task is considered only once. Tasks are contained by variables, and the

same variables can repeat across constraints also. E.g. x7 appears in all constraints in

the example above. However, if x7 is selected in one constraint, and then it ensures

no other variable is selected in any of the constraints, otherwise, that other variable’s

coefficient, and x7’s coefficient will both combine to make that constraint become 2,

instead of 1, and thus be a violation.

When this input is given to the solver, it comes back with the following solution

and objective function value:

Solution: x1 –x2 –x3 –x4 –x5 –x6 –x7 –x8 x9 –x10 –x11 –x12 –x13 –x14

Objective function = -120

So the minimized value it has found is -120, which occurs when x1 and x9 are

given a positive coefficient, and all others variables are given negative coefficients. We

then translate this result back into our problem, by using the table mapping of variables to

task allocations. We see that variable x1 indicates that T1 is assigned to A1 with a utility

of 40, and variable x9 indicates that T2 and T3 are assigned to A2 with a utility of 80,

making the total highest utility to be 120 units.

Once the managing agent has applied this technique to determine the bets

schedule, it broadcasts an ASSIGN MQTT message, which concretely assigns these tasks

to the selected agents. After receiving this hard assignment, the agents put these new

tasks into their list of pending tasks. A separate scheduler thread running on the agent

calculates a new schedule for the agent, taking into account these fresh tasks, and then

merges this schedule back into the agent’s current execution schedule, at the first

32

opportunity it gets (which is basically an interval between the agent finishing one task

and going to next).

Execution Example

In this section, we will walk through two complete execution scenarios, and

explain the intermediate results at each step. The first scenario is when the agents are free

and new tasks are injected, and the second is where agents already executing on a

schedule are required to update their current schedule based on availability of new

pending tasks.

Events processed by the system are numbered to demonstrate the sequence.

1. Two agents A1 and A2 are initially located at positions [X150, Y150] and [X300,

Y200]. A1 is acting as the managing agent.

2. The first wave of Task injection occurs, and four new tasks, T1, T2, T3, T4, are

injected into the system, by sending the following message to agent A1, the managing

agent.

A1,NEGOTIATE,::::-T4-T1-T3-T2-

<>

This message is a custom format to indicate to agent A1 that it needs to negotiate

execution of these four tasks among its sub-agents. Additional details can be

appended into the message body, but in this case, it is empty. The Tasks themselves

are referenced by name only, because it is assumed that in a vertical implementation

domain, agents will use a custom format to express the specialized knowledge of

needing to know how to perform task. Thus, pre-requisite data for task execution

constitutes of two components: Taems specification for the task, and additional

customized knowledge. We assume that agents will know how to perform a particular

task based on its reference name, and use a file based repository of custom Taems

33

data to express this knowledge, available to all agents. In some real world

implementations, this data can also be embedded in a more elaborate MQTT

messaging format to be employed.

The initial set of injected tasks are shown in figure below:

Figure 6 Initial Task and Agent Locations

3. Agent A1 first calculates the quality expected to be accrued by continuing on its

current schedule. Since this is the initialization, current schedule quality value is 0.

4. Agent then combines the pending tasks from the current schedule with those just

injected, to obtain a new set of pending tasks. In this instance, it will be the same as

the set of newly injected tasks.

5. In order to calculate the quality expected to be accrued by executing all combinations

of these tasks, agent first calculates S = ℙ(T), the power set of all the tasks allocated

to it. This set includes following combinations: {T2}, {T2, T4}, {T2, T1}, {T2, T1,

T4}, {T2, T3}, {T2, T3, T4}, {T2, T3, T1}, {T2, T3, T1, T4}, {T3}, {T3, T4}, {T3,

T1}, {T3, T1, T4}, {T1}, {T1, T4}, {T4}

6. For each element in S, Agent expands the Taems tasks into an FSM. Two of these are

shown in Figure below. To do this, it first initializes a dummy starting point method,

and then applies a recursive algorithm to the task set. It traverses down the task tree,

and for each method, appends it to the dummy starting point. This process is done

differently for QAFs. SeqSum tasks are appended in order, SumAll are appended in

34

parallel with a series for each permutation, and ExactlyOne are appended in parallel

with one task in each series. If, instead of a method, it encounters a sub-task, then the

recursion is applied again at that task level. Two examples of FSM expansion of a

simple one-method based task set of our example is shown below.

Figure 7 Expanded FSM for three tasks

Figure 8 Expanded FSM for two tasks

35

For each of the FSMs, the agent applies the A* algorithm to find the best possible route,

i.e. one accruing the highest quality. First we add the dummy starting point as a settled

node, and then find the shortest path from it to the next node. The A* concept of shortest

path is equivalent to the highest utility for our purpose. Thus, we define a custom class

and its value is determined by a method supplied by the agent, which takes into account

the cost, quality and time, as well as other parameter, including Taems concept of task

deadline and an A* heuristic. If the heuristic, determined by factors peculiar to the

deployment domain, determines that the quality accrued is less than the applied heuristic

threshold, then the method returns with an outcome representing low quality, to

discourage exploration of this path in future. In our case, we make distance proportional

to cost and time, and quality proportional to a custom value we supply in the Taems

XML. In the figure below, we see that the selected route, highlighted in green, has the

highest accumulative quality of 1118 points.

Figure 9 Expanded FSM for seventh step

36

7. The agent calculates schedule quality value of all the expanded FSMs, and then saves

them in an internal data structure, whose values are as below. This represents an array

of elements, each representing a structure indicating which Task Set, has how much

base quality and how much incremental quality.

[T2,0,429]

[T2-T4,0,771]

[T2-T1,0,817]

[T2-T1-T4,0,1118]

[T2-T3,0,780]

[T2-T3-T4,0,1065]

[T2-T3-T1,0,1127]

[T2-T3-T1-T4,0,1412]

[T3,0,365]

[T3-T4,0,650]

[T3-T1,0,464]

[T3-T1-T4,0,931]

[T1,0,338]

[T1-T4,0,638]

[T4,0,276]

8. After calculating qualities for itself, the agent then sends a message to all agents

under its management to send back their quality values. This message looks as like

this:

A2,CALCULATECOST,::A2:::::A1

<>

which means that the message is directed to A2, who is required calculate costs and

return them to A1.

9. A2 receives the message, and performs the same steps as described in Steps 4 to 7.

Afterwards, unlike A1 (the managing agent) which saved the results itself, A1 sends

37

the results back to A1 in a directed MQTT message as follows:

A1,COSTBROADCAST,::A1::-T4-T1-T3-T2-:::A2

<[T2,0,359]

[T2-T4,0,701]

[T2-T1,0,747]

[T2-T1-T4,0,1072]

[T2-T3,0,787]

[T2-T3-T4,0,1129]

[T2-T3-T1,0,1175]

[T2-T3-T1-T4,0,1451]

[T3,0,436]

[T3-T4,0,721]

[T3-T1,0,694]

[T3-T1-T4,0,971]

[T1,0,250]

[T1-T4,0,595]

[T4,0,342]>

Note that the values calculated by A2 are different from those of A1 e.g. when A2

performs all tasks, it accrues a quality of 1451 points, as compared to A1’s 1412.

10. Once A1 receives this message, it evaluates if calculations from all agents have been

received. Since in our example, there is only a single agent being managed, the data

collection is complete and A1 is ready to allocate the tasks.

11. A1 first creates a mapping table to assign a numbered variable e.g. x1, x2 etc. to each

possible task allocation to an agent. The number of these variables for two agents and

four tasks is 2 * ((4) + (5) + (4) + (1) + (1)) = 30. This corresponds to the product of

number of agents multiplied by all possible allocations for it i.e. four possibilities of

single task assignment, five possibilities for two tasks, four possibilities for three

tasks, one possibility for four tasks, and one possibility for no task to be assigned to

this agent. Thus we have variables from x1, x2 … x30

38

12. The agent then maps the problem to a SAT problem, where the objective function is

to minimize the negative of the sum of all qualities accrued by the agents, considering

all possible allocation combinations, but constraining it to have one task performed

by one agent alone. The SAT problem in OPB format becomes as follows:

* #variable= 30 #constraint= 6

min: -429 x1 -771 x2 -817 x3 -1118 x4 -780 x5 -1065 x6 -1127 x7 -1412 x8 -365 x9 -

650 x10 -646 x11 -931 x12 -388 x13 -638 x14 -276 x15 -359 x16 -701 x17 -747 x18 -

1072 x19 -787 x20 -1129 x21 -1175 x22 -1451 x23 -436 x24 -721 x25 -694 x26 -971

x27 -250 x28 -592 x29 -342 x30;

* x1=1[2] x2=1[2, 4] x3=1[2, 1] x4=1[2, 1, 4] x5=1[2, 3] x6=1[2, 3, 4] x7=1[2, 3, 1]

x8=1[2, 3, 1, 4] x9=1[3] x10=1[3, 4] x11=1[3, 1] x12=1[3, 1, 4] x13=1[1] x14=1[1,

4] x15=1[4] x16=2[2] x17=2[2, 4] x18=2[2, 1] x19=2[2, 1, 4] x20=2[2, 3] x21=2[2,

3, 4] x22=2[2, 3, 1] x23=2[2, 3, 1, 4] x24=2[3] x25=2[3, 4] x26=2[3, 1] x27=2[3, 1,

4] x28=2[1] x29=2[1, 4] x30=2[4]

1 x3 1 x4 1 x7 1 x8 1 x11 1 x12 1 x13 1 x14 1 x18 1 x19 1 x22 1 x23 1 x26 1 x27 1

x28 1 x29 = 1;

1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1

x23 = 1;

1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1

x26 1 x27 = 1;

1 x2 1 x4 1 x6 1 x8 1 x10 1 x12 1 x14 1 x15 1 x17 1 x19 1 x21 1 x23 1 x25 1 x27 1

x29 1 x30 = 1;

39

1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x13 1 x14 1 x15 =

1;

1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1 x26 1 x27 1 x28 1

x29 1 x30 = 1;

13. The solver returns the following result:

[-1, -2, -3, 4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -

22, -23, 24, -25, -26, -27, -28, -29, -30]

14. This indicates that the best allocations are represented by the positive variables x4

and x24. This gives the allocation that A1 should be assigned T1, T2, T4 and A2

should be assigned T3.

15. A1 will then assign T1, T2, T4 to itself, and send an assignment message for T3 to

A2.

A1,ASSIGNTASK,::A1:::::

<T3>

16. In order to execute T1, T2, T4 A1 can now use the cached FSM and A* output from

its earlier calculation during the negotiation phase. This schedule executes T2 first,

then T1 and T4, with overall quality of 1118.

17. For T3, A2 has a schedule which yields a quality of 436.

18. After some time, when A1 has completed the first leg of its schedule and completed

task T2. It will have removed T2 from its pending tasks list, and its physical location

is now at the old location of T2, going towards T1.

19. Similarly, A2 will have completed T3 and is stopped at its location.

40

20. At this time, we inject two new tasks into the system, which are shown in the figure

below, as T5 and T6. These are shown in the figure below:

Figure 10 Additional injected tasks and new agent locations

21. A1 again receives an external message via MQTT which is

A1,NEGOTIATE,::::-T5-T6-

<>

A1 will first calculate the incremental quality of executing these itself, and

then ask the managed agents to report theirs.

22. A1 first calculates the schedule quality of its pending tasks T1 and T4, by repeating

steps 5 to 8. The quality comes to 638, which acts as the base quality of current

schedule.

23. A1 then creates a power set of all currently pending and newly injected tasks, which

includes: {T5}, {T5, T4}, {T5, T1}, {T5, T1, T4}, {T5, T6}, {T5, T6, T4}, {T5, T6,

T1}, {T5, T6, T1, T4}, {T6}, {T6, T4}, {T6, T1}, {T6, T1, T4}, {T1}, {T1, T4},

{T4}

41

24. These tasks are then expanded into FSMs following the Taems QAFs, one being

shown below.

Figure 11 Expanded FSM for step twenty six

25. A* algorithm is then applied to find the best route qualities from all of the expanded

FSMs. In this case, we note that the base quality is not zero, but has a value.

[T1,638,388]

[T1-T6,638,738]

[T1-T4,638,638]

[T1-T4-T6,638,951]

[T1-T5,638,584]

[T1-T5-T6,638,958]

[T1-T5-T4,638,997]

[T1-T5-T4-T6,638,1317]

[T5,638,308]

[T5-T6,638,571]

[T5-T4,638,701]

[T5-T4-T6,638,930]

[T4,638,342]

42

[T4-T6,638,551]

[T6,638,351]

26. It then sends a message to its managed agent, A2, to report its cost calculation

A2,CALCULATECOST,::A2:::::A1

<T5,T6>

27. A2 combines the new pending tasks T5 and T6, with its current schedule which

happens to be empty because its only task previously assigned to it, T3, is already

complete. A2 goes through the same steps at #5 to #8 and then sends back the

following message:

A1,COSTBROADCAST,::A1::-T1-T4-T5-T6-:::A2

<[T1,0,258]

[T1-T6,0,685]

[T1-T4,0,535]

[T1-T4-T6,0,935]

[T1-T5,0,566]

[T1-T5-T6,0,940]

[T1-T5-T4,0,979]

[T1-T5-T4-T6,0,1329]

[T5,0,370]

[T5-T6,0,590]

[T5-T4,0,729]

[T5-T4-T6,0,929]

[T4,0,285]

[T4-T6,0,535]

[T6,0,335]>

28. After receiving this message, A1’s data collection is complete, and it can now apply

the SAT Solver to find out the new best allocation. First, the OPB format input

mapping is created, as follows:

* #variable= 30 #constraint= 6

43

min: -388 x1 -738 x2 -638 x3 -951 x4 -584 x5 -958 x6 -997 x7 -1317 x8 -308 x9 -571

x10 -701 x11 -930 x12 -342 x13 -551 x14 -351 x15 -258 x16 -685 x17 -535 x18 -935

x19 -566 x20 -940 x21 -979 x22 -1329 x23 -370 x24 -590 x25 -729 x26 -929 x27 -

285 x28 -535 x29 -335 x30;

* x1=1[1] x2=1[1, 6] x3=1[1, 4] x4=1[1, 4, 6] x5=1[1, 5] x6=1[1, 5, 6] x7=1[1, 5, 4]

x8=1[1, 5, 4, 6] x9=1[5] x10=1[5, 6] x11=1[5, 4] x12=1[5, 4, 6] x13=1[4] x14=1[4,

6] x15=1[6] x16=2[1] x17=2[1, 6] x18=2[1, 4] x19=2[1, 4, 6] x20=2[1, 5] x21=2[1,

5, 6] x22=2[1, 5, 4] x23=2[1, 5, 4, 6] x24=2[5] x25=2[5, 6] x26=2[5, 4] x27=2[5, 4,

6] x28=2[4] x29=2[4, 6] x30=2[6]

1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1

x23 = 1;

1 x3 1 x4 1 x7 1 x8 1 x11 1 x12 1 x13 1 x14 1 x18 1 x19 1 x22 1 x23 1 x26 1 x27 1

x28 1 x29 = 1;

1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1

x26 1 x27 = 1;

1 x2 1 x4 1 x6 1 x8 1 x10 1 x12 1 x14 1 x15 1 x17 1 x19 1 x21 1 x23 1 x25 1 x27 1

x29 1 x30 = 1;

1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x13 1 x14 1 x15 =

1;

1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1 x26 1 x27 1 x28 1

x29 1 x30 = 1;

44

29. The solver returns the following output:

[-1, 2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -

22, -23, -24, -25, 26, -27, -28, -29, -30]

Which indicates that assignment represented by variables x2 and x26 is the best.

30. Based on this output, A1 assigns T1 and T6 to itself and sends the following

assignment message to A2 to assign T4 and T5 to it.

A1,ASSIGNTASK,::A1:::::

<T4-T5>

31. A1 executes its assigned tasks according to the schedule calculated earlier, T1 first

followed by T6, with accrued quality of 738.

32. A2 executes its assigned tasks according to schedule T5 first and T4 second, with

quality 729.

45

 5. EVALUATION & EXPERIMENTAL RESULTS

Our solution for finding an optimal schedule relies on the SAT solver. These are

known to be NP-Complete, although many efficient implementations exit that use

heuristics based solutions.

In order to compare the computational benefit obtained by transforming our

problem into a SAT problem, we compared it with a brute force algorithm to find the best

scheduling solution. This algorithm works as follows:

Input: Agents, Tasks, List<AgentUtilities>

AgentsSize <- Size(Agents)

TaskCombinationSize = Size(List<AgentUtilities)

bestAllocation <= null

bestScheduleUtility = 0

Do for i=0 to TaskCombinationSize ^ AgentsSize

 allocation <- GetAllocationForVariable(i)

 If IsValid(allocation)

 utility = GetUtility(allocation)

 if utility > bestScheduleUtility

 bestAllocation = allocation

 bestUtility = utility

return bestAllocation

This algorithm is exponential with respect to number of tasks and agents. Some

computational optimization has been done by exiting the loop for those cases which are

clearly known to be infeasible, e.g. two agents performing the same task. But for all other

cases, the brute force algorithm considers all possible allocations, calculate the quality

accrued with that allocation, and then finds the one with highest quality. This brute force

46

algorithm is always guaranteed to find the most optimal solution.

For our experimentation, we instrumented the code at the exact places where the

allocation logic is entered and exited, and ran it twice one for the brute force algorithm

and one for the SAT based algorithm, for the same problem. Both time values were

calculated on the same machine and same memory and CPU environment.

We started with small values of agents and tasks (two agents, two tasks) and kept

on increasing each separately, until we reached six agents and six tasks. We used a test

harness to generate random location of tasks, and then fed those tasks into the system for

it to calculate the utilities for each agent and finding the best solution. For

experimentation, we modified two elements of our source code.

1. First, we added a separate step in the managing agent’s schedule calculation logic, to

also calculate the schedule, using same data, but by using the PlainCalculator class,

instead of the PseudoBooleanCalculator class.

2. Second, we surrounded these calculation with timer functions, to capture the number

of microseconds it took to perform the calculations.

The Pseudo Boolean Solver function calls had some fixed overhead related to file

reading operation, and initializations of the solver, which had the potential of skewing the

results. To avoid this, we calculated the time consumed when applying the solver to a

completely trivial problem, involving a single task and two agents, averaged these values,

and then subtracted this from all PB durations, to make sure that the time considered is

only that of solving the actual problem at hand.

The results are provided in the charts below. Because of the vast differences in the

time it took to perform the calculations, results are shown in logarithmic scale.

47

Figure 12 Two Agent calculations

48

Figure 13 Three Agent calculations

49

Figure 14 Four Agent calculations

50

Figure 15 Five Agent calculations

51

Figure 16 Six Agent calculations

A few things can be noted from these experimental results.

First we note that for very simple calculations, those involving just two or three

agents, the plain calculation takes lesser duration than the SAT based calculation. This is

true even after normalizing the calculation time by subtracting the time taken for the flat

setup related time of the solver, which we had calculated earlier by passing a trivial

problem through the same logic. In our mapping, the agents and tasks together become

the number of variables, and the number of variables determines the calculation

52

complexity of the solver. Additionally, the number of tasks determine the constraints.

Thus, for a very small number of variables and constraints, we see that we are better off

deciding an allocation directly.

As we keep increasing the complexity, we eventually notice that the benefits of

pseudo Boolean solver start showing, and the SAT based approach starts to complete in

lesser duration for four agents and four tasks. Thereafter, SAT computation is always

more efficient for any great number of tasks and agents.

We also note that as the complexity increases, for e.g. five agents and five tasks,

the difference in computational efficiency becomes more and more pronounced.

The upper and lower bounds of SAT solvers range from O(1.473a+t) to

O((a+t)1.801) (Biere 2009) where a is the number of agents and t is the number of possible

task combinations. In our mapping of the problem to SAT solver, we can also specify a

time value as parameter which determines the allowed time which it is given to run. The

solver exists when that time elapses, and returns the best result it has found so far. If it is

allowed to run continuously, it can take more time searching for an optimal solution, and

if very little time is given, it is possible that it returns a sub optimal satisfying solution.

However, the time it takes for brute force calculation to run, is usually much more than

the time required to find an optimal solution. In our experiments, for the high complexity

cases, e.g. 5 agents and 5 tasks, we found 25% cases at time limit of 1 second, where the

results returned were not optimal. We can compare this with prior works e.g. (Modi

2005) where the authors assume associative aggregation functions. However, the

approach does not guarantee optimality, although certain quality guarantees are still

possible. In such approaches, the calculation complexity has been simplified and

53

delegated over to the agents, with the aggregation agent not required to perform any

complex functions. Thus, our approach represents a different class of algorithms.

Although our calculations are based on time, and their calculation is based on cycles, we

can still see from the results that both algorithms manage to avoid exponential increase in

calculation time, as demonstrated in Figure 9 in the paper.

Distributed agent based coordination has also been addressed using Max Sum

algorithm (Farinelli 2014). These solutions rely on a domain specific characteristic that

interactions between neighboring agents only are significant. E.g. when applied to the

surveillance problem, the area between two agents need to be surveyed by any one of

these two neighbors, and a third neighbor further down does not have any impact on

quality accumulated by surveillance coverage in this area. MaxSum algorithm exploits

the fact that some nodes (agents) need to pass messages between them, while others do

not. The algorithm, falls back to its worst case performance, when all agents need to

communicate with each other, which is the case in our example, where sequence and

dependencies between tasks taken up by one agent can impact any other agent, which is

implied by our support of the Taems scheduling structure. The complexity of that

solution is thus governed by O(ta+1), which is again an exponential bound, greater than

the SAT based time bound.

54

6. FUTURE WORK

The work in this thesis can inspire of a number of avenues for future research.

One aspect is improving the SAT mapping to not only include task allocation, but also

task sequencing. Since the utility function in Taems is independent and domain specific,

it might be possible to abstract out the utility function into its own set of variables, and

form a Satisfiability problem whose solution partially contains elements of the task

schedule itself. Task scheduling constraints are diverse and complicated enough that we

do not expect a generalization to be available that can fully convert the problem into a

SAT style input formulation. However, for certain vertical domains, it might be

worthwhile to exploit common characteristics of the problem to transform into a pseudo

Boolean optimization problem.

One other avenue for research is to use ADOPT (Modi 2005) based techniques to

optimize the A* search, wherein the agent abandons exploration of a particular path

based on knowledge which it has from previous executions and interactions with the

managing agent.

In our A* algorithm, we also developed certain state space pruning strategies

which include consideration of task deadlines to abandon exploration of certain sections

of the generated FSM. However, based on Taems formalism, there are additional rules

which lend this mechanism to be made more complete and comprehensive. This,

however, is an improvement in the software, rather than a new academic research.

Similar to this, additional software efficiency enhancements include some caching

mechanism when applying A* search to find highest valued paths within the FSM.

The use of MQTT protocol in real life IoT situations e.g. drones or vehicular

55

agents, can be further studied to see what values of agent and task aggregation we well as

Anytime characteristics of the A* search can be optimized to provide the most efficient

execution.

Another direction for future research can be to apply incremental constraint

optimization algorithms. For this problem, we also tried to combine inequalities where

integers to represent decisions. However, we were limited by the tools available like

GLPK, however, more general solutions based on this approach should be possible and is

a good avenue for future research.

56

LITERATURE CITED

Berman, Spring, Vijay Kumar, and Adam Halasz. 2009. "Optimized Stochastic Policies

for Task Allocation in Swarms of Robots." IEEE.

Biere, A., Heule, M., & van Maaren, H. (Eds.). 2009. Handbook of satisfiability. ios

press.

Farinelli, A., Rogers, A., & Jennings, N. R. 2014. "Agent-based decentralised

coordination for sensor networks using the max-sum algorithm." Autonomous

agents and multi-agent systems 28(3), 337-380.

Fave, Delle, A Farinelli, R Jennings, and A Rogers. 2012. "A Methodology for

Deploying the Max-Sum Algorithm and a Case Study on Unmanned Aerial

Vehicles." Association for Advancement of Artificial Intelligence.

Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., ... & Garvey, A.

1999. "The taems white paper."

Kim, Yoonheui, and Victor Lesser. 2013. "Improved Max Sum Algorithm for DCOP

with n-ary Constraints." Proceedings of the 12 International Conference on

Autonomous Agents and Multiagent Systems. Saint Paul: International Foundation

for Autonomous Agents and Multiagent Systems.

Likhachev, Maxim, et al. 2005. "Anytime Dynamic A*: An Anytime, Replanning

Algorithm." ICAPS.

Macarthur, Kathryn S, and et. al. 2011. "A Distributed Anytime Algorithm for Dynamic

Task Allocation in Multi-Agent Systems." AAAI Conference on Artificial

Intelligence. Southampton: University of Southampton.

57

Mailler, Roger T. 2004. A mediation-based approach to cooperative, distributed problem

solving. Doctoral Dissertations Available from Proquest Paper AAI3136757,

Paper AAI3136757.

Modi, P. J., Shen, W. M., Tambe, M., & Yokoo, M. 2005. "ADOPT: Asynchronous

distributed constraint optimization with quality guarantees." Artificial Intelligence

161(1), 149-180.

Muscettola, Nicola, and et. al. 1998. "Remote Agent: to boldly go where no agent has

gone before." Artificial Intelligence 103.

OASIS. 2014. MQTT Specification. October 29. http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

Parrain, Daniel Le Berre and Anne. 2010. ". The Sat4j library, release 2.2." Journal on

Satisfiability, Boolean Modeling and Computation, Volume 7 59-64.

Pujol, Marc. 2015. JMaxSum. https://github.com/RMASBench/jmaxsum.

Ramchurn, Sarvapali D et. al. 2010. "Decentralized Coordination in RoboCup Rescue."

The Computer Journal.

Rayside, Derek, Estler Christian, and Daniel Jackson. 2009. The Guided Improvement

Algorithm for Exact, General Purpose, Many Objective Combinatorial

Optimization. Cambridge: Computer Science and Artificial Intelligence

Laboratory, MIT.

Rayside, Derek, H-Christian Estler, and Daniel Jackson. 2009. The guided improvement

algorithm for exact, multi-purpose many-objective combinatorial optimization.

Cambridge: Massachusets institute of technology.

58

Roussel, Olivier. 2007. PB06: Input Format. http://www.cril.univ-

artois.fr/PB07/pb06_inputFormat.html.

Ruiz, Esmeralda. 2011. "Distributed SAT." Artificial Intelligence Review (Artificial

Intelligence Review) Volume 35, Issue 3 , pp 265-285.

Tambe, Milind, Ranjit Nair, and Makoto Yokoo. 2005. "Network Distributed POMDPs:

A synthesis of Distributed Constraint Optimization and POMDPs." American

Association of Artificial Intelligence.

