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ABSTRACT 

Scheduling complex problem solving tasks where tasks are interrelated and there 

are multiple different ways to go about achieving a particular task is a computationally 

challenging problem. In this thesis, we study current approaches to solving such complex 

scheduling problems, and propose two new optimization techniques, which exploit A* 

based optimization, and constraint based optimization. We then perform an analytical 

comparison and computational complexity estimate for the efficiency enhancement 

achieved by these approaches, as compared against a base line case of “god’s view” 

based optimal policy evaluation for same problems. 
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1. INTRODUCTION 

Scheduling complex problem solving tasks where tasks are interrelated and there 

are multiple different ways to go about achieving a particular task is an imprecise science 

and the justification for this lies soundly in the combinatorics of the scheduling problem. 

Intractable problems require approximate solutions. Tom Wagner and Alan Garvey have 

developed a domain-independent approach to task scheduling called Design-to-Criteria 

(DTC) that controls the combinatorics via a satisficing methodology and custom designs 

schedules to meet a particular client’s goal criteria. In their original approach to solve the 

Design-to-Criteria scheduling problem, criteria directed focusing approximation and 

heuristics in conjunction with soft goal criteria are used to make the scheduling problem 

tractable. Due to recent advances in efficient algorithms for solving distributed constraint 

optimization problems it might be much more efficient to solve the DTC scheduling 

problem using an approach that employs a distributed constraint optimization algorithm. 

An example of such an algorithm might be a Simplex method with some distributed 

negotiation algorithm such as Max-Sum, Adopt or APO. Mapping the DTC scheduling to 

a distributed constraint optimization algorithmic approach is non-trivial. It is the focus of 

the suggested proposal to create and evaluate such a mapping. Enhancing DTC 

scheduling using multiple optimization techniques based on constraint optimization is the 

focus of this study. 

The Design-To-Criteria scheduling problem 

This scheduling problem implies that execution constraints are defined in a goal 

tree in which each activity is described with domain independent attributes: duration of 
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the activity, quality of the activity’s result and cost of the activity. The goodness of a 

schedule is defined via a utility function that calculates a quantitative evaluation of a 

schedule based on these three attributes of the activities in the schedule. The utility 

functions are domain-dependent, they are designed by a developer to express which 

schedule is more preferable, to introduce a way to compare schedules. The methods for 

choosing utility functions is not the focus of this work though. The nature of the problem 

domain dictates the nature of the utility function and, hence, the computational 

complexity of the algorithm that would deliver an optimal schedule. In practice, 

algorithms that would deliver an optimal schedule are intractable. This is due to the 

combinatorics mentioned above and this is also due to the fact that scheduling has a real-

time constraint – it has to be done at certain frequency for iterations of the main control 

loop in case it is used for control of a robot or a team of robots. 

The problem is called design-to-criteria because the utility function essentially 

adjusts the importance of the three attributes – criteria – in their contribution to the 

function’s value for a particular schedule. 

For this kind of problem, the computational complexity is dependent on the 

number of tasks and methods or subtasks present. If there are m subtasks of a parent task, 

and the sum QAF is employed, then the upper bound on all possible schedules is 

∑(
𝑚

𝑖
) 𝑖!

𝑚

𝑖=0

 

This is obviously an intractable problem for a brute-force methodology. 

As mentioned, the original algorithmic approach by Wagner and Garvey to 

solving a DTC problem implied a state space search. First, the state space search 



 

3 

 

algorithm would generate alternative sets of activities recursively from the leaves to the 

root of a goal tree. At each node of a goal tree it would use a criteria-directed-focusing 

heuristic to avoid generating and propagating all possible alternatives. Next, the top 

alternative by the criteria-directed-focusing heuristic is used to build a schedule. The end-

to-end schedule is built from the unordered activities contained in the alternative. 

Heuristic decision making is used to cope with the combinatorics and reason about the 

execution constraints expressed in the goal tree. This is the gist of the state space search 

based algorithmic approach. 

Instead, this proposal suggests to map the goal tree and the utility function to a set 

of constraints that can serve as input to a constraint optimization solver. This mapping is 

the main contribution of this work. It will be evaluated in a realistic problem domain, for 

instance, distributed scheduling of robot activities to reach a combined goal. 

Instead, this study suggests to augment the search of a mapped goal tree and 

utility functions with additional constraint optimization techniques using standard solvers 

like Sat4J to allow a mediating agent to resolve and minimize the impact of conflicts in a 

distributed schedule. Thus, our resulting algorithm combines the benefits of State Space 

Pruning and Constraint Optimization and A* shortest path search to deliver a vertically 

optimized distributed scheduling solution for autonomous multi-agent scheduling 

problems. It addition, the study goes a step further from mere simulation to deliver an 

enterprise class Java implementation, which was evaluated in a realistic problem domain 

denoting tasks that real robotic agents may need to solve in emergency assistance and 

associated vertical domains. 
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Distributed Constraint Optimization 

 Interacting agents, with design-to-criteria based goal trees for knowledge 

representation, will have local current schedules with constraints between activities that 

belong to different agents. For instance a constraint that some activity of agent A must be 

finished before some activity of agent B can be started (hard constraint). Each such inter-

agent constraint has a number of satisfying solutions (e.g. times when activity of agent A 

can be done such that it is still finished before the given activity of agent B). A utility 

function for the combined schedules is likely to give different values based on different 

solutions to inter-agent constraints. That is, a combined schedule utility function has the 

solutions to inter-agent constraints as parameters. It is the job of a negotiation mechanism 

for a set of agents to converge to those solutions of inter-agent constraints that would 

maximize the utility function, in an environment where each agent holds a partial goal 

tree of the over-all problem set. One of the more obvious algorithmic approaches is 

binary search in the space of schedules. It works well for two agents. In case of more than 

two agents the binary search approach needs to be chained, this is not a good solution 

considering the real-time constraints for scheduling. Recent work in the distributed AI 

community has focused on mediation based approaches. A single agent from some 

neighborhood of agents (e.g. close by Euclidian distance) is chosen to “mediate”. It polls 

the agents for their inter-agent constraints (not the complete goal trees, i.e. it does not 

create combined schedule for a set of agents). Once the mediator gets the constraints 

from all the neighborhood agents it, it works towards formulating a solution which 

combines constraint optimization techniques to develop a conflict free or reduced conflict 

allocation of tasks. Additional work is done by the mediation algorithm to accommodate 
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the nature of the utility function. The mediation agent uses an abstract utility function, 

which in our study, we have implemented using a few simplifying assumptions explained 

in detail later, but which do not compromise the quality and functioning of the algorithm 

if replaced by more complex logic.  

So far most of the work linearized the utility functions because the simplex 

method does linear programming optimization. Even linearized optimization problem is 

very costly in time while most realistic utility functions are not linear.  

In this work we propose to map the DTC problem into a distributed optimization 

from the start. Originally, DTC problem was solved locally and some binary search in 

space of schedules was used to arrive at combined, distributed schedules. We propose a 

novel approach in which the problem is divided into two separate stages, one of which 

provides a linearized abstraction of the underlying complex problem. We show that in 

this stage, optimization techniques can be plugged into the solution, to arrive at an 

approximate, high-level abstracted allocation of tasks to agents. We demonstrate this 

stage with a problem mapping that can then use standard third party libraries for the Max 

Sum algorithm to return a suggested allocation.  The way to map the DTC problem to 

distributed constraint optimization is non-trivial. 

Once this allocation is obtained, the agents then used an additional internal 

optimization based on an heuristic based enhanced Anytime formulation of the Dijkstra 

Algorithm, to efficiently develop an internal local schedule. The main differentiator in 

this algorithm is that  

1) Creative distribution of the problem into two abstractions, one optimized via a 

constraint optimization technique, and the other optimized via Anytime task 
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scheduling 

2) A unique mediation protocol that is not communication and data intensive, but 

provides sufficient information to the mediating agent to efficiently extract the 

heuristics it needs for applying at the optimization stage. This ensures conflict 

reduction in tasks shared by different agents. 

3) An efficient internal scheduling algorithm for an individual agent to choose the 

best path for its local schedule, in real time manner.    

Evaluation 

In this thesis, we show how various inter-agent constraints can be separated from 

the constraints that can be solved locally by an agent.  

While we demonstrate a mediator based approach, the criteria for an agent to 

become a mediator is not critical to the functioning of the algorithm, and thus, 

deployment can be adapted for a peer-to-peer environment where mediation becomes a 

dynamically assigned role. 

The evaluation of the approach is done based on a realistic domain for control of a 

team of robots. For instance, the realistic domains can be transport and escort problem or 

distributed sensor problem or distributed mapping problem. It will be done by calculating 

am optimal schedule off-line, using a global constraint optimization (goal trees of all 

participating agents are combined). For instance, we modeled a transport and escort 

problem, which is more challenging and completely covers with in the simpler sensor 

problems discussed in some of the reviewed literature. This algorithm will run for the 

amount of time unacceptable for real time control but it will provide an optimal schedule, 
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but will be ill-suited for deployment in real time environment. Next we use the created 

distributed scheduling algorithm for the same scheduling problem. We collect the data 

about goodness of the schedules and amount of time taken, and build graphs that show 

how close the approximating distributed scheduling is to the baseline optimal one. Thus 

we obtain the quantitative evaluation of the developed algorithms are part of the 

comparison and evaluation of this work’s result. 
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2. LITERATURE REVIEW 

Roger Mailler has done extensive research on the subject of cooperative, 

distributed problem solving, in his notable doctoral dissertation [1]. He rightly notes that 

most of the prior work on mediation based approaches to problem solving focused on 

resolving conflicts, rather than developing cooperative synergies. In contrast, he proposed 

three new approaches for distributed problem solving, (APO), its optimized version 

(OptAPO), and real-time tailored Scalable, Periodic, Anytime Mediation (SPAM) 

algorithm. 

In using the concept of a mediator in his literature, Mailler distinguishes between 

Competitive, Layered, and Cooperative Mediators, and it is this later type of competitive 

mediation, to which both his and our work focuses on. 

Out of these three approaches, the one most relevant for our study is the SPAM 

algorithm, because it abandons solution convergence and optimization for sake for 

efficiency using “Anytime” characteristics, and targeting for deployment in a real time 

environment. The two major techniques used for this purpose are time boxing of the time 

to let the algorithm converge, and then dividing up the problem into discrete stages, each 

bringing a certain degree of quality to the solution, even if suboptimal. 

One way in which this algorithm differs, or falls short of “as is” deployment in 

our target scenario is that its scheduling function is periodic, assuming that all agents start 

a particular task at the same time, thus leveraging a certain order in the events. In our 

case, tasks are continuously coming in and are handled as and when they arrive, thus 

covering a more realistic scenario than the abstract sanitized case of order triangulation 

measurements dealt with in Mailler’s Thesis. 
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Another significant manner in which the SPAM algorithm differs from our 

solution is the restriction that mediating agents can only resolve conflicts among their 

immediate neighbors. This ensures that the size of the problem does not keep expanding 

to become unwieldy and time and resource intensive. In our case, however, we show how 

the need for such a restriction is obviated, because conflict resolution in our case follows 

a different pattern. Our agents are continuously moving (drones e.g.), as opposed to static 

agents (sensors e.g.) in case of SPAM. Thus the notion of immediate neighbors does not 

hold, and we allow our mediator agent to mediate for any one of its subordinates. 

Farinelli et. al. (Farinelli 2014) have considered the problem of having physically 

distributed and computationally constrained devices make coordinated decisions to 

increase the effectiveness of the overall network of such devices. Their solution proposed 

the use of MaxSum algorithm, and similarly relied on DCOP heuristic to tame the 

computational complexity. Their work focused on multi-agent coordination using 

Distributed Stochastic Algorithm and Max Sum based message passing algorithm, both 

of which have comparable performance. In a similar study, (Fave, et al. 2012), the same 

approach was employed for unmanned aerial vehicles for disaster management, which is 

similar to the autonomous agents we consider in our work. Additionally, in their work, 

they also develop a framework to identify the different choices that need to be made 

when applying the solution. Our work focuses on those situations which they identified in 

their framework as modelling decisions as tasks, (rather than actions of the agent). 

However, since this paper only models aerial vehicles in the simulation, we cannot 

compare performance of a higher number of agents with our work. A similar study is 

done by (Ramchurn 2010) where the simulation environment was changed to RoboCup 
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Rescue Disaster Simulation Platform.  

Since we are employing a constraint solver, the algorithms their optimization 

algorithms were also relevant to our research, notably (Rayside, Estler and Jackson, The 

guided improvement algorithm for exact, multi-purpose many-objective combinatorial 

optimization 2009) 

Tambe et. al. (Tambe, Nair and Yokoo 2005) have presented a model which 

synthesizes Distributed Partially Observable Markov Decision Problems (Distributed 

POMDPs) with .Distributed Constraint Optimization to capture real world uncertainty of 

agent environments with the benefits gained by the knowledge of local interactions. 

We also looked at approaches which employ decentralization without needing any 

communication between the agents, as discussed by (Berman, Kumar and Halasz 2009). 

In terms of the architecture of the individual agents envisioned to act in a 

coordinated fashion, (Muscettola and al. 1998) have suggested interesting architectural 

and design insights that are useful to consider for implementation. 

Macarthur et. al. (Macarthur and al. 2011) have introduced a novel distributed 

algorithm for multi-agent task allocation problem, which allows better scaling of the 

problem by utilizing pruning and reducing of the search space. 

Kim et. al. (Kim and Lesser 2013) have presented some optimization techniques 

for multi-agent distributed constraint optimization, by performing a more efficient 

inference on which subset of values to consider without loss of accuracy.  
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3. PROBLEM DESCRIPTION 

The problem we try to address in our research is a specific formulation of the 

more general scheduling problem. We have a number of agents, all working together to 

perform different tasks, with each task being composed of multiple sub-Tasks and 

methods. All the methods have a utility, giving the parent task a total utility which is an 

aggregate of the utility of the subtasks and methods. 

We allow these problems to be specified in a standard TAEMS format (Horling, 

1999), which is a way of modeling problem solving activities of intelligent agents, 

independent of domain specific semantics. 

 

Figure 1 TAEMS structure example 

In TAEMS environments, agents may be required to perform tasks which have 

specific deadlines, where information required for the optimal performance of a 

computational task may not be available and the results of multiple agent’s computations 
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may need to be aggregated together in order to solve a high level goal. TAEMS 

representation is able to specify that there are multiple ways to accomplish a goal that 

trades off the time and resource cost for a certain result quality.  

In TAEMS, the effect of an agent’s activities may not be available from a local 

perspective. Instead, it must be measured from the perspective of how it contributes to the 

solution of a high level goal. 

The goal of an agent is to maximize the quality achieved for each task group, 

before its deadline. A task group consists of a set of tasks related to one another by a 

subtask relationship that forms a graph. Tasks at the leaves of the tree represent 

executable amount of quality.  

TAEMS Features 

Tasks in a group may have different rules governing their execution and 

contribution to the goal quality, which are called Quality Accumulation Functions, or 

QAFs. Our solution supports three different QAFs, which are: 

1) SumAll: Utility of all sub-tasks are added to determine the parent task quality. An 

example of such a task is a cooking recipe 

2) SeqSum: Utility of all sub-tasks determines the parent task’s quality, with the 

condition that all tasks must be executed in the sequence in which they are 

specified. Otherwise, no quality is accumulated. 

3) ExactlyOne: Utility of the parent task is determined by the quality of any one of 

the sub tasks, and any one of the subtasks can be executed. 

The implementation of additional QAFs is easily possible in the code base, since 
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the class architecture employs a generic interface that exposes the QAF’s functionality. 

Another important feature of TAEMS standard is the ability to define 

dependencies of tasks on each other. This can be at a task level, as well as at individual 

method level. Thus, one task must be completed before another can be started, otherwise 

the later will not accumulate any quality. 

Yet another feature of TAEMS structures is ability to specify deadlines, which 

means that a certain task must be completed before a set duration. Thus, if there are a 

number of tasks to be scheduled, then those whose deadlines expire earlier, should be 

scheduled first, otherwise, after expiry, they will not accumulate any quality. 

The goal in solving a TAEMS scheduling problem is to maximize the utility of all 

agents, which is measured by both the quality and quantity of the tasks which execute. 

The quality of a task is dependent on multiple factors, and is typically abstracted away 

from the primary scheduling algorithm, into a separate, pluggable, and extendable 

function which can be domain dependent and algorithm independent. Thus, the 

contribution of different factors into quality calculation can vary with different 

deployments of the algorithm to a real world problem. E.g. task of transporting a patient 

to a hospital will have the time factor playing a major role in its quality determination, 

but the task of filling up a gas tank will have gasoline price and distance from station as 

the main determinants of quality when comparing two possibilities. TAEMS supports the 

concept of duration, cost and quality, which constitute a tuple, whose values can be 

combined according to any custom rules defined in a utility function. 
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Sample Problem 

Here is a sample problem, specified in TAEMS format. In real world, there would 

be a large number of tasks that need to be done, and more than one agent might be able to 

perform a task e.g. in the below example, in certain situations, a Police car may also be 

used to transport a patient to a hospital, while other tasks, like putting out a fire, are such 

that only a specific type of agent can do. 

 

Figure 2 A Sample TAEMS task structure represented in XML format 

In our solution, we employ a number of steps to calculate the best solution, using 

a distributed approach. Results of this distributed calculation is then aggregated and 

evaluated to find an optimum assignment. 

In order to remain focused on the main problem at hand, we have made a number 

of simplifying assumptions which do not impact the functioning of the algorithms, but 

still allow the Java implementation to be remain manageable by reducing tangential 

features. Thus, our experiments and implementation employs the following conceptual 

elements, each of which conforms to their TAEMS based abstraction for scheduling 

problem solving. Above and beyond conformance to their TAEMS description, we 

further enhance the denotation of these entities in our analysis according to following 

descriptions.  

1) Agents. Our agents are mobile, autonomous computing entities that implement the 
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IAgent interface, which defines some required functions which an agent must 

implement to be able to effectively participate in this problem solving approach 

described. However, actual details may vary depending on the real world vertical 

domain in which the agent is situated. Our Agent implementation veers towards 

mobile, autonomous agent similar to a vehicle or drone. 

2) Communication. Agents can communicate with each other via standard, well defined 

messages, which require exchange of certain required data as part of the solution 

algorithm. The protocol can vary, and our tests were conducted over direct inter-

thread communication, as well as MQTT (OASIS 2014) protocol based exchanges. 

MQTT is a light weight, open, and simple Client Server publish/subscribe messaging 

transport protocol, which is geared particularly for the emerging IoT (Internet of 

Things) applications. Our implementation can thus be deployed on multiple JVMs, 

each running an agent that can communicate over this protocol to collaborate for task 

scheduling and execution.  

3)  Tasks.  Tasks are well defined activities which one or more agents must complete. 

Each task can be subdivided into multiple sub-tasks. And each Task has a utility 

value, which it contributes to the over-all schedule value if completed successfully. In 

our modelling, we have situated tasks for performance at particular locations, but this 

is not necessarily required in a generalized implementation of the algorithm. 

However, for such location free tasks, there must exist some other measure which 

determines when the cost of executing a task is higher than that of another one, which 

in our model is determined by the distance of its execution location from the Agent. 

Moreover, the tasks also have two more features supported by TAEMS, which are 
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quality (if that task is executed properly within it deadline) and a duration, which is 

the time it takes for an agent to perform it. The final utility value to be used in 

schedule computations is a combination of all of these factors, and the deployment 

domain determines how these relate to each other. E.g. tasks modelled in medical 

industry may attach high utility to minimizing duration, while industrial applications 

may attach higher utility to minimized resource consumption or cost.  

4) Mediation. Since our algorithm falls in the category of a medication-based distributed 

problem solving technique, mediation is an important role which certain agents can 

perform. The elevation of an agent to this status, in our solution, can be owing to a 

number of factors, e.g. its location, its computational capacity or any other domain 

specific factor. All agents have the capability of becoming mediators, and so 

assignment of medication role to any particular agent as opposed to another does not 

impact the solution performance. 

To illustrate the problem domain, we can create a very simple example. Assume 

there are two agents, A1 and A2 and three tasks need to be completed, T1, T2, T3. Task 

and Agent locations are shown in the figure below. 
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Figure 3 Example Task Execution scenario after injection of new tasks 

 In this diagram, there are two agents, A1, and A2, and there are different tasks 

that need to be performed. The time it takes for an Agent to reach the location for task 

execution is marked on the lines connecting the agent with the various tasks. 

Utility of an agent performing a task is an abstraction for which any concrete 

domain dependent implementation can be plugged into the system. We follow a 

simplified example of making it directly proportional to task quality but inversely 

proportional to the time taken to reach its location and perform it. Thus, we define Utility 

in our implementation as: 

𝑈𝑡𝑎 = {
0, 𝑡 < 𝐿 − 𝑇

𝑄𝑡 − 𝐷𝑡𝑎, 𝑡 ≥ 𝐿 − 𝑇
 

 

Where Uta is the Utility of task t when performed by agent a, Dta is the distance 

(or cost) of agent a performing task t, L is the deadline for the task and T is the current 

time. 

If we set a uniform quality for all tasks to be equal to 50 units, then, intuitively we 

can tell that the best path in this scenario is for Agent A1 to take up T1, and Agent A2 to 
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take up T2 and T3. However, this is not always the case, if such simplifying assumptions 

are not made. Some of these complex scenarios in a real world application might be: 

1. Task quality has an impact of which agent is performing it, e.g. a patient can be 

better transported in an ambulance, than a police car, as it can provide some 

interim care on the way to the hospital. Thus, when one agent calculates the 

quality, a higher value comes, offsetting a larger distance or cost. 

2. There may be deadlines associated, so a task closer to an agent may wait, while it 

attends to a task much further away because its deadline is expiring. 

3. TAEMS also supports interdependencies between tasks, which work pretty much 

like a deadline, so that a task’s quality would be zero if performed before its 

prerequisite, but its full value if performed after it. 

Algorithmically, however, the solution we have developed is independent of these 

vertical considerations which an agent may consider while calculating utility values. In 

real world, modern agent software will implement the IAgent interface which we have 

defined, and then some dependency injection based inversion of control mechanism 

might be employed to use our system for steering these agent’s operations. 
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4. SOLUTION DESIGN 

Our solution implementation starts with a dedicated task issuer, which is external 

to the system, and uses the MQTT protocol to receive new tasks into the system. This 

constitutes the boundary of the system, from where an external controller can feed tasks, 

either periodically, by human intervention (e.g. Console Input is also supported), or by 

invoking the interface based on events in another consuming system.  In order to develop 

a fully functional system which can be deployed in the real world, we gave our task 

issuer the capability to directly assign a task to an agent, using the ASSIGN event type. 

This is because some tasks will have hard constraints that it can be performed by only a 

particular agent e.g. the example of a fire which can only be put out by a fire truck, and 

hence no negotiation is necessary if there is one fire truck type of agent. Obviously, if 

there are multiple fire trucks, then again, this task would not be directly assigned but 

entered for negotiation. Such direct assignment bypasses the system’s capability of 

devising an optimal execution schedule itself, and so, for purposes of illustrating the 

functioning of our system, we will have the Task Issuer use the NEGOTIATE event type, 

when injecting new tasks. These custom events are broadcasted to all subscribers of 

MQTT, however, they are ignored by all agents, except the managing agent itself, who is 

responsible for conducting the negotiation. 

Once these tasks arrive at the managing agent, it can process the tasks 

immediately, or queue them for periodic processing, if the rate of incoming tasks is too 

high. This can be set by an arbitrary configuration e.g. time to wait before initializing 

negotiation on tasks accumulated so far. 

The managing agent has a list of all the agents which it is managing, and so it 
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issues a new message broadcast, requesting all agents to communicate to it what their 

incremental schedule qualities would be if they take up any combination of these new 

tasks. 

Thus, if there are three agents being managed, an injection event by the Task 

Issuer results in three more messages by the managing agent, which are directed to each 

of the agents being managed. This brings us to the first portion of our scheduling 

solution, an A* based algorithm to calculate the best local schedule. 

One additional enhancement possible in the mediation protocol is for an agent to 

query the mediating agent for new tasks if all of its current schedule is completed. In such 

a case, if no new tasks are available, then the mediating agent can poll all agents to “give 

up” one of their allocated tasks which are of lesser utility to them, or not of a critical 

nature. However, this step is useful from a practical standpoint, but not much from 

algorithmic research undertaken by us. So we did not implement this option. In our high 

traffic deployments, it may also not serve a useful purpose, as most agents are expected 

to remain busy. 

A* Based Schedule Calculation 

An agent’s calculation of best local schedule is performed in two steps. 

1) FSM Expansion. Transformation of TAEMS task representation into a Finite 

State Machine (FSM) of all valid execution paths respecting the given the 

TAEMS constraints. 

2) A* application. In this step, we apply a customized Dijkstra based A* algorithm 

to this FSM, to find out the optimal path through this FSM, which will result in 
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the maximum schedule utility. 

This algorithm is applied to the input tasks at two different times. 

Once, when the managing agent requests cost calculation, and second, when an 

agent’s cost calculation has “won” as task to be assigned to it, and so the same algorithm 

is applied during actual execution. 

It remains a possible implementation optimization to cache results from a 

previous calculation. However, given the possibility that additional tasks may have been 

assigned between a cost feedback and eventual assignment, it is not necessary that the 

same schedule may necessarily have been valid. Thus, in our implementation, we reapply 

the algorithm in both stages separately. 

Let’s look at the two steps separately. 

FSM Expansion 

The TAEMS structure is a condensed representation of the tasks that need to be 

performed. It is possible for there to be multiple actual execution paths, all of which 

satisfy the constraints of a certain TAEMS structure.  

 

Figure 4 Agent and Scheduler simplified class diagram 
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In our implementation, an Agent object will have a separate scheduler, executing 

in parallel, so that the agent thread can continue executing the tasks, and a scheduler 

thread can continue calculating the best optimum schedule for the new threads that keep 

arriving, eventually to replace the reference in the Agent object, when it is in between 

two task executions. 

Agent has a list of pending tasks, which are all Java entities representing the XML 

task structure of TAEMS. When the schedule is invoked to process these tasks, it 

performs the following operation, described in pseudo code: 

Given: PendingTasks 

Set CurrentTasks = Unexecuted Current Tasks 

Set PendingTasks = Union PendingTasks and CurrentTasks 

Set G = new Task Graph 

For each (TaskXml in PendingTasks) 

   Call ExpandTask(TaskXml) 

 

Function ExpandTask(TaskXml) 

  Set JavaTaskObject = Task Object Parsed from TaskXml 

  Add JavaTaskObject to Graph G 

  For each (ChildTaskXml in JavaTaskObject) 

    Call ExpandTask(ChildTaskXml) 

 

In our implementation, we have also used a third party library, GraphViz to 

visually illustrate the transformation of xml tasks into a Task Graph which the program 

expects. Such an FSM graph is illustrated below for the TAEMS structure in Figure 2. 
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Figure 5 Finite State Machine of possible execution paths 

As we can see from the task structure in figure 2, there is a base task with a QAF 

of SumAll, which means that all subtasks must be executed, and in any order. The main 

task has two sub tasks, to fill gas, and to drop a patient from his house to the hospital. The 

one two fill gas has a QAF of ExactlyOne, which means gas needs to be filled only once, 

and thus, either one of the two gas stations can be visited. The second task, is of type 

SeqSum, which means both must be executed in sequence: A patient must first be picked 

before he can be dropped. 

Based on these QAFs, we see that the FSM expansion in Figure 6 respects all of 

these constraints. If we do the patient task first, and then we can finish by doing one more 

gas filling task. Or if we do one of the two gas filling tasks, then both of them lead on to 

dropping the patient task.  

As may be obvious, as the number of tasks increase, the complexity of the FSM 
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keeps on increasing.  

A* Calculation 

Once the FSM has been expanded, then any path through that FSM is a valid 

execution path, and the only thing remains is to find the most optimal path through it. We 

use an adaption of the Dijkstra / A* based algorithm, which performs as follows: 

Function A*(Method Source) 

  settledNodes = new Set<Method> 

  unSettledNodes = new Set<Method> 

  predecessors = new Map<Method, Method> 

  distance = new Map<Method, Cost>  

  distance.put(source, Cost(source)) 

  unSettledNodes.add(source) 

  while (Exist(unSettledNodes)) 

     Method node = getMaximumUtility(unSettledNodes, source) 

      settledNodes.add(node); 

      unSettledNodes.remove(node); 

      findMaximumUtilities(node); 

 

Function findMaximumUtilities(Method node) 

  long accumulatedDuration = 0 

  List<Method> adjacentNodes = getNeighbors(node) 

  for (Method target in adjacentNodes) 

      Cost highestUtilityToNode = getHighestUtility(node) 

      Cost singleStepCost = getCost(node, target, highestUtilityToNode) 

      Cost currentHighestUtility = getHighestUtility(target) 

      Cost newUtility = singleStepCost 

      If newUtility > currentHighestUtility Or IsFinalPoint(target) 

       distance.put(target, newUtility) 
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        PutPredecessor(target, node) 

        unSettledNodes.add(target) 

 

Most of the features in this algorithm are standard A* steps, with a few 

customizations. 

First off, the structure of the algorithm has been changed from calculating 

“minimum distance” between two points, to having “maximum utility” between two 

points on the graph. This is done by introducing a new construct for representing a 

“distance” for use in the algorithm, which is actually the utility based on any custom 

combination of the Task quality. It is an interface, whose concrete implementation can 

vary depending on the Agents and Tasks involved, making the algorithm generic. 

Second, we introduce a conditional to check if the point is final point of the graph, 

where all paths are supposed to combine, and the best path will be measured from this 

end task, a hypothetical task representing completion of all others. 

Lastly, we introduce a heuristic which again will be dependent on the vertical 

domain in which the solution is deployed. It denotes the expected utility of performing a 

certain action, with its value adjustable to balance optimality vs time performance, 

desired by the application. Our research focuses on distributed selection of best 

combination of Task assignments, and thus works on the proposed schedules which the 

agents return. How the agents themselves arrive at this number is a parallel concern to 

our primary focus. We have developed an efficient A* implementation, but it can be 

replaced by any other calculation including plain Dijkstra based solution, or the various 

other variations of A* proposed by (Likhachev 2005). 
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The output of this algorithm is a schedule, which contains all Methods to be 

executed and in the order in which they will be executed. This method chain will span all 

the tasks, and will be a linearized view of the path. 

For any set of tasks received by an agent, it is unknown which subset of these 

tasks would be optimal for execution by this agent. Thus, the agent calculates a 

combination of all possible tasks, and performs the above calculation for each of them. 

And finally, it communicates back to the managing agent, a list of Qualities, along with 

the Task subset, which the managing agent then uses to decide an allocation. This quality 

chart is broadcast via an MQTT message. 

Constraint Optimization Based Allocation 

When the mediation agent has received feedback from all agents, regarding their 

respective schedule qualities for a task set, then it concludes the session by examining 

these results, and deciding which agents would be the best ones to be given which task. 

The negotiation thus ends with a hard assignment event, which results in the assigned 

agent executing the task. 

This is done by mapping the results into a standardized constraint optimization 

problem, which is one of the primary contributions of this thesis. We propose a novel 

mechanism of using pseudo Boolean optimization technique to determine optimal 

assignment.  

We researched different approaches to optimizing this step, and initially tried 

using Max Sum algorithm, using a third party library developed by Marc Pujol called 

jmaxsum (Pujol, 2015) (Pujol, 2015). However, as our research progressed, we further 
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improved our solution by using Sat4J Pseudo Boolean Satisfiability library (Parrain 

2010).  

Sat4J performs optimization by the strengthening procedure, where it calculates a 

satisfaction solution, and then introduces a constraint to prevent calculation of solutions 

greater than that. Once a solver cannot find any better solution, it returns the best solution 

found. 

There are other distributed SAT approaches also (Ruiz 2011), however, the 

library we chose does not work distributedly. 

In order to use the Sat4J solver to our problem, we first need to transform our 

problem as input to the solver, and then transform the solver output back into a solution 

to the problem. 

A standard formalization of our problem input, which consists of the data 

collected by the managing agent, can be expressed as the set S such that: 

S = {D1, D2 … Da} where 

A = {Set of all agents}, a = |A| 

T = {Set of all tasks to be executed}, t = |T| 

Di = {C1, C2, C3…Cn} where n = 2t - 1  

Ci = {U, T} where U is the utility when tasks T are executed by this agent, with  

T ∈ (𝑇
𝑘
) and k ∈ {1, 2 … t}  

Solver Mapping 

Now with this input data set, we need to map it into an input for the PB solver. 

The Sat4J solver we use accepts a variant of the OPB format (Roussel 2007). This format 
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requires the input to be divided into three sections. 

1) Comments: The first line has to be comments, which can contain any descriptive data, 

but has one required metadata portion which tells the solver how many variables we 

have in our problem, and how may constraints we are supplying. This allows the 

solver to function more optimally instead of having to reflect on this data from the 

problem. An example of this metadata comment is: 

* #variable= 5 #constraint= 4 

Comments always start with a * symbol. 

2) Second section contains the objective statement, which we need to minimize. The 

objective statement must contain variables less than or equal to the number of 

variables we declared in the comments. E.g. following is an objective function 

min: +1 x1 +2 x2 +4 x3; 

Here the first signed number is the coefficient, whose variable is expressed after a 

space, and using a variable name that must start with an x with any number, usually 

kept sequential. 

3) Last section consists of constraint statements. Each constraint appears on a single 

line, and express an inequality which must be satisfied by the solution. A constraint 

looks like this following: 

+1 x7 -1 x1 -1 x4 >= -1; 

The output of the solver is of the form [1|0] x1, [1|0] x2 … [1|0] xi where all 

variables are prefixed with a 0 or a 1, depending on which of these values allow the 

objective function to be minimized, and simultaneously satisfy the constraints. 

In order to map our task scheduling problem to an input for the solver, we need to 
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transform it in such a way that the output can help us extract an optimal scheduling. 

 This implies that the variables should represent all possible agent and task 

allocations, and the objective function should be such that once a subset of these 

variables are selected for the function’s minimization, that selection should correspond to 

the best possible schedule. 

The solution we have devised uses one variable to represent the allocation for one 

individual agent.  Thus, if there are two tasks to be assigned, an agent can perform either 

one of them, or both. Thus, we introduce three variables, each representing the allocation 

of tasks to one single agent. Our variables are thus the sets of different tasks that can be 

performed by a particular agent. The number of variables will be equal to number of 

agents times all possible combination of tasks which that agent can perform. The 

coefficient will be the sum of the utilities when the agent performs those particular tasks. 

Since the utilities are positive values, and the solver supports minimization, so we reverse 

the sign of the utilities values in the objective function, to make minimization simulate 

maximum utility.  

The number of constraints in our mapping, will be equal to the number of tasks. 

One constraint will express the fact that one task can only be executed by one agent, and 

that multiple agents cannot be asked to perform the same task, otherwise, its quality will 

be accumulated twice. The variables participating in a constraint will be only those 

variables, whose corresponding Task sets contain the task being represented in this 

constraint.  

For the example scenario discussed earlier, we can look at the table below to 

understand how this mapping works. 
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Table 1 – Agent and Task mapping to PB Format 

Agent A1 A1 Utility Mapping Agent A2 A2 Utility Mapping 

T1 (50x1)-10=40 x1 T1,T2,T3 (50x3)-22-20-10=98 x8 

T2 (50x1)-22=28 x2 T2,T3 (50x2)-10-10=80 x9 

T3 (50x1)-28=22 x3 T1, T3 (50x2)-22-22=56 x10 

T1, T2 (50x2)-10-20=70 x4 T1, T2 (50x2)-22-20=58 x11 

T1, T3 (50x2)-10-22=68 x5 T3 (50x1)-20=30 x12 

T2, T3 (50x2)-22-10=68 x6 T2 (50x1)-10=40 x13 

T1,T2,T3 (50x3)-10-20-10=110 x7 T1 (50x1)-22=28 x14 

 

* #variable= 14 #constraint= 3 

* this is a sample PB input format 

min: -40 x1 -28 x2 -22 x3 -70 x4 -68 x5 -68 x6 -110 x7 -98 x8 -80 x9 -56 x10 -58 x11 -

30 x12 -40 x13 -28 x14; 

1 x1 1 x4 1 x5 1 x7 1 x8 1 x10 1 x11 1 x14 = 1;  

1 x2 1 x4 1 x6 1 x7 1 x8 1 x9 1 x11 1 x13 = 1; 

1 x3 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x12 = 1; 

 

The data in this table is held in memory before the solver is invoked, and after the 

solver returns a preferred combination of variables, we map those variables back into the 

task allocations represented by them. The constraints ensure two things: 

1) That each task is considered in the solution. This is because each constraint must have 

one variable selected from it, so that its Boolean value becomes 1. If a variable from 

each constraint is selected, then it ensures that each task is represented, because one 

constraint only contains variables that have one particular task commonly appearing 
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among them. 

2) That each task is considered only once. Tasks are contained by variables, and the 

same variables can repeat across constraints also. E.g. x7 appears in all constraints in 

the example above. However, if x7 is selected in one constraint, and then it ensures 

no other variable is selected in any of the constraints, otherwise, that other variable’s 

coefficient, and x7’s coefficient will both combine to make that constraint become 2, 

instead of 1, and thus be a violation.  

When this input is given to the solver, it comes back with the following solution 

and objective function value: 

Solution: x1 –x2 –x3 –x4 –x5 –x6 –x7 –x8 x9 –x10 –x11 –x12 –x13 –x14 

Objective function = -120 

So the minimized value it has found is -120, which occurs when x1 and x9 are 

given a positive coefficient, and all others variables are given negative coefficients. We 

then translate this result back into our problem, by using the table mapping of variables to 

task allocations. We see that variable x1 indicates that T1 is assigned to A1 with a utility 

of 40, and variable x9 indicates that T2 and T3 are assigned to A2 with a utility of 80, 

making the total highest utility to be 120 units. 

Once the managing agent has applied this technique to determine the bets 

schedule, it broadcasts an ASSIGN MQTT message, which concretely assigns these tasks 

to the selected agents. After receiving this hard assignment, the agents put these new 

tasks into their list of pending tasks. A separate scheduler thread running on the agent 

calculates a new schedule for the agent, taking into account these fresh tasks, and then 

merges this schedule back into the agent’s current execution schedule, at the first 
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opportunity it gets (which is basically an interval between the agent finishing one task 

and going to next). 

Execution Example 

In this section, we will walk through two complete execution scenarios, and 

explain the intermediate results at each step. The first scenario is when the agents are free 

and new tasks are injected, and the second is where agents already executing on a 

schedule are required to update their current schedule based on availability of new 

pending tasks. 

Events processed by the system are numbered to demonstrate the sequence. 

 

1. Two agents A1 and A2 are initially located at positions [X150, Y150] and [X300, 

Y200]. A1 is acting as the managing agent. 

 

2. The first wave of Task injection occurs, and four new tasks, T1, T2, T3, T4, are 

injected into the system, by sending the following message to agent A1, the managing 

agent. 

A1,NEGOTIATE,::::-T4-T1-T3-T2- 

<> 

This message is a custom format to indicate to agent A1 that it needs to negotiate 

execution of these four tasks among its sub-agents. Additional details can be 

appended into the message body, but in this case, it is empty. The Tasks themselves 

are referenced by name only, because it is assumed that in a vertical implementation 

domain, agents will use a custom format to express the specialized knowledge of 

needing to know how to perform task. Thus, pre-requisite data for task execution 

constitutes of two components: Taems specification for the task, and additional 

customized knowledge. We assume that agents will know how to perform a particular 

task based on its reference name, and use a file based repository of custom Taems 
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data to express this knowledge, available to all agents. In some real world 

implementations, this data can also be embedded in a more elaborate MQTT 

messaging format to be employed. 

 

The initial set of injected tasks are shown in figure below: 

 

Figure 6 Initial Task and Agent Locations 

3. Agent A1 first calculates the quality expected to be accrued by continuing on its 

current schedule. Since this is the initialization, current schedule quality value is 0. 

4. Agent then combines the pending tasks from the current schedule with those just 

injected, to obtain a new set of pending tasks. In this instance, it will be the same as 

the set of newly injected tasks.  

5. In order to calculate the quality expected to be accrued by executing all combinations 

of these tasks, agent first calculates S = ℙ(T), the power set of all the tasks allocated 

to it. This set includes following combinations: {T2}, {T2, T4}, {T2, T1}, {T2, T1, 

T4}, {T2, T3}, {T2, T3, T4}, {T2, T3, T1}, {T2, T3, T1, T4}, {T3}, {T3, T4}, {T3, 

T1}, {T3, T1, T4}, {T1}, {T1, T4}, {T4} 

6. For each element in S, Agent expands the Taems tasks into an FSM. Two of these are 

shown in Figure below. To do this, it first initializes a dummy starting point method, 

and then applies a recursive algorithm to the task set. It traverses down the task tree, 

and for each method, appends it to the dummy starting point. This process is done 

differently for QAFs. SeqSum tasks are appended in order, SumAll are appended in 
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parallel with a series for each permutation, and ExactlyOne are appended in parallel 

with one task in each series. If, instead of a method, it encounters a sub-task, then the 

recursion is applied again at that task level. Two examples of FSM expansion of a 

simple one-method based task set of our example is shown below. 

 

 
 

Figure 7 Expanded FSM for three tasks 

 

 

 

 
 

Figure 8 Expanded FSM for two tasks 
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For each of the FSMs, the agent applies the A* algorithm to find the best possible route, 

i.e. one accruing the highest quality. First we add the dummy starting point as a settled 

node, and then find the shortest path from it to the next node. The A* concept of shortest 

path is equivalent to the highest utility for our purpose. Thus, we define a custom class 

and its value is determined by a method supplied by the agent, which takes into account 

the cost, quality and time, as well as other parameter, including Taems concept of task 

deadline and an A* heuristic. If the heuristic, determined by factors peculiar to the 

deployment domain, determines that the quality accrued is less than the applied heuristic 

threshold, then the method returns with an outcome representing low quality, to 

discourage exploration of this path in future. In our case, we make distance proportional 

to cost and time, and quality proportional to a custom value we supply in the Taems 

XML. In the figure below, we see that the selected route, highlighted in green, has the 

highest accumulative quality of 1118 points. 

 

 
 

Figure 9 Expanded FSM for seventh step 
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7. The agent calculates schedule quality value of all the expanded FSMs, and then saves 

them in an internal data structure, whose values are as below. This represents an array 

of elements, each representing a structure indicating which Task Set, has how much 

base quality and how much incremental quality. 

[T2,0,429] 

[T2-T4,0,771] 

[T2-T1,0,817] 

[T2-T1-T4,0,1118] 

[T2-T3,0,780] 

[T2-T3-T4,0,1065] 

[T2-T3-T1,0,1127] 

[T2-T3-T1-T4,0,1412] 

[T3,0,365] 

[T3-T4,0,650] 

[T3-T1,0,464] 

[T3-T1-T4,0,931] 

[T1,0,338] 

[T1-T4,0,638] 

[T4,0,276] 

 

8. After calculating qualities for itself, the agent then sends a message to all agents 

under its management to send back their quality values. This message looks as like 

this:  

A2,CALCULATECOST,::A2:::::A1 

<> 

which means that the message is directed to A2, who is required calculate costs and 

return them to A1. 

9. A2 receives the message, and performs the same steps as described in Steps 4 to 7. 

Afterwards, unlike A1 (the managing agent) which saved the results itself, A1 sends 
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the results back to A1 in a directed MQTT message as follows: 

A1,COSTBROADCAST,::A1::-T4-T1-T3-T2-:::A2 

<[T2,0,359] 

[T2-T4,0,701] 

[T2-T1,0,747] 

[T2-T1-T4,0,1072] 

[T2-T3,0,787] 

[T2-T3-T4,0,1129] 

[T2-T3-T1,0,1175] 

[T2-T3-T1-T4,0,1451] 

[T3,0,436] 

[T3-T4,0,721] 

[T3-T1,0,694] 

[T3-T1-T4,0,971] 

[T1,0,250] 

[T1-T4,0,595] 

[T4,0,342]> 

Note that the values calculated by A2 are different from those of A1 e.g. when A2 

performs all tasks, it accrues a quality of 1451 points, as compared to A1’s 1412. 

10. Once A1 receives this message, it evaluates if calculations from all agents have been 

received. Since in our example, there is only a single agent being managed, the data 

collection is complete and A1 is ready to allocate the tasks. 

11. A1 first creates a mapping table to assign a numbered variable e.g. x1, x2 etc. to each 

possible task allocation to an agent. The number of these variables for two agents and 

four tasks is 2 * ( (4) + (5) + (4) + (1) + (1) ) = 30. This corresponds to the product of 

number of agents multiplied by all possible allocations for it i.e. four possibilities of 

single task assignment, five possibilities for two tasks, four possibilities for three 

tasks, one possibility for four tasks, and one possibility for no task to be assigned to 

this agent. Thus we have variables from x1, x2 … x30  
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12. The agent then maps the problem to a SAT problem, where the objective function is 

to minimize the negative of the sum of all qualities accrued by the agents, considering 

all possible allocation combinations, but constraining it to have one task performed 

by one agent alone. The SAT problem in OPB format becomes as follows: 

 

* #variable= 30 #constraint= 6 

 

min: -429 x1 -771 x2 -817 x3 -1118 x4 -780 x5 -1065 x6 -1127 x7 -1412 x8 -365 x9 -

650 x10 -646 x11 -931 x12 -388 x13 -638 x14 -276 x15 -359 x16 -701 x17 -747 x18 -

1072 x19 -787 x20 -1129 x21 -1175 x22 -1451 x23 -436 x24 -721 x25 -694 x26 -971 

x27 -250 x28 -592 x29 -342 x30; 

 

* x1=1[2] x2=1[2, 4] x3=1[2, 1] x4=1[2, 1, 4] x5=1[2, 3] x6=1[2, 3, 4] x7=1[2, 3, 1] 

x8=1[2, 3, 1, 4] x9=1[3] x10=1[3, 4] x11=1[3, 1] x12=1[3, 1, 4] x13=1[1] x14=1[1, 

4] x15=1[4] x16=2[2] x17=2[2, 4] x18=2[2, 1] x19=2[2, 1, 4] x20=2[2, 3] x21=2[2, 

3, 4] x22=2[2, 3, 1] x23=2[2, 3, 1, 4] x24=2[3] x25=2[3, 4] x26=2[3, 1] x27=2[3, 1, 

4] x28=2[1] x29=2[1, 4] x30=2[4]  

 

1 x3 1 x4 1 x7 1 x8 1 x11 1 x12 1 x13 1 x14 1 x18 1 x19 1 x22 1 x23 1 x26 1 x27 1 

x28 1 x29 = 1; 

 

1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1 

x23 = 1; 

 

1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1 

x26 1 x27 = 1; 

 

1 x2 1 x4 1 x6 1 x8 1 x10 1 x12 1 x14 1 x15 1 x17 1 x19 1 x21 1 x23 1 x25 1 x27 1 

x29 1 x30 = 1; 
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1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x13 1 x14 1 x15 = 

1; 

 

1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1 x26 1 x27 1 x28 1 

x29 1 x30 = 1; 

 

13. The solver returns the following result: 

[-1, -2, -3, 4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -

22, -23, 24, -25, -26, -27, -28, -29, -30] 

 

14. This indicates that the best allocations are represented by the positive variables x4 

and x24. This gives the allocation that A1 should be assigned T1, T2, T4 and A2 

should be assigned T3. 

 

15. A1 will then assign T1, T2, T4 to itself, and send an assignment message for T3 to 

A2. 

A1,ASSIGNTASK,::A1::::: 

<T3> 

16. In order to execute T1, T2, T4 A1 can now use the cached FSM and A* output from 

its earlier calculation during the negotiation phase. This schedule executes T2 first, 

then T1 and T4, with overall quality of 1118. 

17. For T3, A2 has a schedule which yields a quality of 436. 

18. After some time, when A1 has completed the first leg of its schedule and completed 

task T2. It will have removed T2 from its pending tasks list, and its physical location 

is now at the old location of T2, going towards T1.  

19. Similarly, A2 will have completed T3 and is stopped at its location. 
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20. At this time, we inject two new tasks into the system, which are shown in the figure 

below, as T5 and T6. These are shown in the figure below: 

 

Figure 10 Additional injected tasks and new agent locations 

21. A1 again receives an external message via MQTT which is 

A1,NEGOTIATE,::::-T5-T6- 

<> 

A1 will first calculate the incremental quality of executing these itself, and 

then ask the managed agents to report theirs. 

22. A1 first calculates the schedule quality of its pending tasks T1 and T4, by repeating 

steps 5 to 8. The quality comes to 638, which acts as the base quality of current 

schedule. 

23. A1 then creates a power set of all currently pending and newly injected tasks, which 

includes: {T5}, {T5, T4}, {T5, T1}, {T5, T1, T4}, {T5, T6}, {T5, T6, T4}, {T5, T6, 

T1}, {T5, T6, T1, T4}, {T6}, {T6, T4}, {T6, T1}, {T6, T1, T4}, {T1}, {T1, T4}, 

{T4} 
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24. These tasks are then expanded into FSMs following the Taems QAFs, one being 

shown below. 

 

Figure 11 Expanded FSM for step twenty six 

25. A* algorithm is then applied to find the best route qualities from all of the expanded 

FSMs. In this case, we note that the base quality is not zero, but has a value. 

[T1,638,388] 

[T1-T6,638,738] 

[T1-T4,638,638] 

[T1-T4-T6,638,951] 

[T1-T5,638,584] 

[T1-T5-T6,638,958] 

[T1-T5-T4,638,997] 

[T1-T5-T4-T6,638,1317] 

[T5,638,308] 

[T5-T6,638,571] 

[T5-T4,638,701] 

[T5-T4-T6,638,930] 

[T4,638,342] 
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[T4-T6,638,551] 

[T6,638,351] 

26. It then sends a message to its managed agent, A2, to report its cost calculation 

A2,CALCULATECOST,::A2:::::A1 

<T5,T6>  

27. A2 combines the new pending tasks T5 and T6, with its current schedule which 

happens to be empty because its only task previously assigned to it, T3, is already 

complete. A2 goes through the same steps at #5 to #8 and then sends back the 

following message: 

A1,COSTBROADCAST,::A1::-T1-T4-T5-T6-:::A2 

<[T1,0,258] 

[T1-T6,0,685] 

[T1-T4,0,535] 

[T1-T4-T6,0,935] 

[T1-T5,0,566] 

[T1-T5-T6,0,940] 

[T1-T5-T4,0,979] 

[T1-T5-T4-T6,0,1329] 

[T5,0,370] 

[T5-T6,0,590] 

[T5-T4,0,729] 

[T5-T4-T6,0,929] 

[T4,0,285] 

[T4-T6,0,535] 

[T6,0,335]> 

28. After receiving this message, A1’s data collection is complete, and it can now apply 

the SAT Solver to find out the new best allocation. First, the OPB format input 

mapping is created, as follows: 

* #variable= 30 #constraint= 6 
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min: -388 x1 -738 x2 -638 x3 -951 x4 -584 x5 -958 x6 -997 x7 -1317 x8 -308 x9 -571 

x10 -701 x11 -930 x12 -342 x13 -551 x14 -351 x15 -258 x16 -685 x17 -535 x18 -935 

x19 -566 x20 -940 x21 -979 x22 -1329 x23 -370 x24 -590 x25 -729 x26 -929 x27 -

285 x28 -535 x29 -335 x30; 

 

* x1=1[1] x2=1[1, 6] x3=1[1, 4] x4=1[1, 4, 6] x5=1[1, 5] x6=1[1, 5, 6] x7=1[1, 5, 4] 

x8=1[1, 5, 4, 6] x9=1[5] x10=1[5, 6] x11=1[5, 4] x12=1[5, 4, 6] x13=1[4] x14=1[4, 

6] x15=1[6] x16=2[1] x17=2[1, 6] x18=2[1, 4] x19=2[1, 4, 6] x20=2[1, 5] x21=2[1, 

5, 6] x22=2[1, 5, 4] x23=2[1, 5, 4, 6] x24=2[5] x25=2[5, 6] x26=2[5, 4] x27=2[5, 4, 

6] x28=2[4] x29=2[4, 6] x30=2[6]  

 

1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1 

x23 = 1; 

 

1 x3 1 x4 1 x7 1 x8 1 x11 1 x12 1 x13 1 x14 1 x18 1 x19 1 x22 1 x23 1 x26 1 x27 1 

x28 1 x29 = 1; 

 

1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1 

x26 1 x27 = 1; 

 

1 x2 1 x4 1 x6 1 x8 1 x10 1 x12 1 x14 1 x15 1 x17 1 x19 1 x21 1 x23 1 x25 1 x27 1 

x29 1 x30 = 1; 

 

1 x1 1 x2 1 x3 1 x4 1 x5 1 x6 1 x7 1 x8 1 x9 1 x10 1 x11 1 x12 1 x13 1 x14 1 x15 = 

1; 

 

1 x16 1 x17 1 x18 1 x19 1 x20 1 x21 1 x22 1 x23 1 x24 1 x25 1 x26 1 x27 1 x28 1 

x29 1 x30 = 1; 
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29.  The solver returns the following output: 

[-1, 2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -

22, -23, -24, -25, 26, -27, -28, -29, -30] 

Which indicates that assignment represented by variables x2 and x26 is the best.  

30. Based on this output, A1 assigns T1 and T6 to itself and sends the following 

assignment message to A2 to assign T4 and T5 to it. 

A1,ASSIGNTASK,::A1::::: 

<T4-T5> 

31. A1 executes its assigned tasks according to the schedule calculated earlier, T1 first 

followed by T6, with accrued quality of 738. 

32. A2 executes its assigned tasks according to schedule T5 first and T4 second, with 

quality 729. 
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 5. EVALUATION & EXPERIMENTAL RESULTS 

Our solution for finding an optimal schedule relies on the SAT solver. These are 

known to be NP-Complete, although many efficient implementations exit that use 

heuristics based solutions. 

In order to compare the computational benefit obtained by transforming our 

problem into a SAT problem, we compared it with a brute force algorithm to find the best 

scheduling solution. This algorithm works as follows: 

Input: Agents, Tasks, List<AgentUtilities> 

AgentsSize <- Size(Agents) 

TaskCombinationSize = Size(List<AgentUtilities) 

bestAllocation <= null 

bestScheduleUtility = 0 

Do for i=0 to TaskCombinationSize ^ AgentsSize 

  allocation <- GetAllocationForVariable(i) 

  If IsValid( allocation ) 

    utility = GetUtility( allocation ) 

    if utility > bestScheduleUtility 

        bestAllocation = allocation 

        bestUtility = utility 

return bestAllocation 

     

This algorithm is exponential with respect to number of tasks and agents. Some 

computational optimization has been done by exiting the loop for those cases which are 

clearly known to be infeasible, e.g. two agents performing the same task. But for all other 

cases, the brute force algorithm considers all possible allocations, calculate the quality 

accrued with that allocation, and then finds the one with highest quality. This brute force 
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algorithm is always guaranteed to find the most optimal solution. 

For our experimentation, we instrumented the code at the exact places where the 

allocation logic is entered and exited, and ran it twice one for the brute force algorithm 

and one for the SAT based algorithm, for the same problem. Both time values were 

calculated on the same machine and same memory and CPU environment.  

We started with small values of agents and tasks (two agents, two tasks) and kept 

on increasing each separately, until we reached six agents and six tasks. We used a test 

harness to generate random location of tasks, and then fed those tasks into the system for 

it to calculate the utilities for each agent and finding the best solution. For 

experimentation, we modified two elements of our source code. 

1. First, we added a separate step in the managing agent’s schedule calculation logic, to 

also calculate the schedule, using same data, but by using the PlainCalculator class, 

instead of the PseudoBooleanCalculator class. 

2. Second, we surrounded these calculation with timer functions, to capture the number 

of microseconds it took to perform the calculations. 

The Pseudo Boolean Solver function calls had some fixed overhead related to file 

reading operation, and initializations of the solver, which had the potential of skewing the 

results. To avoid this, we calculated the time consumed when applying the solver to a 

completely trivial problem, involving a single task and two agents, averaged these values, 

and then subtracted this from all PB durations, to make sure that the time considered is 

only that of solving the actual problem at hand.     

The results are provided in the charts below. Because of the vast differences in the 

time it took to perform the calculations, results are shown in logarithmic scale. 
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Figure 12 Two Agent calculations 
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Figure 13 Three Agent calculations 
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Figure 14 Four Agent calculations 
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Figure 15 Five Agent calculations 
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Figure 16 Six Agent calculations 

  

A few things can be noted from these experimental results. 

First we note that for very simple calculations, those involving just two or three 

agents, the plain calculation takes lesser duration than the SAT based calculation. This is 

true even after normalizing the calculation time by subtracting the time taken for the flat 

setup related time of the solver, which we had calculated earlier by passing a trivial 

problem through the same logic. In our mapping, the agents and tasks together become 

the number of variables, and the number of variables determines the calculation 
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complexity of the solver. Additionally, the number of tasks determine the constraints. 

Thus, for a very small number of variables and constraints, we see that we are better off 

deciding an allocation directly.  

As we keep increasing the complexity, we eventually notice that the  benefits of 

pseudo Boolean solver start showing, and the SAT based approach starts to complete in 

lesser duration for  four agents and four tasks. Thereafter, SAT computation is always 

more efficient for any great number of tasks and agents. 

We also note that as the complexity increases, for e.g. five agents and five tasks, 

the difference in computational efficiency becomes more and more pronounced. 

The upper and lower bounds of SAT solvers range from O(1.473a+t) to 

O((a+t)1.801) (Biere 2009) where a is the number of agents and t is the number of possible 

task combinations.  In our mapping of the problem to SAT solver, we can also specify a 

time value as parameter which determines the allowed time which it is given to run. The 

solver exists when that time elapses, and returns the best result it has found so far. If it is 

allowed to run continuously, it can take more time searching for an optimal solution, and 

if very little time is given, it is possible that it returns a sub optimal satisfying solution. 

However, the time it takes for brute force calculation to run, is usually much more than 

the time required to find an optimal solution. In our experiments, for the high complexity 

cases, e.g. 5 agents and 5 tasks, we found 25% cases at time limit of 1 second, where the 

results returned were not optimal. We can compare this with prior works e.g. (Modi 

2005) where the authors assume associative aggregation functions. However, the 

approach does not guarantee optimality, although certain quality guarantees are still 

possible.  In such approaches, the calculation complexity has been simplified and 
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delegated over to the agents, with the aggregation agent not required to perform any 

complex functions. Thus, our approach represents a different class of algorithms. 

Although our calculations are based on time, and their calculation is based on cycles, we 

can still see from the results that both algorithms manage to avoid exponential increase in 

calculation time, as demonstrated in Figure 9 in the paper.  

Distributed agent based coordination has also been addressed using Max Sum 

algorithm (Farinelli 2014). These solutions rely on a domain specific characteristic that 

interactions between neighboring agents only are significant. E.g. when applied to the 

surveillance problem, the area between two agents need to be surveyed by any one of 

these two neighbors, and a third neighbor further down does not have any impact on 

quality accumulated by surveillance coverage in this area. MaxSum algorithm exploits 

the fact that some nodes (agents) need to pass messages between them, while others do 

not. The algorithm, falls back to its worst case performance, when all agents need to 

communicate with each other, which is the case in our example, where sequence and 

dependencies between tasks taken up by one agent can impact any other agent, which is 

implied by our support of the Taems scheduling structure. The complexity of that 

solution is thus governed by O(ta+1), which is again an exponential bound, greater than 

the SAT based time bound. 
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6. FUTURE WORK 

The work in this thesis can inspire of a number of avenues for future research. 

One aspect is improving the SAT mapping to not only include task allocation, but also 

task sequencing. Since the utility function in Taems is independent and domain specific, 

it might be possible to abstract out the utility function into its own set of variables, and 

form a Satisfiability problem whose solution partially contains elements of the task 

schedule itself. Task scheduling constraints are diverse and complicated enough that we 

do not expect a generalization to be available that can fully convert the problem into a 

SAT style input formulation. However, for certain vertical domains, it might be 

worthwhile to exploit common characteristics of the problem to transform into a pseudo 

Boolean optimization problem.   

One other avenue for research is to use ADOPT (Modi 2005) based techniques to 

optimize the A* search, wherein the agent abandons exploration of a particular path 

based on knowledge which it has from previous executions and interactions with the 

managing agent. 

In our A* algorithm, we also developed certain state space pruning strategies 

which include consideration of task deadlines to abandon exploration of certain sections 

of the generated FSM. However, based on Taems formalism, there are additional rules 

which lend this mechanism to be made more complete and comprehensive. This, 

however, is an improvement in the software, rather than a new academic research. 

Similar to this, additional software efficiency enhancements include some caching 

mechanism when applying A* search to find highest valued paths within the FSM. 

The use of MQTT protocol in real life IoT situations e.g. drones or vehicular 
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agents, can be further studied to see what values of agent and task aggregation we well as 

Anytime characteristics of the A* search can be optimized to provide the most efficient 

execution. 

Another direction for future research can be to apply incremental constraint 

optimization algorithms. For this problem, we also tried to combine inequalities where 

integers to represent decisions. However, we were limited by the tools available like 

GLPK, however, more general solutions based on this approach should be possible and is 

a good avenue for future research. 
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