
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 86, pp. 1–10.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

ENTIRE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS

ALEXANDER GLADKOV, NICKOLAI SLEPCHENKOV

Abstract. We consider existence of entire solutions of a semilinear elliptic

equation ∆u = k(x)f(u) for x ∈ Rn, n ≥ 3. Conditions of the existence of
entire solutions have been obtained by different authors. We prove a certain

optimality of these results and new sufficient conditions for the nonexistence
of entire solutions.

1. Introduction

In this paper we study the existence of entire solutions of the semilinear elliptic
equation

∆u = k(x)f(u), x ∈ Rn, n ≥ 3, (1.1)
where k(x) is a nonnegative continuous function in Rn, f(u) is a positive continuous
function which is defined either in R or R+. We denote here R+ = (0,+∞). By
an entire solution of equation (1.1) we mean a function u ∈ C2(Rn) which satisfies
(1.1) at every point of Rn. The important particular cases of (1.1) are the equations

∆u = k(x)uσ, σ > 1, ∆u = k(x) exp (2u). (1.2)
The existence and the nonexistence of entire solutions for (1.2) have been inves-

tigated by many authors (see, for example, [7] – [11] and the references therein).
Equations (1.2) arise in physics and geometry, as stated in [3, 9, 10]. Equation (1.1)
has also been studied in papers such as [12, 13, 14], where it is shown the existence
of entire solutions. It has also been known [4, 12] that for some classes functions
f(u) under the condition ∫ ∞

0

sk(s) ds <∞, (1.3)

where k(s) = sup|x|=s k(x), equation (1.1) possesses infinitely many entire solutions
if dom f = R and infinitely many positive entire solutions if dom f = R+. We shall
use in this paper the following nonexistence statement of entire solutions of (1.1).

Theorem 1.1. Let f(u) satisfy the following conditions:

f(u) is convex, (1.4)∫ ∞

1

( ∫ v

0

f(u) du
)−1/2

dv <∞, (1.5)
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and there exists nonnegative non-increasing continuous function k?(r) such that

k?(|x|) ≤ k(x),
∫ +∞

0

s k?(s) ds = +∞, (1.6)

lim sup
r→+∞

k?(r) r2 > 0. (1.7)

Then (1.1) has no entire solutions if dom f = R and has no positive entire solutions
if dom f = R+.

Theorem 1.1 is a little more general assertion than [13, Corollary 2.1] and can
be easily obtained from that paper.

The main purpose of the present paper is to present new sufficient conditions for
nonexistence of entire solutions of (1.1), and to show a certain optimality of (1.3)
for the existence of entire solutions of (1.1).

The distribution of this paper is as follows. We show an optimality of the condi-
tion (1.3) for the existence of entire solutions of (1.1) for some class functions f(u)
in Section 2. In Section 3 we construct example of (1.1) with radially symmetric
function k(x) which demonstrates that the condition (1.3) is not necessary for the
existence of entire solutions. In Section 4, we give new sufficient conditions for the
nonexistence of entire solutions of (1.1). In particular it is shown that Theorem 1.1
is valid without assumption (1.7).

2. Optimality of existence condition

The aim of this section is to show a certain optimality of the condition (1.3) for
the existence of entire solutions of (1.1). The similar result for ordinary differential
equation of second order with f(u) = uλ, λ > 1, has been obtained in [5] and we
shall use here some ideas of that paper.

Theorem 2.1. Let f(u) satisfy (1.4), (1.5) and ϕ(r) be any positive continuous
function such that ϕ(r) → ∞ as r → ∞. Then there exist radially symmetric
positive continuous function k(x) = k(|x|) such that∫ ∞

0

sk(s)
ϕ(s)

ds <∞, (2.1)

and the equation (1.1) has no entire solutions if dom f = R and has no positive
entire solutions if dom f = R+.

Proof. Without lose of generality we can suppose that ϕ(r) ≥ 1 for r ≥ 0. We shall
construct positive locally Hölder continuous function ϕ(r) such that

1 ≤ ϕ̄(r) ≤
√
ϕ(r), ϕ̄(r) does not decrease,

ϕ̄(r)
r

→ 0 as r →∞ and does not increase for r ≥ R0,
(2.2)

where R0 > 0. Let r0 = 0 and ϕ0 = infr≥r0

√
ϕ(r) ≥ 1. We put ϕ2 = ϕ0 + 1 and

choose r1 such that r1 ≥ max{r0 + 1, exp(ϕ0)} and infr≥r1

√
ϕ(r) ≥ ϕ2. Denote

r2 = r1 exp(1). We define ϕ̄(r) on the interval [r0, r2) in the following way

ϕ̄(r) =

{
ϕ0, r ∈ [r0, r1) ,
ϕ0 + ln(r/r1), r ∈ [r1, r2) .
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Then ϕ̄(r1) = ϕ0, ϕ̄(r2) = ϕ0 + 1 = ϕ2. It is easy to see that ϕ̄(r) ≤ ln r for
r ∈ [r1, r2). For k = 2, 3, . . . we put ϕ2k = ϕ2k−2 + 1 and r2k−1 choose such
that r2k−1 ≥ max{r2k−2 + 1, exp(ϕ2k−2)} and infr≥r2k−1

√
ϕ(r) ≥ ϕ2k. Now set

r2k = r2k−1 exp(1) and

ϕ̄(r) =

{
ϕ2k−2, r ∈ [r2k−2, r2k−1) ,
ϕ2k−2 + ln(r/r2k−1), r ∈ [r2k−1, r2k) .

It is not difficult to verify that ϕ̄(r2k−1) = ϕ2k−2, ϕ̄(r2k) = ϕ2k and ϕ̄(r) ≤ ln r for
r ∈ [r2k−1, r2k). Constructed function ϕ̄(r) is locally Hölder continuous for r ≥ 0
and satisfies (2.2).

We define now a sequence τp, p = 0, 1, . . . as follows:

τ0 = 0, 1 ≤ τp+1 − τp ≤ τp+2 − τp+1, 2τp ≤ τp+1, (p+ 1)2 ≤ ϕ̄(τp)

and introduce for r ≥ R0 the function

k(r) =
ϕ̄(r)ψ(r)

r
,

where ψ(r) is positive locally Hölder continuous function such that

ψ(r) =

{
1/δp, r ∈ [τp, τp+1 − δp/10),
ap r + bp, r ∈ [τp+1 − δp/10, τp+1).

Here p = 0, 1, . . . , δp = τp+1−τp, and coefficients ap and bp we choose to join points
(τp+1 − δp/10, 1/δp) and (τp+1, 1/δp+1). For 0 ≤ r < R0 we can define k(r) in any
way to get positive non-increasing locally Hölder continuous function.

Let R0 ∈ [τi, τi+1). Using the definitions of ϕ̄(r), k(r) and ψ(r), we verify the
validity of (2.1), ∫ ∞

τi+1

k(s) s
ϕ(s)

ds =
∞∑

p=i+1

∫ τp+1

τp

ϕ̄(s)ψ(s)
ϕ(s)

ds

≤
∞∑

p=i+1

∫ τp+1

τp

ψ(s) ds√
ϕ(s)

≤
∞∑

p=i+1

1
ϕ̄(τp)

∫ τp+1

τp

ds

τp+1 − τp

≤
∞∑

p=i+1

1
(p+ 1)2

<∞.

Now we show that k(r) satisfies (1.6) and (1.7). Indeed, we have∫ ∞

R0

sk(s) ds ≥
∞∑

p=i+1

∫ τp+1

τp

ϕ̄(s)ψ(s) ds

≥
∞∑

p=i+1

∫ τp+1−δp/10

τp

ϕ̄(s)
τp+1 − τp

ds

≥
∞∑

p=i+1

9
10
ϕ̄(τp) =

9
10

∞∑
p=i+1

(p+ 1)2 = ∞.
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Put rp =
τp+1 + τp

2
. Then for p ≥ i+ 1 we get

k(rp) r2p = ϕ̄(rp)ψ(rp) rp =
ϕ̄(rp) rp
τp+1 − τp

≥ ϕ̄(rp)(τp+1 + τp)
2τp+1

=

=
1
2
ϕ̄(rp)

(
1 +

τp
τp+1

)
≥ 1

2
ϕ̄(τp) ≥

1
2

(p+ 1)2.

According to Theorem 1.1 the equation (1.1) with function k(x) = k(|x|) has no
entire solutions if dom f = R and has no positive entire solutions if dom f = R+. �

3. Counterexample to necessity of (1.3)

The condition (1.3) is not necessary for the existence of entire solutions of the
equation (1.1). To show this we give an explicit k(x) = k(|x|) which satisfies∫∞
0
sk(s) ds = ∞ and we construct a solution of (1.1) with this k(x). Note that

analogous examples of entire solutions for the equations (1.2) have been constructed
in [6]. We modify that construction. Constructed solution will also demonstrate in
Section 4 an optimality additional to (1.3) condition for the nonexistence of entire
solutions of the equation (1.1).

We suppose that g(r) be any positive nondecreasing continuous function such
that g(r) →∞ and g(r)/r → 0 as r →∞. Let {ap}∞p=1 and {rp}∞p=1 are sequences
which have the following properties:

a1 = 2α, ap+1 = ap + 2f(āp), f(āp) = max
α≤a≤ap

f(a),

r1 > 0, 1−
( rp
rp + 4(n− 2)rp[g(rp)]−1

)n−2

≤ 1
2

ap

f(āp)
,

g(rp) ≥ 4(n− 2), rp + 4(n− 2)rp[g(rp)]−1 < rp+1,

(3.1)

where α is some positive constant. We put rp = rp +4(n−2)rp[g(rp)]−1 and denote
k(r) a smooth function which satisfies the following relations:

0 ≤ k̄(r) ≤ g(r)
r2

for rp ≤ r < rp, p = 1, 2, . . . , (3.2)

k̄(r) = 0 for 0 ≤ r < r1, rp ≤ r < rp+1, p = 1, 2, . . . , (3.3)

1
n− 2

∫ rp+1

rp

r k̄(r)dr = 1, p = 1, 2, . . . . (3.4)

It is not difficult to show the existence of k̄(r) with properties (3.2) – (3.4). Indeed∫ r̄p

rp

g(r)
r

dr ≥ g(rp)
∫ rp+

4(n−2)rp
g(rp)

rp

dr

r
= g(rp) ln

(
1 +

4(n− 2)
g(rp)

)
≥ g(rp)

2(n− 2)
g(rp)

= 2(n− 2).

We used here that g(r) is a nondecreasing function, g(rp) ≥ 4(n − 2) and the
inequality

ln(1 + x) ≥ x

2
, 0 ≤ x ≤ 1.
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Note also that we can choose
∫ rp+1

rp
rk̄(r) dr any between 0 and its upper bound∫ rp

rp

g(r)
r dr. Let w̄(r) be the piecewise continuous function defined as

w̄(r) =


1
2a1 for 0 ≤ r < r1,

ap for rp ≤ r < rp, p = 1, 2, . . . ,
1
2ap+1 for rp ≤ r < rp+1, p = 1, 2, . . . .

(3.5)

We put

T ū = α+
1

n− 2

∫ r

0

(
1−

(s
r

)n−2
)
s k̄(s) f(ū(s)) ds. (3.6)

Lemma 3.1. Let ū(r) satisfy the inequalities α ≤ ū(r) ≤ w̄(r). Then T ū(r) ≤
w̄(r).

Proof. At first we suppose that 0 ≤ r ≤ r1. Due to (3.3), (3.5) and (3.6)

T ū = α ≤ w̄(r).

Assume now that rp ≤ r < rp. Using (3.1) – (3.6) we get

T ū =
1
2
a1 +

1
n− 2

j=p−1∑
j=1

∫ rj

rj

(
1− (

s

r
)n−2

)
s k̄(s) f(ū(s)) ds

+
1

n− 2

∫ r

rp

(
1− (

s

r
)n−2

)
s k̄(s) f(ū(s)) ds

≤ 1
2
a1 +

j=p−1∑
j=1

f(āj) + f(āp)
1

n− 2

(
1−

(rp
rp

)n−2
) ∫ rp

rp

s k̄(s) ds

=
1
2
ap + f(āp)

(
1−

(rp
rp

)n−2
)

≤ 1
2
ap + f(āp)

1
2

ap

f(āp)
= ap = w̄(r).

For rp ≤ r < rp+1 we have

T ū =
1
2
a1 +

1
n− 2

j=p∑
j=1

∫ rj

rj

s k̄(s) f(ū(s)) ds

≤ 1
2
a1 +

j=p∑
j=1

f(āj) =
1
2
ap+1 = w̄(r).

�

Now we can prove the main result of this section.

Theorem 3.2. Let k̄(r)be a smooth function satisfying (3.2) – (3.4). Then∫ ∞

0

s k̄(s) ds = ∞,

and the equation (1.1) with k(x) = k(|x|) has infinitely many positive entire solu-
tions.
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Proof. We consider the problem

ū′′(r) +
n− 1
r

ū′(r) = k̄(r) f(ū(r)),

ū(0) = α, ū′(0) = 0,
(3.7)

or equivalently the integral equation

ū(r) = α+
1

n− 2

∫ r

0

(
1− (

s

r
)n−2

)
s k̄(s) f(ū(s)). (3.8)

We shall prove that (3.8) has a solution for each 0 < α ≤ 1, and therefore the
equation (1.1) with k(x) = k(|x|) has infinitely many positive solutions.

Let C[0,∞) denote the locally convex space of all continuous function on [0,∞)
with the topology of uniform convergence on every compact set of [0,∞). Let U
be the set

U = {ū(r) ∈ C[0,∞), α ≤ ū(r) ≤ w̄(r) for r ≥ 0} ,

where 0 < α ≤ 1 and w̄(r) was defined in (3.5). Clearly, U is a closed convex
subset of C[0,∞). Now we consider the mapping T which was defined in (3.6). It
is obvious

T ū(r) ≥ α.

Due to Lemma 3.1

T ū ≤ w̄(r).

Thus T maps U into itself. It is easy to see that U is continuous. To prove that T
is also compact, we just compute

0 ≤ (T ū)′(r) =
∫ r

0

(s
r

)n−1

k̄(s) f(ū(s)) ds ≡M(r),

where M(r) is a bonded function on any segment [0, R], R > 0. Hence we are able
to apply the Schauder-Tychonoff fixed point theorem and conclude that T has a
fixed point u in U . This fixed point satisfies (3.8), and so we obtain a solution
u(|x|) of (1.1). �

4. Nonexistence of entire solutions

The main purpose of this section is to get new sufficient conditions for nonexis-
tence of entire solutions of (1.1). We introduce an auxiliary function

I(β) =
∫ ∞

β

( ∫ v

β

f(u) du
)−1/2

dv <∞, β > 0.

Let ū(r) denote the mean value of u(x) over the sphere |x| = r, that is,

ū(r) =
1

ωnrn−1

∫
|x|=r

u(x) dS,

where ωn is the surface area of the unit sphere in Rn, dS is the volume element in
the surface integral.

We shall use two lemmas which have been proved in [13].
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Lemma 4.1. Let f(u) be convex function and there exists nonnegative continuous
function k?(r) such that k?(|x|) ≤ k(x). If u(x) is a solution of (1.1) then ū(r)
satisfies the following conditions

ū′′(r) +
n− 1
r

ū′(r) ≥ k?(r) f(ū(r)),

ū′(0) = 0, ū(0) = u(0).
(4.1)

Lemma 4.2. Let f(u) satisfy (1.4) and (1.5). Then function I(β) does not increase
for sufficiently large values of β and limβ→∞ I(β) = 0.

Now we prove an auxiliary statement which has independent interest.

Theorem 4.3. Let f(u) satisfy (1.4), (1.5) and k?(r) be nonnegative continuous
function possessing the properties (1.6) and

(s/r)δ ≤
∫ s

R0

t k?(t) dt/
∫ r

R0

t k?(t) dt (4.2)

for r ≥ s ≥ R∗0 > R0, where δ, R∗0 and R0 are some positive constants. Then
the equation (1.1) has no entire solutions if dom f = R and has no positive entire
solutions if dom f = R+.

Proof. Let u(x) be any entire solution of (1.1). Then by Lemma 4.1 ū(r) satisfies
(4.1) which imply the following integral inequality with α = u(0)

ū(r) ≥ α+
1

n− 2

∫ r

0

(
1− (

s

r
)n−2

)
sk?(s)f(ū(s)) ds. (4.3)

Moreover, ū(r) is nondecreasing and ū(r) → ∞ as r → ∞. Since k?(r) is non-
negative continuous function then sets A(R, r) ≡ {s ∈ (R, r) : k?(s) > 0} and
A(R,∞) ≡ {s ∈ (R,∞) : k?(s) > 0} are union of finite or countable number of
intervals. By sets A(R, r) =

⋃
i(ai, bi) and A(R,∞) =

⋃
i(ai, bi) we introduce the

auxiliary sets in the following way A[R, r) =
⋃

i[ai, bi) and A[R,∞) =
⋃

i[ai, bi).
For r ∈ A[R0,∞), we put

h(r) =
∫

A[R0,r)

sk?(s) ds. (4.4)

By virtue of (1.6) and (4.4) h maps in a one-to-one manner A[R0,∞) on [0,∞).
Hence there exists inverse for h function g. We denote

t = h(r), τ = h(s), ū(g(t)) = w(t). (4.5)

Due to (1.4), (1.5) function f(u) is increasing for sufficiently large values of u.
Therefore f(ū(r)) is nondecreasing for r > R1 for some R1 > 0. We take R2 such
that R2 ≥ max{R1, R

∗
0}, k?(R2) 6= 0. Then by (4.3) – (4.5) for t > h(R2) we get

w(t) ≥ α+
1

n− 2

∫
A[R2,g(t))

(
1−

( s

g(t)
)n−2

)
s k?(s) f(ū(s)) ds

= α+
1

n− 2

∫ t

h(R2)

(
1−

(g(τ)
g(t)

)n−2
)
f(w(τ)) dτ.

(4.6)

It follows from (4.2) that
g(τ)/g(t) ≤ (τ/t)1/δ. (4.7)
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From (4.6) and (4.7) we deduce

w(t) ≥ α+
1

n− 2

∫ t

h(R2)

(
1− (

τ

t
)(n−2)/δ

)
f(w(τ)) dτ. (4.8)

Let T > h(R2) and T ≤ τ ≤ t ≤ 2T . Using (4.8) and the inequality

1− (
τ

t
)(n−2)/δ ≥ (n− 2)C(δ)

t− τ

τ
,

where C(δ) = min{1/2, 1/2(n−2)/δ}/δ, we obtain

w(t) ≥ β + C(δ)
∫ t

T

t− τ

τ
f(w(τ)) dτ.

Here we denote

β = α+
1

n− 2

∫ T

h(R2)

(
1− (

τ

t
)(n−2)/δ

)
f(w(τ)) dτ.

It is obvious β →∞ as T →∞. Put

z(t) = β + C(δ)
∫ t

T

t− τ

τ
f(w(τ)) dτ.

Then we have

z′′(t) = C(δ)
1
t
f(w(t)) ≥ C(δ)

1
t
f(z(t)) (4.9)

and z(T ) = β, z′(T ) = 0. If we multiply (4.9) by z′(t) and then integrate over [T, t],
we get

(z′(t))2 ≥ 2C(δ)
1
t

∫ z(t)

β

f(u) du.

Elementary calculations shows that( ∫ z(t)

β

f(u) du
)−1/2

z′(t) ≥
√

2C(δ)
t

.

Integrating the above inequality over [T, t], we infer

I(β) ≥
∫ z(t)

β

( ∫ v

β

f(u) du
)−1/2

dv ≥ 2
√

2C(δ)(
√
t−

√
T ). (4.10)

We put now t = 2T in (4.10) and pass to the limit T →∞. Then left hand side of
(4.10) tends to zero due to Lemma 4.2, on the other hand right hand side of (4.10)
tends to infinity. Obtained contradiction proves theorem. �

Corollary 4.4. Let function f(u) satisfy the conditions (1.4), (1.5) and k?(r) be
nonnegative continuous function possessing the properties (1.6) and

k?(r) ≤
C

r2
for r ≥ R3 > 0 (4.11)

for some values of R3 and C > 0. Then (1.1) has no entire solutions if dom f = R
and has no positive entire solutions if dom f = R+.
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Proof. We show that (4.2) is valid with δ = 1. Really, it is easy to verify that

d

dr

(∫ r

R0
t k?(t) dt

r

)
=
r2 k?(r)−

∫ r

R0
t k?(t) dt

r2
≤
C −

∫ r

R0
t k?(t) dt

r2
< 0

for sufficiently large values of r. Now by Theorem 4.3 the conclusion of corollary
follows. �

Remark 4.5. We constructed in Section 3 the function k(x) = k(|x|) such that∫∞
0
sk(s) ds = ∞, k(r) ≤ g(r)/r2 for r ≥ r1 > 0, where g(r) is any positive

nondecreasing continuous function with properties: g(r) → ∞ and g(r)/r → 0 as
r →∞, and the equation (1.1) has infinitely many positive entire solutions. Hence
the upper bound in (4.11) is optimal.

Remark 4.6. For the equations (1.2) similar to Theorem 4.3 and Corollary 4.4
statements have been proved in [2] under the additional assumption∫ r

0

sk?(s) ds is strictly increasing in [0,∞).

Using Corollary 4.4 and Theorem 1.1 it is not difficult to establish the following
assertion.

Corollary 4.7. Let function f(u) satisfy the conditions (1.4), (1.5) and k?(r)
be nonnegative continuous non-increasing for large values of r function satisfying
(1.6). Then the equation (1.1) has no entire solutions if dom f = R and has no
positive entire solutions if dom f = R+.

Remark 4.8. Corollary 4.7 gives new nonexistence criterion for (1.1) and this
statement is more general than any one in [13]. In particular Theorem 1.1 is true
without assumption (1.7).

Remark 4.9. All results of this section are valid for more general equation

∆u = p(x, u)

where p(x, u) is nonnegative continuous function satisfying the inequality

p(x, u) ≥ k(x)f(u).

Here the functions k(x) and f(u) possess the same properties as in our statements.
In particular the equation (1.1) with function f(u) satisfying the conditions (1.4),
(1.5) and function k(x) satisfying the inequality

k(x) ≥ {c|x|2(ln |x|)(ln ln |x|) . . . (ln . . . ln |x|)}−1,

where c > 0 and |x| ≥ r? > 0, has no entire solutions if dom f = R and has no
positive entire solutions if dom f = R+.
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