
 

A CALL RECOGNITION APPROACH FOR ENDANGERED OR THREATENED 

CHORUSING AMPHIBIAN SPECIES USING  

DEEP LEARNING ARCHITECTURES 

 

by 

 

Shafinaz Islam, B.Sc. 

 

A thesis submitted to the Graduate Council of 

Texas State University in partial fulfillment 

of the requirements for the degree of 

Master of Science 

with a Major in Engineering 

December 2020 

 

 

 

 

 

 

 

 

 

Committee Members: 

 Damian Valles, Chair 

 Michael Forstner 

 Harold Stern



 

 

COPYRIGHT 

by 

Shafinaz Islam 

2020



 

 

 

FAIR USE AND AUTHOR’S PERMISSION STATEMENT 

 

 

Fair Use 

 

This work is protected by the Copyright Laws of the United States (Public Law 94-553, 

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations 

from this material are allowed with proper acknowledgement. Use of this material for 

financial gain without the author’s express written permission is not allowed. 

 

 

 

Duplication Permission 

 

As the copyright holder of this work I, Shafinaz Islam, authorize duplication of this work, 

in whole or in part, for educational or scholarly purposes only. 



 

 

 

                                                      DEDICATION           

 

                                             To my mother Nilufa Islam 



 

v 

ACKNOWLEDGEMENTS 

 

I would like to express my deep gratitude to Dr. Michael Forstner, the Department of 

Biology, for giving the opportunity to work under Toadphone development research 

project. I am also thankful to him for his valuable time, guidance, and feedback. 

I feel blessed to have Dr. Damian Valles as my supervisor and my deep gratitude to him 

for his valuable efforts, time, suggestions, appreciations. 

I am grateful to Dr. Harold Stern for accepting to be a member of the thesis committee. 

I am thankful to Dr. Vishu Viswanathan for providing guidance throughout the graduate 

studies and also sharing with me his expert knowledge on audio signal processing. 

Last but not the list, I would like to thank my parents; my supportive husband; my 

relatives; my classmates from Texas State University; who were always there to inspire 

me and to give me mental support to move on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

TABLE OF CONTENTS 

 

                                                                                                                                       Page 

 

ACKNOWLEDGEMETS  ...................................................................................................v 

LIST OF TABLES  .......................................................................................................... viii 

 

LIST OF FIGURES  .......................................................................................................... ix 

 

ABSTRACT ...................................................................................................................... xii 

 

CHAPTER 

 

1. INTRODUCTION ...................................................................................................1 

1.1. The Present Status of Houston toad and Crawfish frog ....................................1 

1.2. Problem Statement ............................................................................................3 

1.3. Contribution ......................................................................................................7 

1.4. Thesis Outline ...................................................................................................7 

 

2. BACKGROUND .....................................................................................................9 

 

3. LITERATURE REVIEW ......................................................................................13 

3.1. Audio Data Pre-processing and Feature Extraction ........................................13 

3.2. Classification Algorithms ...............................................................................15 

3.3. Conclusion ......................................................................................................19 

 

4. DEEP LEARNING ALGORITHMS AND ENSEMBLE LEARNING ................20 

4.1. Recurrent Neural Network (RNN) ..................................................................21 

4.2. Long Short-Term Memory (LSTM) ...............................................................22 

4.3. Gated recurrent Unit (GRU) ...........................................................................23 

4.4. Convolutional Neural Network (CNN) ..........................................................24 

4.5. Ensemble Learning .........................................................................................25 

  

5. METHODOLOGY ................................................................................................27 

5.1. Audio Dataset .................................................................................................28 

5.2. Audio Data Pre-processing .............................................................................29 

5.3. Dataset Partitioning ........................................................................................32 

5.4. Audio Feature Extraction ................................................................................33 



 

vii 

5.5. Classification Model Architecture ..................................................................35 

5.6. The List of Experiments  ................................................................................41 

 

6. EXPERIMENTS AND RESULTS ........................................................................42 

6.1. Programming Environment and Computational Resources ...........................42 

6.2. Training and Evaluation Results .....................................................................43 

 

7. CONCLUSION ......................................................................................................68 

 

8. FUTURE WORK ...................................................................................................71 

 

APPENDIX SECTION ......................................................................................................72 

 

REFERENCES ..................................................................................................................74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

LIST OF TABLES 

 

Table                                                                                                                              Page 

 

1. List of Experiments ......................................................................................................41 

 

2. Summary of Results for the “Houston” or “Crawfish” Classification  

      Experiment  ..................................................................................................................61 

 

3. Comparison of Results for “Houston” or “Non-toad” Classification 

With and Without Ensemble ........................................................................................65 

 

4. Comparison of Results for “Crawfish” or “Houston” Classification 

With and Without Ensemble ........................................................................................65 

 

5. Comparison of Results for “Crawfish” or “Houston” or “Environment”  

Classification With and Without Ensemble .................................................................66 



 

ix 

LIST OF FIGURES 

 

Figure                                                                                                                            Page 

  

1. (a) Houston toad and (b) Crawfish frog .........................................................................2 

 

2. Flowchart Demonstrating the Working Principle of the Toadphone 1 ..........................4 

 

3. Wildlife Acoustic Song Meter .......................................................................................9 

 

4. A Toadphone 1 Structure .............................................................................................10 

 

5. Simple RNN Architecture ............................................................................................21 

 

6. LSTM Internal Architecture ........................................................................................23 

 

7. GRU Internal Architecture ...........................................................................................24 

 

8. An Example of Ensemble Learning .............................................................................26 

 

9. Architectural Building Blocks of Working Process.....................................................27 

 

10. Bandpass Filtered Frequency Spectrum of Houston toad Call ....................................30 

 

11. Bandpass Filtered Frequency Spectrum of Crawfish frog Call ...................................30 

 

12. The LSTM and GRU Model Structure for the “Houston toad” or “Non-toad” 

Classification Experiment with 39 MFCCs .................................................................43 

 

13. (a) Accuracy and (b) Confusion Matrix of the LSTM Model with 39 MFCCs for the 

“Houston toad” or “Non-toad” Classification Experiment ..........................................45 

 

14. (a) Accuracy and (b) Confusion Matrix of the GRU Model with 39 MFCCs for the 

“Houston toad” or “Non-toad” Classification Experiment ..........................................46 

 

15. (a) Mel-Spectrogram of Audio File Having Toad Call, (b) Mel-Spectrogram 

            of Audio File Having Non-toad (Only Environment Sound) ......................................46 

 

16. (a) Cropped Mel-Spectrogram of Audio File Having Toad Call, (b) Cropped Mel-

Spectrogram of Audio File Having Non-toad (Only Environment Sound) .................47 



 

x 

17. CNN Model Structure for the “Houston toad” or “Non-toad” Classification 

Experiment with Mel-Spectrogram Images .................................................................48 

 

18. (a) Accuracy and (b) Confusion Matrix of CNN Model with Mel-Spectrogram 

      for the “Houston toad” or “Non-toad” Classification Experiment ..............................49 

 

19. LSTM and GRU Model Structure for the “Houston” or “Crawfish” Classification 

Experiment with 39 MFCCs ........................................................................................50 

 

20. (a) Accuracy and (b) Loss Plots of the LSTM for 39 MFCCs with the SGD 

Optimizer, 0.001 for the Learning Rate, and 200 Epochs ...........................................51 

 

21. (a) Accuracy and (b) Loss Plots of the GRU for 39 MFCCs with the SGD Optimizer, 

0.001 for the Learning Rate, 200 Epochs ....................................................................52 

 

22. (a) Accuracy and (b) Loss Plots of the LSTM and 39 MFCCs with the ADAM 

Optimizer, 0.001 for the Learning Rate, and 200 Epochs ...........................................53 

 

23. Confusion Matrix of the LSTM with 39 MFCCs for the ADAM Optimizer, 0.001 for 

the Learning Rate, and 200 Epochs .............................................................................53 

 

24. (a) Accuracy and (b) Loss Plots of the GRU for 39 MFCCs with the ADAM 

Optimizer, 0.001 for the Learning Rate, And 200 Epochs  .........................................54 

 

25. Confusion Matrix of the GRU with 39 MFCCs for the ADAM Optimizer, 0.001 for 

the Learning Rate, and 200 Epochs .............................................................................54 

 

26. (a) Accuracy and (b) Loss Plots of the LSTM and 39 MFCCs with the ADAM 

Optimizer, 0.0001 Learning Rate, 300 Epochs ............................................................56 

 

27. Confusion Matrix of the LSTM with 39 MFCCs for the ADAM Optimizer, 0.0001 

Learning Rate, 300 Epochs ..........................................................................................57 

 

28. (a) Accuracy and (b) Loss Plots of GRU with 39 MFCCs for the ADAM Optimizer, 

0.0001 Learning Rate, 300 Epochs ..............................................................................57 

 



 

xi 

29. Confusion Matrix of the GRU with 39 MFCCs for the ADAM Optimizer, 0.0001 

Learning Rate, 300 Epochs ..........................................................................................58 

 

30. LSTM and GRU Model Structure for the “Houston” or “Crawfish” Classification 

Experiment with 16 SSCs ............................................................................................59 

 

31. (a) Accuracy And (a) Loss Plots of The LSTM with 16 SSCs for ADAM Optimizer, 

0.0001 for the Learning Rate, and 300 Epochs ............................................................60 

 

32. (a) Accuracy and (b) Loss Plots of the GRU with 16 SSCs for the ADAM Optimizer, 

0.0001 for the Learning Rate, and 300 Epochs ............................................................60 

 

33. Accuracy/Loss Plots of LSTM with 39 MFCCs for the “Houston” or “Crawfish” or 

“Environment” Classification Experiment ..................................................................63 

 

34. Confusion Matrix of LSTM with 39 MFCCs for “Houston” or “Crawfish” or 

“Environment” Classification Experiment ..................................................................63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

ABSTRACT 

Audio signal analysis has become prominent in biological domains for detecting 

endangered or threatened species like Houston toad and Crawfish frog. Researchers at 

Texas State University and Texas A&M University are working on a project to steward 

these species and understanding the causes of their decline. The researchers are currently 

using an Automated Recording Device (ARD), the Toadphone 1, which is an embedded 

solution. The hardware platform can perform detection tasks without human interruption 

and can provide near real-time notification. However, this device’s predictive model for 

the software solution has limited success to serve the primary purpose for which it was 

developed, which is to provide proper identification of Houston toad calls. Also, the 

current predictive model for Toadphone 1 was only designed for the Houston toad calls. 

There is another near-threatened chorusing amphibian, the Crawfish frog, which has 

become a concern of the researchers working to protect this species.  

This thesis research experimented with a modified predictive model for the 

existing Toadphone 1 software solution, predicting a Houston toad call with decreased 

false-positive rates.  The model can also perform the call recognition task for Crawfish 

frog calls. This work used the audio data for Houston toad and Crawfish frog collected by 

the Department of Biology to train the predictive model. Before training, the audio data 

spectrum was studied to find the frequency range of Houston toad and Crawfish frog call. 

Next, the audio data have been iteratively preprocessed using digital filters and then 
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applying framing, the Hamming window function to each frame. Mel-frequency Cepstral 

Coefficients (MFCCs) with their first and second derivatives or Spectral Sub-band 

Centroids (SSCs) or Mel-spectrograms audio features have been extracted for each frame. 

These features were used to train the predictive or classification model for Houston toad 

or Crawfish frog call prediction. Advanced Recurrent Neural Network (RNN) algorithms 

such as Long Short-Term Memory unit (LSTM) or Gated Recurrent Unit (GRU) and 

Convolutional Neural Network (CNN) were utilized, which are sub-fields of deep 

learning network architectures. Several model architectures were experimented with 

using different combinations of classifiers and audio features with tuned hyperparameters 

to build the best predictive model. The voting mechanism of ensemble learning was 

developed to make the final prediction from the three-best models. Lastly, the predictive 

model was evaluated on a near real-time prediction system. 
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1. INTRODUCTION 

It is only possible to monitor and then conserve what can be documented, 

especially for rare taxa that are difficult to locate or detect. For vocalizing species, audio 

recorder technology enables detection and increases the efficiency of documenting the 

species’ presence at a given pond or habitat patch. In this way, audio signal analysis has 

become prominent in biological domains for applications in animal call detection. This 

technology provides crucial data needed for stewardship actions in vocalizing endangered 

or threatened species by detecting or locating their calls. The Houston toad is already 

listed as an endangered species, and the Crawfish frog is a near-threatened amphibian 

species. Biology Department researchers at Texas State University and Texas A&M 

University are working on a project to steward these species. This thesis research is a part 

of this project work and used audio data analysis technology for vocalizing species 

Houston toad and Crawfish frog’s call detection. 

The following sections discuss the present status of Houston toad and Crawfish 

frog, provide a problem statement, describe contributions of this thesis, and give an 

outline of this thesis research. 

 

1.1 The Present Status of Houston toad and Crawfish frog 

John Wottring, an amateur herpetologist, first identified the Houston toad (Bufo 

[Anaxyrus] houstonensis) in the 1950s in south Houston, Texas. The Houston toad 

requires very specific environmental conditions to live in an area. Fourteen eastern-

central Texas counties have supported Houston toads including Austin, Bastrop, 

Burleson, Colorado, Freestone, Fort Bend, Harris, Lavaca, Lee, Leon, Liberty, Milam, 
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and Robertson counties. Unfortunately, only 20 years after its initial discovery, the 

population collapsed due to habitat loss and alteration.  In 1973, the Houston toad became 

the first amphibian to be added to the endangered species list. It has undergone several 

significant reductions in its overall population numbers since its description 70 years ago. 

Besides the Houston toad, there is another chorusing amphibian species known as the 

Crawfish frog (Rana areolate), which is identified as a Near Threatened species by the 

World Conservation Union [1]. The range of the Crawfish frog is from Texas to 

Mississippi in the south and from Indiana west to Nebraska in the north, though the 

species is believed to be extirpated from much of its northern range [1]. The Crawfish 

frog species is near threatened because of similar issues to the Houston toad, including 

habitat loss due to drainage of breeding habitat, urban and agricultural development, and 

fish-stocking. Figure 1(a) from [2] and Figure 1(b) from [3] show the images of Houston 

toad and Crawfish frog, respectively.  

 

 

Figure 1: (a) Houston toad (Bufo [Anaxyrus] houstonensis) [2] and 

(b) Crawfish frog (Rana areolate) [3] 
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1.2 Problem Statement 

Biodiversity refers to the variety of living species on earth, including plants, 

animals, bacteria, and fungi. Losses of biodiversity are both indicators of underlying 

ecosystem issues and often coincident to the loss of other species within its ecosystem. 

Healthy ecosystems are required for human health and well-being as it is these systems 

which provide us with our environment, most critically clean air, water, or land. It is 

necessary to take stewardship actions to protect and seek to recover those species that are 

threatened with extinction. However, those species are by default rare, making it 

increasingly difficult to locate or detect them as they decline. If a species can chorus or 

call, it is possible to locate them by detecting their call or chorusing through audio 

solutions and mechanisms to help the conservation efforts. It is possible to locate the 

Houston toad and Crawfish frog identifying the localization of their mating calls, 

enabling field researchers to protect their eggs from being eaten by predators. These 

species can be found mostly in remote areas, such as forest or near a pond. It is an 

exhaustive work for human beings to perform the detection task by physically staying on 

those location sites prevalent of the toad and frog. Detecting or identifying species using 

automatic audio recording and analysis technology has become very popular for rare 

species monitoring of different animal species. The advancement of Machine Learning 

(ML) and deep learning techniques enables audio signals to be used in the broader 

biological domain for detection. Researchers from different organizations, such as the 

Houston Zoo, Texas Parks and Wildlife Department (TPWD), Texas State University, 

and the United States Fish and Wildlife Service (USFWS) are currently working to 

protect the Houston toad from extinction. The goal is to steward wild populations and 
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also to head start early life-stages, eggs, tadpoles, etc., in the field or by raising them to a 

larger size in captivity. Currently, researchers are using an Automated Recording Device 

(ARD), Toadphone 1 [4] in a number of remote sites for the detection of Houston toad 

calls. The Toadphone 1 is an embedded solution and capable to recording environment 

audio, performing toad call detection operation from recorded audio automatically 

without any human interruption, and transmitting near real-time notification of toad call 

detection. The workflow diagram of Toadphone 1 is shown in Figure 2. 

 

 

Figure 2: Flowchart Demonstrating the Working Principle of the Toadphone 1 
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The detection of the toad call from recorded environmental audio is done by the computer 

programming. Currently this is the software solution of Toadphone 1. The software 

solution of the Toadphone 1 is mainly the trained model which includes audio data 

analysis. This trained model would take the recorded audio as a test data and would 

predict if it is a toad call or not. Two of the major parts in audio data analysis are audio 

feature extraction and classification algorithms. The Toadphone 1 implemented the Mel-

Filterbank and thirteen MFCC for feature extraction techniques, and the Support Vector 

Machine (SVM) and the Multi-layer Perceptron (MLP) as classifiers [4]. 

This device has limitations to its software solution in detecting Houston toad calls 

correctly due to false-positive notifications of Houston toad’s presence. The device 

cannot differentiate among the calls of Houston toad and several other species, such as 

other chorusing amphibian species, mole cricket, or multispecies chorus composites, as 

these species or groups can have similarities in frequency, pitch, and intensity of their 

calls with Houston toad call. The accuracy for Houston toad call detection of the current 

Toadphone 1 is 66.67% [4].  

This is a hinderance to the accurate conservational effort of this endangered 

species and requires further improvement in design and implementation. As the Crawfish 

frog is also an impending endangered species, researchers have also planned to add its 

detection to their conservation efforts. The detection process of the Crawfish frog is 

similar to the Houston toad, and it also can be performed by identifying the localization 

of their mating calls. Hence, the software solution in the Toadphone 1 device 

improvements are to reduce the false-positive notifications using proper detection 
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mechanisms for the Houston toad call and adding the capability to detect calls of an 

additional chorusing amphibian Crawfish frog. 
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As a result, this thesis research work implemented progressive Deep Neural Network 

classifiers such as Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and 

Convolutional Neural Network (CNN) including audio feature extraction algorithms, 

such as Mel-Frequency Cepstral Coefficients (MFCCs) with delta and delta-delta 

coefficients, Spectral Sub-band Centroids (SSCs), and Mel-spectrograms. Voting 

mechanism of ensemble learning is applied. This improved software solution approach is 

capable of detecting Houston toad with reduced false-positives and is also able to detect 

Crawfish frog calls. 

 

1.3 Contribution 

The contributions of this thesis research have been summarized as follows: 

• Development of a modified software solution or a trained and tested model for 

Toadphone 1 using Recurrent Neural Network algorithms to recognize the 

endangered chorusing amphibian species “Houston toad” call by reducing false-

positives classifications and higher prediction accuracy compared to the existing 

Toadphone 1 software solution.  

• Adding another threatened chorusing amphibian species, the “Crawfish frog,” to the 

call recognition task.  

• Application of Ensemble learning 

 

1.4 Thesis Outline 

The thesis begins with a background chapter that discusses the initial and current 

approaches for toad call detection and the motivation towards developing a modified 
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software solution for Toadphone 1. The following chapter discusses the relevant literature 

and methods related to the animal audio or any kind of acoustic scene or environment 

sound classification and recognition. Chapters 4 is a theoretical chapter discussing the 

Recurrent neural networks internal architectures, the description of different layers for 

Convolutional Neural networks and an overview of Ensemble learning. Chapter 5 

discusses the methodology of building a modified software solution or the trained model 

for Toadphone 1.  Chapter 6 shows and discusses the experiment results in detail to 

justify the choices and mechanisms adapted to implement the deep learning model for 

this work. Conclusions are provided in chapter 7. Finally, in chapter 8, few directions for 

further research have been described.                         
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2. BACKGROUND 

As a chorusing amphibian species, Houston toad can be detected using their calls. 

Several techniques have been performed for its detection using audio signal processing 

and audio recognition methods. The initial set up approach of the stewardship process 

involves and depends on human labor, travel, and manual analysis of captured data. 

Eighty Wildlife Acoustics song meters have been placed at locations where Houston 

toads can be found throughout the state of Texas. The research team travels to specific 

sites to collect the data after a few weeks and processes the collected data manually to 

identify Houston toad call’s presence in the audio files. The time gap between the 

collection of data and identification of the toad calls has made this process a potential 

opportunity to develop a near real-time detection system solution. Figure 3 shows the 

setup of a Wildlife Acoustics song meter with its power management system attached to a 

tree. 

 

 

Figure 3: Wildlife Acoustic Song Meter 
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The Toadphone 1 is the current system device being tested by the Biology 

Department at Texas State University. The Toadphone 1 device is an embedded solution 

that performs detection operation automatically without any human interruption, with 

near real-time notification transmission capabilities. The system consists a software 

solution deployed on a Raspberry Pi-3 board for on-field Houston toad detection, a solar-

powered battery for power management, a microphone for audio data recording, an 

environmental sensor for environmental data collection, a flash drive for collecting audio 

data and environmental sensor data, and a cellular modem for the internet connection for 

providing near real-time notifications.  All these peripheral components are connected to 

a Raspberry Pi-3 board using its USB and other serial ports. Figure 4 shows a Toadphone 

1 structure placed near a place where toad calls can be recorded. 

 

 

Figure 4: A Toadphone 1 Structure 
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The software solution or the trained model of the Toadphone 1 includes audio 

signal processing algorithms, such as filtering, framing, and windowing audio signals. 

The Toadphone 1 has advantages over the song meter approach by performing onboard 

automated detection operations. During the Houston toad’s breeding season, about 46 

Toadphone 1s have been placed at locations where Houston toad may be found. All the 

tasks for the Houston toad call detection using audio recording, processing the recorded 

audio, and recognizing the toad and non-toad call using pattern recognition algorithm are 

performed on a single board device. An internet module is included with the Toadphone 

1 device to transmit near real-time Houston toad call detection notifications and recorded 

captured audio files. However, the Toadphone 1 has limitations with a large false-positive 

number of a toad call detections in a file where there is no actual toad call signature 

present. Hence, the current Toadphone 1 software solution produces an accuracy of only 

66.67% of true-positive detections. 

This thesis research experimented and developed a model that is able to detect 

Houston toad along with another near threatened chorusing amphibian specie known as 

the Crawfish frog. The main objective is significantly improving detection of Houston 

toad call and adding Crawfish frog call recognition. The goal is thus to build a solution 

with reduced false-positive rate using ML classifiers and advanced audio features. The 

development of the ML model will aid the conservation effort in identifying the presence 

of these species with high accuracy performance rates. According to previous research 

work on species detection or environmental sound detection, Neural Network 

architectures have efficient ML techniques for pattern recognition or identification. This 

thesis work experimented with several neural network architectures such as CNNs, 
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LSTMs, and GRUs along with feature extraction algorithms such as MFCC, Mel-

spectrograms and SSC. Also, ensemble learning has been applied in an attempt to make 

the predictions more robust. These models were evaluated based on standard ML 

performance metrics such as accuracy, loss, and confusion matrix.                 
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3. LITERATURE REVIEW 

            This chapter discusses the previous research works in the field of audio signal 

processing, recognition, and classification. Previously, most of the research work on 

voice or audio signal detection was done by utilizing human speech. However, due to the 

increased attention in ecology centric analytic research, audio signals are also being used 

in biological domains, such as for animal detection. The main challenge with animal 

sound is the surrounding environmental background noises. Advancement of ML and 

neural network techniques have enabled researchers to overcome some of the related 

problems. The techniques followed by the researchers in the field of animal voice 

detection, or any kind of audio detection, is useful for the Houston toad and Crawfish 

frog recovery research work. This chapter is divided in three subsections: 

1.5. Audio data pre-processing and feature extraction 

1.6. Classification algorithms 

1.7. Conclusion 

 

3.1 Audio Data Pre-Processing and Feature Extraction 

This subsection discusses previous research works in the field of audio signal, 

data preprocessing, and feature extraction. 

Authors in [5] used digital filters for a pre-processing stage of animal audio 

signals for segmentation, as strong interference noise from the environment can shadow 

the vocalizations within the data. After choosing this preprocessing step, the success rate 

of identifying segmented bio signal improved dramatically, and false positive rate 

reduced. The success rate for this work in [5] is 98% which is 8% higher compare to the 
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commercial song scope for segmentation of bio signals. The method of using digital 

filters is a good choice for this work as the Houston toad call or the Crawfish frog call is 

surrounded by environment noise. The false positive issue can be reduced for Houston 

toad and Crawfish frog call detection by applying digital filters to the signals. 

Authors in [6] compared MFCC, LFPC, Spectral, and PLPC audio features for 

singing voice detection or characterizing vocal and non-vocal portions of a song. Authors 

in this paper used music genres database such as rock, pop, folk, funk, and jazz. 

Independent datasets of popular music recordings were used for training, validation, and 

testing. The validation database consists of 63 fragments of 10 seconds and an 

independent evaluation was conducted on a testing database of 46 manually annotated 

songs, for a total duration of 3 hours. The results showed that MFCCs and their 

derivatives are the most appropriate features. The paper [6] gained 84% accuracy with 

MFCC features and 60% to 70% accuracy with LFPC, Spectral, and PLPC features for 

classifying the vocal and non-vocal parts of a song.  

Authors in [7] used the TIMIT database which is a database with English 

connected speech prepared by Texas Instruments and MIT. From 6300 utterances in the 

TIMIT database, 5670 of them are used for the training system, and 630 utterances were 

used for the test. Authors in [7] used three different features such as 12 Linear Predictive 

Cepstral Coefficients (LPCC), 26 Spectral Sub-band Centroids (SSC) and 38 Linear 

Predictive Spectral Sub-bands (LPSS) which is a combination of LPCC and SSC 

features. The LPCC features gained 96.2%, the SSC features gained 97.1% accuracy for 

speaker recognition and combining LPCC and SSC features produced the highest 

accuracy which is 99%.  
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Authors in [8] used Mel-frequency cepstral coefficients (MFCCs) or spectrograms 

as audio features for acoustic scene classification from real life audio recordings.  The 

MFCC features were extracted using a Hamming window with window-size 40ms and 

50% overlap. 39 MFCCs were extracted including ∆- and ∆2 coefficients. For the 

experiments in [8], the authors used either MFCCs + ∆ + ∆2 features, or raw 1025-bin 

log magnitude spectrograms. The spectrogram features produced 79.1% accuracy where 

MFCC features gained 78% accuracy for real world acoustic scene classification. 

 

3.2 Classification Algorithms 

A) Recurrent neural network for audio analysis 

            This subsection discusses previous research works related to the implementation 

of recurrent neural networks for audio detection or classification. 

           Authors in [8] proposed an efficient framework for environmental acoustic scene 

and event classification. The authors of [8] evaluated their framework on environmental 

sound scenes of the IEEE Detection and Classification of Acoustic Scenes and Events 

challenge (DCASE2016). The challenge comprised four tasks: acoustic scene 

classification, sound event detection in synthetic audio, sound event detection in real-life 

audio, and domestic audio tagging. Authors indicated the great success of deep recurrent 

networks for sequence modeling like audio data and used gated recurrent neural networks 

(GRNNs) as a classification algorithm for acoustic scene classification and acoustic event 

detection.  This system in [8] reaches an overall accuracy of 79.1% that has improved and 

outperformed the baseline Gaussian Markov Model (GMM) system by 8.34%. 
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In [9], authors proposed a method to perform sound event classification and 

detection. In this work, they used Gated Recurrent Units (GRUs), which is one type of 

GRNNS. The work in [9] classified fifteen classes of sound. Authors in this paper 

claimed that Recurrent neural networks (RNN) showed their effectiveness and flexibility 

in working with various problems in audio analysis. Among 15 classes, each class 

achieved classification accuracy of more than 80% with an overall accuracy of 82.09%. 

In [10], the authors proposed an approach to detect polyphonic sound events in 

real-life recordings. Due to the presence of multiple and overlapping sounds, this problem 

is known as polyphonic detection. Authors used a multilabel bi-directional long short-

term memory (BLSTM)-RNNs model with multiple hidden layers to map the acoustic 

features to class activity indicator vectors. This method was experimented on a large 

database of real-life recordings, with 61 classes, such as music, car sounds, and speech 

sounds, from ten different everyday contexts. Their average F1-score was 65.5% on one-

second blocks and 64.7% on single frames and improved previous state-of-the-art 

approaches such as Hidden Markov models (HMMs), and Feedforward neural network 

(FNN) by 6.8% and 15.1% respectively. 

In [11], authors proposed a new method for singing voice detection based on a 

BLSTM-RNN. This classifier is able to take a past and future temporal context into 

account to decide on the presence/absence of a singing voice. Authors used the Jamendo 

Corpus, a publicly available dataset including singing voice activity annotations. It 

contains 93 copyright-free songs. The corpus is divided into three sets: the training set 

contains 61 files; the validation and test sets contain 16 songs each. Authors found the 

best architecture for BLSTM-RNN with three hidden layers whose sizes are 30, 20 and 
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40. Their method significantly outperformed state-of-the-art methods such as Support 

Vector Machines (SVMs), Hidden Markov Models (HMMs), Random Forests or 

Artificial Neural Networks (ANNs) and gained an accuracy of 91.5%.        

B) Convolutional neural network (CNN) for audio data analysis 

            This subsection discusses previous research works related to the implementation 

of convolutional neural network for audio detection or classification. 

            Authors in [12] present a novel approach for pattern classification of animal voice 

that is composed of multiple CNNs and SVM. The dataset contains three Classes such as 

anurans, birds, and insects. Anuran sounds are recorded with 44.1 kHz sampling rate 

from their natural habitats, bird sounds were collected from http://www.ebird.org, insect 

sounds were collected from Korea Wild Animal Sound Dictionary released by National 

Institute of Biological Resources. Among them, orthopteran including crickets and 

grasshoppers is selected. The database collection contains a total of 52,765 segments for 

102 species. In detail, the database is composed of 4,878 segments for 8 anuran species, 

21,749 segments for 43 bird species, and 26,138 segments for 51 insect species. To 

classify the species into three Classes, three CNNs that are pretrained for classifying each 

of the three species are applied for feature extraction. CNN took the spectrograms as 

input and produced mid-level features for an SVM classification model. The proposed 

model obtained an accuracy of 98.91% for classifying an anuran, a 77.235% for 

classifying a bird, and an 81.69% for classifying an insect. 

In [13], a bird song classification method was introduced using a popular encoder-

decoder CNN structure. The input to the network is a spectrogram, and the output is an 

image of the same size with pixels labeled as either background or one of the bird 

http://www.ebird.org/
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species. Authors in [13] have acquired true positive rate (TPR) of 0.988 and false positive 

rate (FPR) of 0.02. This work suggests developing an RNN model that considers the 

temporal relation between bird syllables.        

The work in [14] evaluates a set of popular ML approaches on audio data from 

the cat and dog families. Data has been used from three different data sources: the 

Macaulay Library, Freesound.org, and the Google Audio set. Authors employed two 

libraries to perform the audio feature extraction task with Librosa and pyAudioAnalysis 

in Python. The Librosa library produces 40 MFCCs, twelve chroma features for pitch 

information, 128 Mel-spectrograms, seven spectral contrasts, and six tonnetz quantities 

for tonal distance characterizations. It also extracted spectrogram images as 2D arrays. 

Different ML techniques has been evaluated: k-Nearest Neighbors (kNN), Logistic 

Regression, SVM, DNN, and CNN. The CNN trained with spectrograms extracted from 

exclusively high-quality audio files achieved over 91% high accuracy on the high-quality 

test data. 

            Authors in [15] used deep-learning methods for feature extraction and 

classification of frog calls. They did not use any predesigned features but allowed a deep-

learning algorithm to find the features that are most important for classification. The 

audio recordings came from a mixture of web-based collections and field recordings 

made in Florida. Different CNN implementations were tested on a dataset of about 200 

calls from fifteen frog species. Average classification accuracy reached is 77% due to the 

low number of samples in its datasets.  

Authors in [16] performed binary classification of Anuran species using CNN. 

They used MFCCs audio features in the form of image as input. The dataset used in [16] 
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experiments contains ten anuran species from four different families. The sound 

recordings were collected in the anuran habitat, under real noise conditions. The audio 

recordings are stored in wav format with a sample rate of 44.1 kHz and 32 bits per 

sample. Results are compared with other classifiers such as k-Nearest Neighbors (kNN), 

Decision Tree (DT), Quadratic Discriminant Analysis (QDA) and Support Vector 

Machine (SVM) and the proposed approach outperformed others and gained accuracy of 

more than 90%. 

 

3.3 Conclusion 

The goal of this research is the call recognition of two chorusing amphibian 

species Houston toad and Crawfish frog. The task of chorusing amphibian call 

recognition is also close to the task of speech recognition, singing voice detection, or 

music audio classification. Previous works experimented and compared different feature 

extraction algorithms and found MFCC with delta and delta-delta coefficients, SSCs, 

Mel-spectrograms to be the most robust features that provide high accuracy performance. 

According to previous work, utilizing neural network algorithms such as LSTM, GRU, 

and CNN as classification algorithms showed promising results for animal call detection 

or any audio detection. Based on these related research efforts, this thesis work 

experimented and evaluated MFCCs with delta and delta-delta coefficients, Mel-

spectrograms as audio features and included the LSTM, GRU, CNN as classifiers for two 

chorusing amphibian species Houston toad and Crawfish frog call detection 
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4. DEEP LEARNING ALGORITHMS AND 
ENSEMBLE LEARNING 

 

 Deep Learning is a subfield of machine learning concerned with algorithms 

inspired by the brain’s structure and its function called artificial neural networks. At the 

same time, much of the literature and concepts on deep learning are concerned with 

computer vision and natural language processing (NLP) applications, audio data analysis 

that includes automatic speech/audio recognition, digital signal processing, audio 

classification, tagging, and generation. Deep learning models can achieve state-of-the-art 

accuracy, sometimes exceeding human-level performance. This thesis research aims to 

recognize the call of two chorusing amphibian species as audio data analysis by 

implementing deep learning architectures to perform the call recognition task. 

            Among all the deep learning architectures, the Recurrent Neural Network (RNN) 

has become a popular technique for sequential data analysis like audio data [17]. This 

thesis research experimented with two modified RNN architectures, Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) for Houston toad and Crawfish frog 

call detection. 

Audio data can also be visualized as an image, which is a spectrogram. A 

spectrogram is a detailed view of audio, able to represent time, frequency, and amplitude 

all on one graph. Analysis of an audio signal based on its spectrogram can be considered 

as a computer vision task. Convolutional Neural Network (CNN, or ConvNet) is a part of 

deep learning which is most applied to analyzing visual imagery. This thesis work also 

experimented with CNN for audio analysis based on spectrograms. 

The following sections give an overview of RNN with its modified versions and 

CNN in detail. 
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4.1 Recurrent Neural Network (RNN) 

An RNN is an extension of a conventional feedforward neural network, which can 

handle a variable-length sequence input. The RNN handles the variable-length sequence 

by having a recurrent hidden state whose activation at each time is dependent on that of 

the previous time. The problem mentioned in this research is the accurate detection of 

Houston toad and Crawfish frog using their calls, for which the audio signal classification 

and processing requires sequence modeling that can be performed by RNNs. Figure 5 

from [18] shows the basic architecture of RNN. 

 

 

Figure 5. Simple RNN Architecture [18] 

 

Some researchers in the field of audio signal recognition have observed that it is 

challenging to train RNNs to capture long-term dependencies because the gradients tend 

to either vanish or explode [8]. To overcome this problem, they have suggested using 

other types of RNNs, Gated Recurrent Neural Network (GRNNs), whose hidden units are 

gate based [8]. There are two types of GRNNs: LSTMs and GRUs. According to recent 

research, both LSTM and GRU have achieved tremendous success for accurate 

classification or detection from sequential or time-series data like audio data. This 
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research experimented and evaluated the performances of LSTM and GRU for the proper 

detection of two chorusing amphibian species call or audio data with a reduced false-

positive rate.  

 

4.2 Long Short-Term Memory (LSTM) 

       LSTM is an artificial recurrent neural network (RNN) architecture used in the 

field of deep learning. LSTM has feedback connections which makes it different from 

standard feedforward neural networks. It is capable of processing single data points such 

as images, and entire sequences of data such as speech, audio, or video. That is why 

LSTM is applicable to audio recognition, speech recognition or handwriting recognition. 

A LSTM unit has an input-gate, an output-gate, and a forget-gate. The cell remembers 

values over time intervals, and the three gates of LSTM are used to regulate the flow of 

information into and out of the cell’s networks. LSTM is capable of classifying, 

processing, and forecasting based on time-series data. LSTMs were developed to deal 

with the exploding and vanishing gradient problems encountered when training 

traditional RNNs. This thesis research work deals with the detection and classification of 

two chorusing amphibian species, the Houston toad and Crawfish frog using audio data in 

a sequential data format. As LSTM has higher performance for time-series data 

classification, this research used LSTM to predict or detect two chorusing amphibian 

species to reduce the false-positive rate. Figures 6 from [19] shows the internal 

architecture of the LSTM. 
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Fig. 6: LSTM Internal Architecture [19] 

 

4.3 Gated Recurrent Unit (GRU) 

        A GRU is a gating mechanism in RNN deep learning techniques. The GRU 

performs same as LSTM with a forget-gate but it has fewer parameters compare to the 

LSTM. The GRU lacks an output-gate. GRU’s performance on specific tasks of 

polyphonic music modeling, audio signal modeling, and speech signal modeling was 

found to out-perform the LSTM configuration and implementation [20].  The GRUs have 

exhibited even better performance on specific smaller datasets due to its design's lower 

complexity. According to recent research, GRUs have comparable performance to LSTM 

in sequence modeling with lower computational costs [21]. This work also experimented 

with the GRU for classifying two toad/frog species because it can perform the detection 

task with a higher performance like LSTM but less complex computations. It can also 

help to reduce the detection time for the Houston toad and Crawfish frog. Figure 7 from 

[22] shows the internal architecture of the GRU. 
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Fig. 7: GRU Internal Architecture [22] 

 

4.4 Convolutional Neural Network (CNN) 

The convolutional neural network (CNN) has shown excellent performance in 

computer vision, machine learning, and pattern recognition problems. CNNs are useful in 

many applications that deal with image-related tasks for the deconstruction of features in 

an image to identify feature patterns. Applications of CNNs include image classification, 

image semantic segmentation, object detection in images, and other image and video 

implementations. This thesis research focuses on image classification. 

Convolutional Layer 

For this layer, filters are applied to the original image or other feature maps in a 

deep CNN. This layer contains most of the user-specified parameters are in the network. 

The number of kernels and the size of the kernels are the most critical parameters of this 

layer. Audio Mel-spectrogram images have been used as the input in this work and filters 

were applied to the Mel-spectrogram images. 
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Pooling Layer 

This layer is similar to convolutional layers, but it has a specific function to 

perform such as max pooling or average pooling. Max pooling takes the maximum value 

in a specific filter region. However, average pooling takes the average value in a filter 

region. This layer is usually used to reduce the dimensionality of the network.  

The Fully Connected Layer 

The configuration of the fully connected layer just reflects its name. it is fully 

connected with the output of the previous layer. Fully connected layers are usually used 

in the last stages of the CNN model and it connects to the output layer. At last it provides 

the desired output.  

 

4.5 Ensemble Learning 

Ensemble learning is a machine learning paradigm where multiple learners are 

trained to solve the same problem. An ensemble contains several learning models, also 

known as learners. Base learners can be made of different classifiers or the same type of 

classifiers with different hyperparameters, and the same set of input data will be used for 

all the models included in the ensemble technique. The generalization ability of an 

ensemble is usually more robust than that of base learners. Ensemble learning can assign 

confidence to the decision made by the model. There are various techniques to ensemble 

several architectures. This thesis research experimented with the “majority voting 

ensemble,” as this technique can make the prediction more accurate or trustworthy. 

Figure 8 shows an example where three models are being ensembled to give the 

prediction. In Figure 8 the same input data are fed to Model A, Model B and Model C 
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and these models make predictions individually. The class which is predicted by at least 

any two of Model A, Model B, Model C is selected as the final prediction. 

 

Figure 8: An Example of Ensemble Learning 

 

From [23], a voting ensemble works by combining the predictions from multiple 

models. It can be used for classification or regression. In the classification case, the 

predictions for each label are summed and the label with the majority vote is predicted. 

There are two approaches to the majority vote prediction for classification: hard voting 

and soft voting. Hard voting involves summing each class label's predictions and 

predicting the class label with the most votes. Soft voting involves summing the predicted 

probabilities for each class label and predicting the class label with the largest 

probability. This work used hard voting to apply the voting mechanism of ensemble 

learning. 
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5. METHODOLOGY 

 

This chapter discusses a modified software solution's overall architectural 

framework, which includes the recorded audio signal processing task to develop a trained 

and tested classification model for the existing Toadphone 1 system. Figure 9 shows the 

architectural building blocks of the framework of the design methodology. At first, the 

recorded audio data were labeled and preprocessed. The next tasks were splitting the 

training and test samples, extracting audio features, and training and testing the classifier 

models to predict the target output. Several classification methods have been tested and 

evaluated in the prediction of the classification of the toad and frog calls. 

 

 

Figure 9:  Architectural Building Blocks of Working Process 
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5.1 Audio Dataset 

Real-world audio recordings were collected by the Biology Department at Texas 

State University. All the recorded audio files for Houston toad were in the WAC 

(Wildlife Acoustic) format as those were collected by Wildlife Acoustic song meters and 

converted to wav format. The “wac2wav” software was used for the WAC to WAV 

conversion. All recorded files have been converted to the WAV format as the 

programming languages such as Python and MATLAB are more adaptable with WAV 

audio format compared to WAC. The audio files for Crawfish frog were already in WAV 

file format. The call detection experiments have been performed in three ways: “Houston 

toad” or “no-toad” classification experiment, “Crawfish” or “Houston” classification 

experiment, and “Houston” or “Crawfish” or “Environment” classification experiment.  

• The “Houston toad” or “no-toad” classification experiment consisted in using a 

dataset that included a total of 860 audio files.  Among the 860 audio files, 430 audio 

samples contained the Houston toad call, and 430 audio samples contained only 

environmental sounds. Environmental sounds were from other species or animals, 

wind, rain, thunder, and other weather-related events. The audio samples containing 

Houston toad calls were labeled as 1, and the audio samples having environmental 

sounds were labeled as 0. 

• The “Crawfish” or “Houston” classification experiment utilized a total of 1070 audio 

samples. Among 1070 audio files, 490 audio samples contained the Crawfish call, 

and 580 audio samples contained the Houston toad call. The audio samples with the 

Crawfish frog call were labeled as 1, and the audio files having Houston toad call 

were labeled as 0. 
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• The “Houston” or “Crawfish” or “Environment” classification experiment utilized a 

total of 1,000 audio files. Among the 1,000 audio files, 370 samples contained the 

Houston toad call, 370 samples contained the Crawfish frog call, and 260 samples 

contained only environmental sounds. The audio files with environmental sounds 

were labeled as 0, the audio files having the Houston toad call were labeled as 1, and 

audio files with the Crawfish frog call were labeled as 2. 

  

5.2 Audio Data Pre-processing 

Preprocessing steps, such as framing, window function, and noise reduction were 

performed for optimal recognition of audio signals from the samples.  

• Audio Data Filtering: Recordings which are acquired from natural habitats are 

mostly overlapped with the sounds emitted by other species and different kinds of 

background noise. The conventional techniques are not adaptable with background 

noise in a voiced audio. Digital filters are commonly used in the pre-processing stage 

of animal audio signals, as strong interference noise from the environment can 

shadow the vocalizations within the data [5].  

❖ The “Houston toad” or “no-toad” classification experiment: The Houston toad call 

frequency varies between 1,500 Hz to 2,600 Hz. All audio files narrowed down to 

1,500Hz to 2,600 Hz frequency range using a bandpass digital filter. Figure 10 

shows the bandpass filtered frequency spectrum of Houston toad call. 

❖ The “Crawfish” or “Houston” classification experiment: The Crawfish frog call 

frequency varies between 300Hz to 1,600Hz.  All audio files were filtered down 
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to 300 Hz to 1,600 Hz frequency range using a bandpass digital filter. Figure 11 

shows the bandpass filtered frequency spectrum of Crawfish frog call. 

❖ The “Houston” or “Crawfish” or “Environment” classification experiment: The 

audio files that contained the Houston toad call were filtered between the 1,500Hz 

to 2,600Hz frequency range. The audio files that contained the Crawfish frog call 

were filtered to the 300 Hz to 1,600Hz frequency range. Among the 240 audio 

samples containing only environmental sounds, 120 audio samples were filtered 

to the 1,500Hz to 2,600 Hz frequency range, and 120 audio samples were filtered 

between the 300Hz to 1,600Hz frequency range. The bandpass filtering process 

was used as the digital filter for the desired frequency ranges.          

 

 

Figure 10: Bandpass Filtered Frequency Spectrogram of the Houston toad Call 

 

 

 

Figure 11: Bandpass Filtered Frequency Spectrogram of the Crawfish frog Call 
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• Framing and the Window Function: After applying the digital filter to the audio 

signals, the next preprocessing step was the framing process and applying the window 

function to the audio signal. Framing converts the audio signals into a set of frames. 

If the frame duration is too long, it is not possible to determine the time-varying 

characteristics of the audio signals. On the other hand, if the frame duration is too 

short, then it is not possible to get valid acoustic features. For this research work, the 

time duration of each frame was set to 80 milliseconds with a 50% overlap. The 

sample rate for all audio data was 16KHz, frame size was 16,000*(80/1,000) = 1,280 

sample points, and the overlap for each frame was 16,000*(40/1,000) = 640 sample 

points. There can be discontinuity between the last frame and the first frame after the 

converting each audio signal into a number of frames. This discontinuity is called the 

spectral leakage, and it is problematic for time-domain to frequency-domain 

conversion. To reduce the effect of the spectral leakage, a window function is applied 

that smooths out any discontinuity [24]. For this work, each frame was multiplied by 

a “Hamming” window function.  

      From [24] the Hamming window is defined as 

             w(n)=0.54-0.46cos(
2𝜋𝑛

𝑀−1
)       0 ≤ n ≤ M-1 ................................................ (1) 

It was recommended for smoothing the truncated autocovariance function in the time 

domain.  
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5.3  Dataset Partitioning 

• In the “Houston toad” or “no-toad” classification experiment, the dataset was split 

among 860 audio files. The training split contained 800 audio samples, and 60 audio 

files were used for testing.  It is a good practice to use 20-30% data for validation 

from the training set. Therefore, among 800 training audio files, 80% audio samples 

were used for training, and 20% audio samples were used for validation. Among the 

60 test audio samples, 30 samples contained the Houston toad call, and 30 audio 

samples contained no Houston toad call signatures. 

• In the “Crawfish” or “Houston” classification experiment, among the 1,070 audio 

files, 1,000 audio samples were used for training and 70 audio samples were used for 

testing. Among the 1,000 training audio files, 80% audio samples were used as 

training data, and 20% audio samples were used for validation. Among the 70 test 

audio files, 35 samples contained the Crawfish frog calls, and 35 audio samples 

contained the Houston toad call. 

• In the “Houston” or “Crawfish” or “Environment” classification experiment, among 

the 1,000 audio files, 940 audio samples were used for training, and 60 audio samples 

were used for testing. Among the 940 training audio files, 80% audio samples were 

used for training, and 20% audio samples were used for validation. Among the 60 test 

audio files, 20 samples contained the Crawfish frog call, 20 audio samples contained 

the Houston toad call, and 20 samples contained only environmental sounds. 
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5.4  Audio Feature Extraction 

Feature-extraction methods aim at obtaining the most distinctive features from 

audio signals, and the choice of features can have a large impact on the quality of 

classification results. Frequently used audio features for voice or animal call detection are 

Mel-Frequency Cepstral Coefficients (MFCC) with their derivatives, Linear Predictive 

Codes (LPC), Perceptual Linear Predictive Coefficients (PLPs), Log Frequency Power 

Coefficients (LFPCs), Spectral Sub-band Centroids (SSCs), and Mel-spectrograms. 

MFCC and their derivatives have proven to be the most accurate and mostly used features 

for audio [6]. The features can be extracted by using Python’s library ‘LibROSA’ [25], 

‘Python_speech_features’ [26], Hidden Markov Model Toolkit (HTK) [27], and 

MATLAB libraries.  

This thesis research experimented and evaluated the MFCCs with their first and second 

derivatives, SSCs, and Mel-spectrograms audio features. 

• Mel Frequency Cepstral coefficients (MFCCs): MFCC is recognized as one of the 

best and most widely used acoustic signal feature used for audio or speech 

recognition [30]. This thesis work used 39 MFCCs with delta and delta-delta 

coefficients. These features were extracted using Python’s libraries “Librosa” and 

“Python_speech_features”. For generating MFCCs, the Mel-Filterbanks were needed 

to be calculated. For computing filter banks, triangular filters are typically applied on 

a Mel-scale to the power spectrum and it extracts frequency bands. The goal of Mel-

scale is to mimic the human ear perception of sound as this scale is less 

discriminative at higher frequencies and more discriminative at lower frequencies. It 
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is possible to convert between Hertz (f) and Mel (m) using the following (2) and (3) 

[28]. 

 

                           m = 2595log10 (1+ 
f

 700
)  ................................................................................ (2) 

                    f = 700 (10m/2595 −1) ...................................................................................... (3)          

For generating MFCCs, Discrete Cosine Transform (DCT) is applied to the filter 

bank coefficients. Using thirteen MFCCs, thirteen delta coefficients, which are the 

difference of each MFCCs and thirteen delta-delta coefficients, which are the 

difference between thirteen delta MFCCs coefficients, were determined. 

• Spectral Sub-band Centroids (SSCs): SSCs audio features are also proven to be a 

good feature for audio or speech recognition. These features have better performance 

for noisy environments [7][29]. To compute SSCs, the frequency band is divided into 

a fixed number of sub-bands. According to [30] Spectral centroid is the weighted 

average frequency for a given sub-band, where the weights are the normalized energy 

of each frequency component in that sub-band. Since this measure captures the center 

of gravity of each sub-band it can locate large peaks in sub-bands. These peaks 

correspond to the approximate location of formants or pitch frequencies. 

• Mel-spectrogram: A spectrogram is a representation of a signal like audio signal 

which shows the evolution of the frequency spectrum in time. A Mel-spectrogram is 

one kind of spectrogram and here the frequencies are transformed to the Mel-scale. A 

spectrogram is computed by calculating the Fast Fourier Transform (FFT) over a 

series of overlapping frames those are extracted from the original signal. This 

research used 2,048 sample points as the frame length, and 1,024 sample points as the 
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overlap length. The process of dividing the signal in short-term sequences of fixed 

size and applying FFT on those independently is known as Short-Time Fourier 

Transform (STFT). The spectrogram is computed as the squared and complex 

magnitude of the STFT. Extracting short term windows of the original image affects 

the enumerated spectrum by producing spectral leakage. This work used “Hamming” 

window function to reduce the spectral leakage effect during extracting Mel-

spectrograms. This thesis used MATLAB to extract Mel-spectrogram. 

 

5.5  Classification Model Architecture 

This thesis work experimented and evaluated three classifiers: LSTM, GRU, and 

CNN.  The architecture of the classification model is about defining the numbers, types 

and arrangement of the different types of layers in the model along with the values of any 

variables associated with these layers, such as the number of neurons in LSTM or GRU 

layer, the size of filters in the convolutional and max pooling layers, or the number of 

nodes in the fully-connected layer, and the selection of the hyperparameters such as 

optimizers, learning rate, activation function, loss function, batch size, epochs, validation 

split. 

The process of developing the proper architecture to accomplish a certain job 

requires conducting many experiments since the architecture is dependent on the 

characteristics and size of the dataset used to train the model. Therefore, there are no 

formulas or certain rules to follow while designing a classification model. 
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LSTM or GRU Model Architecture 

Designing the LSTM and GRU model architectures was very similar. For the 

architecture with GRU, the first layer is GRU cell layer, the second layer is a dense layer, 

the third layer is a dropout layer, fourth layer is a flatten layer, and the fifth or the last 

layer is the output dense layer. For the architecture with LSTM, the first layer is LSTM 

cell layer, the second layer is a dense layer, the third layer is a dropout layer, fourth layer 

is a flatten layer, and the fifth or the last layer is the output dense layer. The input for 

LSTM or GRU architecture was 39 MFCCs or 16 SSCs audio features. Following 

paragraphs discusses the hyperparameters of each layer for LSTM or GRU architecture. 

LSTM or GRU Layer 

• Return Sequence: The parameter “return_sequences” was kept “True” for both 

LSTM and GRU layer. Thus, the LSTM or GRU layer returned the output for 

each timestep to the next layer. This way the next dense layer got information 

from every time step for that sample and performed proper sequential analysis. 

• Recurrent Activation: LSTM or GRU layer was associated with 

“recurrent_activation” function, several choices for that activation function were 

tested; however, the “Rectified Linear Unit” function was found to produce the 

best performance. 

Dropout Layer 

• Rate: The rate for the dropout layer was given 0.3 for this work. Which means 

30% of the output of the layer were dropped out and it helped preventing 

overfitting. 
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Flatten Layer 

After a dropout layer, the fatten layer is used to convert two-dimensional feature vectors 

into a one-dimensional array. This layer has made the output from dropout layer 

compatible for the last output dense layer as the shape of the train data is one dimensional 

array. 

Output Dense Layer 

The output layer for this model architecture was a dense or fully connected layer. After 

performing all the tasks in previous layers, this layer produced the outcome of the model.  

• Activation Function: As the model architecture for this thesis work is designed 

for binary classification, “Sigmoid” was used as the activation function for this 

layer. 

CNN Model Architecture 

The input for this model was a Mel-spectrogram of audio files which is images. 

The Mel-spectrogram images used for this work were RGB images. This architecture was 

implemented for the “Houston” or “Crawfish” or “Environment” experiment.  The model 

was designed using one convolutional layer, one max pooling layer, the flatten layer, 

dropout layer, and the last fully connected or dense layer. Following paragraphs discuss 

the hyperparameters of these layers used to design the CNN model for this thesis 

research. 

Convolutional Layer  

• Filters: It refers to the dimensionality of the output space or the number of output 

filters in the convolution. This is an integer value and the most variable parameter 

of the convolutional layer. The filter count of this research was 32. 
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• Kernel Size: It is a tuple or list of two integers, specifying the height and width of 

the 2D convolution window. 3x3 or 5x5 is a common choice for the kernel size. 

This thesis work used 3x3 as the kernel size. 

• Stride: Stride is a component of convolutional neural networks, or neural 

networks tuned for the compression of images. For example, if the stride is set to 

1, the filter will move one pixel, or unit, at a time. Naturally, as the stride, or 

movement, is increased, the resulting output will be smaller. For this layer, it was 

kept at the default value 1. 

• Padding: The kernel does not perfectly fit the input length of the convolutional 

layer. There are two options when the misalignment occurs. Either pad the input 

tensor with zeros so that it fits, known as zero-padding, or by dropping the part of 

the image where the filter does not fit, known as valid-padding. In this work, 

zero-padding was adapted. 

• Activation Function: Each convolutional layer is associated with an activation 

function. Several choices such as “Exponential Linear Unit,” “Rectified Linear 

Unit,” “LeakyRelu” for the activation function were tested; however, the 

“Rectified Linear Unit” function was found to produce the best performance. 

Max-Pooling Layer 

• Kernel Size: The size of the pooling operation or filter is smaller than the size of 

the feature map; specifically, it is almost always 2×2 pixels. This configuration 

was adapted for this work 

• Stride: Stride is set to 2 for the max-pooling layer for this work. It means the filter 

will move two pixels at a time.  
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• Dropout Layer Rate: The rate for the dropout layer was given 0.25 for this work. 

Which means 25% of the output of the layer were dropped out and it helped 

prevent overfitting. 

Other Hyperparameters for LSTM, GRU or CNN Model 

❖ Number of Epochs: The number of epochs is a hyperparameter that defines the 

number of times that the classification algorithms will work through all the samples 

in the training dataset. It is a common practice to observe both the training and 

validation learning curves to define the number of epochs. These plots help to decide 

if the classification model overfitted, underfitted, or perfectly learned. These models 

should be trained for the adequate number of epochs to allow the learning algorithm 

to run until the error is sufficiently minimized. Number of epochs were varied for 

each experiment and selected by trial and error method. 

❖ Batch Size: The batch size defines the number of samples that propagate through the 

network during training the model.  It also refers to the number of samples that are 

used for one iteration of a single epoch. Popular values for batch sizes include 16, 32, 

64, and 128 samples. The batch size for this work was selected using trial and error 

method. 

❖ Optimizer: Optimizers are algorithms or methods used to change the attributes of the 

neural network, such as weights and learning rates to reduce the losses to achieve the 

most accurate results. Usually, neural network algorithms use the Stochastic Gradient 

Descent (SGD) algorithm to initialize and update the weights used in all the layers 

[31]. The SGD uses a single learning rate throughout the training process. The Adam 

optimization algorithm is an extension of the SGD, which optimizes the learning rate 
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based on the first and second-order moments, such as the gradient mean and element-

wise squared gradient, respectively. The Adam optimizer has been shown to produce 

significantly better results for image and natural language problems [32]. This 

research experimented with the SGD and Adam optimizers during the training and 

testing of the models. 

❖ Learning Rate: The learning rate controls the change in a model in response to the 

estimated error each time the model weights are updated. It is a challenging task to 

choose the learning rate. If the value is too small, it may result in a long training 

process that could get stuck.  If the value is too large, it may result in learning a sub-

optimal set of weights too fast or an unstable training process. However, the learning 

rates determined by the trial and error method are the 0.01, 0.001 and 0.0001 values 

experimented, and the learning rate value of 0.0001 performed the best.  

❖ Loss Function: The error for the current state of the model must be estimated 

repeatedly as part of the optimization algorithm. This requires the choice of an error 

function, conventionally called a “loss function”, that can be used to estimate the loss 

of the model so that the weights can be updated as it converges to smaller gradient 

losses. The choice of the loss function must match to the specific predictive modeling 

problem, such as classification or regression. This thesis work is focused only on the 

classification predictive modeling approach. Selecting a loss function is also 

dependent on the targeted output of the model, such as binary or multiclass 

classification predicted outcomes. Cross Entropy is used as a good loss function for 

neural network classification problems, because it minimizes the distance between 

two probability distributions such as predicted and actual. The “Houston toad” or 
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“no-toad,” and “Crawfish” or “Houston” experiments are binary classification 

problems and used the ‘binary_crossentropy’ loss function when compiling the 

model. The “Houston” or “Crawfish” or “Environment” experiment is multiclass 

classification problem and used the “sparse_categorical_crossentropy” loss function 

as the class labels are integers 0, 1, and 2. 

 

5.6 The List of Experiments 

Table 1 shows a list of the experiments based on dataset sample calls, audio features, and 

types of classifiers used for evaluation. The next chapter discusses the results of these 

experiments in detail. 

Table 1: List of Experiments 

Classification Experiment Audio Feature Classifier 

“Houston toad” or “no-

toad” 

39 MFCCs LSTM or GRU 

Mel-spectrogram CNN 

“Crawfish” or “Houston” 39 MFCCs or 16 SSCs LSTM or GRU 

“Houston” or “Crawfish” 

or “Environment” 

39 MFCCs LSTM 

 

 

 

 

 

 

 



 

 

 

42 

6. EXPERIMENS AND RESULTS 

 

5.1 Programming Environment and Computational Resources 

           The Python 3.5.7 programming language was used for the development of the 

models, preprocessing, training, and testing. Preprocessing stages such as filtering, 

framing, windowing, and extracting audio features have been implemented using Python, 

verified through MATLAB, the Hidden Markov Model Toolkit (HTK), and MATLAB 

are widely accepted as audio signal processing and feature extraction toolkits. The 

“Scipy” Python library has been used to read and write the wav audio files. Butterworth 

has been imported using “Scipy” library for applying Bandpass digital filter to the audio 

files. The “Python_speech_features” and “Librosa” Python libraries has been used to 

extract audio features. For the classification design, deep learning algorithms, such as 

LSTM, GRU, and CNN were examined for their accuracy performance.  

Python contains special libraries for deep learning, such as Keras, which is one of 

the most widely used libraries that support the development of LSTMs, GRUs, and CNNs 

using back-end libraries from “TensorFlow”. The LEAP (Learning, Exploration, 

Analysis, and Processing) cluster, which is a next-generation High-Performance 

Computing (HPC) cluster of Texas State University [33] was used to train and test the 

developed models. From [33], the cluster has 120 compute nodes, each with 28 CPU 

cores via two (14-core) 2.4 GHz E5-2680v4 Intel Xeon (Broadwell) processors, 128 GBs 

of memory, and 400 GBs of SSD storage per node. The compute nodes provide an 

aggregate of 15 TBs of memory and 48 TBs of local storage.  The LEAP cluster supports 

Python installations through “conda”, and version install control for its libraries. 
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5.2 Training and Evaluation Results 

Many experiments have been carried out while developing a reliable classification 

model to detect the Houston toad or the Crawfish frog call. 

The “Houston toad” or “Non-toad” Classification Experiment 

The dataset included a total of 860 audio files, where 430 audio samples 

contained the Houston toad call, and 430 audio samples contained only environmental 

sounds. Among the 860 samples, 60 data samples were used for testing. For this 

experiment, the 39 MFCCs with their first and second derivatives were used as audio 

features. Each audio sample contained 149 frames with 80 millisecond frame size, and 40 

millisecond (50%) overlap.  

• LSTM and GRU as Classifier and MFCCs as Audio Feature 

The 39 MFCCs were extracted for each frame, and the input tensor for the 

classifiers is defined as (149, 39) for the LSTM and GRU input layer.  Figure 12 shows 

the model structure for LSTM and GRU with 39 MFCCs features.  

 

Figure 12: The LSTM and GRU Model Structure for the “Houston toad” or “Non-toad” 

Classification Experiment with 39 MFCCs 

 

 

       The architecture for both models is similar except for the first LSTM and GRU 

cell layer. The output shape of the LSTM and GRU cell layer is  a tensor of (149, 128), 

where 149 is the time steps as the number of frames for each audio sample, and 128 is the 
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number of neurons for the  LSTM and GRU cell layer which was selected through trial 

and error. The “return_sequences” which is a parameter for LSTM or GRU layer was 

kept “True”. Then for sequential computation a dense layer was used with 32 neurons 

which was also selected by trial and error method. Then, a 20% dropout was used which 

reduced the overfitting issue of the model. A flatten layer was used to make the output 

shape from the dropout layer compatible for the output dense layer. The output of the 

flatten layer was a 1D array of 5811. The number of neurons for output dense layer was 

one providing a binary output, such as 1 for the “Houston toad” class, and 0 for the “no-

toad” class. Time steps or number of frames is 149 was carried till the dropout layer and 

each layer till the dropout layer produced the output for each timestep. The sigmoid 

activation function is used for the output dense layer, and the binary_crossentropy was 

used as the loss function for classifying the “Houston toad” or “non-toad” classes.  

                 From Figure 13(a), the LSTM model has gained a 87% training and a 82% 

validation accuracy for the classification of the “Houston toad” or “no-toad” class labels. 

The LSTM model has a 78% test accuracy, and this is able to predict 80% of the 30 test 

Houston toad call data correctly and this model misclassified 23% non-toad samples as 

Houston toad call as seen in Figure 13(b). So the false positive rate for this LSTM model 

architecture is 23%. The GRU model achieved a 85% training and a 78% validation 

accuracy as shown in Figure 14(a). From Figure 14(b), the GRU model achieved a 72% 

test accuracy and classifies with a 73% accuracy of the 30 test Houston toad call samples, 

and 30% of the non-toad samples were misclassified as Houston toad. So, the false 

positive rate for this GRU architecture is 30%. The validation and test accuracy for 

LSTM and GRU models are very close to training accuracy so both LSTM and GRU 
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models were not overfitted. Also, the LSTM model shows higher testing accuracy 

compare to the GRU model. The LSTM model predicted 80% of the 30 Houston toad call 

test data correctly with 23% false positives and the GRU model predicted 73% of the 30 

Houston toad call test data correctly with 30% false positives. Here, the LSTM model 

performed better compare to GRU model to predict Houston toad call correctly. It is also 

noticeable that the LSTM model architecture has a lower false positive rate compared to 

GRU model architecture. 

 

Figure 13: (a) Accuracy and (b) Confusion Matrix of the LSTM Model with 39 MFCCs 

for the “Houston toad” or “Non-toad” Classification Experiment 
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Figure 14: (a) Accuracy and (b) Confusion Matrix of the GRU Model with 39 MFCCs for 

the “Houston toad” or “Non-toad” Classification Experiment 

 

 

• CNN as Classifier and Mel-spectrogram Images as Audio Feature 

For this experiment Mel-spectrogram of audio signals has been extracted using 

MATLAB. Figure 15(a) shows the Mel-spectrogram of an audio file of a Houston toad 

call. Figure 15(b) shows the Mel-spectrogram of an audio file without a Houston toad 

call, or the background noise or environment sound. 

 

Figure 15: (a) Mel-Spectrogram of Audio File Having Toad Call, (b) Mel-Spectrogram of 

Audio File Having Non-toad (Only Environment Sound) 
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Each Mel-spectrogram is an image of the sound in the frequency-domain, which 

the CNN learns to classify in the same way that traditional image recognition paradigms 

work. These Mel-spectrogram’s images were used as the input for CNN architecture. 840 

Mel-spectrograms have been generated from the 840 audio files for the “Houston toad” 

or “non-toad” classification experiment. Among the 840 images, 420 Mel-spectrogram 

images represented the Houston toad audio call and are labeled as “toad,” and 420 Mel-

spectrogram images were for the environmental sound and are labeled as “non-toad”. 

Among the two classes, 60 Mel-spectrogram images were used for test, where 30 Mel-

spectrogram images were for the Houston toad and 30 Mel-spectrogram images were for 

the environmental sound. 20% data from the training set were used for validation. The 

images were cropped to center the spectrogram features in the image. 

 

 
 

Figure 16: (a) Cropped Mel-Spectrogram of Audio File Having Toad Call, (b) Cropped 

Mel-Spectrogram of Audio File Having Non-toad (Only Environment Sound) 

 

 

Figure 16(a) shows the cropped Mel-spectrogram images of audio files having a toad call. 

Figure 16(b) shows the cropped Mel-spectrogram of audio files not having a toad call or 

having only environment sound . The original size of the cropped image has a 598x140 

original resolution. The image size was converted to a 128x128 resolution for avoiding 

dimension error and for less computational time. The input shape of the CNN model was 
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(128, 128, 3). As the Mel-spectrogram images used here are RGB images, the third 

values, 3, is defined for three channels of RGB images. Figure 17 shows the model 

structure of the CNN architecture used as the spectrogram image classifier of the audio 

samples. The ADAM optimizer with 0.0001 learning rate has been used, a batch size of 

128, and an epoch number of 50 performed at its maximum capacity. 

 

Figure 17: CNN Model Structure for the “Houston toad” or “Non-toad” Classification 

Experiment with Mel-Spectrogram Images 

 

 

From Figure 18(a), a 91% training accuracy was achieved with 60% validation accuracy, 

which clearly shows the overfitting issue as the training accuracy is much higher 

compared to the validation accuracy. Also, the overall test accuracy of the model was 

63% with 60% test accuracy on Houston toad achieved and it misclassified 33% non-toad 

sample as Houston toad call which can be seen from the confusion matrix in Figure 

18(b). Hyperparameters like dropout layer were tuned manually in an attempt to solve the 

overfitting issue but it did not solve. The higher training accuracy and lower validation 

and test accuracy indicates that the model has learned features of the training data too 

well, but it did not generalize, or it did not work well on new data and it produced a high 

false positive rate. The overfitting issue may be solved by increasing number of data 

samples. 
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Figure 18: (a) Accuracy and (b) Confusion Matrix of CNN Model with Mel-Spectrogram 

for the “Houston toad” or “Non-toad” Classification Experiment 

 

 

                                                            

The “Crawfish” or “Houston” Classification Experiment 

As mentioned in the “Methodology” chapter, among the total 1,070 audio data 

samples, 1,000 samples were used for training, with 455 audio samples containing the 

Crawfish calls and 545 audio samples containing the Houston toad call. Among the 70 

test data samples, 35 audio samples have the Houston toad calls, and 35 audio samples 

have the Crawfish frog calls. Of the 1,070 training audio files, 80% of the audio samples 

were used as training samples, and the remaining 20% of the audio samples were used for 

validation. The duration of each audio file containing the Crawfish frog call is 60 

seconds, and each audio file containing the Houston toad call is 1-15 seconds.  

Each training audio file was fragmented into one-second clips to avoid the 

dimension error during training the model. These one-second audio clips were labeled the 

same as the parent audio files and were not overlapped with consequent fragments. The 

Hamming window function was applied to the fragmented clips, and these one-second 
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fragments are processed through the framing and windowing process for feature 

extraction. Each one-second clip has 24 frames, with 80 milliseconds frame size, and a 

50% overlap (40 milliseconds). Thirty-nine MFCCs or sixteen SSCs were extracted for 

each frame. The classification models were trained using the extracted features from each 

frame.  

• LSTM and GRU as Classifier and MFCCs as Audio Feature 

      For this experiment, 39 MFCCs with their first and second derivatives were used 

as audio features. As each one audio clip has 24 frames and features were extracted for 

each frame, the input shape is (24, 39) for the LSTM and GRU layer.  Figure 19 shows 

the model structure for LSTM and GRU with 39 MFCCs features. The architecture for 

both models is similar except for the first LSTM and GRU cell layer. The output of the 

LSTM and GRU cell layer is (24, 128), where 24 is the time steps for each one-second 

audio clip, and 128 neurons cells for the LSTM and GRU layer selected through trial and 

error. 

Here the output dense layer provided a binary output, such as 1 for the “Crawfish” 

class, and 0 for the “Houston” class. Time steps or number of frames is 24 was carried till 

the dropout layer and each layer till the dropout layer produced the output for each 

timestep.  

 

Figure 19: LSTM and GRU Model Structure for the “Houston” or “Crawfish” 

Classification Experiment with 39 MFCCs 
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Several combinations of hyperparameters had been evaluated for this experiment. 

Initially, the SGD optimizer was used with 200 epochs. The learning rate was tuned 

manually and 0.001 was selected. Figure 20 and Figure 21 shows the accuracy and loss 

plots for the experiment with the LSTM and GRU as classifier with 39 MFCCs as audio 

features for the SGD optimizer, 0.001 for the learning rate, and 200 epochs. From Figure 

20, the LSTM model gained a 65% training and 63% validation accuracy with 58% 

losses which is very high. From Figure 21 the GRU model gained 68% training and 50% 

validation accuracy with 57% losses. Both LSTM and GRU models for this architecture 

gained low training and validation accuracies to learn the features for Houston toad and 

Crawfish frog, and from Figure 21, the GRU model shows an overfitting issue as there is 

a big gap between its training and validation accuracy and validation loss is not 

decreasing. 

 
Figure 20: (a) Accuracy and (b) Loss Plots of the LSTM for 39 MFCCs with the SGD 

Optimizer, 0.001 for the Learning Rate, and 200 Epochs 
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Figure 21: (a) Accuracy and (b) Loss Plots of the GRU for 39 MFCCs with the SGD 

Optimizer, 0.001 for the Learning Rate, 200 Epochs 

 

 

The optimizer was changed to ADAM, which is an extension version of SGD. Using 

ADAM as optimizer with 0.001 learning rate and 200 epochs, from Figure 22, the LSTM 

model with 39 MFCCs gained 75% training and 75% validation accuracy with 50% 

training and 52% validation losses. From Figure 24, the GRU model gained 73% training 

and 74% validation accuracy with 53% training and validation losses. It is clearly visible 

that both the LSTM and GRU model showed better performance with ADAM optimizer. 

Though the accuracy of both models increased, loss is still more than 50%, which is 

much higher. From the confusion matrices, the test accuracy for the LSTM model was 

61%, with a 69% accuracy for the “Houston” class and46% false positives. So, the 

accuracy based on true and false positives is 60% for Houston toad call. and a 54% 

accuracy for the “Crawfish” class as shown in Figure 23. The test accuracy of the GRU 

model was 58%, with a 63% accuracy for the “Houston” class, and a 54% accuracy for 

the “Crawfish” class which is shown in Figure 25. Both models have produced low test 
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accuracies. However, the LSTM model showed comparatively better performance than 

the GRU model with this model architecture. Also, for LSTM and GRU models, the 

accuracy for Houston toad call classification is higher compare to the accuracy for 

Crawfish frog. False positive rate for this architecture is also very high. 

 

Figure 22: (a) Accuracy and (b) Loss Plots of the LSTM and 39 MFCCs with the ADAM 

Optimizer, 0.001 for the Learning Rate, and 200 Epochs 

 

 

 
Figure 23: Confusion Matrix of the LSTM with 39 MFCCs for the ADAM Optimizer, 

0.001 for the Learning Rate, and 200 Epochs 
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Figure 24: (a)Accuracy and (b) Loss Plots of the GRU for 39 MFCCs with the ADAM 

Optimizer, 0.001 for the Learning Rate, And 200 Epochs 

 

 

 
Figure 25: Confusion Matrix of the GRU with 39 MFCCs for the ADAM Optimizer, 

0.001 for the Learning Rate, and 200 Epochs 

 

 

From Figure 22 and Figure 24, it is observed that the accuracy curves for the 

LSTM and GRU models move upward indicating the accuracy may improve if the 
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number of epochs increases. After increasing the number of epochs to 300, and 

decreasing the learning rate to 0.0001, significant improvement was observed from 

Figure 26 and Figure 28 on the learning curves for the LSTM and GRU. From Figure 26, 

the LSTM model achieved an 84% training accuracy, an 82% validation accuracy, a 32% 

training loss, and a 38% validation loss. From Figure 28, the GRU model achieved an 

80% training accuracy, a 79% validation accuracy, a 35% training loss, and a 40% 

validation loss. The very small gap between the training and validation accuracy and the 

decreased validation loss with decreased training loss for both LSTM and GRU model 

showed both the LSTM and GRU model were not overfitted. From the confusion 

matrices in Figure 29, the test accuracy for the LSTM model was 76%, with an 80% 

accuracy for the “Houston” class, and a 71% accuracy for the “Crawfish” class. The false 

positive rate for Houston toad was 29% and the false positive rate for crawfish call was 

20%. The test accuracy for the GRU model was 73% with 77% accuracy on “Houston”, 

31% crawfish frog audio samples were misclassified as Houston toad calls and 69% 

accuracy on “Crawfish”, 23% Houston toad audio samples were misclassified as 

Crawfish call which is shown in Figure 29. From the test accuracies for “Houston” and 

“Crawfish” it can be noticed that both LSTM and GRU architectures have higher 

individual test accuracy for Houston toad call detection compared to Crawfish frog call. 

The audio files that have the Crawfish frog calls are 60 seconds long and do contain more 

environment background noise than the Houston toad call audio files. For the crawfish 

frog call, the model learned extracted environment background noise as the Crawfish call 

when training the model. It is possible that more Crawfish frog test samples were 

misclassified as the environment background noise of the Houston toad call. Here, again 
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the training, validation and test accuracies gained by the LSTM model were higher 

compared to the GRU model to classify Houston toad or Crawfish frog. False positive 

rate for Houston toad calls and Crawfish frog calls was also less with the LSTM model 

compared to GRU model architecture. 

 

 
Figure 26: (a) Accuracy and (b) Loss Plots of the LSTM and 39 MFCCs with the ADAM 

Optimizer, 0.0001 Learning Rate, 300 Epochs 
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Figure 27: Confusion Matrix of the LSTM with 39 MFCCs for the ADAM Optimizer, 

0.0001 Learning Rate, 300 Epochs 

 

 

 

 

Figure 28: (a) Accuracy and (b) Loss Plots of GRU with 39 MFCCs for the ADAM 

Optimizer, 0.0001 Learning Rate, 300 Epochs 
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Figure 29: Confusion Matrix of the GRU with 39 MFCCs for the ADAM Optimizer, 

0.0001 Learning Rate, 300 Epochs 

 

 

 

• LSTM and GRU as Classifier and 16 SSCs as Audio Feature 

For this experiment, spectral centroids were extracted for 16 sub-bands for each 

frame. As each audio clip has 24 frames and 16 SCCs features were extracted from 

each frame, the input shape is (24, 16) for the LSTM and GRU layer.  Figure 30 shows 

the model structure for the LSTM and GRU with 16 SSC features. The structure is the 

same as the model structure already described for the “LSTM and GRU as classifier 

and SSCs as audio feature” experiment except the input shape. The input shape is (24, 

16), where 24 is the number of frames or timesteps, and 16 is the number of SSC 

features. 
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Figure 30: LSTM and GRU Model Structure for the “Houston” or “Crawfish” 

Classification Experiment with 16 SSCs 

 

Figure 31 shows the accuracy and loss plots for the LSTM, with sixteen SSCs as audio 

features with the ADAM optimizer, 0.0001 for the learning rate, and 300 epochs. The 

LSTM model performance is shown in Figure 31 with a 69.9% training accuracy, a 

67.7% validation accuracy, and a 68.5% test accuracy with a 71.3% accuracy for the 

Houston toad and a 65.7% accuracy for the Crawfish frog call using SSC. From Figure 

32, the model with GRU has a 66.5% training, a 65% validation, and a 64.2% test 

accuracy with a 68% accuracy for the Houston toad and a 60% accuracy for Crawfish 

frog call.  From the accuracy plots, both LSTM and GRU models training and validation 

accuracy decreased after changing the audio features to SSCs.  
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Figure 31: (a) Accuracy And (a) Loss Plots of The LSTM with 16 SSCs for ADAM 

Optimizer, 0.0001 for the Learning Rate, and 300 Epochs 

 

Figure 32: (a) Accuracy and (b) Loss Plots of the GRU with 16 SSCs for the ADAM 

Optimizer, 0.0001 for the Learning Rate, and 300 Epochs 

 

 

 Table 2 summarizes the results achieved using LSTM and GRU classifiers with 

MFCC and SSC features using the ADAM optimizer, 0.0001 learning rates, and 300 

epochs for “Houston” or “Crawfish” classification. LSTM with 39 MFCCs and LSTM 

with 16 SSCs have shown higher training validation and testing accuracy compare to 
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GRU with 39 MFCCs and GRU with 16 SSCs. The SSC features were experimented here 

based on the literature review that it has good performance on noisy data [29]. But this 

feature did not show good performance with either Houston toad or Crawfish frog call.   

 

Table 2: Summary of Results for the “Houston” or “Crawfish” Classification  

               Experiment  

 

Classifier Audio 

Feature 

Training 

Accuracy 

Validation 

accuracy 

Overall Test 

Accuracy 

Test 

accuracy 

of 

Houston 

Test 

accuracy 

of 

Crawfish 

LSTM 39 MFCCs 84% 82% 76% 80% 71% 

GRU 39 MFCCs 80% 79% 73% 77% 69% 

LSTM 16 SSCs 69.9% 67.7% 68.5% 71.3% 65.7% 

GRU 16 SSCs 66.5% 65% 64.2% 68% 60% 

 

 

The “Houston” or “Crawfish” or “Environment” Classification Experiment 

As previously denoted, a total of 1,000 audio files were used for this experiment. 

Among the 1,000 audio files, 370 samples contained the Houston toad call, 370 samples 

contained the Crawfish frog calls, and 260 samples contained only environmental sounds. 

The duration of each audio file containing the Crawfish frog calls is 60 seconds, each 

audio file containing the Houston toad call is 1-15 seconds, and each audio file 

containing environmental sounds is 15 seconds. Like the “Houston” or “Crawfish” 

classification experiment, each training audio file was fragmented into one-second clips 

to avoid the dimensional error during training the model and labeled the same as the 

parent audio files. 
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Several experiments were performed for the classification of the “Houston” or 

“Crawfish” or “Environment” using the LSTM and GRU classifiers with 39 MFCCs or 

16 SSCs as audio features. The hyperparameters, such as the batch size, epochs, 

optimizer, and the learning rate were tuned manually to get the best fit. Among these 

experiments, the LSTM model with 39 MFCCs audio features, 0.0001 for the learning 

rate, a 32-batch size, 100 epochs, and the ADAM optimizer provided the best training, 

validation, and test accuracies. Figure 33 shows the training accuracy of this model at 

78% and a validation accuracy at 77%. From the confusion matrices in Figure 34, this 

model achieved a 73.33% test accuracy with a 75% for the Houston toad, a 65% on 

Crawfish frog call, and an 70% for environmental or background noise. It is noticeable 

that after adding another class to the model which is the background noise, the false 

positive rate for “Houston” and “Crawfish” dropped down compare to the binary class 

classification for “Houston” and “Crawfish” as mostly Crawfish frog sample were 

misclassified with background noise. From Figure 34, 15% background noise samples 

were misclassified as Houston toad, 15% background noise samples were misclassified as 

Crawfish frog. 
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Figure 33: Accuracy/Loss Plots of LSTM with 39 MFCCs for the “Houston” or 

“Crawfish” or “Environment” Classification Experiment 

 

 

Figure 34: Confusion Matrix of LSTM with 39 MFCCs for “Houston” or “Crawfish” or 

“Environment” Classification Experiment 
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Ensemble Learning Implementation 

The trained models for the “Houston toad” or “no-toad”, the “Crawfish” or 

“Houston” and the “Houston” or “Crawfish” or “Environment” classification experiments 

were saved. The prediction was done using a majority voting mechanism as an ensemble 

learning modeling technique. In the majority voting mechanism, the input samples are fed 

to the selected trained models and predictions are made by individual models. The class 

predicted the most frequently is selected as the final prediction of the system. This makes 

the predictions more robust or trustworthy. 

For the “Houston toad” or “no-toad,” the “Crawfish” or “Houston,” and the 

“Houston” or “Crawfish” or “Environment” classification experiments, the three best 

model architectures were selected based on number of epochs. For “Houston toad” or 

“no-toad,” classification, 30 and 20 epochs were selected for GRU and LSTM model 

with 39 MFCCs, for “Crawfish” or “Houston,” classification, 300 and 200 epochs were 

selected for GRU and LSTM model with 39 MFCCs, for “Houston” or “Crawfish” or 

“Environment” classification, 100 and 80 epochs were selected for GRU and LSTM 

model with 39 MFCCs  as these numbers of epochs provided best results based on the 

previous discussed experiment results. The ADAM optimizer and 0.0001 for the learning 

rate were used for all the selected model architectures. 

For the “Houston” or “no-toad” classification experiment, the three model 

architectures were selected for a majority voting mechanism. Once the models have made 

the predictions, the class that is most common among the three predictions is classified as 

the final label for the input. Table 3 shows the comparison of results for this classification 

with and without ensemble method. The test accuracy decreased by 5-6% with the 
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ensemble model compared to the individual accuracy for each model architecture for 

“Houston” or “no-toad” classification. 

Table 3: Comparison of Results for “Houston” or “No-toad” Classification With  

               and Without Ensemble 

    
Without Ensemble With Ensemble 

Classifier Audio 

Feature 

Epochs Test 

Accuracy for 

“Houston” 

Test Accuracy 

for “no toad” 

Test Accuracy 

for Houston 

Test Accuracy 

for Crawfish 

LSTM 39 

MFCCs 

30 80% 77%  

76% 

 

69% GRU 39 

MFCCS 

30 73% 70% 

LSTM 39 

MFCCs 

20 76% 62% 

 

 

For the “Crawfish” or “Houston” classification experiment, three model 

architectures were selected for a majority voting mechanism. Table 4 shows the 

comparison of results for this classification experiment with and without ensemble 

method. The results in table 4 show similar scenario as table 3, with the ensemble model 

having 5-6% less accuracy compared to the accuracy without ensemble. 

 

Table 4: Comparison of Results for “Crawfish” or “Houston” Classification With 

                and Without Ensemble                                                                             

    
Without Ensemble With Ensemble 

Classifier Audio 

Feature 

Epochs Test 

Accuracy for 

Houston 

Test Accuracy 

for Crawfish 

Test Accuracy 

for Houston 

Test Accuracy 

for Crawfish 

LSTM 39 

MFCCs 

300 80% 71%  

75% 

 

65% GRU 39 

MFCCS 

300 77% 69% 

LSTM 39 

MFCCs 

200 69% 54% 
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For the “Crawfish” or “Houston” or “Environment” classification experiment, 

three model-architectures were again selected for a majority voting mechanism. Table 5 

shows the comparison of the results for this classification experiment with or without 

ensemble method.  

 

Table 5: Comparison of Results for “Crawfish” or “Houston” or “Environment” 

               Classification With and Without Ensemble         

 

 

From tables 3, 4, and 5, it is observed that most of the architecture’s individual 

accuracies performed better compared to the ensembled model. The ensembled model has 

5-6% less accuracy compare to each architecture accuracy without ensemble. 

The ensemble learning method did not provide an improved result due to the 

improper model selection.  For the three classification experiments, among the selected 

three models, one has good performance, one has average performance and the third one 

has bad performance and overfitted. So, the three model’s contribution was not good 

enough to the ensemble model. 

Near Real-time Prediction System 

A system was designed to test the saved trained model for near real-time 

prediction of the Houston toad or Crawfish frog call. The Python code was executed in a 

   
Without Ensemble With Ensemble 

Classifier Audio 

Feature 

Epochs Test 

Accuracy 

for 

Houston 

Test 

Accuracy 

for 

Crawfish 

Test 

Accuracy for 

Environment 

Test 

Accuracy 

for            

Houston 

Test 

Accuracy 

for 

Crawfish 

Test 

Accuracy for 

Environment 

LSTM 39 

MFCCs 

100 80% 65% 75%  

77% 

 

63% 

 

73% 

GRU 39 

MFCCS 

100 76% 65% 73% 

LSTM 39 

MFCCs 

80 78% 63% 70% 
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laptop computer to perform the test with the different audio files. The sounds containing 

the Houston toad and Crawfish frog call were played on a mobile device. The Python 

code recorded the sounds using the “sounddevice” Python library. The recorded audio 

sound was saved in a directory in the "wav" format. The “wav” formatted sound file was 

imported and pre-processed for extracting audio features. Finally, the extracted audio 

features were used as inputs for the loaded saved trained model. The model generated 

predicted output and saved the predication as a text format.  

For the “Houston toad” or “no-toad” classification model, three audio files having 

the Houston toad call and two audio files having background noises were played in front 

of the trained model. The model predicted all five calls as Houston toad calls with a 60% 

accuracy classification. 

For the “Crawfish” or “Houston” classification model, three Crawfish frog calls 

and three Houston calls were played. Among the three Crawfish calls, one was predicted 

correctly, and the model misclassified two as a Houston toad call. Among the three 

Houston toad calls, one was misclassified as a Crawfish call and two Houston toad calls 

were predicted correctly.  

The class with the highest prediction accuracy, which was “Houston toad” during 

training, was predicted the most frequently in this test. Also, the audio files were played 

in a controlled room environment. It has a level of influences on the prediction as the 

room environment background noises such as air conditioning and noise from vehicles 

from outside were fully unknown to the trained model. 
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7. CONCLUSION 

  The Houston toad is an endangered species, and the Crawfish frog is a near 

threatened or impending endangered amphibian species, and both require conservation 

stewardship. As both species vocalize, they can be detected using their calls. An 

automated detection eliminates the human observer from detection; hence it minimizes 

failures to detect the species when present due to human error and increases detection 

robustness. An automated recording device, Toadphone 1, is currently being used for the 

Houston toad call detection. The existing trained or predictive model of Toadphone 1 is 

designed only for the Houston toad call detection and has limited success for that taxon. It 

cannot detect Houston toad with high efficiency and provides false identification 

confirmations at an unacceptable rate. 

  This work experimented with several methods or architectures to design a 

modified and more accurate classification or predictive model for the Toadphone 1, which 

can classify both the Houston toad and Crawfish frog audio calls.  Experiments have been 

performed in three ways. The first experiment was the classification of “Houston toad” or 

“Non-toad,” the second experiment was the classification of “Houston” or “Crawfish” and 

the third experiment was the classification of “Houston,” “Crawfish,” or “Environmental 

sound”. For these experiments, the first task was to preprocess the data using several 

signal processing techniques, such as filtering to narrow the frequency range, framing to 

break down the signal and make it more uniform, and applying the Hamming window 

function to avoid spectral leakage of the framed signal. The audio features were extracted 

from each frame of the signals. This thesis work utilized MFCCs with their first and 

second derivative, SSCs and Mel-spectrogram images as the feature extractors.  
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       Deep learning architectures, such as LSTM, GRU, and CNN, were used as the 

classification algorithms. The LSTM and GRU are advanced or modified RNN 

architecture, which are suitable for sequential or time-series data analysis like audio 

samples. Several model architectures have been experimented using combinations of 

classifier and audio features. For all the classification experiments, the LSTM as classifier 

with 39 MFCCs audio performed the best in average accuracy testing values. Results from 

the “Houston” or “Crawfish” and “Houston” or “Crawfish” or “Environmental sound” 

classification experiments have shown that all architectures evaluated performed for these 

experiments have a higher success rate to recognize Houston toad call compared to 

crawfish call. For “Houston” or “Crawfish” classification experiment, the model 

architecture for LSTM with 39 MFCCs was able to predict 80% of the true Houston call 

among 35 Houston toad call test samples correctly but this model also misclassified 29% 

Crawfish call as Houston toad call. So, the accuracy based on true positives and false 

positives for Houston toad call was 73%.  For Crawfish frog call prediction, this model 

architecture was able to predict 71% of the true Crawfish call among 35 Crawfish call test 

samples correctly but this model also misclassified 20% Houston toad call as Crawfish 

call. So, the accuracy based on true positives and false positives for Crawfish call was 

78%. This highest accuracy was achieved using LSTM as classifier and 39 MFCCs as 

audio features. For the “Houston” or “Crawfish” or “Environmental sound” classification 

experiment, the accuracy for Houston toad based on true positives and false positives was 

80% and the accuracy for crawfish frog was 76%.  The model architecture with LSTM 

and 39 MFCCs has shown promising result for Houston toad call predictions with less 

false positives. 
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  The ensemble learning technique with hard majority voting was experimented with 

the same input data fed to the selected trained models and predictions were made with 

different samples. The class that predicted the most was selected as the final prediction. 

Though the accuracy was decreased by 5-8%, it was an attempt to make the prediction 

more robust or trustworthy as the final prediction was made from three different 

architectures. 
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8. FUTURE WORK 

  The future development of this work is to implement this experimented predictive 

model in the field. Here, the results indicate the production of 75%-80% classification 

accuracy for Houston toad, but for Crawfish frog it varied between 65%-71%, which is 

comparatively low. This needs to be addressed to enable higher accuracy, particularly for 

the Crawfish frog. Increasing the number of data samples to train the model could be the 

right solution. The same length for all audio samples could be chosen for all classes so that 

the machine learning model should not be biased to any of the classes. The less accuracy 

of the ensemble model needs to be addressed and the appropriate best models which are 

not overfitted should be selected for the ensemble method. Another future advancement or 

improvement of this work is experimenting with other deep learning algorithms such as a 

combination of LSTM or GRU with CNN, where CNN will be used to generate more 

robust features from the conventional audio features. The model can be trained by other 

chorusing amphibian species calls such as Gulf coast toad, and Woodhouse toad to make 

this model a more generic one.   
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APPENDIX SECTION 

 

  This section includes the result of the experiment which was not included in the 

thesis.  

 

LSTM and GRU as classifier with 39 MFCCs + 16 SSCs as audio features 

for the “Crawfish” or “Houston” classification 

 

In this experiment, 39 MFCCs and 16 SSCs audio features were combined, and a 

total of 55 features were used as input to the LSTM or GRU model. The model 

architecture of this experiment is shown in Figure 35. This architecture is the same as the 

model architecture used for the “Crawfish” or “Houston” classification experiment with 

only 39 MFCCs or only 16 SSCs with LSTM and GRU model except for the input shape. 

 

 

Figure 35: LSTM and GRU Model Structure for the “Houston” or “Crawfish” 

Classification Experiment with Combined 39 MFCCs and 16 SSCs 

 

 

 Table 6 has listed the training and validation accuracies of combined 39 MFCCs 

and 16 SSCs (55 features), only 39 MFCCs and only 16 SSCs audio features as input for 

LSTM or GRU model. From Table 6, combined MFCCs and SSCs features gave a better 

performance than the experiment with only 16 SSCs features, but it did not show good 

performance than the experiment with only 39 MFCCs. 
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Table 6: The Training and Validation Accuracies with Combined 39 MFCCs and  

               16 SSCs (55 Features),  Only 39 MFCCs, Only 16 SSCs Audio Features                                                                                                                         

 

ML algorithm Audio Feature Training Accuracy Validation 

Accuracy 

  
LSTM 39 MFCCs+16 SSC 0.7682 0.757 

GRU 39 MFCCs+16 SSC 0.771 0.741 

LSTM 39 MFCCs 84% 82% 

GRU 39 MFCCs 80% 79% 

LSTM 16 SSCs 69.9% 67.7% 

GRU 16 SSCs 66.5% 65% 

 

 

As the combined MFCCs and SSCs audio features have shown poor performance 

compared to only 39 MFCCs, this method was not furthered experimented with and was 

not used for ensemble modeling or near real-time prediction system. 
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