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INFINITELY MANY WEAK SOLUTIONS FOR A p-LAPLACIAN
EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

JI-HONG ZHAO, PEI-HAO ZHAO

Abstract. We study the following quasilinear problem with nonlinear bound-

ary conditions

−∆pu + a(x)|u|p−2u = f(x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= g(x, u) on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary and ∂
∂ν

is the

outer normal derivative, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian with 1 <

p < N . We consider the above problem under several conditions on f and
g, where f and g are both Carathéodory functions. If f and g are both

superlinear and subcritical with respect to u, then we prove the existence of

infinitely many solutions of this problem by using “fountain theorem” and
“dual fountain theorem” respectively. In the case, where g is superlinear but

subcritical and f is critical with a subcritical perturbation, namely f(x, u) =

|u|p∗−2u + λ|u|r−2u, we show that there exists at least a nontrivial solution
when p < r < p∗ and there exist infinitely many solutions when 1 < r < p,

by using “mountain pass theorem” and “concentration-compactness principle”

respectively.

1. Introduction

Consider a quasilinear elliptic problem

−∆pu + a(x)|u|p−2u = f(x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= g(x, u) on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary and ∂
∂ν is the outer

normal derivative, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian with 1 < p < N ,

a(x) ∈ L∞(Ω) satisfying ess inf
x∈Ω

a(x) > 0. (1.2)

The study of nonlinear elliptic boundary value problem about p-Laplacian of the
form (1.1) is an interesting topic in recent years. Many results have been obtained
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on this kind of problem, for example see [19, 7, 4, 13, 17, 18, 2] and the refer-
ences therein. Such problem appear naturally in the study of optimal constants for
Sobolev trace embedding and it arises in various applications, e.g. non-Newtonian
fluids, reaction-diffusion problems, glaciology, biology etc(see [8, 1, 5, 3, 2]). The
first paper that analyzed (1.1) is [4]. In that paper, the authors systematically stud-
ied the existence of nontrivial solutions of (1.1) under f(u) = |u|p−2u and g are
subcritical, critical with a subcritical perturbation and supercritical with respect to
u. Using the ideas from [12], they established the existence results, nonexistence re-
sult, especially the result of nonlinear eigenvalue problem. In [2], the author proved
the existence of at least three nontrivial solutions for (1.1) under adequate assump-
tions on the source terms f and g. On the other hand, when Ω is unbounded, we
can see [19, 7, 13] for some existence and multiplicity results of solutions to problem
(1.1) in some weighted Sobolev spaces. Our aim in this paper is to prove that the
infinitely many solutions results for the problem (1.1) under various assumptions
on nonlinear terms f and g. If f and g are both superlinear and subcritical with
respect to u, then we prove the existence of infinitely many solutions of problem
(1.1) by using “fountain theorem” and “dual fountain theorem” respectively. In the
case, where g is superlinear but subcritical and f is critical with a subcritical per-
turbation, namely f(x, u) = |u|p∗−2u+λ|u|r−2u, we show that there exists at least a
nontrivial solution when p < r < p∗ and there exist infinitely many solutions when
1 < r < p, by using “mountain pass theorem” and “concentration-compactness
principle” respectively. The main ideas of our paper is from [20, 4].

Throughout this paper the following hypotheses are assumed.
(F1) f(x, u) is a Carathéodory function and for some p < q < p∗ = Np

N−p , there
exists a constant C1 > 0 such that

|f(x, u)| ≤ C1(1 + |u|q−1) for all x ∈ Ω, u ∈ R.

(G1) g(x, u) is a Carathéodory function and for some p < z < p∗ = (N−1)p
N−p , there

exists a constant C2 > 0 such that

|g(x, u)| ≤ C2(1 + |u|z−1) for all x ∈ ∂Ω, u ∈ R.

(F2) There exists α1 > p and R > 0 such that

|u| ≥ R =⇒ 0 < α1F (x, u) ≤ uf(x, u) for all x ∈ Ω,

where F (x, u) =
∫ u

0
f(x, t)dt is the primitive function of f(x, u).

(G2) There exists α2 > p and R > 0 such that

|u| ≥ R =⇒ 0 < α2G(x, u) ≤ ug(x, u) for all x ∈ ∂Ω,

where G(x, u) =
∫ u

0
g(x, t)dt is the primitive function of g(x, u).

(F3) f(x, u) is an odd function with respect to u, that is,

f(x,−u) = −f(x, u) for all x ∈ Ω.

(G3) g(x, u) is an odd function with respect to u, that is,

g(x,−u) = −g(x, u) for all x ∈ Ω.

(G4) limu→0
g(x,u)
|u|p−1 = 0.

Define W 1,p(Ω) = {u ∈ Lp(Ω) :
∫
Ω
|∇u|pdx < ∞} with the norm

‖u‖1,p := (
∫

Ω

(|∇u|p + a(x)|u|p)dx)
1
p . (1.3)
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Then W 1,p(Ω) is a Banach space. For a variational approach, the functional asso-
ciated to the problem (1.1) is

ϕ(u) =
1
p

∫
Ω

(|∇u|p + a(x)|u|p)dx−
∫

Ω

F (x, u)dx−
∫

∂Ω

G(x, u)dS, (1.4)

where u ∈ W 1,p(Ω) and dS is the measure on the boundary. Since (F1) and (G1)
we can easily to obtain ϕ ∈ C1(W 1,p(Ω), R) and

〈ϕ′(u); v〉 =
∫

Ω

(|∇u|p−2∇u∇v + a(x)|u|p−2uv)dx

−
∫

Ω

f(x, u)vdx−
∫

∂Ω

g(x, u)vdS

for all u, v ∈ W 1,p(Ω). We say that u is a weak solution of the problem (1.1) if u is
the critical point of the functional ϕ on W 1,p(Ω).

Remark 1.1. According to the regularity theorem of [14], if ∂Ω is of class C1,α(0 <
α ≤ 1) and g satisfies

|g(x, u)− g(y, v)| ≤ C(|x− y|α + |u− v|α), |g(x, u)| ≤ C

for all x, y ∈ Ω, u, v ∈ R, then the regularity up to the boundary of [14, Theorem
2] shows that every weak solution of (1.1) belongs to C1,β

loc (Ω) for some 0 < β ≤ 1.

Remark 1.2. Under the assumption (1.2) it is easy to check that the norm (1.3)
is equivalent to the usual one, that is the norm with a(x) ≡ 1 in (1.3).

Our main results are as follows.

Theorem 1.3. Under the assumptions (F1)–(F3) and (G1)–(G3), problem (1.1)
has a sequence of solutions uk ∈ W 1,p(Ω) such that ϕ(uk) →∞ as k →∞.

For a special f , we obtain a sequence of weak solutions with negative energy.

Theorem 1.4. Let f(x, u) = µ|u|r−2u + λ|u|s−2u, where 1 < r < p < s < p∗ and
assume (G1) ∼ (G4) are satisfied. Then

(1) for every λ > 0, µ ∈ R, problem (1.1) has a sequence of solutions uk ∈
W 1,p(Ω) such that ϕ(uk) →∞ as k →∞,

(2) for every µ > 0, λ ≥ 0, problem (1.1) has a sequence of solutions vk ∈
W 1,p(Ω) such that ϕ(vk) < 0, ϕ(vk) → 0 as k →∞.

Next we consider the critical growth on f . In this case, the compactness of the
embedding W 1,p(Ω) ↪→ Lp∗(Ω) fails, so to recover some sort of compactness, in
spirit of [6], we consider a perturbation of the critical power, that is, f(x, u) =
|u|p∗−2u + λ|u|r−2u. We also need much more assumptions on g around about the
origin.
(G2’) there exists α2 > p such that

0 < α2G(x, u) ≤ ug(x, u) for all x ∈ ∂Ω, u ∈ R \ {0}.
Here we use the “concentration-compactness principle” introduced in [15, 16]. We
prove the following two theorems.

Theorem 1.5. Let f(x, u) = |u|p∗−2u + λ|u|r−2u with p < r < p∗ and assume
(G1), (G2), (G3) and (G4) are satisfied. Then there exists a constant λ0 > 0
depending on p, r, N and |Ω| such that if λ > λ0, problem (1.1) has at least a
nontrivial solution in W 1,p(Ω).
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Theorem 1.6. Let f(x, u) = |u|p∗−2u+λ|u|r−2u with 1 < r < p and assume (G1),
(G2), (G3) and (G4) are satisfied. Then their exists a constant λ̃ > 0 depending on
p, r, N and |Ω| such that if 0 < λ < λ̃, problem (1.1) has infinitely many nontrivial
solutions uk ∈ W 1,p(Ω) such that ϕ(uk) < 0, ϕ(uk) → 0 as k →∞.

This paper is organized as follows. In the second section, we recall some def-
initions and preliminary theorems, including the well-known “fountain theorem”
and “dual fountain theorem”. The (PS)c condition and (PS)∗c condition are also
introduced. In the third section, we consider the subcritical case and give the proof
of Theorem 1.3 and Theorem 1.4. In the last section. We consider the critical case
and give the proof of Theorems 1.5 and 1.6.

2. Preliminaries

First we introduced some notations: X denotes Banach space with the norm
‖ · ‖X , X∗ denotes the conjugate space with X, Lp(Ω) denotes Lebesgue space with
the usual norm | · |p, W 1,p(Ω) denotes Sobolev space with the norm ‖ · ‖1,p defined
by (1.3), 〈·; ·〉 is the dual paring of the space X∗ and X, |Ω| denotes the Lebesgue
measure of the set Ω ⊂ RN , C1, C2, . . . , denote (possibly different) positive con-
stants.

One important aspect of applying the standard methods of variational theory
is to show that the functional ϕ satisfies the (PS)c or (PS)∗c condition which is
introduced the following definition.

Definition 2.1. Let ϕ ∈ C1(X, R) and c ∈ R. The function ϕ satisfies the (PS)c

condition if any sequence {un} ⊂ X such that

ϕ(un) → c, ϕ′(un) → 0 in X∗ as n →∞
contains a subsequence converging to a critical point of ϕ.

Let X be a reflexive and separable Banach space, then there are ej ∈ X and
e∗j ∈ X∗ such that

X = span{ej |j = 1, 2, . . .}, X∗ = span{e∗j |j = 1, 2, . . .},

〈e∗i ; ej〉 =

{
1, i = j,

0, i 6= j.

For convenience, we write Xj := span{ej}, Yk := ⊕k
j=1Xj , Zk := ⊕∞j=kXj . And let

Bk := {u ∈ Yk : ‖u‖X ≤ ρk}, Nk := {u ∈ Zk : ‖u‖X = γk}, where ρk > γk > 0.

Definition 2.2. Let ϕ ∈ C1(X, R) and c ∈ R. The function ϕ satisfies the (PS)∗c
condition (with respect to (Yn)) if any sequence {unj

} ⊂ Ynj
such that

ϕ(unj
) → c, ϕ|′Ynj

(unj
) → 0 in X∗ as nj →∞

contains a subsequence converging to a critical point of ϕ.

Theorem 2.3 (Fountain theorem, [20, Thm. 3.6]). Let ϕ ∈ C1(X, R) be an even
functional. If , for every k ∈ N, there exists ρk > γk > 0 such that

(A1) ak := supu∈Yk, ‖u‖X=ρk
ϕ(u) ≤ 0,

(A2) bk := infu∈Zk, ‖u‖X=γk
ϕ(u) →∞ as k →∞,

(A3) ϕ satisfies the (PS)c condition for every c > 0.
Then ϕ has an unbounded sequence of critical values.
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Theorem 2.4 (Dual fountain theorem, [20, Theorem 3.18]). Let ϕ ∈ C1(X, R) be
an even functional. If , for every k ≥ k0, there exists ρk > γk > 0 such that

(B1) ak := infu∈Zk, ‖u‖X=ρk
ϕ(u) ≥ 0,

(B2) bk := supu∈Yk, ‖u‖X=γk
ϕ(u) < 0,

(B3) dk := infu∈Zk, ‖u‖X≤ρk
ϕ(u) → 0 as k →∞,

(B4) ϕ satisfies the (PS)∗c condition for every c ∈ [dk0 , 0[.
Then ϕ has a sequence of negative critical values converging to 0.

3. Proof of Theorem 1.3

Proof of the (PS)c condition. Let us introduce the following lemmas which will
be helpful in the proof.

Lemma 3.1 ([18, Lemma 2.1]). Let A : W 1,p(Ω) → W 1,p(Ω)∗ be the function given
by 〈A(u); v〉 :=

∫
Ω
|∇u|p−2∇u∇vdx +

∫
Ω

a(x)|u|p−2uvdx. Then A is continuous,
odd, (p− 1)-homogeneous, and continuously invertible.

Lemma 3.2 ([18, Lemma 2.2]). Let B : W 1,p(Ω) → W 1,p(Ω)∗ be the function
given by 〈B(u); v〉 :=

∫
∂Ω

g(x, u)vdS, where g(x, u) be a Carathéodory function
with subcritical growth. Then B is continuous and compact.

Lemma 3.3 ([18, Lemma 2.3]). Let C : W 1,p(Ω) → W 1,p(Ω)∗ be the function
given by 〈C(u); v〉 =

∫
Ω

f(x, u)vdx, where f(x, u) is a Carathéodory function with
subcritical growth. Then C is continuous and compact.

Lemma 3.4. Under the hypotheses of Theorem 1.3, ϕ satisfies the (PS)c condition
with c > 0.

Proof. Suppose that {un} ⊂ W 1,p(Ω), for every c > 0,

ϕ(un) → c, ϕ′(un) → 0 in W 1,p(Ω)∗ as n →∞.

First we prove the boundness of {un}. After integrating, we obtain from the
assumptions (F2) and (G2) that there exist C1, C2 > 0 such that

C1(|u|α1 − 1) ≤ F (x, u) for all x ∈ Ω, u ∈ R, (3.1)

C2(|u|α2 − 1) ≤ G(x, u) for all x ∈ ∂Ω, u ∈ R. (3.2)

Set α = min{α1, α2} and choose 1
β ∈ ( 1

α , 1
p ) , and from (3.1) and (3.2), we obtain

for n sufficiently large,

c + 1 + ‖un‖1,p

≥ ϕ(un)− 1
β
〈ϕ′(un), un〉

≥ (
1
p
− 1

β
)‖un‖p

1,p + (
α1

β
− 1)

∫
Ω

F (x, un)dx− (
α2

β
− 1)

∫
∂Ω

G(x, un)dS

≥ (
1
p
− 1

β
)‖un‖p

1,p + C1(
α1

β
− 1)|un|α1

α1
+ C2(

α2

β
− 1)|un|α2

Lα2 (∂Ω)
− C3.

Note that αi

β − 1 > 0(i = 1, 2), then {un} is bounded in W 1,p(Ω).
Next we show that the strongly convergence of {un} in W 1,p(Ω). Since {un} is

bounded, up to a subsequence (which we still denote by {un}), we may assume that
there exists u ∈ W 1,p(Ω) such that un ⇀ u weakly in W 1,p(Ω) as n → ∞. Note
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that ϕ′(un) = A(un)− B(un)− C(un) → 0. By the compactness of B, C and the
continuity of A−1, we have

un → A−1(a(x)B(u)− C(u)) in W 1,p(Ω) as n →∞.

Thus un → u in W 1,p(Ω). �

To prove Theorem 1.3 we also need the following two lemmas.

Lemma 3.5 ([11]). If 1 ≤ q < p∗= Np
N−p , then

βk := sup
u∈Zk, ‖u‖1,p=1

|u|q → 0 as k →∞.

Lemma 3.6 ([11]). If 1 ≤ z < p∗=
(N−1)p

N−p , then

σk := sup
u∈Zk, ‖u‖1,p=1

|u|Lz(∂Ω) → 0 as k →∞.

Remark 3.7. In [11], the authors gave a more general form of two above lemmas.
Here the key step of the proof of these two lemmas is that the Sobolev embedding
W 1,p(Ω) ↪→ Lq(Ω) is compact for 1 ≤ q < p∗ and the Sobolev trace embedding
W 1,p(Ω) ↪→ Lz(∂Ω) is compact for 1 ≤ z < p∗.

The proof of Theorem 1.3.
Assumptions (F1) and (G1) and the Lemma 3.4 imply that ϕ is continuously

differentiable on W 1,p(Ω) and satisfies the (PS)c condition for every c > 0. So from
Theorem 2.3, we need only to verify φ satisfying the condition (A1) and (A2).

As for (3.1) and (3.2) in Lemma 3.4, we have

ϕ(u) ≤
‖un‖p

1,p

p
− C1|u|α1

α1
− C2|u|α2

Lα2 (∂Ω) − C1|Ω| − C2|∂Ω|.

Since on the finite-dimensional space Yk all norms are equivalent, so αi > p (i = 1, 2)
implies that (A1) is satisfied for ρk > 0 large enough.

After integrating, we obtain from the assumptions (F1) and (G1) that there exist
constants C1, C2 > 0 such that

F (x, u) ≤ C1(1 + |u|q), G(x, u) ≤ C2(1 + |u|z).
Let us define

βk := sup
u∈Zk, |u‖1,p=1

|u|q, dσk := sup
u∈Zk, ‖u‖1,p=1

|u|Lz(∂Ω).

On Zk, we have

ϕ(u) =
1
p
‖u‖p

1,p −
∫

Ω

F (x, u)dx−
∫

∂Ω

G(x, u)dS

≥ 1
p
‖u‖p

1,p − C1|u|qq − C1|Ω| − C2|u|zLz(∂Ω) − C2|∂Ω|

≥ 1
p
‖u‖p

1,p − C1β
q
k‖u‖

q
1,p − C2σ

z
k‖u‖z

1,p − C3.

Let
1
4p

ρp − C1β
q
kρq = 0,

1
4p

ρp − C2σ
z
kρz = 0.
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From these two equations, we have ρk := (4pC1β
q
k)

1
p−q , ρ′k := (4pC2σ

z
k)

1
p−z . From

Lemmas 3.5 and 3.6 we know that βk → 0, σk → 0 as k →∞. So, we know

ρk →∞ as k →∞, ρ′k →∞ as k →∞. (3.3)

Let
γk = min{ρk, ρ′k}, (3.4)

we obtain, if u ∈ Zk and ‖u‖1,p = γk, then ϕ(u) ≥ 1
2pγp

k − C3. From (3.3) and
(3.4), so (A2) is proved. It suffices then to use the fountain theorem to complete
the proof.

Here, we show two examples for readers for special cases of f to understand our
theorem.

Example 3.8. Let p < q < p∗ and assumed (G1)–(G3) are satisfied. We consider
the quasilinear elliptic equation

−∆pu + a(x)|u|p−2u = |u|q−2u in Ω,

|∇u|p−2 ∂u

∂ν
= g(x, u) on ∂Ω.

This problem has a sequence of solutions {uk} such that ϕ(uk) →∞ as k →∞.

Example 3.9. Let 1 < r < p < s < p∗ and assumed (G1)–(G3) are satisfied. We
consider the quasilinear elliptic equation

−∆pu + a(x)|u|p−2u = µ|u|r−2u + λ|u|s−2u in Ω,

|∇u|p−2 ∂u

∂ν
= g(x, u) on ∂Ω.

Then for every λ > 0, µ ∈ R, this problem has a sequence of solutions {uk} such
that ϕ(uk) →∞ as k →∞.

Proof of Theorem 1.4. The first conclusion of Theorem 1.4 is just example 3.9.
We shall prove Theorem 1.4 by using Theorem 2.4, so we need to verify the condition
(B1)–(B4). Now we assume that µ > 0 .

To verify (B1), we define βk := sup
u∈Zk

‖u‖1,p=1

|u|r. From the assumptions (G1) and

(G4), we have G(x, u) ≤ ε|u|p+C|u|z, where ε → 0 as |u| → 0. So from the Sobolev
trace embedding, we have

ϕ(u) =
1
p
‖u‖p

1,p −
µ

r
|u|rr −

λ

s
|u|ss −

∫
∂Ω

G(x, u)dS

≥ 1
p
‖u‖p

1,p −
µ

r
βr

k‖u‖r
1,p −

λ

s
C1‖u‖s

1,p − ε|u|pLp(∂Ω) − C2|u|zLz(∂Ω)

≥ 1
p
‖u‖p

1,p −
µ

r
βr

k‖u‖r
1,p −

λ

s
C1‖u‖s

1,p − εC3‖u‖p
1,p − C4‖u‖z

1,p.

≥ (
1
p
− εC3)‖u‖p

1,p −
µ

r
βr

k‖u‖r
1,p −

λ

s
C1‖u‖s

1,p − C4‖u‖z
1,p.

Since p < s and p < z, there exists R > 0 such that ‖u‖1,p ≤ R. We have
1
4p
‖u‖p

1,p −
λ

s
C1‖u‖s

1,p ≥ 0,

1
4p
‖u‖p

1,p − C4‖u‖z
1,p ≥ 0.
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From these two inequalities, it follows that

ϕ(u) ≥ (
1
2p

− εC3)‖u‖p
1,p −

µ

r
βr

k‖u‖r
1,p. (3.5)

Choose ε so small such that 1
2p − εC3 > 0 and let ρk := [( 1

2p − εC3)−1 µ
r βr

k]
1

p−r , by
Lemma 3.5, βk → 0 as k → ∞, it follows that ρk → 0 as k → ∞. So there exists
k0 such that ρk ≤ R when k ≥ k0. Thus, for k ≥ k0, u ∈ Zk and ‖u‖1,p = ρk, we
have ϕ(u) ≥ 0 and (B1) is proved.

From (G2) we know there exists C > 0 such that C(|u|α2 − 1) ≤ G(x, u). Then,
we have

ϕ(u) =
1
p
‖u‖p

1,p −
µ

r
|u|rr −

λ

s
|u|ss −

∫
∂Ω

G(x, u)dS

≤ 1
p
‖u‖p

1,p −
µ

r
|u|rr −

λ

s
|u|ss − C|u|α2

Lα2 (∂Ω) − C|∂Ω|.

Since on the finite dimensional space Yk all norms are equivalent, as r < p, so if
µ > 0 then (B2) is satisfied for every rk > 0 small enough.

We obtain from (3.5), for k ≥ k0, u ∈ Zk, ‖u‖1,p ≤ ρk, ϕ(u) ≥ −µ
r βr

kρr
k, since

βk → 0 and ρk → 0 as k →∞, (B3) is also satisfied.
Finally we proved the (PS)∗c condition. Consider a sequence unj

∈ Ynj
such that

ϕ(unj
) → c, ϕ|′Ynj

(unj
) → 0 in W 1,p(Ω)∗ as nj →∞.

For nj big enough, let ζ = min{s, α2} and choose 1
β ∈ ( 1

ζ , 1
p ). Now as λ ≥ 0 we

have

c + 1 + ‖unj‖1,p ≥ ϕ(unj )−
1
β
〈ϕ′(unj );unj 〉

≥ (
1
p
− 1

β
)‖unj

‖p
1,p − µ(

1
r
− 1

β
)|unj

|rr.

We can obtain the boundness of (unj ) in W 1,p(Ω) since 1 < r < p. Going if
necessary to a subsequence, we can assume that unj ⇀ u in W 1,p(Ω). As in
Lemma 3.4, it is easy to conclude, unj

→ u in W 1,p(Ω) and ϕ′(u) = 0.
To obtain much more general conclusion of Theorem 1.4, we make the following

assumption.
(G2”) There exists α2 ≥ s such that

|u| ≥ R =⇒ 0 < α2G(x, u) ≤ ug(x, u) for all x ∈ ∂Ω.

Corollary 3.10. Let 1 < r < p < s < p∗ and under the assumptions (G1), (G2”),
(G3) and (G4). We consider the quasilinear elliptic equation

−∆pu + a(x)|u|p−2u = µ|u|r−2u + λ|u|s−2u in Ω,

|∇u|p−2 ∂u

∂ν
= g(x, u) on ∂Ω.

(3.6)

Then
(1) for every λ > 0, µ ∈ R, problem (3.6) has a sequence of solutions uk ∈

W 1,p(Ω) such that ϕ(uk) →∞ as k →∞,
(2) for every µ > 0, λ ∈ R, problem (3.6) has a sequence of solutions vk ∈

W 1,p(Ω) such that ϕ(vk) < 0, ϕ(vk) → 0 as k →∞.
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Proof. We need only to prove the boundness of {unj
} in (PS)∗c sequence. Consider

a sequence unj ∈ Ynj such that

ϕ(unj
) → c, ϕ|′Ynj

(unj
) → 0 in W 1,p(Ω)∗ as nj →∞.

For nj big enough, from (G2”) we have

c + 1 + ‖unj
‖1,p

≥ ϕ(unj
)− 1

s
〈ϕ′(unj

);unj
〉

= (
1
p
− 1

s
)‖unj

‖p
1,p − µ(

1
r
− 1

s
)|unj

|rr +
∫

∂Ω

(
1
s
g(x, unj

)unj
−G(x, unj

))dS

≥ (
1
p
− 1

s
)‖unj

‖p
1,p − µ(

1
r
− 1

s
)|unj

|rr.

We obtain the boundness of {unj
} in W 1,p(Ω) since 1 < r < p. �

4. Critical cases

Critical case 1. In this subsection and next subsection, we study that f has the
critical growth with superlinear or sublinear perturbation in problem (1.1). In these
cases, we know all of conditions of Theorem 1.4 are satisfied and we need only to
prove the (PS)c condition. However, noticing that the inclusion W 1,p(Ω) ↪→ Lp∗(Ω)
is only continuous but not compact, we can no longer expect the (PS)c condition
to be hold. Thanks to the concentration-compactness principle in [15, 16]. We can
prove a local (PS)c condition that will hold true for ϕ(u) below a certain value of
energy. The proof of Theorem 1.5 and Theorem 1.6 is similar to [4]. We write here
for the readers convenience. Now, let f(x, u) = |u|p∗−2u+λ|u|r−2u with p < r < p∗

and λ is a positive parameter.

Lemma 4.1 ([15, 16]). Let {uj} be a weakly convergent sequence in W 1,p(Ω) with
weak limit u such that |∇uj |p ⇀ dµ, |uj |p

∗
⇀ dσ weakly convergent in the sense of

measures. Then there exist x1, x2, . . . , xl ∈ Ω such that

dσ = |u|p
∗

+
l∑

j=1

σjδxj , σj > 0,

dµ ≥ |∇u|p +
l∑

j=1

µjδxj
, µj > 0,

(σj)
p

p∗ ≤ µj

S
.

Now, we can prove a local (PS)c condition by using Lemma 4.1.

Lemma 4.2. Let {uj} ⊂ W 1,p(Ω) be a (PS)c sequence for ϕ with energy level

c. If c < ( 1
p −

1
p∗ )S

p∗
p∗−p , where S is the best constant in the Sobolev embed-

ding W 1,p(Ω) ↪→ Lp∗(Ω), then there exists a subsequence that converges strongly
in W 1,p(Ω).

Proof. Let {uj} be a (PS)c sequence, it follows that {uj} is bounded in W 1,p(Ω)(see
Lemma 3.4). By Lemma 4.1, there exists a subsequence, that we still denote {uj}
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such that

uj ⇀ u weakly in W 1,p(Ω),

uj → u strongly in Lr(Ω), 1 < r < p∗,

uj → u a.e. in Ω,

|∇uj |p ⇀ dµ ≥ |∇u|p +
l∑

k=1

µkδxk
, µk > 0, (4.1)

|uj |p
∗

⇀ dσ = |u|p
∗

+
l∑

k=1

σkδxk
, σk > 0. (4.2)

Choose φ ∈ C∞
0 (RN) such that

φ ≡ 1 in B(xk, ε), φ ≡ 0 in B(xk, 2ε)c, |∇φ| ≤ 2
ε
,

where xk belongs to the support of dσ. Considering {ujφ}, it is easy to see this
sequence is bounded in W 1,p(Ω). Since ϕ′(uj) → 0 in W 1,p(Ω)∗ as j → ∞, we
obtain that

lim
j→∞

〈ϕ′(uj);φuj〉 = 0. (4.3)

Then from (4.1) and (4.2), we obtain

lim
j→∞

∫
Ω

|∇uj |p−2∇uj∇φujdx

=
∫

Ω

φdσ + λ

∫
Ω

|u|rφdx +
∫

∂Ω

ug(x, u)φdS − a(x)
∫

Ω

|u|pφdx−
∫

Ω

φdµ.

Now, by Hölder inequality and weak convergence, we obtain

0 ≤ lim
j→∞

|
∫

Ω

|∇uj |p−2∇uj∇φujdx|

≤ lim
j→∞

(
∫

Ω

|∇uj |pdx)
p−1

p (
∫

Ω

|∇φ|p|uj |pdx)
1
p

≤ C(
∫

B(xk,2ε)∩Ω

|∇φ|p|u|pdx)
1
p

≤ C(
∫

B(xk,2ε)∩Ω

|∇φ|Ndx)
1
N (

∫
B(xk,2ε)∩Ω

|u|
Np

N−p dx)
N−p
Np

≤ C(
∫

B(xk,2ε)∩Ω

|u|
Np

N−p dx)
N−p
Np → 0 as ε → 0.

Then from (4.3) we have

lim
ε→0

[ ∫
Ω

φdσ + λ

∫
Ω

|u|rφdx +
∫

∂Ω

ug(x, u)φdS − a(x)
∫

Ω

|u|pφdx−
∫

Ω

φdµ
]

= σk − µk = 0.

Then from Lemma 4.1, we have that (σk)p/p∗S ≤ µk. Therefore by the above
equality,

(σk)p/p∗S ≤ σk.

Then, either σk = 0 or
σk ≥ S

p∗
p∗−p .
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If this inequality occurs for some k0, then, from the fact that {uj} is a (PS)c

sequence and from (G2) we obtain

c = lim
j→∞

ϕ(uj) = lim
j→∞

ϕ(uj)−
1
p
〈ϕ′(uj);uj〉

≥ (
1
p
− 1

p∗
)
∫

Ω

|u|p
∗
dx + (

1
p
− 1

p∗
)S

p∗
p∗−p + λ(

1
p
− 1

r
)
∫

Ω

|u|rdx

≥ (
1
p
− 1

p∗
)S

p∗
p∗−p ,

which contradicts our hypothesis. Since c < ( 1
p −

1
p∗ )S

p∗
p∗−p , it follows that∫

Ω

|uj |p
∗
dx →

∫
Ω

|u|p
∗
dx,

so we have uj → u in Lp∗(Ω). Now the proof is complete with the continuity of the
operator A−1. �

Proof of Theorem 1.5. We want to obtain our result by using mountain pass
theorem. First from the assumption (G1) and (G4), we have

G(x, u) ≤ ε|u|p + C|u|z, (4.4)

where ε → 0 as |u| → 0. From the Sobolev embedding theorem and Sobolev trace
inequality, we have

ϕ(u) ≥ 1
p
‖u‖p

1,p −
1
p∗

∫
Ω

|u|p
∗
dx− λ

r

∫
Ω

|u|rdx− ε

∫
∂Ω

|u|pdS − C1

∫
∂Ω

|u|zdS

≥ 1
p
‖u‖p

1,p −
1
p∗

∫
Ω

|u|p
∗
dx− λ

r

∫
Ω

|u|rdx− εC2‖u‖p
1,p − C3‖u‖z

1,p

≥ (
1
p
− εC2)‖u‖p

1,p −
1
p∗

∫
Ω

|u|p
∗
dx− λ

r

∫
Ω

|u|rdx− C3‖u‖z
1,p

≥ (
1
p
− εC2)‖u‖p

1,p −
1
p∗

Sp∗‖u‖p∗

1,p −
λ

r
C4‖u‖r

1,p − C3‖u‖z
1,p.

Choose ε > 0 sufficiently small such that 1
p − εC2 > 0 and let

g(t) = (
1
p
− εC2)tp −

1
p∗

Sp∗tp
∗
− λ

r
C4t

r − C3t
z, (4.5)

it is easy to check that g(R) > r > 0 for some R sufficiently small since p <
min{r, p∗, z}. On the other hand, since p < min{r, p∗, z}, so for fixed ω ∈ W 1,p(Ω)
with ω|Ω 6= 0, we have limt→∞ ϕ(tω) = −∞. Then there exists v0 ∈ W 1,p(Ω) such
that ‖v0‖1,p > R and ϕ(v0) < r. So according to the mountain pass Theorem, we
know the critical value is c := infφ∈Γ supt∈[0,1] ϕ(φ(t)), where Γ = {φ : [0, 1] →
W 1,p(Ω) is continuous and φ(0) = 0, φ(1) = v0}. Now the problem is to show that

c < ( 1
p−

1
p∗ )S

p∗
p∗−p and we want to apply the local (PS)c condition. For this purpose

we fix ω ∈ W 1,p(Ω) with ‖ω‖p∗ = 1 and define h(t) = ϕ(tω). Let us calculate the
maximum of h. Since lim

t→∞
h(t) = −∞, it follows that there exists a tλ > 0 such

that supt>0 ϕ(tω) = h(tλ). Differentiating h, we obtain

0 = h′(tλ) = tp−1
λ ‖ω‖p

1,p − tp
∗−1

λ − tr−1
λ λ|ω|rr −

∫
∂Ω

g(x, tλω)ωdS. (4.6)
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From assumptions (G1) and (G4), we obtain

|
∫

∂Ω

g(x, tλω)ωdS| ≤
∫

∂Ω

|g(x, tλω)||ω|dS

≤ εtp−1
λ

∫
∂Ω

|ω|pdS + C1t
z−1
λ

∫
∂Ω

|ω|zdS

= εtp−1
λ |ω|pLp(∂Ω) + C1t

z−1
λ |ω|zLz(∂Ω).

From (4.6),

tp−1
λ ‖ω‖p

1,p − tp
∗−1

λ − tr−1
λ λ|ω|rr − εtp−1

λ |ω|pLp(∂Ω) − C1t
z−1
λ |ω|zLz(∂Ω) ≤ 0.

Then

tp
∗−p

λ + tr−p
λ λ|ω|rr + C3t

z−p
λ ‖ω‖z

1,p ≤ (1− εC2)‖ω‖p
1,p. (4.7)

Hence, tλ ≤ C‖ω‖
p

p∗−p

1,p . So from (4.7), tp
∗−r

λ +λ|ω|rr+C3t
z−r
λ ‖ω‖z

1,p →∞ as λ →∞.
we obtain

lim
λ→∞

tλ = 0. (4.8)

On the other hand, it is easy to check that if λ > λ we could have ϕ(tλω) ≥ ϕ(tλω).
So by (4.8), we get limλ→∞ ϕ(tλω) = 0. But this equality means that there exists

a constant λ0 > 0 such that if λ > λ0, then sup
t≥0

ϕ(tω) < ( 1
p −

1
p∗ )S

p∗
p∗−p . We choose

v0 = t0ω with t0 sufficiently large to have ϕ(t0ω) < 0. This completes the proof.

4.1. Critical case 2. In this subsection we study f has critical and sublinear
terms in problem (1.1), that is, f(x, u) = |u|p∗−2u + λ|u|r−2u with 1 < r < p and
λ a positive parameter. By applying the variational approach, we will show the
existence of infinitely many nontrivial critical points of the associated functional ϕ
when λ is small enough. First we use Lemma 4.1 to prove local (PS)c condition.

Lemma 4.3. Let {uj} ⊂ W 1,p(Ω) be a (PS)c sequence for ϕ with energy level c.

If c < ( 1
p −

1
p∗ )S

p∗
p∗−p −Kλ

p∗
p∗−r , where K depend only on p, r,N and |Ω|, then there

exists a subsequence that converges strongly in W 1,p(Ω).

Proof. Let {uj} be a (PS)c sequence; that is,

ϕ(uj) → c, ϕ′(uj) → 0 in W 1,p(Ω)∗ as j →∞.

From Lemma 3.4 it follows immediately that {uj} is bounded in W 1,p(Ω). Then
there exists a subsequence (we still denote {uj}) which is weakly convergent to u

in W 1,p(Ω). We need to prove {uj} is strongly convergent to u in Lp∗(Ω). For this
purpose, suppose {uj} is not strongly convergent to u in Lp∗(Ω), then from (G2)
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we have

c = lim
j→∞

ϕ(uj) = lim
j→∞

ϕ(uj)−
1
p
〈ϕ′(uj);uj〉

= lim
j→∞

((1
p

∫
Ω

|∇uj |p + a(x)|uj |pdx− 1
p∗

∫
Ω

|uj |p
∗
dx− λ

r

∫
Ω

|uj |rdx

−
∫

∂Ω

G(x, uj)dS
)
−

(1
p

∫
Ω

|∇uj |p + a(x)|uj |pdx

− 1
p

∫
Ω

|uj |p
∗
dx− λ

p

∫
Ω

|uj |rdx−
∫

∂Ω

1
p
g(x, ujuj)dS

))
≥ (

1
p
− 1

p∗
)
∫

Ω

|u|p
∗
dx + (

1
p
− 1

p∗
)S

p∗
p∗−p + λ(

1
p
− 1

r
)
∫

Ω

|u|rdx.

Now, applying Hölder inequality, we find

c ≥ (
1
p
− 1

p∗
)
∫

Ω

|u|p
∗
dx + (

1
p
− 1

p∗
)S

p∗
p∗−p + λ(

1
p
− 1

r
)|Ω|1−

r
p∗ (

∫
Ω

|u|p
∗
dx)

r
p∗

= (
1
p
− 1

p∗
)S

p∗
p∗−p + (

1
p
− 1

p∗
)‖u‖p∗

Lp∗ (Ω)
+ λ(

1
p
− 1

r
)|Ω|1−

r
p∗ (

∫
Ω

|u|p
∗
dx)

r
p∗ .

Let
g(x) = C1x

p∗ − λC2x
r.

This function reaches its absolute minimum at x0 = (λrC2
p∗C1

)
1

p∗−r , that is

g(x) ≥ g(x0) = −Kλ
p∗

p∗−r , where K = K(p, r,N, |Ω|).

Hence, c ≥ ( 1
p −

1
p∗ )S

p∗
p∗−p −Kλ

p∗
p∗−r which contradicts our hypothesis. So we know∫

Ω
|uj |p

∗
dx →

∫
Ω
|u|p∗dx, and therefore uj → u in Lp∗(Ω). Now the rest of the

proof is as that of Lemma 4.2. �

Lemma 4.4. There exists λ̃ > 0 such that if 0 < λ < λ̃, then ϕ satisfies a local
(PS)c condition for c ≤ 0.

Proof. We need only to check the local (PS)c condition. Obviously observe that
every (PS)c sequence for ϕ with energy level c ≤ 0 must be bounded. Therefore
by Lemma 4.3 if λ verifies

0 < λ < (
1
p
− 1

p∗
)S

p∗
p∗−p −Kλ

p∗
p∗−r ,

then their exists a convergent subsequence. �

Proof of Theorem 1.6. The proof is analogous to that of Theorem 1.4. Here
we use Lemma 4.3 and Lemma 4.4 respectively to work with the functional ϕ and
complete the proof.
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