
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 141, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE AND ASYMPTOTIC BEHAVIOR OF POSITIVE
SOLUTIONS FOR SEMILINEAR FRACTIONAL NAVIER

BOUNDARY-VALUE PROBLEMS
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Abstract. We study the existence, uniqueness, and asymptotic behavior of
positive continuous solutions to the fractional Navier boundary-value problem

Dβ(Dαu)(x) = −p(x)uσ , ∈ (0, 1),

lim
x→0

x1−βDαu(x) = 0, u(1) = 0,

where α, β ∈ (0, 1] such that α + β > 1, Dβ and Dα stand for the standard

Riemann-Liouville fractional derivatives, σ ∈ (−1, 1) and p being a nonnega-
tive continuous function in (0, 1) that may be singular at x = 0 and satisfies

some conditions related to the Karamata regular variation theory. Our ap-

proach is based on the Schäuder fixed point theorem.

1. Introduction

The existence, uniqueness and asymptotic behavior of positive continuous so-
lutions related to fractional differential equations have been studied by many re-
searchers. Many fractional differential equations subject to various boundary condi-
tions have been addressed; see, for instance, [1, 2, 4, 5, 7, 8, 14, 16, 18, 19, 21, 22, 23,
25, 28, 29, 30] and the reference therein. It is known that fractional differential equa-
tions have extensive applications in various fields of science and engineering. Many
phenomena in viscoelasticity, electrochemistry, control theory, porous media, elec-
tromagnetism and other fields, can be modeled by fractional differential equations.
Also it provides an excellent tool to describe the hereditary properties of various
materials and processes. Concerning the development of theory methods and appli-
cations of fractional calculus, we refer to [6, 9, 10, 11, 12, 13, 15, 17, 23, 24, 26, 28]
and the references therein for discussions of various applications.

In [18], Mâagli et al considered the following fractional initial value problem

Dβu(x) = p(x)uσ, x ∈ (0, 1),

lim
x→0+

x1−βu(x) = 0,
(1.1)
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where β ∈ (0, 1), σ < 1 and p is a nonnegative measurable function on (0, 1). By
a potential theory approach associated to Dβ and some technical tools relying to
Karamata regular variation theory, the authors proved the existence, uniqueness
and asymptotic behavior of a positive solution to problem (1.1).

Bachar et al [1] studied the following fractional Navier boundary value problem

Dβ(Dαu)(x) + u(x)f(x, u(x)) = 0, x ∈ (0, 1),

lim
x→0+

Dβ−1u(x) = 0, lim
x→0+

Dα−1(Dβu)(x) = ξ,

u(1) = 0, Dβu(1) = −ς,

(1.2)

where α, β ∈ (1, 2] and ξ, ς ≥ 0 are such that ξ + ς > 0 and f(x, s) is a nonnega-
tive continuous function on (0, 1) × [0,∞). Under some appropriate condition on
the function f and by a perturbation argument method, the authors proved the
existence of a unique positive solution to problem (1.2).

Inspired by the above-mentioned papers, we aim at studying similar problem
in the case of fractional Navier boundary value problem. More precisely, we are
concerned with the following semilinear fractional Navier boundary-value problem

Dβ(Dα)u(x) = −p(x)uσ, x ∈ (0, 1),

lim
x→0+

x1−βDαu(x) = 0, u(1) = 0,
(1.3)

where α, β ∈ (0, 1] such that α + β > 1, σ ∈ (−1, 1) and p is a nonnegative
continuous function on (0, 1) and satisfies some appropriate assumptions related
to the Karamata class K (see Definition 1.1 below ). Using the Schäuder fixed
point theorem, we prove the existence of a unique positive continuous solution to
problem (1.3). Further, by applying the Karamata regular variation theory, we
establish sharp estimates on such a solution. To state our existence result, we need
some notations. We first introduce the Karamata class K.

Definition 1.1. The class K is the set of Karamata functions L defined on (0, η]
by

L(t) := c exp(
∫ η

t

z(s)
s
ds)

for some η > 1, where c > 1 and z ∈ C([0, η]) such that z(0) = 0.

Remark 1.2. It is clear that a function L is in K if and only if L is a positive
function in C1((0, η]) for some η > 1, such that limt→0+

tL′(t)
L(t) = 0.

As a typical example of function belonging to the class K, we quote

L(t) =
m∏
j=1

(
log(

w

t
)
)ξj

where ξj are real numbers, logj x = log ◦ log . . . log x (j times) and w is a sufficiently
large positive real number such that L is defined and positive on (0, η] for some
η > 1. For two nonnegative functions f and g defined on a set S, the notation
f(x) ≈ g(x), x ∈ S, means that there exists c > 0 such that 1

cf(x) ≤ g(x) ≤ cf(x)
for all x ∈ S. We denote x+ = max(x, 0) for x ∈ R and by B+((0, 1)) the set of all
nonnegative measurable functions on (0, 1). C((0, 1)) (resp. C([0, 1])) dentes the
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set of all continuous functions in (0, 1) (resp. [0, 1]). Also, for r > 0, we denote the
weighted space of continuous functions on [0, 1] by

Cr([0, 1]) = {f ∈ C((0, 1]) : trf ∈ C([0, 1])}.

For α ∈ (0, 1), we put ωα the function defined in (0, 1] by ωα(x) = xα−1.
In problem (1.3), we assume that p is a nonnegative function on (0, 1) satisfying

the following condition:
(H1) p ∈ C((0, 1)) such that

p(x) ≈ x−λL1(x)(1− x)−µL2(1− x), x ∈ (0, 1), (1.4)

where λ+ (1− α)σ ≤ 1, µ ≤ α+ β and L1, L2 ∈ K satisfying∫ η

0

t(α−1)σ−λL1(t)dt <∞,
∫ η

0

tα+β−1−µL2(t)dt <∞. (1.5)

We define the function θ on [0, 1] by

θ(x) := (1− x)min(α+β−µ
1−σ ,1)

(
L̃2(1− x)

) 1
1−σ , (1.6)

where

L̃2(x) :=


∫ x
0
L2(t)
t dt, if µ = α+ β,

L2(x), if α+ β − 1 + σ < µ < α+ β,∫ η
x
L2(t)
t dt, if µ = α+ β − 1 + σ,

1, if µ < α+ β − 1 + σ.

(1.7)

Our existence result is the following.

Theorem 1.3. Let σ ∈ (−1, 1) and assume that p satisfies (H1). Then problem
(1.3) has a unique positive solution u ∈ C1−α([0, 1]) satisfying for x ∈ (0, 1)

u(x) ≈ ωα(x)θ(x). (1.8)

The rest of this article is organized as follows. In Section 2, we prove some
sharp estimates on the Green’s function H(x, t) of the operator u → −Dβ(Dαu),
with boundary conditions limx→0+ x1−βDαu(x) = u(1) = 0. In Section 3, we
present some known results on functions belong to the class K and we establish
sharp estimates on some potential functions. Exploiting theses results, we prove
Theorem 1.3 by means of the Schäuder fixed point theorem. Finally, we give an
example to illustrate our existence result.

2. Fractional calculus and estimates on the Green’s Function

2.1. Fractional calculus. For the convenience of the reader, we recall in this
section some basic definitions of fractional calculus (see [10, 25, 29]).

Definition 2.1. The Riemann-Liouville fractional integral of order γ > 0 for a
measurable function f : (0,∞)→ R is defined as

Iγf(x) =
1

Γ(γ)

∫ x

0

(x− t)γ−1f(t)dt, x > 0,

provided that the right-hand side is pointwise defined on (0,∞). Here Γ is the
Euler Gamma function.
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Definition 2.2. The Riemann-Liouville fractional derivative of order γ > 0 of a
measurable function f : (0,∞)→ R is defined as

Dγf(x) =
1

Γ(n− γ)

( d
dx

)n ∫ x

0

(x− t)n−γ−1f(t)dt =
( d
dx

)n
In−γf(x),

provided that the right-hand side is pointwise defined on (0,∞). Here n = [γ] + 1,
where [γ] denotes the integer part of the number γ.

Lemma 2.3 ([10, 25]). Let γ > 0 and u ∈ C((0, 1))∩L1((0, 1)). Then we have the
following assertions:

(i) For β > 0, IβIγu = Iα+γu for β + γ ≥ 1 and DγIγu = u.
(ii) Dγu(x) = 0 if and only if u(x) = c1x

γ−1 + c2x
γ−2 + · · ·+ cmx

γ−m, ci ∈ R,
i = 1, . . . ,m, where m is the smallest integer greater than or equal to γ.

(iii) Assume that Dγu ∈ C((0, 1)) ∩ L1((0, 1)); then

IγDγu(x) = u(x) + c1x
γ−1 + c2x

γ−2 + · · ·+ cmx
γ−m,

ci ∈ R, i = 1, . . . ,m, where m is the smallest integer greater than or equal
to γ.

2.2. Estimates on the Green’s function. In this section, we derive the corre-
sponding Green’s function for the homogeneous boundary value problem (1.3) and
we prove some estimates on this function. To this end we need the following lemma.

Lemma 2.4 ([3]). For λ, µ ∈ (0,∞) and a, t ∈ [0, 1], we have

min(1,
µ

λ
)(1− atλ) ≤ 1− atµ ≤ max(1,

µ

λ
)(1− atλ).

Lemma 2.5. Let α, β ∈ (0, 1] such that α + β > 1. Let f ∈ C([0, 1]), then the
following boundary-value problem

Dβ(Dαu)(x) = −f(x), x ∈ (0, 1),

lim
x→0+

x1−βDαu(x) = u(1) = 0
(2.1)

has a unique solution given by

u(x) =
∫ 1

0

H(x, t)f(t)dt, (2.2)

where for x, t ∈ (0, 1),

H(x, t) =
1

Γ(α+ β)
(xα−1(1− t)α+β−1 − ((x− t)+)α+β−1) (2.3)

is the Green’s function of the operator u → −Dβ(Dαu), with boundary conditions
limx→0+ x1−βDαu(x) = u(1) = 0.

Proof. By Lemma 2.3, we can reduce equation Dβ(Dαu)(x) = −f(x) to an equiv-
alent equation

Dαu(x) = −Iβf(x) + c1x
β−1.

The boundary condition limx→0+ x1−βDαu(x) = 0 implies that c1 = 0 and we have

Dαu(x) = −Iβf(x). (2.4)

Using again Lemma 2.3, we can reduce the equation (2.4) to an equivalent integral
equation

u(x) = −IαIβf(x) + c2x
α−1 = −Iα+βf(x) + c2x

α−1.
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The boundary condition u(1) = 0 gives

c2 = Iα+βf(1) =
1

Γ(α+ β)

∫ 1

0

(1− t)α+β−1f(t)dt.

Therefore, the unique solution of problem (2.1) is

u(x) =
1

Γ(α+ β)

(
xα−1

∫ 1

0

(1− t)α+β−1f(t)dt−
∫ x

0

(x− t)α+β−1f(t)dt
)

=
∫ 1

0

H(x, t)f(t)dt.

�

Proposition 2.6. Let α, β ∈ (0, 1] such that α+ β > 1. Then we have

(i) For (x, t) ∈ (0, 1)× (0, 1), the Green’s function H(x, t) satisfies

α+ β − 1
βΓ(α+ β)

K(x, t) ≤ H(x, t) ≤ 1
Γ(α+ β)

K(x, t), (2.5)

where K(x, t) := xα−1(1− t)α+β−2(1−max(x, t)).
(ii)

(α+ β − 1)xα−1(1− x)(1− t)α+β−1

βΓ(α+ β)
≤ H(x, t)

≤ xα−1(1− t)α+β−2 min(1− t, 1− x)
Γ(α+ β)

.

(2.6)

Proof. (i) From the explicit expression of the Green’s function given by (2.3), for
x, t ∈ (0, 1) we have

H(x, t) =
xα−1(1− t)α+β−1

Γ(α+ β)

(
1− xβ

( (x− t)+

x(1− t)

)α+β−1)
.

Since (x−t)+
x(1−t) ∈ (0, 1] for t ∈ [0, 1), then by applying Lemma 2.4 with a = xβ ,

µ = α+ β − 1 and λ = β, we obtain

(α+ β − 1)xα−1(1− t)α+β−1

βΓ(α+ β)

(
1−

( (x− t)+

(1− t)

)β)
≤ H(x, t)

≤ xα−1(1− t)α+β−1

Γ(α+ β)

(
1−

( (x− t)+

(1− t)

)β)
.

Since (x−t)+
(1−t) ∈ (0, 1] for t ∈ (0, 1), then again by Lemma 2.4 with a = λ = 1, µ = β

and using the fact that (1− t)− (x− t)+ = 1−max(x, t), we deduce (2.5).
(ii) Inequality (2.6) follows from the fact that for x, t ∈ [0, 1],

(1− t)(1− x) ≤ 1−max(x, t) = min(1− t, 1− x).

�
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In the sequel, we denote the kernel V defined on B+((0, 1)) by

V f(x) :=
∫ 1

0

H(x, t)f(t)dt, x ∈ (0, 1).

As an immediately consequence of the assertion (ii) of Proposition 2.6, we obtain
the following result.

Corollary 2.7. Let f ∈ B+((0, 1)), then the function x→ V f(x) is in C1−α([0, 1])
if and only if

∫ 1

0
(1− t)α+β−1f(t)dt<∞.

Lemma 2.8. Let α, β ∈ (0, 1]. Let f ∈ C((0, 1)) such that the map t → (1 −
t)α+β−1f(t) is integrable and |f(t)| ≤ t−δL(t) for t near 0, with δ ≤ 1 and L ∈ K
satisfying

∫ η
0
t−δL(t)dt <∞. Then the function x→ Iβf(x) ∈ C((0, 1))∩L1((0, 1))

and limx→0 x
1−βIβf(x) = 0.

Proof. Put h(t) = t−δL(t) and let 0 < a < 1. Since f ∈ C((0, 1)), there exists c > 0
such that |f(t)| ≤ ch(t) for t ∈ (0, a].

Now, as in [18, Theorem 2], we show that the function x→ Iβf(x) is continuous
on (0, a] and limx→0 x

1−βIβf(x) = 0.
Thus the mapping x→ Iβf(x) is continuous on (0, 1) and limx→0 x

1−βIβf(x) =
0. Moreover, we have∫ 1

0

| Iβf(x) | dx ≤ 1
Γ(β)

∫ 1

0

(
∫ x

0

(x− t)β−1|f(t)|dt)dx

=
1

Γ(β)

∫ 1

0

|f(t)|(
∫ 1

t

(x− t)β−1dx)dt

=
1

Γ(β + 1)

∫ 1

0

(1− t)β |f(t)|dt

≤ 1
Γ(β + 1)

∫ 1

0

(1− t)α+β−1|f(t)|dt < +∞.

This shows that Iβf ∈ L1((0, 1)). �

Proposition 2.9. Let α, β ∈ (0, 1] such that α + β > 1. Let f ∈ C((0, 1)) such
that the map t → (1 − t)α+β−1f(t) is integrable and |f(t)| ≤ t−δL(t) near 0, with
δ ≤ 1 and L ∈ K satisfying

∫ η
0
t−δL(t)dt < ∞. Then V f is the unique solution in

C1−α([0, 1]) of the boundary value problem

Dβ(Dαu)(x) = −f, x ∈ (0, 1),

lim
x→0+

x1−βDαu(x) = u(1) = 0.
(2.7)

Proof. From Corollary 2.7, the function V f is in C1−α([0, 1]) and we have for
x ∈ (0, 1),

V f(x) =
xα−1

Γ(α+ β)

∫ 1

0

(1− t)α+β−1f(t)dt− 1
Γ(α+ β)

∫ x

0

(x− t)α+β−1f(t)dt.

That is

V f(x) =
xα−1

Γ(α+ β)

∫ 1

0

(1− t)α+β−1f(t)dt− Iα+βf(x).

So, by Lemma 2.3, we obtain

Dα(V f)(x) = −Iβf(x). (2.8)
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Applying the operator Dβ on both sides of (2.8) and using Lemma 2.3, we have

Dβ(DαV f)(x) = −f(x) for x ∈ (0, 1).

Next, we need to verify that V f satisfies the boundary conditions. By Proposition
2.6 (ii), there exists a nonnegative constant c such that

|V f(x)| ≤ cxα−1

∫ 1

0

(1− t)α+β−2 min(1− t, 1− x)|f(t)|dt.

By Lebesgue’s theorem, we deduce that limx→1 V f(x) = 0. On the other hand,
from (2.8) and Lemma 2.8, we conclude that limx→0+ x1−βDαV f(x) = 0.

Finally, we prove the uniqueness. Let u, v ∈ C1−α([0, 1]) be two solution of (2.7)
and put w = u−v. Then w ∈ C1−α([0, 1]) andDβ(Dαw) = 0. Hence, it follows from
Lemma 2.3 (ii) that Dαw(x) = c1x

β−1. Using the fact that limx→0+ x1−βDαw(x) =
0, we deduce that c1 = 0 and then Dαw(x) = 0. Using again Lemma 2.3 (ii), we
conclude that w(x) = c2x

α−1. Since w(1) = 0, then c2 = 0, this implies that
w(x) = 0 and therefore u = v. �

3. Existence result

In this section, we aim at proving Theorem 1.3.

3.1. Karamata class and sharp estimates on some potential functions. In
this subsection, we recall some fundamental properties of functions belonging to
the class K and we establish estimates on some potential functions.

Lemma 3.1 ([19, 30]). Let γ ∈ R and L be a function in K defined on (0, η]. Then
we have that

(i) if γ > −1, then
∫ η
0
sγL(s)ds converges and

∫ t
0
sγL(s)ds ∼

t→0+

t1+γL(t)
γ+1 ;

(ii) if γ < −1, then
∫ η
0
sγL(s)ds diverges and

∫ η
t
sγL(s)ds ∼

t→0+
− t

1+γL(t)
γ+1 .

Lemma 3.2 ([3, 30]). (i) Let L ∈ K and ε > 0. So then we have

lim
t→0+

tεL(t) = 0.

(ii) Let L1 and L2 ∈ K defined on (0, η] and p ∈ R. Then functions

L1 + L2, L1L2, L
p
1 belong to the class K.

(iii) Let L ∈ K defined on (0, η]. So then we have

lim
t→0+

L(t)∫ η
t
L(s)
s ds

= 0.

In particular the function

t→
∫ η

t

L(s)
s

ds ∈ K.

If further
∫ η
0
L(s)
s ds converges, then we have

lim
t→0+

L(t)∫ t
0
L(s)
s ds

= 0.

In particular the function

t→
∫ t

0

L(s)
s

ds ∈ K.
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Next, we shall prove sharp estimates on the potential function V (p(ωαθ)σ), where
p is a function satisfying (H1) and θ is the function given in (1.6). To this end, we
need the following proposition.

Proposition 3.3. Let α, β ∈ (0, 1] such that α + β > 1 and let γ ≤ 1, ν ≤ α + β
and L3, L4 ∈ K with∫ η

0

t−γL3(t)dt <∞,
∫ η

0

tα+β−1−νL4(t)dt <∞. (3.1)

Put
b(x) = x−γL3(x)(1− x)−νL4(1− x) for x ∈ (0, 1).

Then, for x ∈(0, 1), we have

V b(x) ≈ xα−1(1− x)min(α+β−ν,1)L̃4(1− x),

where

L̃4(x) :=


∫ x
0
L4(t)
t dt, if ν = α+ β,

L4(x), if α+ β − 1 < ν < α+ β,∫ η
x
L4(t)
t dt, if ν = α+ β − 1,

1, if ν < α+ β − 1.

Proof. For x ∈ (0, 1], we have

V b(x) =
∫ 1

0

H(x, t)b(t)dt.

Using Proposition 2.6 (i), we obtain that

V b(x) ≈ xα−1(1− x)
∫ x

0

t−γL3(t)(1− t)α+β−2−νL4(1− t)dt

+ xα−1

∫ 1

x

t−γL3(t)(1− t)α+β−1−νL4(1− t)dt.

In what follows, we distinguish two cases.
Case 1. 0 < x ≤ 1

2 . In this case 1− x ≈ 1. So, we obtain

V b(x) ≈ xα−1(1− x)
∫ x

0

t−γL3(t)(1− t)α+β−2−νL4(1− t)dt

+ xα−1
( ∫ 1/2

x

t−γL3(t)(1− t)α+β−1−νL4(1− t)dt

+
∫ 1

1
2

t−γL3(t)(1− t)α+β−1−νL4(1− t)dt
)
.

≈ xα−1
( ∫ x

0

t−γL3(t)dt+
∫ 1

2

x

t−γL3(t)dt

+
∫ 1/2

0

tα+β−1−νL4(t)dt
)

≈ xα−1
( ∫ 1/2

0

t−γL3(t)dt+
∫ 1/2

0

tα+β−1−νL4(t)dt
)
.

Using hypothesis (3.1), we deduce that for 0 < x ≤ 1
2

V b(x) ≈ xα−1. (3.2)
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Case 2. 1
2 ≤ x ≤ 1. In this case, we have x ≈ 1. Therefore, we obtain

V b(x) ≈ xα−1(1− x)
( ∫ 1/2

0

t−γL3(t)(1− t)α+β−2−νL4(1− t)dt

+
∫ x

1
2

t−γL3(t)(1− t)α+β−2−νL4(1− t)dt
)

+ xα−1

∫ 1

x

t−γL3(t)(1− t)α+β−1−νL4(1− t)dt

≈ (1− x)
( ∫ 1/2

0

t−γL3(t)dt+
∫ x

1
2

(1− t)α+β−2−νL4(1− t)dt
)

+
∫ 1

x

(1− t)α+β−1−νL4(1− t)dt.

Since
∫ η
0
t−γL3(t)dt <∞, we deduce that

V b(x) ≈ (1− x)
(
1 +

∫ 1/2

1−x
tα+β−2−νL4(t)dt

)
+
∫ 1−x

0

tα+β−1−νL4(t)dt.

Using Lemma 3.1 and hypothesis (3.1), we deduce that∫ 1−x

0

tα+β−1−νL4(t)dt ≈

{∫ 1−x
0

L4(t)
t dt, if ν = α+ β,

(1− x)α+β−νL4(x), if ν < α+ β

and

1 +
∫ 1/2

1−x
tα+β−2−νL4(t)dt ≈


(1− x)α+β−1−νL4(x), if α+ β − 1 < ν ≤ α+ β,∫ η
1−x

L4(t)
t dt, if ν = α+ β − 1,

1, if ν < α+ β − 1.

Hence, it follows by Lemma 3.2 and hypothesis (3.1) that for 1
2 ≤ x ≤ 1,

V b(x) ≈


∫ 1−x
0

L4(t)
t dt, if ν = α+ β,

(1− x)α+β−νL4(x), if α+ β − 1 < ν < α+ β,

(1− x)
∫ η
1−x

L4(t)
t dt, if ν = α+ β − 1,

1− x, if ν < α+ β − 1.

That is,
V b(x) ≈ (1− x)min(α+β−ν,1)L̃4(1− x). (3.3)

This and (3.2) imply that for x ∈ (0, 1), we have

V b(x) ≈ xα−1(1− x)min(α+β−ν,1)L̃4(1− x).

This ends the proof. �

The following proposition plays a crucial role in the proof of Theorem 1.3

Proposition 3.4. Let p be a function satisfying (H1). Then, for x ∈ (0, 1), we
have

V (p(ωαθ)σ)(x) ≈ ωα(x)θ(x).



10 H. MÂAGLI, A. DHIFLI EJDE-2017/141

Proof. Let p be a function satisfying (H1). Let γ = λ + (1 − α)σ and ν = µ −
σmin(α+β−µ

1−σ , 1), where the constants λ and µ are given in (H1).
Since λ ≤ 1 + (α− 1)σ and µ ≤ α+ β, we verify that γ ≤ 1 and ν ≤ α+ β. On

the other hand, by using (1.4) and (1.6), we have

p(x)(ωαθ)σ(x) ≈ x−γ(1− x)−νL1(x)L2(1− x)
(
L̃2(1− x)

) σ
1−σ .

So, using Lemma 3.2 and Proposition 3.3 with L4 = L2

(
L̃2

) σ
1−σ , we deduce that

for x ∈ (0, 1),

V (p(ωαθ)σ)(x) ≈ ωα(x)(1− x)min(α+β−ν,1)L̃4(1− x).

Since min(α+ β − ν, 1) = min(α+β−µ
1−σ , 1), we conclude by elementary calculus that

for x ∈ (0, 1),

V (p(ωαθ)σ)(x) ≈ ωα(x)(1− x)min(α+β−µ
1−σ ,1)L̃4(1− x) ≈ ωα(x)θ(x).

This completes the proof. �

Proof of Theorem 1.3. Let p be a function satisfying (H1) and let θ be the function
given in (1.6). By Proposition 3.4, there exists M ≥ 1 such that for each x ∈ [0, 1]

1
M
θ(x) ≤ x1−αV (p(ωαθ)σ)(x) ≤Mθ(x).

We shall use a fixed point argument to construct a solution to problem (1.3). For
this end, put c = M

1
1−|σ| and consider the closed convex set

Λ := {v ∈ C([0, 1]) :
1
c
θ(x) ≤ v(x) ≤ cθ(x)}.

Obviously, the function θ belongs to C([0, 1]) and so Λ is not empty. We define the
operator T on Λ by

Tv(x) = x1−αV (p(ωαv)σ)(x), x ∈ [0, 1].

For this choice of c, we can easily get that for v ∈ Λ and x ∈ [0, 1], we have
1
c
θ(x) ≤ Tv(x) ≤ cθ(x).

Now, since the function (x, t)→ x1−αH(x, t) is continuous on [0, 1]× [0, 1] and the
function t→ (1−t)α+β−1p(t)t(α−1)σθσ(t) is integrable on (0, 1), we deduce that the
operator T is compact from Λ to itself. So, by the Schäuder fixed point theorem,
there exists a function v ∈ Λ such that

Tv(x) = v(x), x ∈ [0, 1].

Put u(x) = ωα(x)v(x). Then u ∈ C1−α([0, 1]) and satisfies the integral equation

u(x) = V (puσ)(x) x ∈ (0, 1)

and
u(x) ≈ ωα(x)θ(x).

It remains to prove that u is a positive solution of problem (1.3). Indeed, we
obviously that the function puσ is continuous in (0, 1) and the map t → (1 −
t)α+β−1p(t)uσ(t) is integrable. Moreover, by hypothesis (H1) there exists a positive
constant c such that

p(t)uσ(t) ≤ ct−λ+(α−1)σL1(t) near 0,
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with λ+ (1− α)σ ≤ 1 and L1 ∈ K satisfying
∫ 1

0
t−λ+(α−1)σL1(t)dt <∞. Hence, it

follows from Proposition 2.9 that the function u is a continuous solution of problem
(1.3). Finally, let us show that problem (1.3) has a unique positive solution in the
cone

Γ := {u ∈ C1−α([0, 1]) : u ≈ ωαθ}.
So, we assume that u and v are arbitrary solutions of problem (1.3) in Γ. Since
u, v ∈ Γ, then there exists a constant m ≥ 1 such that

1
m
≤ u

v
≤ m in (0, 1).

This implies that the set J := {m ≥ 1 : 1
m ≤

u
v ≤ m} is not empty. Now let

m0 := inf J . It is easy to see that m0 ≥ 1. This gives that uσ ≤ m|σ|0 vσ.
On the other hand, putting z := m

|σ|
0 v − u, we have

Dβ(Dαz) = −p(x)(m|σ|0 vσ − uσ) ≤ 0, (0, 1),

lim
x→0+

x1−βDαz(x) = z(1) = 0.

This implies by Proposition 2.9 that m|σ|0 v − u = V (p(m|σ|0 vσ − uσ)) ≥ 0. By
symmetry, we obtain that m|σ|0 u ≥ v. Hence, m|σ|0 ∈ J . Using the fact that
m0 := inf J and |σ| < 1, we get m0 = 1. Then, we conclude that u = v. �

To illustrate the result in Theorem 1.3, we give the following example.

Example 3.5. Let σ ∈ (−1, 1) and p be a nonnegative continuous function on
(0, 1) such that

p(x) ≈ x−λ
(
1− x

)−µ( log
( 3
x

))−s( log
( 3

1− x
)))−r

,

where λ+ (1− α)σ ≤ 1, µ ≤ α+ β and r, s ∈ R. If one of the following conditions
holds:

• λ+ (1− α)σ ≤ 1 and s > 1;
• λ+ (1− α)σ < 1 and s ∈ R.

Then by Theorem 1.3, problem (1.3) has a unique positive solution u ∈ C1−α([0, 1])
satisfying the following estimates:

(i) If µ = α+ β and r > 1, then for x ∈ (0, 1),

u(x) ≈ xα−1
(

log
( 3

1− x
)) 1−r

1−σ .

(ii) If α+ β − 1 + σ < µ < α+ β, then for x ∈ (0, 1),

u(x) ≈ xα−1(1− x)
α+β−µ

1−σ
(

log
( 3

1− x
)) −r

1−σ .

(iii) If µ = α+ β − 1 + σ and r = 1, then for x ∈ (0, 1),

u(x) ≈ xα−1(1− x)
(

log
(

log
( 3

1− x
))) 1

1−σ .

(iv) If µ = α+ β − 1 + σ and r < 1, then for x ∈ (0, 1),

u(x) ≈ xα−1(1− x)
(

log
( 3

1− x
)) 1−r

1−σ .
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(v) If µ < α+ β − 1 + σ or µ = α+ β − 1 + σ and r > 1, then for x ∈ (0, 1),

u(x) ≈ xα−1(1− x).
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