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EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS IN A
NON-PARABOLIC DOMAIN
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ABSTRACT. In this article, we study the semilinear Burgers equation with time
variable coefficients, subject to boundary condition in a non-parabolic domain.
Some assumptions on the boundary of the domain and on the coefficients of
the equation will be imposed. The right-hand side of the equation is taken
in L2(Q). The method we used is based on the approximation of the non-
parabolic domain by a sequence of subdomains which can be transformed into
regular domains. This paper is an extension of the work [2].

1. INTRODUCTION

The Burgers equation is a fundamental partial differential equation in modeling
many physical phenomena, such as fluid mechanics, acoustics, turbulence [3, [6],
traffic flow, growth of interfaces, and financial mathematics [7, [12].

In [I1], the author studied a linear parabolic equation in a domain similar to the
one considered in this work. Other references on the analysis of linear parabolic
problems in non-regular domains are discussed for example in [T}, 5] 8] [9].

The work by Clark et al. [4] is devoted to the homogeneous Burgers equation
in non-parabolic domains which can be transformed into rectangle. In the same
domains, we have established the existence, uniqueness and the optimal regularity
of the solution to the non-homogeneous Burgers equation with time variable coeffi-
cients in an anisotropic Sobolev space (see [2]). The present paper is an extension
of this last work to another type of non-regular domains.

Let  C R? be the “triangular” domain

Q={(t,x) eR*} 0<t<T, x€l},
where T is a positive number and
Iy ={z € R; ¢1(t) <z < (), t € (0,T)},
with
©1(0) = 2(0). (1.1)
The functions ¢1, @s are defined on [0, 7], and belong to C*(0,T).
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The most interesting point of the problem studied here is the fact that ¢(0) =
©2(0), because the domain is not rectangular and cannot be transformed into a
regular domain without the appearance of some degenerate terms in the equation.

In Q, we consider the boundary-value problem for the non-homogeneous Burgers
equation with variable coefficient

opu(t, x) + c(t)u(t, z)0pult, v) — Ou(t,x) = f(t,z) (t,z) € Q,
u(t, e1(t)) = u(t, w2(t)) =0t €(0,7),
where f € L?(Q) and c(t) is given.

We look for some conditions on the functions c(t), ¢1(t) and ¢a(t) such that
(1.2) admits a unique solution u belonging to the anisotropic Sobolev space

HY2(Q) = {u € L*(Q); 0yu, Opu, 0%u € L*(Q)}.

(1.2)

In the sequel, we assume that there exist positive constants ¢; and ¢, such that
c1 <ct) <ecg, forallte(0,T), (1.3)

and we note that
p2(t)

) 1/2
oy = ([t az) "
e1(t)
lullZoc 1,y = suplu(t, )].
x€ly
To establish the existence of a solution to (1.2, we also assume that
|’ ()| <~ foralltel0,T], (1.4)
where «y is a positive constant and (t) = p2(t) — ¢1(t) for all t € [0,T.

Remark 1.1. Once problem (|1.2)) is solved, we can deduce the solution of the
problem

Apu(t, ) + a(t)u(t, x)0ult, z) — b(t)@iu(t,x) = f(t,xz) (t,x) € Q,
u(t,p1(t)) = u(t,p2(t)) =0 te€(0,7).

Indeed, consider the case where a(t) and b(t) are positive and bounded functions
for all ¢ € [0,T]. Let h be defined by h: [0,T] — [0,T"]

o) = [ ooy

we put ¥; = ¢; o h™! where i = 1,2. Using the change of variables t' = h(t),
v(t',z) = u(t,z), (1.5) becomes equivalent to (1.2]), because it may be written as
follows

at’v(tlv‘r) + C(t,)@(t/a x)azv(t',x) - agv(t’,x) = g(t/vx) (t/71’) € Q/,
o(t () = vt 4a(t) =0, ¢ €(0,T),

(1.5)

where c(t') = %, gt x) =L r — {(¢ 2) e R2, 0 <t/ <T', x € Iy} and

T = fOT b(s)ds.
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For the study of problem we will follow the method used in [I1], which
consists in observing that this problem admits a unique solution in domains that
can be transformed into rectangles, i.e., when ¢1(0) # ¢2(0).

The paper is organized as follows. In the next section we study problem in
domain that can be transformed into a rectangle. When ¢, and @9 are monotone on
(0,T), we solve in Section [3[ the problem in a triangular domain: We approximate
this domain by a sequence of subdomains (£2,,),en. Then we establish an a priori
estimate of the type

||Un||%11=2(szn) < K”fn”m(sz ) = K”fHL?(Q

where u,, is the solution of in 2, and K is a constant independent of n.
This inequality allows us to pass to the limit in n. Finally, Section [f]is devoted to
problem in the case when ¢; and @2 are monotone only near 0.

Our main result is as follows.

Theorem 1.2. Assume that ¢ and (p;(t))i=1,2 satisfy the conditions (1.1]), (L.3)
and (L.4). Then, the problem

vt @) + c(tyu(t, ©)0pu(t, x) — Bult, w)=f(t,w) (t,z) €,
u(t, p1(t)) = ult, p2(t)) =0t €(0,7),

admits in the triangular domain 2 a unique solution u € H%2(2) in the following
cases:

Case 1. p1 (resp @2) is a decreasing (resp increasing) function on (0,T).

Case 2. oy (resp @3) is a decreasing (resp increasing) function only near 0.

Theses cases will be proved in Section |3| and Section 4] respectively.

2. SOLUTION IN A DOMAIN THAT CAN BE TRANSFORMED INTO A RECTANGLE
Let 2 C R? be the domain
Q={(t,x) eR*:0<t<T, x €I},
L={xeR:p1(t) <z < pat), t€(0,T)}.
In this section, we assume that ¢1(0) # ¢2(0). In other words
p1(t) < @o(t) forall t €[0,T]. (2.1)
Theorem 2.1. If f € L*() and c(t), (¢i)i=1,2 satisfy the assumptions (L.3)),
and , then the problem
Owu(t, z) + c(t)u(t, z)0pu(t, v) — O2u(t,x) = f(t,z) (t,z) € Q,
u(0,2) =0z € J = (1(0),£2(0)), (2.2)
u(t, p1(t)) = u(t, p2(t)) =0 ¢ €(0,T),
admits a solution u € H2(Q).

Proof. The change of variables: Q2 — R
Tz — p1(t
(t.2) o () = (120 )
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~y

FIGURE 1. Domain that can be transformed into a rectangle.

transforms € into the rectangle R = (0,7) x (0,1). Putting u(¢,z) = v(¢,y) and
f(t,x) = g(t,y), problem becomes
dro(t,y) + p(t)o(t,y)dyo(t,y) — a(t)Fyu(t,y) + r(t,y)dyv(t,y)
= g(t7 y) (t7 y) € R,
v(0,y) =0 ye€(0,1),
v(t,0) =v(t,1)=0 te(0,T),

(2.3)

where
ot) = a(t) — 1 (1), plt) = SD((?)
_ 1 . _ye' () + ()
q(t) 20 (t,y) o0

This change of variables preserves the spaces H'? and L?. In other words

fel*(Q) & ge L*(R),
ue€ HY(Q) & ve HY2(R).

According to ([1.3)) and (1.4]), the functions p, ¢ and r satisfy the following conditions

a<p(t)<pB, vtel0,T],
a<q(t)<pB, Vtelo,T],
|8yr(t7y)| S B? V(tay) S Ra

where « and [ are positive constants.



EJDE-2018/20 BURGERS EQUATIONS IN A NON-PARABOLIC DOMAIN 5

So, problem ([2.2)) is equivalent to problem ({2.3]), and by [2] problem (2.3)) admits
a solution v € HY?(R). Then, problem (2.2) in the domain Q admits a solution
u € HY2(Q). O

3. PrROOF OF THEOREM [[.2] CASE 1
Let

Q={(t,.z) eR*: 0<t < T, z €},
L={xeR:p1(t) <z <pat), t€ (0,7},
with ¢1(0) = 2(0) and ¢1(T') < p2(T).

x=pa(t)
70 //

.,
-
~y

FIGURE 2. Non-parabolic domain.

For each n € N*, we define
1
Qn:{(t,x)eRQ:ﬁ<t<T, x € I},

and we set f, = fio,, where f is given in L?(2). By Theorem there exists a
solution u,, € H»?(Q,) of the problem
Oty (t, ) + ()t (t, 2)Opti (t, ) — 0Py (t, )
= fo(t,z) (t,2) € Qy,
), (3.1)

3=

1 1
Un(g,x) =0, Sﬁl(ﬁ) <z < o

7T]7

S|

un(t, p1(t) = un(t,p2(t)) =0 te]

in Q,.
To prove Case 1 of Theorem [1.2] we have to pass to the limit in (3.1). For this
purpose we need the following result.
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Proposition 3.1. There exists a positive constant K independent of n such that
lunllFi2(0,) < Kllfalliz,) < KIFI720)-
To prove this proposition we need some preliminary results.
Lemma 3.2. There exists a positive constant K1 independent of n such that
lunllZ2q,) < KilldzunllZz,)s (3.2)
10zunllZ2q,) < KillfalZza,)- (3.3)
Proof. We have

xr
u,|? = ‘/ Optiy, ds
p1(t)

integrating from ¢1(t) to @a(t), we obtain

p2(t) P2 (t) x
/ U, |? dz < / ((x—gm(t))/ |8mun\2ds) de,
(t)

$1

P2(t) w2(t)  pea(t)
/ funl? dz < (05(t) — 01(8)) / / O da
©

p1(t) 1(%)

T

< (z-— g@l(t))/ |03 tun |* ds.

‘2
»1(t)

hence

and

p2(t) ) ) p2(t) )

[ s < st = 1@ [ o da

»1(t) ®1(t)

Then, there exists a positive constant K7 independent of n such that
[unlZar,y < KilldwunlZar,),

integrating between % and T' we obtain inequality (3.2]).
Now, multiplying both sides of (3.1) by u, and integrating between ¢ (t) and
a(t), we obtain

1d [%2® p2(t) p2(t) P2 (t)
—— / (un)? dz + c(t) / Opinu’ do — / U0, doz = / Sty dz.
24t Jo, ) o1(t) o1(t) o1(t)

Integration by parts gives

P2(t) c(t) p2(t)
c(t)/ Opunu? do = == / 0z (uy)? dx = 0;
P1(2) 3 Jor

then
1d [e2® p2(t) w2 (t)
—— / (up)?da + / (Opun)?de = / frun da. (3.4)
2dt Jou (1) p1(8) p1(8)

By integrating from 1/n to T, we find that

1 T
I Ty + [ 10003 09

T
< /1/ () 22t ot ()] 22y s,

Using the elementary inequality
2
S

oo Vs E€R Ve>0, (3.5)

lrs| < %Tz +
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with € = K7, we obtain
T

1
STy + [ W0utao) s 09

<“/Wﬂw d+1/W<m2d
- 2 1/n n? L2(1y) y 2K1 1/n fnl? L2 >

Thanks to (3.2)), we have
T T
nwmwmmﬁ[ﬂ@w@mmﬁsm[ﬂm@;mm,<m>

S0,
(]

Corollary 3.3. There exists a positive constant Ko independent of n, such that
for allt € [1/n,T],

T
|@wﬁmﬁyﬂn%w@@mmhsm.

Proof. Multiplying both sides of (3.1)) by 9?u,, and integrating between ¢ () and
©2(t), we obtain

1d [e2® ) 2(t) s
5%/ (Ozun) der/ (Ozup)” dx
‘/’l(t) Lpl(t) (37)

p2(t) w2(t)

= —/ fnaﬁun dz + ¢(t) / unazunagun dx.
»1(t) »1(t)

Using Cauchy-Schwartz inequality, (3.5)) with e = % leads to

w2(t) p2(t) p2(t) ) 1/2
[fal?dz)

| [n0?u, dz| < (/ : |8§un|2dm)1/2(/

e1(t) Pp1(t e1(t)
1 [e2(t) p2(t) (3.8)
< 1/ |8§un|2dx+/ (o2 da.
1 (t) w1(t)

Now, we have to estimate the last term of (3.7). An integration by parts gives

w2 (t) ) w2 (t) 1 ) 1 [e2) 5
/ Up O Uy Oy Uy, dT = / Uy, O (Q(Bxun) ) de = —= / (Opuy)” d.
p1(t) p1(t) w1(t)

Since O u, satisfies f;f((t? Oz, dz = 0 we deduce that the continuous function
Oyuy, is zero at some point £(t) € (p1(t),¢2(t)), and by integrating 20,u,0%u,
between £(t) and x, we obtain

2 Dt 0%y, ds/ = 0,(0pup)? ds = (0pun)?,
£(t) &(t)
the Cauchy-Schwartz inequality gives

”a:cun”QLOO(It) < 2H8xun”L2(lt)”aiun”L?(It),
but

102|752,y < N0wtinlZa (1 10ntnll oo ry)
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so, (1.3)) yields

w2 (t) 2(t)
|/ ()t Optin, 02, dz| < (/
e1(t)

v1(t)

|8£un|2dx>1/4 (03/5 /W( : |02 | dx)

e1(t)

Finally, by Young’s inequality |AB| < %—i— %, with1l < p <ooandp = p%.

—

Choosing p = 4 (then p’ = 3)

©2(t) 1/4 ®2(t) 5/4
A= (/ |a§un|2dx) . B= (c;*/f’/ \8$un|2d33) :
® p1(t)

1(t)
the estimate of the last term of (3.7)) becomes

w2(t)
‘ / (1) Un Optin Oy da:|
w1 (t)

1 P2t p2(t) 5/3
< - |02, | dz + §64/3 |0y, |? da) .
4 e 42
p1(t) p1(t)

Let us return to (3.7): By integrating between 1 and ¢, from the estimates (3.8)
and (3.9)), we obtain

t
Jocun sy + [ 102ua(5) iy ds
1/n

(3.9)

4/3 5/3
<2 [ 1ol as 36" [ (10nl) o
1/n 1/n

fn € L?(Q,,), then there exists a constant c3 such that

t
10utnl2r,) + / 1020 (5) 224, ds

2/3
<estochl? /1/ (19 Bos)) - N0san()]22(r, s

Consequently, the function

t
() = Otin 2, + / 102l 4

satisfies the inequality

@(t)§63+/t

1/n

3 4/3 4/3
(56 10mun()75,) ) ols)ds,

Gronwall’s inequality shows that
! 4/3
o)< ([ G lomo)i,)as)

According to Lemma the integral fl/n [0z un”L? ds is bounded by a constant
independent of n. So there exists a positive constant Kg such that

T
o0l + [ 18R 4 < Ko
1/n
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Lemma 3.4. There exists a constant K3 independent of n such that
||6tun||%2(9n) + Haa%unH%Q(Qn) < K3an||2L2(Qn)'
Then Theorem [3.1]is a direct consequence of Lemmas [3.2] and
Proof. To prove Lemma we develop the inner product in L?(2,),
||fn||2L2(Qn) = (Optuy, + () unOptty, — 021, Oyt + ()t O, — 8§un)Lz(Qn)
= ”atun”QL?(Qn) + Hﬁiun\lizmn) + ||c(t)un8$un||%2(9n)
— 2(Ogun, 8§un)L2( + 2(0¢ i, c(t)UnOztn) L2(02,,)
— 2(c(t)Un Oy tin, 02 Un)L2(Q,)5
S0,
10sunl 2,y + 105unlZ2 (0,
= [lfall72(0,) = e unduunllFzq, ) + 2(c(t)undrtin, B3un) 12(q,) (3.10)
= 2(0stn, c(t)unOptin) 12(,) + 2(Ostin, 8£Un)L2(Qn).
Using and with £ = 1/2, we obtain
‘_2(815”7“C(t)unarun)LQ(Qn)| < %Hatun”%’z(ﬂn) + 20%”“7181:“71”%2((2”)7 (3.11)
and
|2(C(t)unaruna a:?:un)L2(Qn)| < 2C%||unar“n”2L2(Qn) + %Hagun‘l%?(ﬂn)' (3.12)

Now calculating the last term of ( m,
T

(3tun,5 Un)r2(0,) = / / Ot (Optun,)Optin, dxdt+/ [atunamun]wgg dt
/" w1(t) 1/n
1 p2(t) T @a(t)
= —— 04 (0puy )? dadt + [8tun8xun] dt
2 1(t)
/nJp1(t) 1/n
1 {/%(t)(a )2d }T +/T [6 5 ]902(1‘/ u
= —= 'z Un, x Up Oz Un
2 1 (t) 1/n 1/n t »1(t)
1 re2(D) 1 [e2(s) 1
— —5/ (azun)2(T» x) dz + 5/ (axun)%*vx) dx
1(T) p1(2) "
T
1/n
T
- , Orun(t, o1(t))0zun(t, p1(t)) dt.
1/n

According to the boundary conditions, we have
Oyt (t, 05 (1)) + @ () Opun (t, 0i(t)) =0, i =1,2,

SO
T

(D) 2(T, 2) d — /1 / () (O (1, 2 (1)) dt

»2(T)

1
(8tuna892;un)L2(Qn) = —5/
e1(T)
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+ / | AO@an0)

it follows that

(O, O2uy,) < 0. (3.13)
From (3.11)), (3.12)) and (3.13]), (3.10) becomes
Hatun”QL?(Qn) + HaiunH%P(Qn) < 2an||2L2(Qn) + 1005||“n3xun||2L2(Qn)- (3.14)

On the other hand, using the injection of H{(I;) in L>°(1;), we obtain

T  rpa(t) ) T ) w2(t) )
’/WL (unyun)? da d] g/ (Hunumm/ 0y, da)

1(t) 1/n p1(t)
T
2 2
</ Tl 0 oy

< lunllZ e 2 a1y 190t 220,

According to Corollary [3.3] [[un||? = 1 .1 is bounded, then by (3.3) and (3.14)),
(5 T3Hg (1))
74 g (Lt

there exists a constant K3 independent of n, such that
18eun |22,y + 103unllize,) < KsllfallZe(q,)-
However,
1fnllZ2 0y < 111720

then, from lemmas and , there exists a constant K independent of n, such
that

[unllfreg,) < Kllfalzz,) < KIflI2eq)-
This completes the proof. [
Ezistence and uniqueness. Choose a sequence (Qp,)nen of the domains defined pre-

viously, such that Q,, C Q, as n — 400 then Q,, — .
Consider u,, € H?(£,,) the solution of

O, (t, ) + c(t)un (t, 2)Opun (t, ) — (“)iun(t,x) = fult,z) (t,2) € Qp,
(1) =0 ei(3) <o < (),

n(t, 91(8)) = (b, 2(t)) =0 £ €]~ TY.

Ea
We know that a solution u,, exists by the Theorem Let w,, be the extension by
zero of u,, outside §2,,. From the proposition [3.1] results the inequality

720, + 10sUn 72,y + [10:tnl 20,y + 10200720,y < CllFI720)-
This implies that u,,, d;u,, and dJu,, j = 1,2 are bounded in L?(12,,), from Corollary

UnOzy, is bounded in L2(£2,). So, it is possible to extract a subsequence from
Uy, still denoted u,, such that

Oy, — Oyu weakly in - L*(Q,,),
92u, — Ou weakly in  L2(Qy),
Un Oplintty, — udyu  weakly in L2(Q,).
Then u € H12(Q) is solution to problem (1.2)).
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For the uniqueness, let us observe that any solution u € HY2(Q) of problem
(1.2)) is in L>°(0,T, H}(I;)). Indeed, by the same way as in Corollary we prove
that there exists a positive constant K such that for all ¢ € [0, 7]

T
1021,y + / 102(s)22 ) ds < Ko.

Let uy,us € HY%(Q) be two solutions of (1.2). We put u = u; — us. It is clear
that u € L>(0,T, H} (I;)). The equations satisfied by u; and ug leads to

P2(t)
/ [Oruw + c(t)uwdyuy + c(t)uzwdyu + Oyudyw]de = 0.
w1(t)

Taking, for t € [0,T], w = u as a test function, we deduce that
1d |
2dt

®2(t) ®2(t)
= —c(t) / u?0puy dz — c(t) / ugulyu de.
®1(t) e1(t)

An integration by parts gives

|UH%2(zt) + Haxuﬂiz(ft)
(3.15)

P2(t) #2(t)
c(t)/ u?0puy do = —2c(t)/ u0zuuy dz,
%)

1(¢) p1(t)
then (3.15)) becomes

Ll + 105l " 02w - urud,ua
5 lullzzg,) + ac“mlt:/ c(t)(2u; — u2)ududz.
2dt ) ) w1(t)
By (1.3) and inequality (3.5 with £ = 2, we obtain
p2(t)

| c(t)(2uy — ug)udyu dz|
#1(t)

1
< *C§(2HU1HLw(o,T,Hl(I,,)) + ||u2||L°°(O,T,H1(It)))2HUH%Z(I,) + HaﬁcUHQL?(It)'
4 0 0

So, we deduce that there exists a non-negative constant D, such as

1d
5&”““%2@) < DllullZ2r,)»

and Gronwall’s lemma leads to v = 0. This completes the proof of Theorem
Case 1.
4. PROOF OF THEOREM [I.2] CASE 2
In this case we set 2 = Q1 U Q2 UI'y, where
Qi ={(t,x) eR?*:0<t< T, x€l},
Q= {(t,x) eR*: Ty <t <T, zel},
Iy, ={(Ty,z) eR?*: x € Iy, },

with 73 small enough. f € L*(2) and f; = fig,, i = 1,2.
Theorem 1.2} Case 1, applied to the domain @1, shows that there exists a unique
solution u; € H?(Q1) of the problem

Opuy (t, ) + c(t)uq (¢, )0 uq (¢, ) — 6§u1(t, x)
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= f1 t,JC) (t,x) S Q1,
ui(t,01(t)) = ui(t,p2(t)) =0 t e (0,11).
Lemma 4.1. [fu € H'* (T3, T) x (0,1)), then u_z, € H'({T1} x (0,1)).

The above lemma is a special case of [I0, Theorem 2.1, Vol. 2]. Using the
transformation [T, 7] x [0,1] — Q2,

(t,x) = (ty) = (t, (p2(t) — pr(t)x + @1(t))
we deduce from Lemma [£.1] the following result.

Lemma 4.2. Ifu € H"2(Q3), then Ury, € HY(T'g,).

We denote the trace uyr, by uo which is in the Sobolev space H!(T'7,) because
Uy € H1’2(Q1).

Theorem 2.1] applied to the domain @2, shows that there exists a unique solution
uy € HY2(Q2) of the problem

Opus(t, ) 4 c(t)us(t, ©)Opua(t, ) — D2us(t, ) = folt,z) (t,x) € Qo,
u2(0,7) = up(z) @1(T1) <z < p2(T1),
u2(t,<,01(t)) = UQ(t,(pg(t)) =0 te [Tl,T],

putting
up in Qla
U= )
uy in Qo
we observe that u € H'2() because uir, = uzr,, and is a solution of the
problem

owu(t, z) + c(t)u(t, z)0pu(t, x) — O2u(t,z) = f(t,x) (t,z) € Q,
ulty1(8) = ult,2(6) =0 1€ (0,7).

We prove the uniqueness of the solution by the same way as in Case 1.
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