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Invariance of Poincaré-Lyapunov polynomials

under the group of rotations ∗

Pierre Joyal

Abstract

We show that the Poincaré-Lyapunov polynomials at a focus of a fam-
ily of real polynomial vector fields of degree n on the plane are invariant
under the group of rotations. Furthermore, we show that under the mul-
tiplicative group C∗ = {ρeiψ}, they are invariant up to a positive factor.
These results follow from the weighted-homogeneity of the polynomials
that we define in the text.

1 Introduction

Let us consider a real analytic vector field on the plane having a non-degenerate
focus at the origin, that is, the Jacobian matrix of the vector field at the focus
is not singular. After a linear transformation, we can suppose that the Jacobian
matrix at the focus has the form(

a −b
b a

)
, b 6= 0. (1)

Let Σ be a local cross section with one end point at the origin and U ⊆ Σ, a
neighborhood of the origin in Σ. Recall that the displacement function in the
neighbourhood of the origin is the Poincaré map P :U → Σ minus the Identity.
One can show that the displacement function in a neighborhood of the origin
has the following form (see [1]):

r = (e2πa/b − 1)r0 + u3r
3
0 + u5r

5
0 + u7r

7
0 + · · · . (2)

All the coefficients of the even powers of r0 are equal to zero. When all the
coefficients vanish, the origin is a center. Instead of calculating these coefficients
to determine if an equilibrium
point is a center, Poincaré gave in [2] another method which resembles the

search for a Lyapunov function to establish the stability of a focus. Let us recall
this method.
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Looking at (2), we see that dr/dr0 6= 0 in a punctured neighborhood of
the origin, if a 6= 0. Suppose that a = 0. If the vector field is linear, the
integral curves are circles around the origin: x2 + y2 = k (k a constant), or in
polar coordinates r2 = k. If the vector field is not linear, it is natural to look
for integral curves that are small perturbations of these circles. Using polar
coordinates, one tries to find integral curves of the form

H(r, θ) = r2 +H3(θ)r
3 +H4(θ)r

4 + · · · = k . (3)

If the origin is a center and if H = k is an integral curve, then

dH

dt
=
∂H

∂r
ṙ +

∂H

∂θ
θ̇ = 0 .

Looking at the coefficients of the powers of r, this equation generates an infinite
system of equations with the unknows Hj(θ) (see section 2). If the origin is not
a center, then the equation above cannot be solved.
However, as we will see later on, one can formally solve the equation

dH

dt
= P1r

4 + P2r
6 + P3r

8 + · · · ,

where Pj , j = 1, 2, . . . are constants. The sign of the first non-zero Pj controls
the type of stability of the focus. If Pj > 0, the focus is unstable; it is stable
otherwise. In fact, it is possible to find H = r2+H3(θ)r

3 + · · ·+H2j+1(θ)r2j+1

such that
dH/dt

r2j+2

∣∣∣
r=0
= Pj .

H is a Lyapunov function for the focus (see proposition 1 and corollary 2). If all
the Pj vanish, it is possible to solve the system and the series in (3) converges
in a neighborhood of the origin (see [2]).
There are no standard names for the constants Pj . Some call them focal

numbers (or quantities), others call them Lyapunov constants. These names do
not match the definitions of Andronov et al [1]. According to [1], the jth focal
value (or quantity) is the jth derivative of the displacement function r in (2). If
the first non-vanishing derivative of r is of order k = 2j + 1 ≥ 3 (j ≥ 1), then
it is called the kth Lyapunov value. But the Pj are not in general equal to the
uj in (2). Moreover, in the case of a family of vector fields, the Pj are in fact
polynomial functions of the parameters (as we will see later on). We adopt the
following definition.

Definition Pj is the j
th Poincaré-Lyapunov constant. In the case of a family

of vector fields, Pj will be called the j
th Poincaré-Lyapunov polynomial (asso-

ciated with this family).

We will study these polynomials for the family of all polynomial vector fields
of degree n on the plane. We will prove that they are invariant under the
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group of rotations S1 = { eiψ } and also invariant under the multiplicative group
C∗ = { ρeiψ } modulo a positive factor. Precisely, ∀j ≥ 1 and for g = ρeiψ ∈ C∗,

Pj(g(ars)) = ρ
2jPj(ars) ,

where the ars are the parameters of the family of all polynomial vector fields
of degree n on the plane. In this statement, it is important to distinguish
a Poincaré-Lyapunov polynomial from the corresponding Poincaré-Lyapunov
constant (the value of this polynomial for a certain vector field). Indeed, the
statement says that the polynomials are also weighted-homogeneous in a certain
sense that we will define in section 3.

2 Poincaré’s Method

We suppose that the family of all polynomial vector fields of degree n
has an equilibrium point at the origin with a Jacobian matrix of the form

(1) where a = 0. We will slightly modify Poincaré’s procedure to obtain the
main result of this article. Dividing the family by b, it takes the following form
in the coordinates z = x+ iy and z̄:

ż = iz +
n∑

m=2

∑
j+k=m

ajkz
j z̄k,

˙̄z = −iz̄ +
n∑

m=2

∑
j+k=m

ākjz
j z̄k.

(4)

Setting r =
√
zz̄ and θ = (1/2i) ln(z/z̄), we obtain:

ṙ =
1

2r
(żz̄ + z ˙̄z) = (1/2)

n∑
m=2

Fm(e
iθ)rm

θ̇ =
1

2r2
(−iżz̄ + iz ˙̄z) = 1 + (1/2)

n∑
m=2

Gm(e
iθ)rm−1,

(5)

where

Fm(e
iθ) = a0me

−(m+1)iθ +
∑

j+k=m; j 6=0

(ajk + ā(k+1)(j−1))e
(j−k−1)iθ

+ā0me
(m+1)iθ (6)

Gm(e
iθ) = −ia0me

−(m+1)iθ +
∑

j+k=m; j 6=0

(−iajk + iā(k+1)(j−1))e
(j−k−1)iθ

+iā0me
(m+1)iθ.

One must find a function

H(r, eiθ) = r2 +H3(e
iθ)r3 +H4(e

iθ)r4 + · · ·
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such that
dH

dt
=
∂H

∂r
ṙ +

∂H

∂θ
θ̇ = P1r

4 + P2r
6 + P3r

8 + · · · . (7)

We will see, as Poincaré did, that it is in general impossible to find
H(r, eiθ) such that dH/dt = 0, except if the origin is a center. In this case,

all the constants Pj vanish. We have:

dH

dt
= (F2 +H

′
3)r
3 +

(
3

2
H3F2 + F3 +

1

2
H ′3G2 +H

′
4

)
r4 + · · ·

+

(
n

2
HnF2 + · · ·+

3

2
H3Fn−1 + Fn +

1

2
H ′3Gn−1 + · · ·+

1

2
H ′nG2 +H

′
n+1

)
rn+1

+

(
n+ 1

2
Hn+1F2 + · · ·+

3

2
H3Fn +

1

2
H ′3Gn + · · ·+

1

2
H ′n+1G2 +H

′
n+2

)
rn+2

+

(
n+ 2

2
Hn+2F2 + · · ·+

4

2
H4Fn +

1

2
H ′4Gn + · · ·+

1

2
H ′n+2G2 +H

′
n+3

)
rn+3

+ · · ·

Notation 1 Let us denote the coefficient of rk in the previous expression by
Lk(e

iθ) +H ′k.

Proposition 1 Let m be the smallest integer such that Pm 6= 0. Then the
system of equations Lk(e

iθ) +H ′k = 0 (3 ≤ k ≤ 2m+ 1) with the unknowns Hk

has a solution. Hk has only powers of e
iθ of the same parity as k. There is no

H2m+2 such that L2m+2(e
iθ) +H ′2m+2 = 0.

Proof In the sequel, we will say simply powers instead of powers of eiθ. If we
can find H ′k, then Hk and H

′
k (k ≥ 3) have the same powers. From (6) we see

that Fj and Gj (j ≥ 2) have (only) powers of the parity opposite to that of j.
Since H ′3 = −F2,

H ′3 and H3 have odd powers. Up to constants, the terms in L4 are H3F2,
F3 and H

′
3G2, where the powers in H3, F2, H

′
3 and G2 are odd. Then L4 has

even powers. The coefficient of e0iθ in L4 is P1. If P1 = 0, we can find H4(e
iθ)

such that L4(e
iθ) + H ′4 = 0; in this case H4 has even powers. If P1 6= 0, it is

impossible to solve the equation.
Let m ≥ 2. We proceed by induction. Let us suppose that it is possible to

solve the equations Lk(e
iθ) +H ′k = 0 up to k = 2m and that the powers in H

′
k

and Hk have the same parity as k. Up to constants, the terms in Lk are of the
form HrFs, Fk−1 and H

′
rGs, where r + s = k + 1. If k = 2m+ 1 is odd, then

Fk−1 has odd powers. Since r+ s is even, s and r have the same parity and the
powers in HrFs and H

′
rGs are odd. We conclude that L2m+1(e

iθ) +H ′2m+1 = 0
has a solution and that H ′2m+1 and H2m+1 have odd powers. Similar arguments
show that, when k = 2m + 2, Fk−1, HrFs and H

′
rGs have even powers; then

L2m+2(e
iθ) +H ′2m+2 = 0 has a solution if and only if Pm, the coefficient of e

0iθ

in L2m+2, is zero. If Pm = 0, then H
′
2m+2 and Hk have even powers.
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Corollary 2 Let m be the smallest integer such that Pm 6= 0. Then the function
r2+H3(θ)r

3+ · · ·+H2m+1(θ)r2m+1, i.e., the solution of the system of equations
Lk(e

iθ) + H ′k = 0 (3 ≤ k ≤ 2m + 1), is a Lyapunov function for the focus. If
Pm < 0, the focus is stable. Otherwise it is unstable.

To find the Poincaré-Lyapunov polynomials we proceed as follows. Equating
dH/dt with the right hand side of (7), we get an infinite set of differential
equations with the unknowns Hj (j ≥ 3) and Pk (k ≥ 1), where Pk is the
coefficient of e0iθ in L2k+2. If n = 2k is even, the system is:

H ′3 = −F2

H ′4 = P1 −
3

2
H3F2 + F3 −

1

2
H ′3G2 (8)

· · ·

H ′2k+1 = −
2k

2
H2kF2 − · · · −

3

2
H3F2k−1 − F2k −

1

2
H ′3G2k−1 − · · · −

1

2
H ′2kG2

H ′2k+2 = Pk −
2k + 1

2
H2k+1F2 − · · · −

3

2
H3F2k

−
1

2
H ′3G2k − · · · −

1

2
H ′2k+1G2

· · ·

If n = 2k − 1 is odd, the last lines become:

H ′2k+1 = −
2k

2
H2kF2 − · · · −

3

2
H3F2k−1 −

1

2
H ′3G2k−1 − · · · −

1

2
H ′2kG2

H ′2k+2 = Pk −
2k + 1

2
H2k+1F2 − · · · −

4

2
H4F2k−1 (9)

−
1

2
H ′4G2k−1 − · · · −

1

2
H ′2k+1G2

· · ·

Poincaré used the sine and the cosine functions instead of eiθ.

3 The Main Result

Letting z = αw (α = ρeiψ), the vector field
(4) becomes (writing just one equation):

ẇ = iw +

n∑
m=2

∑
j+k=m

ajkα
j−1ākwjw̄k.

Then we obtain:

Lemma 3 Under the action of the element ρeiψ of the group C∗, ars and ārs,
where r + s = m, are respectively changed to arsρ

m−1e(r−s−1)iψ and
ārsρ

m−1e(s−r+1)iψ.
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Definition Let c ∈ C be a constant. If r + s = m, the weight of cars or cārs
with respect to ρ is m−1 . The respective weights of cars and cārs with respect
to ψ are r − s− 1 and s− r + 1.

Lemma 4 Let c ∈ C be a constant. Each cars or cārs in Fm and Gm (see (6))
have a weight with respect of ρ equal to m− 1. The weight with respect to ψ of
each monomial in the coefficient of etiθ is t.

Proof Because j+k = m (j, k ≥ 0), (k+1)+(j−1) = m (j 6= 0) and 0+m = m,
equation (6) implies that the weights with respect to ρ of cajk, cā(k+1)(j−1) and
cām0 in Fm and Gm are indeed equal to m − 1. The weight with respect to ψ
of cajk is j− k− 1, that of cā(k+1)(j−1) (j 6= 0), (j − 1)− (k+1)+ 1 = j− k− 1
and that of cā0m, m− 0 + 1 = m+ 1.

Since each monomial in the coefficient of esiθ has the same weights, we can,
without ambiguity, talk about of the weights of this coefficient . The following
notation will help to easily determine the weights of the coefficient of esiθ in Fm
and Gm.

Notation Let us denote the coefficient of esiθ in Fm by c[m−1,s]. The coeffi-
cients of the esiθ’s in Gm will be denoted in order by

−ic[m−1,−m−1], d[m−1,−m+1], . . . , d[m−1,m−1], ic[m−1,m+1] .

In the particular case of the family of polynomial vector fields of degree 3,
one gets:

ṙ =
1

2

(
c[1,−3]e−3iθ + c[1,−1]e−iθ + c[1,1]eiθ + c[1,3]e3iθ

)
r2

+
1

2

(
c[2,−4]e−4iθ + c[2,−2]e−2iθ + c[2,0]+ c[2,2]e2iθ + c[2,4]e4iθ

)
r3

θ̇ = 1 +
1

2

(
−ic[1,−3]e−3iθ + d[1,−1]e−iθ + d[1,1]eiθ + ic[1,3]e3iθ

)
r

+
1

2

(
−ic[2,−4]e−4iθ + d[2,−2]e−2iθ + d[2,0]+ d[2,2]e2iθ + ic[2,4]e4iθ

)
r2.

Lemma 5 The following relations are satisfied:

c̄[m−1,s] = c[m−1,−s] and d̄[m−1,s] = d[m−1,−s].

Moreover, c[m−1,0] and d[m−1,0] are real.

Proof Fm andGm are real expressions, since the original family of vector fields
is real. Because in (4), żz̄ + z ˙̄z and −iżz̄ + iz ˙̄z are sums of conjugate terms,
Fm and Gm are are also sums of conjugate terms. Precisely, the conjugate of
the coefficient of esiθ is the coefficient of the conjugate of esiθ. Then c̄[m−1,s] =
c[m−1,−s] and d̄[m−1,s] = d[m−1,−s]. When s = 0, the terms c[m−1,0] and d[m−1,0]
are self-conjugate, and therefore real.
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Definition Let h be a monomial in the unknowns c[j,s] and d[k,t]. The weights
of h with respect to ρ and ψ are the sums of the respective weights of its
unknowns. We will say that a polynomial is weighted-homogeneous of degree
(k, r) if all its monomials have the same weights k and r with respect to ρ and
ψ respectively.

Proposition 6 Let Qt be the coefficient of e
tiθ in Hs. Then Qt is weighted-

homogeneous of degree (s− 2, t). Pk is weighted-homogeneous of degree (2k, 0).

Proof Let us look at the system of equations (8) or (9). According to lemma 4
and the paragraph following it, the statement is true for all the coefficients Qt
in H3, since H

′
3 = −F2. Since H

′
s = −Ls (see notation 1), the result follows by

induction.

Corollary 7 Pk is invariant under the group of rotations S
1 and is invariant

under the group C∗ modulo a positive constant.

4 Conclusion

We have proved not only that ∀j ≥ 1 and for g = ρeiψ ∈ C∗, Pj(g(ars)) =
ρ2jPj(ars), where Pj is a Poincaré-Lyapunov polynomial, but also that Pj is
weighted-homogeneous of degree (2j, 0) (according to definition 3).
This result has at least two goals.
New directions of research related to Hilbert’s 16th problem which look

promising have been given by H. Zoladek in [3] and [4]. One of the ques-
tions raised by the Hilbert’s 16th problem is about the maximum number of
limit cycles that exist in the family of polynomial vector fields of degree less
or equal to n. A minor question, but closely related to, is to determine the
maximum number of limit cycles near a center-focus. Zoladek proved in [3] that
the family of polynomial vector fields of degree less or equal to two has at most
3 limit cycles near a center-focus. In [4], he proved that a family of degree less
or equal to three, but without its quadratic part, has at most 5 limit cycles
near a center-focus. The proofs follow from his main result that says the ideal
generated by the Poincaré-Lyapunov polynomials is a linear combination, with
polynomial coefficients in the ars, of the first Poincaré-Lyapunov polynomials.
He utilizes for it the invariance of the Poincaré-Lyapunov polynomials under
the group of rotations, but the arguments for proving the invariance, though
correct, are rather elliptic. The present article gives a detailed proof.
One knows the importance of the Poincaré-Lyapunov polynomials to deter-

mine the stability of an equilibrium point. One could hope to find the Poincaré-
Lyapunov polynomials for certain low degree polynomial vector fields. Indeed,
using a computer, one could
list all the monomials of Pj , since they must satisfy the (two) homogeneity

condition(s). Using the explicit system (8) or (9), one could find the coefficients
of the monomials.
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Remark The author has received from J.P. Françoise, C. Rousseau and R.
Roussarie the main arguments of another proof of the invariance of the Poincaré-
Lyapunov polynomials under the group of rotations. They do not have a result
on the homogeneity with respect to the weights.
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95-114.

[3] H. Zoladek, Quadratic systems with center and their perturbations, J. of
Diff. Eqns., 109, 1994, pp 223-273.

[4] H. Zoladek, On a certain generalization of Bautin’s theorem, Non-linearity,
7, 1994, pp 273-279.

Pierre Joyal
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