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ABSTRACT 

 Texas bats are threatened by habitat loss, contaminants such as mercury (Hg), 

disease, and wind turbines. In east Texas, specifically along the Gulf Coast, much of the 

native landcover is fragmented from anthropogenic activities. East Texas also has 5 of the 

top 10 Hg emitters in the United States, which contribute to Texas producing more Hg 

pollution than any other state. Being consumers of prey connected to aquatic ecosystems, 

Hg bioaccumulates in bats and has been documented to reach toxic levels in some 

species. Knowledge gaps exist regarding critical foraging habitat for bats on the upper 

Texas Gulf Coast and Hg concentrations in bats throughout Texas. I identified habitats in 

which bats were active using multi-state occupancy models for 5 bat species: tri-colored 

(Perimyotis subflavus), evening (Nycticeius humeralis), eastern red (Lasiurus borealis), 

northern yellow (Lasiurus intermedius), and Brazilian free-tailed (Tadarida brasiliensis) 

surveyed with fixed acoustic detectors on the San Bernard National Wildlife Refuge 

(SBNWR) and measured total Hg (THg) concentrations in the fur of 7 bat species: cave 

myotis (Myotis velifer), hoary (Lasiurus cinereus), P. subflavus, N. humeralis, L. 

borealis, L. intermedius, and T. brasiliensis from eastern and central Texas. All bat 

species were widely distributed within the SBNWR; thus, I assessed high and low 

activity areas using multi-state occupancy models. Occupancy rates of T. brasiliensis 

were lower in areas with greater canopy cover whereas high activity rates of N. humeralis 

decreased in open habitats. Additionally, I collected 427 fur samples from 32 sites to 

investigate inter- and intraspecific variability in fur THg concentrations. Two species, P. 



 

xi 

subflavus and N. humeralis, had greater mean THg concentrations (6.04 and 5.87 µg/g, 

respectively) than other species with several individuals exceeding the 10 μg/g threshold 

cited as having deleterious health effects in bats. Nycticeius humeralis was the only 

species that demonstrated intraspecific variation with adults having greater mean THg 

concentrations than juveniles (7.45 and 4.29 µg/g, respectively). Nycticeius humeralis fur 

THg concentrations were greater along the upper Gulf Coast than in central and southern 

Texas and were positively influenced by the density and distance to coal-fired power 

plants. My research concluded that Hg may be a greater threat to bat populations on the 

upper Gulf Coast than other areas in the state. To aid future conservation efforts of bats in 

Texas, I recommend maintaining a matrix of native habitats for bats to use in areas where 

bats are widely distributed, like SBNWR, and also facing multiple stressors including 

habitat loss and the accumulation of harmful contaminants like Hg. 
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I. DRIVERS OF BAT OCCUPANCY ON THE SAN BERNARD NATIONAL 

WILDLIFE REFUGE 

Introduction 

Bats, order Chiroptera, are a highly specialized taxon of mammal. Bats have evolved to 

be the only truly volant order in the mammalian class (Adams and Pedersen 2013). 

Globally, there are roughly 1,400 species of bats and they vary greatly in morphology and 

diet (Aldridge and Rautenbach 1987, Simmons 2005). Most species of bats use 

echolocation to maneuver through cluttered habitats and forage for insects while flying at 

night (Aldridge and Rautenbach 1987, Jones and Teeling 2006). Bats give birth to only 1 

or 2 pups a year (Racey 1982) and have lifespans ~3.5 times longer than other taxon 

similar in size (Wilkinson and South 2002).  

Bats provide several benefits to humans predominantly through the consumption 

of pestilential insects and pollination of economically important crops (Kunz et al. 2011). 

The consumption of crop-destroying insects by bats reduces the application of pesticides 

thereby decreasing human exposure (Pimentel and Zepp 1991) and cost. Further, bats aid 

the agriculture industry by reducing the amount of crop damage caused by insects 

(Cleveland et al. 2006, Boyles et al. 2011). Boyles et al. (2011) combined all the 

estimated costs bats save the North American agricultural industry and estimated this 

value to be approximately $22.9 billion annually. Bat pollination (“chiropterophily”) 

benefits over 500 plant species including important food crops such as mango (Mangifera 

indica), cacao (Erythroxylum coca), and durian (Durio spp.) (Fleming et al. 2009). Bats 

also are the main pollinator of blue agave (Agave tequilana), which is used to 
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manufacture tequila, a multi-million dollar industry in the United States and Mexico 

(Molina‐Freaner and Eguiarte 2003). 

Although population trends are difficult to observe in cryptic animals like bats, 

the combination of threats impacting North American bat populations including fatalities 

from wind energy facilities, disease, exposure to contaminants and habitat loss, has 

resulted in an estimated 18–31% of species (based on NatureServe conservation status) to 

be at risk of declines (Hammerson et al. 2017). The development of wind farm facilities 

near foraging grounds and along migration routes may threaten the persistence of bat 

populations (Santos et al. 2013). There are several diseases negatively impacting bats, but 

at the forefront is white-nose syndrome (WNS) (Blehert et al. 2009), which has killed at 

least 6.7 million bats in eastern North America (Hopkins and Soileau 2018). White-nose 

syndrome is caused by the fungus (Pseudogymnoascus destructans) and is spreading 

across North America, endangering several species including the little brown bat (Myotis 

lucifugus) and Indiana bat (Myotis sodalis), which are experiencing population declines 

(Foley et al. 2011). Another threat to bats is the bioaccumulation of harmful pollutants 

from the diet (Becker et al. 2018), which can lead to negative health effects, mortality, 

and population declines (Bayat et al. 2014, Hernout et al. 2016). Habitat loss is one of the 

worst threats currently impacting wildlife and bats are negatively affected through the 

reduction of roosting and foraging habitat (Russo and Ancillotto 2015).  

Most of the 44 regularly reoccurring bat species native to Canada and the US 

(Jones et al. 1986) are temperate species that share common traits like nocturnality and 

dietary preference for insects, and they can vary by ecological niches including roosting 

strategy, foraging technique, and prey preference (Patterson et al. 2003). The variation of 
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ecological niches that North American bats occupy allows for several species to co-occur 

in the same region (Patterson et al. 2003). For example, roosting strategies of North 

American bats differ among species with one example being the hoary bat (Lasiurus 

cinereus), which roosts solitarily in tree foliage, whereas other species, including the 

Brazilian free-tailed bat (Tadarida brasiliensis), roosts in caves with aggregations that 

can exceed 20 million individuals (Ammerman et al. 2012). Another example of 

variability among North American bats is the type of insects they prey upon and the 

foraging techniques used to capture prey. Some species such as members of the Lasiurus 

genus are considered ‘specialists’ and have an affinity for lepidopterans (moths) that they 

hunt in open habitats (Rolseth et al. 1994, Clare et al. 2009). Smaller bats such as the tri-

colored bat (Perimyotis subflavus) are dietary ‘generalists’ as they forage on several 

orders of insects along forested and riparian habitats (Helms 2011). Several factors can 

influence the diets of bat species among populations including occupancy of different 

geographical regions, season, local habitat quality, and habitat structure (Johnston and 

Fenton 2001, Lasso 2005, Clare et al. 2014).  

Texas plays an important role in the ecology of North American bats, in part 

because of the high levels of species diversity and large populations of cave-roosting 

species. Texas has the greatest species richness of bats in the US, totaling 33 species, and 

the largest colony of roosting bats in the world (Ammerman et al. 2012, BCI 2019). The 

karst limestone geography in Texas creates a proliferation of cave systems, many of 

which are utilized by bats (Scheel et al. 1996). Despite the richness of bat species, there 

are many gaps in the scientific literature concerning bats in Texas. The ecology of bats on 
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the upper Texas Gulf Coast and the species occupying this region have not been 

researched thoroughly.  

The Gulf Coast of Texas is the most biologically rich and diverse region of the 

state (TPWD 2009). This region is comprised of a mosaic of coastal saltmarsh, wetland, 

and bottomland hardwood habitats, which are fragmented and shrinking due to human 

development and climate change (White et al. 2005, EPA 2017). In Texas, over 25% of 

the human population resides within the Gulf Coast (Hegar 2020), resulting in over half 

of Texas wetlands disappearing to urban development and agriculture (Moulton et al. 

1997, TPWD 2003). Coastal saltmarsh and bottomland hardwood historically dominated 

this region, providing unique habitats to wildlife, including bats (Hoye 2002, Lamb 2009, 

Gonsalves et al. 2013, Clarke-Wood et al. 2016). However, information about the bats 

that occupy this region, including the species residing in this area and the ecological 

factors influencing their distribution across the landscape, is scant.  

One factor that could be influencing the distribution of bats on the Texas Gulf 

Coast, considered a fertile region where significant crop production occurs, is the 

abundance of agricultural industry in the region, which is primarily focused on corn and 

cotton production (Gleaton and Anderson 2005). Bats use agricultural areas for foraging 

and save Texas cotton farmers an estimated $74 per acre by suppressing pest species 

(Cleveland et al. 2006). Agriculture is the second largest industry in Texas and 

economically important as the agricultural industry employs hundreds of thousands of 

workers (Sawe 2019). The ecosystem and economic services bats provide to the 

agricultural industry highlight the importance of researching and conserving the taxa. 
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The warm climate of the Texas Gulf Coast is expected to experience drastic 

changes due to climate change over the next century, which likely will influence the bats 

inhabiting the region (EPA 2016). Since 1975, Texas has experienced a gradual increase 

in average summertime monthly temperatures and is predicted to rise to 37.17 °C by 

2036, which would be a 0.37 °C increase from the monthly summer average observed 

between 2000–2018 (Nielsen-Gammon et al. 2020). Precipitation in the Gulf Coast 

region has increased by 10–20% since 1895 (Nielsen-Gammon et al. 2020). The amount 

of annual precipitation on the Gulf Coast is predicted to increase accompanied by more 

frequent storm activity including extreme weather events like hurricanes (Scavia et al. 

2002). Sea level rise has been documented along the Texas coastline varying from 3.05–

6.49 mm/yr and is predicted to continue (Nielsen-Gammon et al. 2020). The long-term 

impacts of climate change on bats is unclear and likely site-specific (Sherwin et al. 2013, 

Nagy et al. 2017). Bats on the Gulf Coast are likely negatively affected by increased 

precipitation and extreme weather events, which reduce the amount of time bats can 

safely spend gathering food (Sherwin et al. 2013). Bat prey abundance may experience 

dramatic changes on the Gulf Coast due to climate change. Insect orders like Diptera, 

notably mosquitoes in family Culicidae, are expected to become more abundant with 

increasing temperatures and standing water (Ramasamy and Surendran 2012). However, 

other insect groups, including several members of Lepidoptera, are more susceptible to 

climate fluctuations and populations could be negatively impacted with climate change 

(Hunter et al. 2014). Extreme storm events and rising sea levels could negatively impact 

bats by damaging urban structures and stands of forests that provide suitable roosting 

habitat to bats in the Gulf Coast area. The threat of climate change to bats makes it 
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critical to obtain information on species that occupy habitats experiencing annual changes 

caused by climate change, such as the Texas Gulf Coast, in order to advance the 

conservation of bats in a rapidly changing climate.  

The biology of bats including their volancy, echolocation, and nocturnality creates 

challenges for an effective study. Acoustic monitoring recently has evolved as a credible 

method for gathering information on bats by recording echolocation calls that often can 

be identified to the species level. Acoustic monitoring provides biologists with detection 

and non-detection data as well as activity levels at a given location. Occupancy models 

are an effective tool that biologists have utilized to study wildlife, including bats, where 

only detection and non-detection data are available (MacKenzie et al. 2002, Yates and 

Muzika 2006, Gorresen et al. 2008, Hein et al. 2009, Starbuck et al. 2014, Gorresen et al. 

2018). Occupancy modeling identifies influential biological and environmental 

covariates, as well as spatial and temporal variations that influence a species’ probability 

of occupying an area (MacKenzie et al. 2003). Occupancy models that use passive 

acoustic detection of bats have proven to be an effective method for identifying important 

patch and landscape factors, both of which influence bat presence within a specified area 

(Yates and Muzika 2006, Gorresen et al. 2008, Hein et al. 2009, Starbuck et. al 2015, 

Gorresen et al. 2018). 

 

Objectives of the Thesis 

 The purpose of this study was to examine habitat characteristics, including prey, 

vegetation structure, and composition, that influence bat occupancy across the San 

Bernard National Wildlife Refuge (SBNWR). My specific objective was to estimate rates 
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of occupancy and detection probability for all bat species identified on the SBNWR and 

assess the influence of landscape composition, local habitat structure, and insect 

availability on species’ occupancy rates. I predicted insect abundance would positively 

influence bat occupancy because sites with the most insect abundance will have more 

food resources (Tibbels and Kurta 2003). I also predicted sites with taller vegetation 

structure and denser canopy would have greater rates of occupancy because of the 

roosting potential of these locations (Yates and Muzika 2006). This research is warranted 

because it is important to identify which bat species are utilizing habitat on the SBNWR 

as well as to determine the factors that influence bat habitat use on the refuge so that 

managers can make more informed management decisions that benefit bat populations.  

 

Methods 

Study Area  

The SBNWR (28.8626° N, 95.5407° E) was founded in 1968 and is 32 km south 

of the town of Sweeney on the upper Texas Gulf Coast (Figure 1). The refuge is 185.06 

km2 and dominated by saline prairie, open water, and Columbia bottomland hardwood 

(CBH) forests in Brazoria and Matagorda counties (White et al. 2005). The refuge is 

divided into a main refuge and 26 smaller land tracts the refuge has purchased over time. 

Among the smaller land tracts that comprise the refuge, most are dominated by CBH 

forest habitat and vary in size from 0.034 km2 to 18.2 km2. Annual precipitation is 145 

cm with average temperatures of 33.2 °C in the summer and 6.5 °C in the winter 

(USFWS 2018). The refuge provides critical habitat to a rich array of wildlife species 

including the endangered piping plover (Charadrius melodus) and Kemp’s Ridley Sea 
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Turtle (Lepidochelys kempii) as well as a diverse array of migratory bird, reptile, and 

amphibian species (USFWS 2018). Since bats that use the SBNWR have never been 

studied, the species which occupy the refuge are unknown. Preliminary capture data on 

the refuge confirms at least 3 species of bats including the eastern red bat (Lasiurus 

borealis), evening bat (Nycticeius humeralis), and T. brasiliensis are active at SBNWR.  

 

Study Design  

To assess occupancy of bats within the SBNWR, I surveyed 20 sites in both 2018 

and 2019, and added 2 additional sites in 2019 (Figure 1). I systematically surveyed sites 

twice during the 2018 season and 3 times during 2019 season. I placed acoustic detectors 

within 20 m from the edge of a water source if one was present at a study site. I placed 

acoustic detectors in a pipeline or corridor on sites dominated by CBH to reduce the 

effects of clutter or vegetation that would negatively affect call quality. In sites with open 

habitat, I placed detectors 50–100 m into the interior of the habitat to avoid edge effects. I 

spaced the distance between detector deployments ≥ 0.1 km. Due to navigational 

constraints on the refuge, specific survey locations were ≤ 200 m from roads or trails 

across the refuge. 

 

Acoustic Monitoring 

 I surveyed bats acoustically from sunset to sunrise at fixed points using D500x 

Pettersson acoustic detectors (Pettersson Elektronik AB, Uppsala, Sweden). I deployed 5 

to 8 acoustic detectors simultaneously on a rotating schedule around the SBNWR for 3-

day intervals in 2018 and 4-day intervals in 2019. I placed the microphone at a height of 
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3.5 m, angled at 45 degrees, and oriented it in a direction with minimal clutter. I 

programed all devices to have a 2 second trigger window and 15 second file length with a 

division ratio set at 8 to capture the frequencies of bats with call frequency ranges that 

overlapped within the SBNWR.  

I defined a bat pass as a sequence with identifiable pulses. Each pass required a 

minimum of 5 search phase pulses to improve the ability of identifying the bat to species. 

I used Sonobat call analysis software (version 4.0, DNDesign, Arcata, CA, USA) to scrub 

noise files that did not contain bat call characteristics. I used Sonobat auto-identification 

software to classify and identify all calls with medium or better call quality to species for 

data sampled in 2018. I manually vetted all call files from 2019 to identify species when 

possible and more generalized classifications (such as low or high frequency) when calls 

were not of good quality.  

 

Weather Data 

I used nightly data from a Remote Automatic Weather Station (RAWS) located in 

the middle of the main refuge on the SBNWR to assess weather as observation-level 

covariates. I assembled hourly data of precipitation (mm), relative humidity (%), wind 

speed (mph) and temperature (°C) during each deployment and averaged the hourly data 

for each monitoring night. I assessed drought as an observation-level covariate and used 

the weekly Modified Palmer Drought Index (PMDI: scaled from -6–6 with negative 

values indicating drought) for the Upper Coast region from the Texas Water 

Development Board (TWDB 2020). I averaged the PMDI value for each site in 2018 and 

2019 to assess PMDI as a site-level covariate as well.  
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Insect monitoring 

In 2019, I surveyed insects at each acoustic deployment site using a modified 

Townes-style malaise trap, which is an effective trap that captures flying insects (Townes 

1972). I paired a modified Townes-style malaise insect trap (ezMalaise, BugDorm LLC: 

L x W x H = 165 x 115 x 190 cm) with a randomly selected acoustic bat detector for a 2-

night survey, using similar methods as Brooks et al. (2017). Due to a limited number of 

malaise traps, I was only able to survey invertebrates at 3 detector deployments during a 

rotation. I equipped each malaise trap with a small LED headlamp placed 5 m from the 

acoustic device. I modified each Townes-style malaise trap according to the methods 

specified by Brooks et al. (2017). I turned on a small LED light outside the trap at dusk 

and attached an insect collecting bottle that was 1/8th filled with 80% ethanol. Each 

morning, at approximately sunrise, I turned off the light and collected all insects from 

each trap. I stored all insect samples in plastic containers that contained an 80% ethanol 

solution. To estimate abundance and richness, I counted and identified insects to order 

and family for Culicidae (order: Diptera; mosquitoes) using a key developed by Johnson 

and Triplehorn (2004). I used the most abundant orders as site-level covariates in all 2019 

models by averaging the abundance of each order for each 2-night survey.  

 

Vegetation Structure  

I assessed vegetation structure and groundcover composition surrounding each 

acoustic detector through surveys that were conducted every 5 m along 3 transects, each 

25 m in length (Fritts et al. 2016). I used a Robel pole to assess vegetation height and 

classified vegetation (Robel et al. 1970). Vegetation classifications included grasses, 
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forbs, bare ground and woody plants. I estimated canopy cover using a concave 

densitometer at each 5 m mark on each transect. All vegetation surveys were conducted 

during the last 2 weeks of the 2018 and 2019 field season. 

 

Landscape Composition 

I used ArcGIS Pro (version 2.4, Environmental Systems Research Institute, 

Redlands, CA, USA) to plot all acoustic sites and assess landscape composition around 

each site. I imported a raster file containing landcover types in Texas (USGS 2016), 

converted the raster file into vector data, and used the model builder tool to estimate 

percentage of each habitat composition in 2-km buffers around each acoustic deployment 

site. I selected 2-km as a buffer to capture the local habitat scale similar to methods used 

in Starbuck et al. (2014). For landscape scale, I simplified the habitat classifications into 

3 classifications including CBH, open, and urban. Columbia bottomland habitat included 

any habitat classified as CBH by the landcover type layer. Open habitat was dominated 

by coastal and saline prairies, and to a lesser extent agriculture, and barren habitat 

classifications. Additionally, I used ArcGIS to measure the distance from each detector to 

the nearest city using a shapefile layer containing all Texas cities (TDOT 2016). 

Preliminary research on roosting dynamics of N. humeralis within the SBNWR suggest 

urban areas may provide essential roosting habitat to bats in the area (Rogers 2020).  

 

Statistical analysis  

I created single-season single-species occupancy models to compare the rates of 

occupancy () and detection probability (p) for 5 bat species identified on the SBNWR 
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including P. subflavus, L. borealis, N. humeralis, northern yellow bats (L. intermedius), 

and T. brasiliensis using package “unmarked” (Fiske and Chandler 2011) in program 

RStudio (version 1.1.463 R Core Team 2012). I elected to assess single-season 

occupancy models instead of combining both seasons into dynamic occupancy models 

due to variability between season duration and number of primary sampling occasions at 

each site. I evaluated detection histories of each site by classifying each species as non-

detected if the species was never positively identified and detected if the species was 

positively identified during a monitoring night. I coded detection histories to represent 

this with each species (0: undetected, 1:detected). Most species identified within the 

SBNWR were widely distributed and detected at the majority of sites at least once. I 

scaled all covariates by subtracting the average and dividing by the standard deviation 

prior to including it in a model, but back-transformed values for model predictions. 

To gain further inferences about factors potentially influencing rates of use by 

bats on the SBNWR, I created a single-season single-species multi-state model for each 

of the 4 most abundant species surveyed in 2019, which included P. subflavus, L. 

borealis, N. humeralis, and L. intermedius. I modified detection histories for each species 

to account for multiple states of activity (0: undetected, 1:detected with low activity, 2: 

detected with high activity). The multi-state occupancy model assesses:  (probability of 

occupancy), R (probability of high activity given a site is occupied), p1(probability of 

detecting species given a site has low activity), p2 (probability of detecting species given 

a site has high activity), and δ (probability of detecting high activity given a site was 

occupied) (MacKenzie et al. 2009). I examined the number of call files identified for each 

species and identified natural breaks that distinguished sites with high activity versus low 



 

13 

activity. Perimyotis subflavus were the most active and widely distributed species 

observed on the SBNWR. I defined high activity as a given night having ≥ 10 distinct 

manually identified P. subflavus bat passes and low activity as having 1–9 distinct passes. 

Lasiurus borealis, N. humeralis, and L. intermedius occupied most of the survey sites, but 

with less activity than P. subflavus, thus for these 3 species I defined high activity as a 

monitoring night having ≥ 5 distinct manually identified bat passes and low activity as 

having 1–4 distinct bat passes. Tadarida brasiliensis had the lowest rates of occupancy 

during summer 2019 and was only evaluated using single-season single-species 

occupancy models.  

To select the best fitting single-season occupancy model for each species, I first 

determined the observation-level covariates that influenced the detection probability of 

each species. I assessed each observation-level covariate (Table 1) in a univariate model 

and examined additive combinations of the most competitive (≤ 2 AIC) covariates, 

which were included for all further occupancy models examining site-level covariates 

(Yates and Muzika 2006). Once the observation-level covariate(s) was determined for 

each species, I calculated occupancy models that assessed the influence of site-level 

covariates on . For all multi-state models, I assessed only site-level covariates to 

examine their impacts on activity. I assessed site-level covariates by first examining a 

univariate model of each site-level covariate and determined if the model had good fit by 

assessing the standard errors of the intercept and covariate. Models with inflated standard 

errors were removed. If more than one covariate was considered competitive (≤ 2 AIC), I 

assessed additive combinations of competitive covariates to determine if a more 

parsimonious occupancy model was possible for each species. I checked for 
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multicollinearity when 2 or more site-level covariates were included in a model by 

assessing the Variance Inflation Factors (VIF) (VIF > 4 would result in the model being 

omitted from analysis). I used the model selection tool in the unmarked package to select 

the best fitting models with the most influential drivers using the Akaike’s Information 

Criteria (AIC) weights for each species. I assessed significance of each parameter by 

calculating 95% confidence intervals for all competitive models. I used the modavg tool 

in the “AICcModavg” package (Mazerolle 2020) to determine the coefficient values 

averaged among all competitive models for site-level covariates. I assessed the best 

fitting models for each species for both 2018 and 2019 and factored in multiple states of 

activity level for 4 bat species in 2019.  

 

Results 

In 2018, I monitored bats for 70 monitoring nights reflecting 3,442 monitoring 

hours and resulted in 97,045 sound files with 32,596 containing bat call characteristics. In 

2019, I collected 574,886 sound files resulting in 15,499 call files with bat characteristics 

and 1,092 monitoring hours. I coded observation-level and site-level covariates with 

descriptions in Table 1. Parameters for all site-level covariates are reported in Table 2. 

All competitive occupancy models for 5 bat species are presented in Tables 3–4 (2018, 

2019, respectively). Untransformed outputs for the top model for each species including 

site-level and observation-level covariates are in Tables 5–6 and model averaged site-

level covariates for all models are in Tables 7–8 (2018, 2019, respectively). Back-

transformed occupancy rates and p for all competitive models are reported in Tables 9–10 

(2018, 2019, respectively).  
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Site-level covariates 

Vegetation height ranged from 0.51 m to 1.71 m with an average of 0.99 m in 

2018, and 0.64 m to 2.00 m with an average of 1.2 m in 2019. In 2018, canopy cover 

ranged from 0% to 96% among sites with the average equating to 25.1%, and 0% to 

100% with an average of 38.9% in 2019. Within a 2-km buffer, average CBH habitat was 

59.8%, the average amount of open habitat was 36.1%, and the average percent of urban 

habitat was 1.0%. The distance to the nearest city from detector locations averaged 19.9 

km.  

I collected 5,224 insects during 2019 surveys and the most abundant insect orders 

were Diptera (n = 2,614, 50%), Lepidoptera (n = 1,044, 20%), and Hemiptera (n = 925, 

17.7%). The family Culicidae was the most abundant insect family surveyed and was 

extracted from Diptera to be analyzed separately as a covariate. Insect abundance ranged 

from 29 to 513 and averaged 233 insects across a 2-night survey for a given site in 2019. 

Insect order richness ranged from 4 to 8 and averaged 6.14 across a 2-night survey for a 

given site in 2019 (Table 2).  

 

Brazilian free-tailed bat 

I detected T. brasiliensis at 47.7% of surveyed points in 2018 with a naïve 

occupancy of 84%. In 2019, I detected T. brasiliensis on 25.1% of monitoring nights with 

a naïve occupancy of 77%. In 2018, the best model for estimating p included PMDI 

which negatively affected p. Site occupancy decreased from 0.92 to 0.09 when the 

amount of canopy cover increased from 0% to 96.1% (Figure 2). In 2019, precipitation 
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was included for assessing p but was not significant. The average PMDI was included in 

the selected model for , but the confidence interval overlapped with zero.  

 

Evening bat 

I detected N. humeralis on 32.9% of monitoring nights in 2018 with a naïve 

occupancy of 84%. In 2019, I detected N. humeralis on 38.2% of monitoring nights, with 

naïve occupancy of 82%. In 2018, the best model for estimating p included PMDI, which 

had a negative impact on detection rates and the null was selected for . In 2019, the null 

was selected for estimating p. Both open habitat and distance to nearest city were 

competitive for estimating R and had a negative impact on high rates of activity, but open 

habitat was the only significant site-level covariate. The mean site occupancy rate with 

high activity decreased from 0.51 to 0.14 when the amount of open habitat increased 

from 0.16% to 99.4% in a 2-km radius (Figure 3).  

 

Eastern red bat 

I detected L. borealis at 55.3% of surveyed points with a naïve occupancy of 

95%. In 2019, I detected L. borealis on 30.7% of monitoring nights with a naïve 

occupancy of 86%. The best model for 2018 included PMDI, which negatively impacted 

estimating p and the null for estimating . In 2019, the most parsimonious multi-state 

occupancy model included the null for p, as well as Hemiptera abundance and open 

habitat for R. Hemiptera abundance was included in both competitive models and had a 

positive correlation with high levels of activity, while the amount of open habitat had a 

negative correlation with R, however neither were significant.   
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Northern yellow bat 

I detected L. intermedius at 51.7% of monitoring nights in 2018 with a naïve 

occupancy of 95%. In 2019, I detected L. intermedius at 38.8% of monitoring nights, 

with a naïve occupancy of 91%. In 2018, the best model for estimating p included PMDI, 

which negatively impacted detection rates and the null was selected for . In 2019, the 

top multi-state model selected included Julian date for estimating p2, indicating that 

Julian date had a positive influence on detecting high activity levels of L. intermedius. 

The null was selected for estimating  and R. 

 

Tri-colored bat 

I detected P. subflavus bats 51.7% of monitoring nights in 2018 with a naïve 

occupancy of 89%. I detected P. subflavus bats 49.6% of monitoring nights in 2019 with 

a naïve occupancy of 96%. In 2018, the best model included PMDI for p and veg 

structure for , but the null model was considered competitive for  and confidence 

intervals for all covariates overlapped zero. In 2019, the best multi-state model for 

estimating p included Julian date. Julian date had a negative impact on detection 

probability. Open habitat and abundance of Coleopterans was selected for R, but the 

confidence interval overlapped zero. Open habitat had a negative correlation with high P. 

subflavus bat activity, but the abundance of Coleopterans had a positive correlation with 

high activity.  
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Discussion 

Results suggest the SBNWR experienced high rates of use for the 5 bat species 

observed across the summers of 2018 and 2019 in all habitat types. The bat species 

occupying SBNWR were unknown prior to this study, therefore my hypothesis applied to 

bats as a collective and were not species specific. Despite only detecting 15% of the bat 

species that occur in Texas, all bat species observed on the SBNWR were detected at the 

majority of survey sites at least once. I detected greater naïve occupancy rates for P. 

subflavus, N. humeralis, L. borealis, and T. brasiliensis on the SBNWR than Weinkoaf 

(2015) detected across 2 summers of surveying bats in hardwood forests in east Texas. 

Further, Debelica-Lee and Wilkins (2014) assessed bat assemblages using live capture 

methods in forested habitats on the Sam Houston National Forest in southeastern Texas 

and captured N. humeralis and L. borealis more frequently than any of the other 8 species 

captured, which included T. brasiliensis and P. subflavus bats. My research shows that 

the bat species on SBNWR, with the exception of L. intermedius have been observed in 

other bat studies performed in east Texas (Debelica-Lee and Wilkins 2014, Weinkoaf 

2015). The range of L. intermedius is restricted to southeastern Atlantic and Gulf Coast 

habitats and prefer roosting habitat of Spanish moss and fan palms which are abundant on 

SBNWR (Ammerman et al. 2012). Although P. subflavus bats are experiencing 

population declines in northeastern US and are a species of special concern in Texas, they 

were the most active and detected species on SBNWR. Thus, SBNWR may be providing 

important habitat to P. subflavus and future management efforts need to consider the 

impact various refuge management strategies may have on this species of concern prior 

to them being implemented. 
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I did not find supporting evidence to corroborate my prediction that insect 

abundance would positively influence occupancy rates. This suggests insect abundance is 

not driving rates of occupancy or activity on SBNWR. Becker et al. (2017) found similar 

results when they examined the relationship between insect abundance and activity 

among 5 species/groups of bats including several that overlap with this study such as N. 

humeralis, L. borealis, P. subflavus. However, Becker et al. (2017) did observe a positive 

relationship between insect abundance and L. cinereus activity. Similarly, high activity 

rates for the Hawaiian hoary bat (L. cinereus semotus) have been documented to be 

positively associated with beetle biomass (Gorreson et al. 2018). Conversely, another 

study in Texas suggested occupancy and activity of southeastern myotis (Myotis 

auriculus), silver-haired bats (Lasionycteris noctivagans), and N. humeralis were 

negatively correlated with insect biomass, but the entire study was within bottomland 

hardwood habitat (Weinkoaf et al. 2015). A possible explanation for the observed lack of 

significance is because insect hatches fluctuate and therefore may not be properly 

observed during a 2-day survey with a single insect trap. Another possibility is the 

number of sites surveyed was not enough to obtain a clear assessment of insect 

abundance and the relationship to rates of occupancy and high use among bats.   

I did not find supporting evidence to support my prediction that sites with taller 

vegetation structure and denser canopy cover would have greater occupancy rates. The 

top 2018 model for T. brasiliensis had a negative correlation with canopy cover, which 

makes biological sense since T. brasiliensis have longer, narrower wings than other 

species in this study resulting in a high wing aspect ratio. Bats with high wing aspect 

ratios have more difficultly maneuvering through cluttered landscapes (Findley et al. 
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1972). Both N. humeralis and P. subflavus have lower wing aspect ratios compared to the 

other species in this study and prefer cluttered habitat in other areas of their distribution 

(Findley et al. 1972, Ammerman et al. 2012). However, Loeb and O’Keefe (2006) found 

that sparse vegetation density was the best predictor for habitat use by several bat species 

including L. borealis and P. subflavus sampled at various forested habitats in 

northwestern South Carolina. Reducing canopy cover on SBNWR could improve site use 

by T. brasiliensis and should be considered as a possible management strategy if 

increasing T. brasiliensis use on the refuge is desired.   

  Although open habitat at the local scale of 2-km has more influence over activity 

and site use by L. borealis, N. humeralis, and P. subflavus on SBNWR when compared to 

site-level habitat covariates such as vegetation structure or canopy cover, the generalized 

classification of open habitat makes it difficult to determine what is driving this 

observation. The cues used for habitat selection may change for some species depending 

on scale. For example, N. humeralis had greater activity in open habitats than cluttered 

forests, but when examining clutter within one habitat type (riparian areas), N. humeralis 

had greater activity in cluttered riparian habitats versus open riparian habitats (Menzel et 

al. 2005). Starbuck et. al (2015) found that site occupancy for N. humeralis and P. 

subflavus decreased with an increase in forest and urban habitat in a 16-km radius but 

increased for L. borealis in the Missouri Ozark Highlands, although the effect of open 

habitat was not assessed for these species. The composition of open habitat varies greatly 

geographically and future studies should take strides to decipher specific open habitat 

classifications when assessing bat activity.  
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There could be several reasons for N. humeralis to avoid open habitats on the 

SBNWR including predator aversion and prey preference in non-open habitats. Barred 

owls (Strix varia) were commonly observed on SBNWR during both field seasons and 

have been documented predating on bats (Bergstrom and Smith 2017). The literature on 

predator avoidance and bats is scant, but Baxter et al. (2006) did observe lower activity 

among bats when an owl call was played at a site compared to a matched control site 

where no owl call was played. Foraging behavior in closed habitats could also be a factor. 

The diet of N. humeralis is often described as ‘generalist’ with Coleopterans being cited 

as the primary order in the diet (Feldhamer et al. 1995, Geluso et al. 2008, Wilson 2017). 

Weinkauf (2015) assessed the diet of N. humeralis using fecal samples in northeast Texas 

and found evidence of Dipterans, Coleopterans, and Lepidopterans. I observed greater 

Coleopteran and Lepidopteran abundance in open habitats rather than forested, but 

greater Dipteran abundance in forested habitat. Future research should examine fecal 

composition of bats on the SBNWR to assess what N. humeralis on SBNWR are 

consuming and whether Dipterans are a staple in the diets of N. humeralis on the refuge.  

In 2018, the Texas upper Gulf Coast region and SBNWR experienced a drought 

that limited the availability of potable water to bats in the region and weekly PMDI 

influenced detection probability of all species. The PMDI value was negatively correlated 

to detection probability for all 2018 models which suggests that drought improved ability 

to detect bats on the SBNWR. This could mean bats are more likely to utilize SBNWR 

habitat during times of drought or that bats had grater activity during these times because 

they had to fly greater distances to water. The SBNWR has permanent water, which bats 

increase activity around during drought (Amorim et al. 2017). The placement of most 
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detectors was at or near available water sources that maintained water longer than other 

water sources in the area. In 2019, the upper Gulf Coast experienced considerably more 

rainfall during the field season and PMDI was not selected as an observation-level 

covariate for any species. However, the top model for T. brasiliensis included PMDI as a 

site-level covariate and precipitation as an observation-level covariate. The impact of 

drought on bats occupying SBNWR should be assessed through long-term monitoring 

over several years so trends can be observed over a longer time period.   

This study had several limitations that could have influenced the results and lack 

of significance for site-level variables in most models. While manually identified calls 

were matched with auto-identified calls over 90% of the time, only 2019 data was 

manually identified which could have led to some misclassifications from auto 

identification software for 2018 data. Further, I had only 8 acoustic detectors which 

limited the number of sites I could survey concurrently and may have made it more 

difficult to observe variability among covariates. I experienced several limitations 

including the amount of dense CBH forest and significant amount of open water present 

on the refuge that restricted the number of locations I could safely deploy detectors. This 

resulted in some overlap of habitat characteristics at the local landscape level among 

sites. Another limitation was the duration of both field seasons overlapped the timeframe 

when most temperate bat species would be giving birth to pups thereby increasing the 

population of bats in the area (Ammerman et al. 2012). This is likely a violation of the 

assumption that the occupancy state is closed during the duration of the season. This 

could explain why Julian date had a positive effect on detection probability for L. 

intermedius because more bats would be entering the population thereby increasing the 



 

23 

likelihood of detection. It is interesting that Julian date had a negative correlation with 

detection probability and delta for P. subflavus in 2019. This species might be utilizing 

upper Gulf Coast habitat more frequently during late spring and summer and spreading 

out more during later months when pups would be entering the population.  

 

Future research 

Future monitoring efforts of bats on SBNWR should attempt to build a more 

robust sample size of sites with more replications. Long-term acoustic monitoring should 

continue on the SBNWR and occur year-round to observe possible changes that may 

occur as climate change continues to modify the Texas Gulf Coast and periods of drought 

arise. Further, the presence of P. subflavus and their frequent use of different habitats 

observed on SBNWR, creates an important opportunity to study this species and advance 

the understanding of detailed habitat use by P. subflavus. Finally, the dietary composition 

of bats utilizing the refuge should be explored to assess if specific prey species are 

driving use in certain areas.  

 

Conclusion 

This is one of the first studies to examine the bat species and their rates of 

occupancy and activity on the SBNWR and an upper Gulf Coast ecosystem. Several bat 

species use a range of areas and habitats on the SBNWR. Maintaining open water during 

years of drought on the refuge could be helping bats in the area by providing potable 

water sources when resources are limited. Additionally, P. subflavus, which are a species 

of special concern in Texas and have been petitioned to be listed under the Endangered 
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Species Act, were using refuge habitat more frequently than other areas in east Texas. 

The SBNWR has been acquiring small land tracts surrounding the main refuge since its 

founding in 1968 and future acquisitions should prioritize forested habitats to protect 

areas that P. subflavus and other bat species are more likely to use. Management efforts 

for bats on the SBNWR can utilize this research to make more informed decisions in the 

future.
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II. INTER- AND INTRASPECIFIC VARIABILITY IN MERCURY 

CONCENTRATIONS IN TEXAS BATS 

Introduction 

Mercury as a global pollutant 

Mercury (Hg) is a nonessential trace element and considered to be a global pollutant 

(Boening 2000). In the environment, Hg occurs in 3 forms: elemental (Hg0), inorganic 

(Hg2+), and organic [also known as methylmercury (CH3Hg+); hereafter referred to as 

MeHg]. Mercury naturally occurs in the environment, primarily due to volcanic 

eruptions, wildfires, and the erosion of cinnabar deposits (Boening 2000, Futsaeter and 

Wilson 2013). However, humans have doubled the amount of Hg in the environment 

since pre-industrial times, primarily through the combustion of coal and its use in small 

artisanal gold mining operations (Wang et al. 2004, USGS 2014). Other anthropogenic 

sources of Hg pollution include, but are not limited to, ferrous metal smelting, oil 

refining, cement production, chlor-alkali production, and waste incineration (Mason et al. 

1994, Futsaeter and Wilson 2013, EPA 2018). Mercury cycles through the environment 

beginning when Hg0 and Hg2+ enters the atmosphere (where Hg0 can be photo-oxidized 

to Hg2+), gets mobilized through air currents, and deposited over land and water via wet 

and dry deposition (Morel et al. 1998, Boening 2000). In aquatic systems, Hg2+ can be 

converted to MeHg, the most bioavailable form of Hg, primarily by sulfate-reducing 

bacteria in sediment and the overlying water column (Ullrich et al. 2001, Lin et al. 2012).  

Methylmercury is the most toxic form of Hg and is capable of causing 

neurological, cardiovascular, renal, and respiratory damage to wildlife and humans at low 

concentrations (Burton et al. 1977, Clarkson and Magos 2006, Lin et al. 2012, Nam et al. 



 

26 

2012). The uptake of MeHg into the food web begins when phytoplankton take up MeHg 

from the water (Pickhardt and Fisher 2007, Luengen and Flegal 2009). Methylmercury is 

then biomagnified as it is trophically transferred up the aquatic food web (Mason et al. 

2000, Lin et al. 2012); as a result, species at the top of aquatic food webs, such as 

predatory fishes (e.g. striped bass (Morone saxatilis) and largemouth bass (Micropterus 

salmoides)) (Cizdziel et al. 2003, Chumchal et al. 2008), ospreys (Pandion haliaetus) 

(Grove et al. 2009), and river otters (Lontra canadensis) (Halbrook et al. 1994), have the 

greatest tissue Hg body burdens. 

 

Mercury in bats 

 The accumulation of Hg in bats has been documented by researchers across the 

world, including in North America (Hickey et al. 2001, Wada et al. 2010, Nam et al. 

2012, Yates et al. 2014, Little et al. 2015, Chételat et al. 2016, Korstian et al. 2017, 

Edwards et al. 2019), Central America (Becker et al. 2017, Becker et al. 2018), South 

America (Kumar et al. 2018, Moreno-Brush et al. 2018, Carrasco-Rueda et al. 2020), 

Europe (Åkerblom and de Jong 2017, Lisón et al. 2017, Ferrante et al. 2018), and Asia 

(Miura et al. 1978, Syaripuddin et al. 2014, Heiker et al. 2018, Costantini et al. 2019). 

Several studies focused on fur Hg concentrations in bats sampled near locations of point 

source Hg pollution (Nam et al. 2012, Yates et al. 2014, Little et al. 2015, Ferrante et al. 

2018, Kumar et al. 2018). For example, in Peru, researchers examined total Hg (THg) 

concentrations in fur from bats captured downriver from several artisanal gold mining 

sites and documented THg concentrations at least 2 times greater than concentrations in 

bats captured ~170 km away from mining sites (Kumar et al. 2018). In Italy, several 
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greater mouse-eared bats (Myotis myotis) were captured at a cave one km from a 

petrochemical plant and had greater fur THg concentrations than individuals sampled at a 

control site ~15 km from the petrochemical plant (Ferrante et al. 2018). Most of the bat 

species described in the scientific literature are insectivorous, however Becker et al. 

(2018) assessed fur THg concentrations among dietary guilds in tropical bats from Belize 

and found piscivorous species had the greatest THg concentrations while frugivorous bats 

had the lowest. Additionally, Kumar et al. (2018) reported similar findings in Peru and 

documented fur THg concentrations increased in bats as trophic level, as determined 

through stable isotopes, increased.  

 The accumulation of Hg in North American bats has predominantly been 

examined in northeastern populations of little brown bats (Myotis lucifugus), big brown 

bats (Eptesicus fuscus), and other members of the Myotis genus in the US and Canada 

(Nam et al. 2012, Yates et al. 2014, Little et al. 2015, Hernout et al. 2016, Chételat et al. 

2018). Several previous studies observed interspecific variation in fur THg 

concentrations among captured bat species (Syaripuddin et al. 2014, Yates et al. 2014, 

Becker et. al 2018, Heiker et al. 2018, Korstian et al. 2018, Kumar et al. 2018). Bats 

captured near point sources of Hg pollution accumulated significantly greater THg 

concentrations compared to bats of the same species captured further from the point 

source (Nam et al. 2012, Yates et al. 2014).  

Mammals have the ability to excrete trace elements, including Hg, into growing 

hair via the bloodstream, which allows metal cations to bind with the keratin in hair 

follicles (Beernaert et al. 2007). Fur is an effective proxy for measuring Hg 

concentrations in bats because it provides an opportunity to use a non-lethal and 
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minimally invasive sampling technique to investigate the body burden of THg (Hernout 

et al. 2016). In addition to fur, other tissues including liver, brain, and blood have been 

used to assess Hg concentrations in bats and previous studies suggest THg in fur is a 

good predictor of THg concentrations in blood (Yates et al. 2014), and THg 

concentrations in liver and brain tissues (Nam et al. 2012). The concentration of MeHg in 

fur was examined in 5 bat species in Yates et al. (2014) and the percentage of MeHg 

composing THg levels ranged from 71% to 95% with an average of 86%. This study also 

reported a positive correlation, with a nearly perfect linear relationship of 1:1, between 

MeHg and THg concentrations implying fur THg is a good representation of the MeHg 

concentration in bats. 

The negative health effects associated with Hg exposure are poorly understood in 

bats; yet, several studies have cited 10 μg/g for THg in fur as a threshold associated with 

Hg toxicity based on research undertaken in common white-footed deer mice 

(Peromyscus maniculatus), mink (Neovison vison), and little brown bats (Myotis 

lucifugus) (Wobeser et al. 1975, Burton et al. 1977, Nam et al. 2012). Nam et al. (2012) 

reported M. lucifugus with fur THg levels of ≥10 μg/g experienced neurochemical 

changes in the brain. A previous study observed negative behavioral changes including 

decreased ambulatory responses in rodents with average fur THg levels of 7.8 μg/g 

(Burton et al. 1977). Hg toxicity was also noted in an experimental study with N. vison in 

which lethargy, anorexia, and death were all observed in animals that received a MeHg 

dose ≥ 1.1 μg/g (Wobeser et al. 1976).  

The primary uptake route of Hg into bats is through their diet, which mainly 

consists of insects that have connectivity to aquatic food webs (Becker et al. 2018). Bats 
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consume both terrestrial and aquatic insects (Hickey et al. 1996); however, bats that prey 

primarily on terrestrial insects, such as members of the Lasiurus genus, have been 

reported to have lower concentrations of THg compared to other insectivorous species 

(Clare et al. 2009, Yates et al. 2014, Korstian et al. 2018). By preying upon emerging 

aquatic insects as well as terrestrial insects that spend part of their lifecycle in water or 

consume aquatic insects, bats bioaccumulate Hg from insects linked to aquatic 

ecosystems (Anthony and Kunz 1977, Lee et al. 2005, Becker et al. 2018).  

According to Yates et al. (2014) bats may experience greater rates of 

accumulation compared to other species and are appropriate bioindicators of Hg exposure 

because they have: 1) wide distributions and occurrence in a variety of habitats; 2) long 

life-spans with some species capable of living over 30 years in the wild; 3) accumulate 

higher concentrations of contaminants due to their higher trophic position; and 4) 

consumption of large amounts of insects that occur in both terrestrial and aquatic food 

webs (Wilkinson and South 2002, Wickramasinghe et al. 2004, Simmons 2005, Fukai et 

al. 2006, Becker et al. 2018). These attributes have promoted insectivorous bats as 

bioindicators of heavy metal pollution (Cd, Cu, Cr, Hg, Pb, Zn) in the scientific literature 

(Yates et al. 2014, Zukal et al. 2015, Hernout et al. 2016).  

 Bats provide several ecosystem services including pollination and insect 

consumption, which are critical to the functions of healthy ecosystems and benefit 

humans (Kunz et al. 2011). Bats pollinate several plant species that provide food to a 

plethora of wildlife and humans (Fleming et al. 2009). Bats consume a variety of insects 

that prey on crops and as a result they reduce the need for applications of pesticides that 

can harm wildlife especially amphibians (Pimentel and Zepp 1991, Davidson et al. 2002). 
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The negative health effects of Hg toxicity in bats has never been fully assessed, but high 

concentrations of Hg in bats could impede these services resulting in harm to wildlife and 

humans.   

 

Mercury in Texas bats 

Currently, there is limited information on THg concentrations in Texas bats. To 

date, the one study that has examined Hg accumulation in 8 species of Texas bats 

reported that THg concentration in bat fur varied significantly among species and most 

concentrations were below the previously reported toxicity threshold level of 10 μg/g 

(Korstian et al. 2018). These fur samples (n = 406) were collected at 2 remote wind 

energy facilities with one located near the northern border and the other placed at the 

southern border of the state (Korstian et al. 2018). Further, these wind energy facilities 

are not near any known point sources of Hg pollution such as coal-fired power plants or 

cement factories; thus, there is a critical need to assess THg concentrations in Texas bats 

at more locations across the state to determine their THg body burdens and if certain 

species are at greater risk than others for Hg toxicity.   

 Texas has the greatest diversity of bats (33 species) of any state in North America 

(Manning et al. 2008). The diversity of Texas bats is currently under threat by the 

detrimental disease white-nose syndrome (WNS), caused by the fungus 

Pseudogymnoascus destructans (Pd). Among the diverse number of bat species that occur 

in Texas, 8 species including the cave myotis (Myotis velifer), Rafinesque’s big-eared bat 

(Coryhorhinus rafinesquii), big brown bat (Eptesicus fuscus), silver-haired bat 

(Lasionycteris noctivagans), eastern red bat (Lasiurus borealis), southeastern bat (Myotis 
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austroriparius), tricolored bat (Perimyotis subflavus), and Brazilian free-tailed bat 

(Tadarida brasiliensis) have been observed with the fungus Pd in Texas and/or other 

states. Among the Texas species detected with Pd, 2 species (P. subflavus and E. fuscus) 

currently are experiencing population declines in the northeastern US from WNS (White-

nose Syndrome Occurrence Map 2018). In March 2020, the first case of WNS was 

observed in M. velifer (TPWD 2020). In the northeastern US, P. subflavus accumulated 

the greatest levels of THg in their fur (average range 4–8 μg/g) compared to 6 other bat 

species (Yates et al. 2014) and the greatest average concentrations among bats sampled in 

Texas (Korstian et al. 2018). Further, Yates et al. (2014) proposed that the risk of 

immunosuppression caused by Hg toxicity could potentially exacerbate the contraction 

and signs of WNS. Thus, the presence of P. subflavus in Texas provides an important 

opportunity to collect fur samples from this species and examine factors that could 

influence their accumulation of greater Hg concentrations. 

 In addition to the greatest diversity of bat species, Texas also produces more Hg 

pollution than any other state in the US (Bolate 2017). In 2014, Texas emitted 6,160 kg 

of Hg into the atmosphere, which constituted 12.3% of all Hg emissions from the US that 

year (Bolate 2017). Most Hg is emitted from the 13 coal-fired power plants which are 

mostly located in east Texas, as well as historic gold and mercury mining efforts, and 

emissions from oil and gas refineries, which are mainly located along the Gulf Coast 

(TCEQ 2006, EIP 2010). The Hg pollution occurring in the state is predominantly in east 

Texas where 5 of the 10 greatest Hg polluting coal-fired powerplants in the US occur 

(EIP 2010). Due to the diversity of bat species, considerable amount of Hg pollution, and 

limited data on THg concentrations among bats in Texas a detailed study is warranted.   
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Objectives of the thesis 

The overall goal of this study was to examine THg concentrations in fur from 7 

common bat species [L. borealis; N. humeralis; L. cinereus; L. intermedius; M. velifer; T. 

brasiliensis; and P. subflavus] distributed throughout eastern and central Texas. 

Specifically, this research addressed the following 3 objectives:  

1. Examined interspecific variability of THg in fur among all species collected. I 

predicted there would be significant variation in the THg accumulation among bat 

species because of the varied diets that different bat species consume (Carter et al. 

2003).  

2. Investigated intraspecific variability of THg in fur by comparing THg concentrations 

between sex and age classes. I predicted adults would have greater concentrations of 

THg compared to juveniles because older bats would be able to bioaccumulate Hg 

over a longer period of time (Becker et al. 2018). 

3. Assessed the concentration of THg in fur from bats sampled at various sites across 

Texas. I predicted fur THg concentrations would vary among sites because sites 

nearer to point source Hg emitters would have a greater rate of atmospheric fallout 

(Yates et al. 2014).  

This study is warranted because results will provide managers with current information 

about THg concentrations among several bat species in central and east Texas and 

identify species that may require additional management focus due to high THg 

concentrations. Further, results from this study can be used by managers to identify 

localized areas of Hg contamination that could impact other wildlife species. 
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Methods 

Sample collection  

I collected fur samples using live capture techniques and collaborations with bat 

researchers and rehabilitators across central and eastern Texas (Figure 4). In total, I 

collected fur samples from 83 locations, which were pooled, when feasible, to describe a 

general site location (hereafter referred to as ‘site’). Austin had the most pooled sampled 

locations (n = 42). Other sites that included pooled sample locations are North Hays 

County (n = 3), Bell County (n = 3), Round Rock (n = 3), San Marcos (n = 3), Mineral 

Wells (n = 2), Tom Green County (n = 2), and the San Bernard National Wildlife Refuge 

(SBNWR) office (n = 2). This resulted in 32 sites across eastern and central Texas. These 

sites were selected based on where collaborators had permission to capture live bats or 

collect deceased individuals as well as where I had permission to survey. I was not able 

to procure any samples in west Texas because I did not find contacts in the region. The 

Greater Austin and San Antonio Metropolitan Areas encompassed the largest subset of 

sites (Austin, Bell County, Dripping Springs, Georgetown, Granger, Lockhart, N Hays 

County, Johnson City, Comal County, Round Rock, and Largo Vista). Several sites were 

scattered along the upper Gulf Coast region (Houston, Lake Jackson, Brazoria, SBNWR 

office, SBNWR BP, and West Columbia). I sampled several sites in east Texas region (N 

and S Freestone County, N and S Leon County, N and S Walker County, Lavender, and 

Palestine). Other sampled areas include the most western site (Tom Green County), the 

most northern site (Mineral Wells) and 2 sites in South Texas (Starr and Hidalgo 

County).  
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I collected fur samples from live bats captured using mist nets as well as by hand 

in roosts at various locations across the state. For the collaborations, I provided a kit 

containing tools to collect fur samples from captured bats to multiple biologists and 

organizations. I visually identified each bat to species and recorded life stage (juvenile or 

adult) based on the epiphysial cartilage method (Ammerman et al. 2012), sex, and 

collection date and location. Using stainless steel scissors, I collected ~4 mg of fur from 

the dorsum of all bats captured or sampled for this study. I placed each fur sample in a 

clean polypropylene vial and stored them at room temperature (approximately 21℃) until 

further processing and analysis. I included fur from any bat species that was not federally 

protected, but predominantly focused on using samples from 7 species including N. 

humeralis, L. cinereus, L. intermedius, L. borealis, M. velifer, T. brasiliensis, and P. 

subflavus. A complete sample size breakdown by species and collection location is 

shown in Table 11. 

 

Fur cleaning experiment 

Prior to starting the THg analysis, I undertook a cleaning experiment to determine 

whether the fur samples needed to be cleaned prior to analysis by comparing the THg 

concentration in fur from 4 different cleaning treatments to an untreated control. My 

objective was to confirm that cleaning fur samples was not necessary, which previous 

studies have demonstrated (Little et al. 2015, Chételat et al. 2018), because Hg 

contamination from external sources would significantly impact my results. Thus, I 

compared 5 cleaning treatments by collecting fur from the dorsum of 15 frozen bats, 

divided each fur sample into 5 subsamples weighing ~4 mg, and exposed each subsample 
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to 5 ml of a cleaning treatment: 2:1 chloroform:methanol solution, 1:30 deionized 

water:acetone solution, versa-clean detergent (Fisher Scientific, Canada) rinse, deionized 

water rinse, and untreated control. Treatments were selected based on methods in 

previous experiments (Little et al. 2015, Chételat et al. 2018, Korstian et al. 2018). After 

adding fur to the vial containing the treatment, I shook the sample for one minute, 

emptied the sample onto filter paper and repeated 3 times, after which the fur was dried 

overnight on filter paper in a fume hood. The mean THg concentration among the 5 

treatments did not differ (one-way ANOVA; F = 0.1974,70; P = 0.939; Table 12); 

therefore, I did not clean samples with organic solvents prior to THg analysis. Instead, I 

rinsed all samples with Milli-Q water and dried samples overnight under a fume hood. 

Prior to analysis, I visually inspected samples for exogenous material, which, if present, 

was removed with a Kimwipe (Kimberly-Clark Professional, Roswell, GA).  

 

THg Analysis 

To measure the concentration of THg in each fur sample, I used a Direct Mercury 

Analyzer (DMA-80, Milestone Inc., Shelton, CT), which uses thermal combustion, gold 

amalgamation, and atomic absorption spectrometry as described in EPA method 7473 

(EPA 2007). The DMA-80 was calibrated as needed using certified reference materials 

(CRM) from the National Research Council Canada [NRCC; MESS-4 marine sediment 

(0.08 µg/g THg), TORT-3 lobster hepatopancreas (0.292 µg/g THg), and PACS-3 marine 

sediment (2.98 µg/g THg).  

To confirm the validity of the data, quality assurance/quality control included 

empty quartz boats (blanks), CRMs, and duplicate samples. The blanks (n = 40) had a 
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mean THg concentration < 0.0000 µg/g and the duplicate samples had a mean relative 

percentage difference of 5.23% (range = 0.04–22.6%). The 2 CRMs used were DORM-4 

(fish protein; NRCC; 0.412 µg/g THg; n = 39) and ERM-CE464 (tuna; European 

Reference Materials; 5.24 µg/g THg; n = 12), which had a mean percentage recovery of 

98.4% (range = 93.5–105.0%) and 98.4% (range = 93.0–109.8%), respectively. 

 

Geospatial analysis 

I used GIS in ArcMap Pro (version 2.4, Environmental Systems Research 

Institute, Redlands, CA) to compare collection locations to the distance to the nearest 

coal-fired powerplant and other sources of Hg pollution. I used information from the EPA 

Toxic Release Inventory (TRI) Program to identify potential point sources of Hg 

pollution that had documented their amount of Hg emissions to the EPA in 2018 (TRI 

2019). The type of Hg pollution sources is classified by industry sector and include 

hazardous waste control, electric utilities, primary metal production, petroleum refining, 

and chemical production. I used the near tool in ArcMap Pro to estimate the distance to 

the nearest potential point source of Hg pollution for coal-fired powerplants and all other 

Hg sources (Figure 4). I constructed buffers of 50, 100, 150 and 200-km to examine the 

amount of Hg pollution (lbs.) released around sampling sites.   

I imported a raster file containing landcover types in Texas to assess percent of 

each of 5 habitat types: forest, grassland/prairie, urban, open water and other surrounding 

all fur collection locations (USGS 2016). I converted the raster file into vector data and 

used the model builder tool in ArcPro to assess habitat composition in 5-km buffers 

around each collection site. Sample collection sites included roosts, foraging sites, and 
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areas around wind energy facilities where bat fatalities occurred. I used a 5-km buffer to 

assess landscape composition around sampling sites because this area is large enough to 

encompass habitat that many species sampled would utilize for roosting and foraging in a 

given night. There are knowledge gaps regarding the nightly foraging bout distances for 

the species sampled in this study. Several species including L. borealis, N. humeralis, and 

P. subflavus have all been documented to forage, on average, within 5 km2 of the roost 

each night (Clem 1993, Krishon et al. 1997, Helms 2011). I selected the percentage of 

forest surrounding a site as a covariate because forests sequester Hg primarily deposited 

from atmospheric deposition (Grigal 2003). I used the percentage of urban landscape 

surrounding each site to classify the surrounding landscape categorically as urban (> 50% 

urban within 5-km buffer) or rural (< 50% urban within 5-km buffer).  

 

Statistical analysis 

All statistical analyses were performed in RStudio (version 1.1.463; R Core 

Team, 2012) and significance was assessed at α ≤ 0.05. Sample sizes for M. auriculus 

and Seminole bat (Lasiurus seminolus) were small (n = 1 and n = 2, respectively) and 

omitted from all statistical analyses. Sampling locations with low sample sizes (n = 1) 

and near other sampling sites were pooled, resulting in 32 fur collection locations. In 

some instances, such as the majority of P. subflavus samples, I was unable to acquire life 

stage or sex data and only obtained species and collection location. Due to the variability 

of season, site, and data collected for each fur sample, I pooled samples by species and 

utilized every sample available to assess variability of THg concentrations among 

species. I first tested a one-way analysis of variance (ANOVA), but the assumptions of 
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homogeneity and normality were violated with untransformed and log-transformed data. I 

therefore used a Kruskal-Wallace ANOVA on Ranks followed by a Dunn’s pairwise test 

comparison to examine variability in THg concentration among species. I further 

examined interspecific variability in THg concentrations by comparing the THg 

concentrations in males, females, juveniles, and adults among species. I first tested a one-

way ANOVA with untransformed and log transformed data, however, the models 

violated assumptions, thus I used a Kruskal-Wallace ANOVA on Ranks followed by a 

Dunn’s pairwise comparison test.  

I assessed intraspecific variability of THg concentrations using a 2-tailed t-test for 

each biological between sex and life stage (juvenile/adult). I investigated the interaction 

of life stage and sex using a 2-factor ANOVA followed by a Tukey post-hoc test for each 

species. Total mercury concentrations were log-transformed to meet the assumptions of 

normality. 

I assessed the variation in THg concentrations among sites for all bat species that 

had viable sample sizes at 3 or more sites. I collected adequate sample sizes to assess 

variation among sites for T. brasiliensis (n = 84), N. humeralis (n = 91) and P. subflavus 

(n = 67). I applied a one-way ANOVA with untransformed and log-transformed data for 

each species, but the assumptions of homogeneity and normality were violated for T. 

brasiliensis and N. humeralis data. Thus, I used a Kruskal-Wallace ANOVA on Ranks 

followed by a Dunn’s pairwise comparison to assess variation of THg concentrations 

among sites for these species.  

I used a hierarchical linear mixed effect model (LMER) using package “lme4” 

(Bates et al. 2007) to assess site level variation on THg concentrations for all species that 
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exhibited variation among sites. I assumed minimal variation of THg in fur samples 

collected across years and pooled samples across 2017–2019 because I collected the 

majority of T. brasiliensis and N. humeralis samples in 2018 and P. subflavus samples in 

2019. I pooled samples across spring and fall seasons because I did not have enough 

samples per species to compare between seasons. I used a minimum of 5 samples of a 

single species per site as criteria for inclusion in a LMER. I tested additional LMER 

models for each species by assigning age and sex as fixed effects if data was collected at 

more than 2 sites. The random effect was site for all models. The response variable was 

THg concentration (μg/g) in bat fur, which I log-transformed to meet the assumption of 

heteroscedasticity. I tested a global model assessing fixed effects which included the 

percent of forest within a 5-km buffer around sampling site, landscape (urban or rural), 

sum of Hg emissions and distance to the nearest coal-fired powerplant and other Hg point 

sources. Before testing the global model, I first assessed which sum of Hg emission 

buffer (50, 100, 150, 200-km) to use in the global model and included that buffer as a 

fixed effect in the global model. In cases where age and sex data were collected for a 

species, the global model included age and sex as fixed effects. The final model used 

was: 

Global.model = lmer(Hg ~ 1 + Hg_emissions + coal + Hg_source + landscape + 

forest_5km + (1|site)) 

I used backwards selection to determine the best model for each species. I then compared 

the selected model against the global and null model and used the lowest AIC value to 

select the best model. I used package “MuMin” (Barton and Barton 2019) to calculate 

marginal and conditional R2 values to examine how well the model explained the 
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variation in the data. I tested significance of the fixed effects by calculating 95% 

confidence intervals using a bootstrap method with 1,000 simulations.  

 

Results 

 I collected 427 fur samples from 9 species and 32 sites across central and eastern 

Texas during 2017–2019 (Table 11). The majority of samples were collected from 3 

species: T. brasiliensis (n = 115, 26.9%), N. humeralis (n = 101, 23.6%) and P. subflavus 

(n = 69, 16.1%). The Austin and San Antonio Metropolitan Areas had the most samples 

collected across 11 sites (n = 121, 28% of the total samples). Other regions with large 

sample sizes include 2 sites in south Texas (n = 96, 22.5% of the total samples), the upper 

Gulf Coast with 6 sites (n = 82, 19.2% of the total samples), and east Texas with 8 sites 

(n = 63, 14.7% of the total samples).  

 

Interspecies variation in THg concentration  

Total Hg concentrations differed among species (H = 254.226, P = <0.001) with 

N. humeralis and P. subflavus having greater concentrations than all other species. For all 

sites combined, mean THg concentrations (± standard deviation) were greatest in P. 

subflavus (6.04 ± 3.15 μg/g), followed by N. humeralis (5.87 ± 4.31 μg/g), M. velifer 

(2.17 ± 0.921 μg/g), L. intermedius (1.73 ± 1.58 μg/g), T. brasiliensis (1.02 ± 0.756 

μg/g), L. borealis (0.971 ± 1.46 μg/g), and lowest in L. cinereus (0.812 ± 0.469 μg/g) 

(Table 11 and Figure 5). Total Hg concentrations assessed for all samples ranged from 

0.067 to 20.1 μg/g. Two species had individuals with THg concentrations above the 10 

μg/g threshold, which included 17% of N. humeralis (n = 16) and 9% of P. subflavus (n = 
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6). All N. humeralis samples > 10 μg/g, were collected on the upper Texas Gulf Coast at 

3 sites including West Columbia (n = 8), Lake Jackson (n = 7), and SBNWR BP (n = 1). 

The P. subflavus samples > 10 μg/g, were all collected in east Texas at 4 sites including 

N Walker County (n = 3), S Walker County (n = 1), S Freestone County (n = 1), and S 

Leon County (n = 1).  

Total Hg concentrations differed among juveniles from 5 species (H = 41.6284, P 

= <0.001) as well as adults (H = 117.794, P = <0.001). Among juveniles, N. humeralis 

had the greatest THg concentration (4.29 ± 3.76 μg/g), followed by M. velifer (2.02 ± 

0.840 μg/g), L. intermedius (1.88 ± 1.57 μg/g), T. brasiliensis (0.944 ± 0.519 μg/g), and 

L. borealis (0.753 ± 0.379 μg/g). Among adults, post-hoc tests revealed N. humeralis 

(7.45 ± 4.30 μg/g) had the greatest THg concentrations, then M. velifer (2.1 ± 0.857 

μg/g), L. intermedius (1.65 ± 1.66 μg/g), T. brasiliensis (0.992 ± 0.668 μg/g), and L. 

borealis (0.551 ± 0.378 μg/g) had the lowest mean THg concentrations (Table 14). 

Interspecific variation was also observed among THg concentrations for females of 5 

species (H = 84.984, P = <0.001) as well as males (H = 71.3564, P = <0.001). Among 

females, N. humeralis (7.13 ± 4.94 μg/g) had the greatest THg concentrations, followed 

by M. velifer (2.03 ± 0.81 μg/g), L. intermedius (1.53 ± 1.29 μg/g), T. brasiliensis (0.827 

± 0.936 μg/g), and L. borealis (0.712 ± 0.440 μg/g) had the lowest THg mean 

concentrations. Among all males, N. humeralis (5.78 ± 3.72 μg/g) had the greatest THg 

concentrations, then M. velifer (2.15 ± 0.899 μg/g), L. intermedius (1.89 ± 2.03 μg/g), T. 

brasiliensis (1.02 ± 0.720 μg/g), and L. borealis (0.584 ± 0.224 μg/g) had the lowest 

mean THg concentrations (Table 15). 
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Intraspecies variation in THg concentrations  

All sites were pooled to compare fur THg concentrations between life stages 

(Table 14) and sex (Table 15) for 5 bat species. Intraspecific variation in THg 

concentrations was observed between adults and juveniles for N. humeralis (F = 

9.8421,76, P = 0.002) (Figure 6); a post-hoc analysis revealed adult females had 3.5 times 

greater fur THg concentrations than juvenile females (P = 0.013) and 1.6 times greater 

than juvenile males (P = 0.041). Intraspecific variation in THg concentrations between 

life stage did not differ for the other 4 investigated species. Intraspecific variation 

between sex was not observed for any species.  

 

Influence of site level factors to THg concentrations in three bat species 

 I compared mean THg concentrations among sites for 3 bat species (Figure 7). 

Total mercury concentrations differed among sites for P. subflavus (F = 2.5926,60 , P = 

0.0267), N. humeralis (H = 39.785, P = <0.001), and T. brasiliensis (H =15.414, P = 

0.004). The results of the best candidate LMER models examining site level factors 

influencing THg concentrations for P. subflavus, T. brasiliensis, and N. humeralis are 

listed in Table 16. The selected LMER model for N. humeralis included the fixed effects 

of sum of Hg emissions within a 200-km buffer and distance to coal-fired power plant 

(AIC = 168.1; wi = 0.761). Log-transformed THg concentrations increased as the sum of 

Hg emissions within a 200-km buffer increased and as the distance to coal-fired power 

plants increased. The sum of Hg emissions within a 200-km buffer was the most 

influential covariate (F = 16.5251,88, P < 0.001) (Table 17). When age and sex were 

included as fixed effects for N. humeralis, the reduced model revealed age as a significant 
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fixed effect along with sum of Hg emissions within a 200-km buffer (AIC = 149.4; wi = 

0.216). Juvenile life stage had a negative effect on log-transformed THg concentrations 

and the sum of Hg emissions within a 200-km buffer continued to have a positive effect. 

The sum of Hg emissions within a 200-km buffer continued to be the most influential 

fixed effect (F = 53.3611,4.19, P = 0.0016) (Table 17). The null model was the best 

candidate model for P. subflavus (AIC = 108.6; wi = 0.540) with site location accounting 

for 14.1% of THg concentration variation observed among samples. The null model was 

selected for T. brasiliensis (AIC = 130.6; wi = 0.998) with site accounting for 24.8% of 

the observed variation in THg concentrations among samples. When age and sex were 

included as fixed effects the global model (AIC = 126.8; wi = 0.61) was ranked above the 

null (AIC = 127.7; wi = 0.39), but the null model was within 2 AIC units. 

 

Discussion  

Interspecific variation in THg concentrations in Texas bats  

Results demonstrated that Texas bats experienced interspecific variation in fur 

THg concentrations with P. subflavus and N. humeralis having significantly greater mean 

concentrations than M. velifer, L. intermedius, T. brasiliensis, L. borealis, and L. 

cinereus. Although the mean fur THg concentrations for all species assessed in this study 

were lower than the 10 μg/g threshold for negative health effects in bats (Nam et al. 

2012), several individuals of P. subflavus (n = 6, 9% of samples) and N. humeralis (n = 

16, 17% of samples) had fur THg concentrations > 10 μg/g. This suggests that within 

both species, some individuals could be experiencing negative health effects associated 

with Hg toxicity.  



 

44 

Similar to the results of Korstian et al. (2017) and Yates et al. (2014) P. subflavus 

had one of the greatest mean THg concentrations compared to other bat species. The 

mean fur THg concentrations of P. subflavus in this study was ~1.5 times greater than 

concentrations observed in a previous Texas study (Korstian et al. 2017), but 

substantially lower by ~6.5 times than the mean fur THg concentration observed in the 

northeastern US in Yates et al. (2014). However, Yates et al. (2014) combined samples 

collected at pollution point sources as well as non-point sources to calculate the mean 

THg concentration and samples taken from point sources were nearly 8 times greater than 

samples collected at non-point sources. The P. subflavus samples collected for this study 

were taken from roost sites that were not directly down stream of any known Hg 

pollution point sources, but all samples were collected within 75 km from an active coal-

fired powerplant.  

The negative health effects bats experience as a result of Hg toxicity have never 

been evaluated for P. subflavus. Perimyotis subflavus is one of the smallest bats in North 

America (Ammerman et al. 2012) resulting in less tissue mass to secrete and detoxify 

heavy metals. Perimyotis subflavus was petitioned to be federally listed under the 

Endangered Species Act (ESA) in June 2016 and is of special concern to Texas wildlife 

managers because of the recent discovery of Pd spreading in central Texas. The recent 

petition for P. subflavus to be listed under the ESA highlights the dangers this species is 

already experiencing from multiple stressors, even before THg concentrations were 

discovered to be high in this species compared to others, which subsequently may be 

responsible, in part, for deleterious health effects in some individuals with THg 

concentrations ≥ 10 μg/g. 
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 The mean THg concentration reported in this study for N. humeralis is ~1.7 times 

greater than concentrations reported another study in Texas (Korstian et al. 2017). The 

greater concentrations observed in N. humeralis in this study compared to Korstian et al. 

(2017) could be explained by the larger sample size in this study (n = 101 vs n = 56) and 

the greater number of sites that I sampled (10 compared to 2), which are nearer to point 

sources of Hg pollution than the sites that Korstian et al. (2017) surveyed. Most of the fur 

samples for N. humeralis (74%) were collected from the upper Gulf Coast region which 

has numerous Hg pollution point sources including, but not limited to, coal-fired 

powerplants and petroleum refineries.  

 The 5 species sampled in this study that did not have any individuals exceeding 

the THg threshold of 10 μg/g followed similar patterns of being among the lowest mean 

THg concentrations observed when compared to other published studies. Similar to 

results from other Texas sites, mean THg concentrations for T. brasiliensis, L. borealis, 

and L. cinereus were among the lowest sampled (Korstian et al. 2017). Among the 10 

species sampled in northeastern US by Yates et al. (2014), the lowest THg concentrations 

were observed in L. borealis and L. cinereus, although the mean concentration for L. 

borealis was nearly 4 times greater than the mean concentration observed in this study. 

The mean THg concentrations for L. intermedius in this study was ~2 times lower than 

the observed mean THg concentration at a site in south Texas by Korstian et al. (2017). 

Based on an extensive search, there is no record of fur THg concentrations in M. velifer 

in any published study. Land et al. (2019) examined Hg in guano from M. velifer in 5 

central Texas caves and the greatest observed concentration was 0.41 μg/g. Other species 

in the Myotis genus, including M. lucifugus sampled in northeastern states by Yates et al. 
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(2014) and Minnesota by Korstian et al. (2017), and the Northern long-eared bat (Myotis 

septentrionalis) sampled in northeast US by Yates et al. (2014) and across Canada by 

Chételat et al. (2016), have some of the greatest mean THg concentrations among species 

and values that range 2 to 13 times greater than mean THg in fur observed for M. velifer 

in this study. It is unclear if M. velifer is less susceptible to accumulating dangerous 

concentrations compared to other Myotis species. The small number of sites with more 

than one sample (n = 2) and number of total fur samples (n = 49) should be considered 

when assessing risk of Hg toxicity for this species.  

Although the majority of the variation in THg concentrations observed in this 

study occurred at the species level rather than the site level for P. subflavus, N. 

humeralis, and T. brasiliensis, each of these species exhibited variation of THg 

concentrations among sites. This suggests the factors involved with a bat species biology 

may be more influential on THg concentrations than the location of where the bat was 

sampled. Diet likely is driving a significant amount of the variation in THg 

concentrations among species (Becker et al. 2018). In 2 studies examining dietary guilds 

in tropical ecosystems, piscivorous bat species had the greatest THg concentrations, 

followed by insectivorous species, and frugivorous species had the lowest (Becker et al. 

2018, Kumar et al. 2018). All the bats sampled in this study are insectivorous and display 

variation in prey preference. The diets of the 3 bats in the Lasiurus genus that were 

sampled in this study are primarily composed of moths from the order Lepidoptera 

(Rolseth et al. 1994, Clare et al. 2009). The life cycles of most moths occur in terrestrial 

habitats and are typically not connected to aquatic food webs. There is considerable 

overlap described by the diets of the other bats surveyed for this study. The diets of P. 
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subflavus, N. humeralis, M. velifer and T. brasiliensis are more diverse, including, but not 

limited to, the insect orders Coleoptera, Lepidoptera, Hymenoptera, Diptera, and 

Hemiptera (Griffith and Gates 1985, Kurta 2001, Carter et al. 2003, McWilliams 2005, 

Marquardt and Choate 2009). Due to the overlap in diets for these bats, it is possible 

other biological and behavioral factors such as foraging behavior, migration, metabolic 

rates, molting patterns, and life stage could be influencing the THg concentration 

variation observed among species.  

Foraging range and non-migratory seasonal home range size could play a role in 

interspecific THg concentration variation because bats with larger home and foraging 

ranges could be consuming insects across a larger area including those further from Hg 

point sources. Foraging range refers to the distance a bat travels to forage during a nightly 

bout whereas non-migratory seasonal home range size is larger and describes the area a 

bat will occupy over the duration of its summer or winter non-migratory season. These 

factors are difficult to study effectively in bats and few studies have attempted to measure 

them for the species of interest in this study. Published foraging ranges for P. subflavus 

and N. humeralis are smaller compared to the other species sampled in this study. Studies 

that examined foraging range in P. subflavus estimated an area of 3.22–3.89 km2 

(Krishon et al. 1997, Helms 2011). The foraging range for N. humeralis has been 

described as less than 2.5 km2 from the roost in an Indiana population (Clem 1993). The 

literature describing N. humeralis home range is scant, but one study estimated a home 

range of 0.15 km2 for a population in Georgia (Krishon et al. 1997). The foraging range 

for T. brasiliensis is larger with the minimum distance in a foraging bout ranging from 

15–56 km and encompassing an area as large as 4,000 km2 (Ammerman et al. 2012). The 
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foraging range of M. velifer has been described as greater than other Myotis species 

owing to the larger body size and flight power. The home range of M. velifer was 

estimated to be 932–1619 km2 in an Arizona population (Hayward 1970). Further 

research is needed to assess whether there is a relationship between THg concentration 

and foraging range and non-migratory seasonal home range size.  

 The variability in the migration patterns of bats could play a role in the 

differences observed for THg concentrations among species. All the bat species sampled 

in this study undergo some form of winter migration although the range and distances 

vary among species and populations. The general classifications of bat migration patterns 

include sedentary (year-round resident), regional migration (100–500 km) and long-

distance migrations where species travel up to 2000 km between winter and summer 

ranges (Fleming and Eby 2003). Members of the Lasiurus genus and T. brasiliensis are 

classified as long-distance migrators with North American populations documented 

overwintering in regions of Mexico (Villa and Cockrum 1962, Glass 1982, Weller et al. 

2016, Fleming 2019). Perimyotis subflavus is considered a regional migrant but 

demonstrates considerable intraspecific variability in the distances traveled among 

populations (Fraser et al. 2012). Members of the Myotis genus are often classified as 

regional migrants (Fleming 2019); M. velifer has documented populations that are 

regional migrants in Texas (Ammerman et al. 2012). Few published records exist that 

have documented N. humeralis migrations, but they indicate that N. humeralis would a 

regional migrant (Humphrey and Cope 1968). This pattern suggests that certain species 

that undergo a regional migration, including N. humeralis, P. subflavus, and members of 

the Myotis genus (such as M. lucifugus and M. septentrionalis), could be accumulating 
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greater THg concentrations than long-distance migrants such as T. brasiliensis, and 

members of the Lasiurus genus (Yates et al. 2014, Korstian et al. 2017).   

 Another consideration to explore regarding the interspecific variation observed in 

Texas bats is variability in metabolic rates and energetics among species. Metabolic rates 

measure the total energy metabolized over a unit of time and are typically lower in 

mammalian groups with larger body masses such as Primate and Carnivora compared to 

smaller groups like Insectivora (Hayssen and Lacy 1985, Elgar and Harvey 1987). 

Rodríguez-Durán (1995) provided evidence that diet, body mass, and roost microclimate 

are all important factors when assessing basal metabolic rate (BMR) in bats. Between 2 

insectivorous species, the sooty mustached bat (Pteronototus quadridens) and the 

Antillean ghost-faced bat (Mormoops blainvilli) surveyed in Rodríguez-Durán (1995), 

BMR was ~1.3 times lower in M. blainvilli, which had nearly 2 times greater body mass. 

This could help explain why P. subflavus and N. humeralis, which have the lowest 

average body mass of the species sampled, had significantly higher THg concentrations 

than the other species. Metabolic rates are complex in bats since bats undergo a daily 

torpor with low metabolic activity followed by nocturnal volant movement, which 

requires a large amount of energy (Thomas and Suthers 1972, Speakman and Thomas 

2003). Thus, cost of transport (COT) or the energy required to move a unit of mass a 

certain distance is likely a better method to compare energetics among species. The COT 

in small bats is typically greater than COT in larger bats (Norburg 1986, Speakman and 

Thomas 2003). Smaller bats have shorter muscles and wings which store less kinetic 

energy and require a higher COT to create enough inertia to overcome the drag 

experienced in flight (Speakman and Thomas 2003). Smaller bats, like P. subflavus, 
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could be exposing themselves to more Hg by ingesting a higher proportion of insects 

relative to their mass than larger species. There is a need for more research comparing the 

metabolic rate among insectivorous temperate bat species and the relationship with THg 

accumulation.  

The timing of the molt, or period of earliest cellular activity before new hair 

growth and shedding of dead hair as defined by Ling (1972), could help explain 

interspecific variation of THg concentrations for the sampled individuals. The amount of 

scientific research on bat moulting patterns is scant, but it has been observed and widely 

accepted that most bats, with exceptions, undergo at least one annual moult during the 

summer and fall (Quay 1970, Fraser et al. 2013). This suggests THg concentrations from 

fur samples collected in late summer and fall are going to be representative of the Hg 

accumulated through the diet of the individual in the area the individual spent the 

summer. In comparison, fur samples collected in spring and early summer months are 

less representative of that region since the THg concentrations will be influenced by the 

migration patterns and location of the overwintering individual. The opportunistic 

method of fur sample collection for this study resulted in fur samples being collected 

across a range of years and seasons. Most fur samples were collected between summer 

2018 and spring/summer 2019, however some fur samples from Starr and Hidalgo 

counties were collected in the fall of 2017. I did not assess season or year due to low 

sample sizes.  

The relatively long lifespans of bats could be a factor influencing interspecific 

variability of THg concentrations. Bats have long lifespans for their size when compared 

to other taxon such as rodents (Austad and Fischer 1991). The age of a bat could be a 



 

51 

factor in THg accumulation because old bats would have a longer amount of time to 

accumulate THg resulting in a greater body burden of THg than younger bats. However, 

there is wide disparity among the average lifespans reported for the species sampled in 

this study and the mean THg concentrations observed. Lasiurus cinereus has a life span 

of 2 years which is the shortest average lifespan among the species sampled in this study, 

followed by N. humeralis with a reported life span of 2 to 5 years in the wild 

(Ammerman et al. 2012). There is no reported age for L. intermedius, but it is estimated 

that its life span is relatively short for an insectivorous bat species. In contrast, species 

including P. subflavus, L. borealis, M. velifer and T. brasiliensis all have documented 

lifespans exceeding 10 years in the wild (Ammerman et al. 2012). There is no effective 

way to age bats in the field beyond life stage at this time and age would be difficult to 

examine without a long-term study with permanently marked or banded individuals. 

While lifespan could be influencing some of the variability concerning THg 

concentrations among species, it is probably more influential for intra-specific variability 

when life stages are compared.  

 

Intraspecific variation in THg concentrations in Texas bats 

The results comparing intraspecific variability in THg concentrations for N. 

humeralis supported my prediction that adults have greater THg concentrations than 

juveniles and may be at greater risk of Hg toxicity, but it is unclear why this was not 

observed for other species. Adult bats among several species have been identified as 

having greater THg concentrations than juveniles (Yates et al. 2014, Chételat et al. 2016, 

Korstian et al. 2018). In Texas bats, Korstian et al. (2018) observed greater THg 
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concentrations in adults for all species sampled, but only adult L. borealis and L. cinereus 

were statistically different.  

The discrepancy between studies observing variation between sexes and those that 

do not is unclear. Variation between fur THg concentrations and gender was not observed 

in this research similar to other studies (Chételat et al. 2016, Korstian et al. 2018). In 

contrast, Yates et al. (2014) reported female bats have greater THg concentrations than 

males. In 2 tropical studies, sex had a weak correlation with fur THg concentration 

(Becker et al. 2017, Becker et al. 2018). Location and seasonality of sampling in these 

studies could play a role in THg variations between sexes and requires further 

investigation. Gender related differences in diets could also be a factor, which Mata et al. 

(2016) observed in the insectivorous European free-tailed bat (Tadarida teniotis), but 

research is lacking for gender related dietary differences in North American species. 

A possible explanation for not observing intraspecific variation in THg 

concentrations for any species other than N. humeralis in this study could be explained by 

the small sample sizes obtained for other species. The seasonality of sampling could also 

be an issue, because juveniles are captured in the mid-late summer and fall, which is the 

time frame when most of the N. humeralis samples were collected. This allowed me to 

acquire samples from newly volant N. humeralis juveniles that were unable to consume 

insects over a long period of time and exhibited a contrast to sampled adults that had the 

ability to accumulate Hg over a longer period of time. The age data collected for other 

species spanned longer time periods and could have included older juveniles capable of 

accumulating enough Hg to be indistinguishable from adults.   
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Several bat species including P. subflavus, L. cinereus, M. velifer, and T. 

brasiliensis have been documented displaying some intra-specific variability with 

moulting patterns (Fraser et al. 2013). Females have been recorded growing new fur later 

than males in L. cinereus (Cryan et al. 2004), M. velifer (Constantine 1957, Kunz. 1974), 

and T. brasiliensis (Constantine 1957). Fraser et al. (2012) used stable isotopes to assess 

moulting patterns in P. subflavus and was able to identify a time frame for male molting 

between June 23 and October 16 but was unable to identify a clear molting time for 

females, however they assumed the time frame was identical for both sexes. Variation in 

molting patterns between life stages have been observed in a few bat species such as the 

eastern water bat (Myotis petax) (Tiunov and Makarkiova 2007), and the little bent-wing 

bat (Miniotperus australis) (Dwyer 1968), whereas no difference was observed between 

life stages of other species like M. myotis (Mazak 1965). The literature on bat moulting 

patterns among different species is sparse and needs more research, but moulting patterns 

should be considered for future comparisons of fur THg concentrations among species, 

especially when bats are sampled near the timing of a known moult typically observed in 

late summer for most neo-tropical species (Fraser et al. 2013). 

Assessing THg concentrations between life stages of bats could be biased by the 

age of the sampled individual. As noted previously, the lifespan of bats can have a broad 

range depending on species. Bats classified as adults could vary by several years in some 

species including P. subflavus, which can live up to 15 years in wild populations 

(Ammerman et al. 2012). While I was unable to collect data on life stage for this species, 

it would make a relevant candidate to assess the influence of age on THg concentrations 
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in a long-term monitoring study if individuals could be marked and roosts could be 

sampled on an annual basis.  

 

Drivers of variation in THg concentration at the site level  

 The amount of Hg pollution released from point sources had a positive effect on 

THg concentrations in N. humeralis, suggesting that individuals occupying habitats in 

areas where more Hg pollution is released from point sources accumulate greater THg 

concentrations than bats residing in habitats with less pollution is released from point 

sources. This makes sense because the 200-km buffer I created to assess Hg pollution, 

overlaps with Harris county for 4 of the 6 sites assessed for N. humeralis, which is where 

the first and third greatest Hg polluting facilities in the state are located. Additionally, for 

N. humeralis distance to the nearest coal-fired powerplant had a positive impact 

suggesting that as the distance from coal-fired powerplants increases THg concentrations 

increases, which does not support my prediction that the distance to coal-fired 

powerplants would have a negative impact on THg concentrations. The low sample size 

of sites for N. humeralis and other factors occurring at the site level could be influencing 

this finding because bats captured at Hg pollution sources have been documented 

repeatedly with greater THg concentrations (Nam et al. 2012, Yates et al. 2014, Ferrante 

et al. 2018, Kumar et al. 2018). When I included life stage as a fixed effect in the N. 

humeralis LMER model, juvenile N. humeralis had a negative impact on THg 

concentrations, which suggests that populations of adult N. humeralis residing in areas 

with large amounts of Hg pollution are at the greatest risk for experiencing Hg toxicity 

for this species when concentrations exceed 10 μg/g threshold.  



 

55 

 Although I observed variation of THg concentrations among sites for N. 

humeralis, P. subflavus, and T. brasiliensis; I only discovered site-level covariates for N. 

humeralis that explained some of the THg variation among sites. While my prediction 

that THg concentrations would vary among sites is supported by this finding, it is not 

clear why I did not discover any site-level covariates for P. subflavus, and T. brasiliensis. 

The most logical explanation is the small number of sites I could include in each model 

(n = 7 for P. subflavus, and n = 5 for T. brasiliensis). Another possible explanation is 

factors not assessed in the LMER models were contributing to the variation in THg 

concentration observed among sites. One factor not assessed is the amount of 

atmospheric deposition occurring at the sites, which has been reported to influence bat 

THg fur concentrations in Canada (Chételat et al. 2016). Future studies examining site-

level factors to explain THg concentration variability should strive to have a larger 

number of sites sampled.  

 

Future research 

Future research should attempt to gain larger sample sizes, including samples in 

west Texas, and from more species to gain further insight into the current state of THg 

concentration in Texas bats. Future studies should assess stable isotopes ratios in Texas 

bats and their prey to gain insight into differences in dietary carbon source (δ13C) and 

trophic position (δ15N). The THg concentrations of the insects in foraging areas near 

sampling sites should also be examined to further the understanding of THg 

concentrations in bats and the relationship with diet. Diet is likely driving the 

accumulation of THg in Texas bats, therefore assessing the diets via fecal analysis and 
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trophic position of each bat sampled would provide more information about the specific 

diets that sampled bats are consuming. The foraging and non-migratory home range of 

bats may be influencing the THg concentrations among species as well, thus future 

research should evaluate whether bats with larger home and foraging ranges have lower 

concentrations of THg. Understanding the distances of a foraging bout for a sampled 

individual would improve our understanding on how foraging behavior might influence 

THg concentrations. Migration patterns in Texas bats is another area where more 

information is needed, specifically whether THg varies by season and if bats are 

accumulating greater concentrations in Texas summer locations or at their winter 

migration locations. Selenium, an essential element, binds to Hg making it biologically 

inert; however, Se:Hg molar ratios have never been assessed in bats but should be 

examined in future studies to provide insight on potential risk of toxic effects. The 10 

μg/g threshold most bat Hg studies reference is based on a single study (Nam et al. 2012) 

and more research is needed to thoroughly understand how Hg effects the health of bats 

and whether the effects vary by species. Further, the impacts of the devastating disease 

WNS could be exacerbated through the immunosuppressive effects of Hg toxicity, which 

is why understanding the specific health effects of Hg toxicity in bats is so important.  

 

Conclusion 

This study assessed THg concentrations in fur from 7 species of Texas bats and is 

the first study to measure the THg concentration in fur samples collected from several 

regions in central and eastern parts of Texas where no data has been previously reported. 

This research illustrated that Texas bats exhibit interspecific variability in fur THg 
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concentrations. Results suggest 2 common bat species in Texas are at a greater risk of 

experiencing negative health effects related to Hg toxicity. Furthermore, I have 

demonstrated intraspecific variability in THg concentrations of N. humeralis and assessed 

that the amount of Hg pollution within a 200-km radius of a sampling location can impact 

the THg concentrations in this species. Managers should aim to monitor populations of P. 

subflavus and N. humeralis since these species are at greater risk of Hg toxicity. The 

findings of this study can be incorporated and utilized in future management and 

recovery plans for Texas bats. 



 

 

Table 1. Observation-level covariates, site-level covariates, and the codes used in each occupancy model for a given year for 5 bat 

species on the San Bernard National Wildlife Refuge. Insects were only surveyed in 2019. 

Covariate Code  Year 

Observation-level Covariates   

     Julian Date J.date 2018/2019 

     Precipitation (mm) Precip 2018/2019 

     Relative humidity (%) RH 2018/2019 

     Wind (mph) Wind 2018/2019 

     Temperature (°C) Temp 2018/2019 

     Modified Palmer Drought Severity Index PMDI 2018/2019 

Site-level Covariates   

     Canopy cover (%) Canopy 2018/2019 

     Vegetation height (m) Veg 2018/2019 

     Columbia bottomland hardwood forest in 2-km buffer (%) CBH 2018/2019 

     Open habitat in 2-km buffer (%) Open 2018/2019 

     Urban habitat in 2-km buffer (%) Urban 2018/2019 

     Distance to nearest city (km) City 2018/2019 

     Insect abundance Insect.A 2019 

     Insect richness Insect.R 2019 

     Average abundance of Coleoptera Coleoptera 2019 

     Average abundance of Culicidae Culicidae 2019 

     Average abundance of Lepidoptera Lepidoptera 2019 

     Average abundance of Diptera Diptera 2019 

     Average abundance of Hemiptera Hemiptera 2019 

5
8
 



 

 

Table 2. Minimum (Min), maximum (Max), mean, standard deviation (SD), and year that each continuous site-level covariate was 

sampled for an assessment of bat occupancy on the San Bernard National Wildlife Refuge. ND = not determined due to data 

unavailable for several sites. Descriptions for each covariate are reported in Table 1.  

 

 2018  2019 

Covariate Min. Max. Mean SD  Min. Max. Mean SD 

Canopy 0.00 96.11 25.06 31.69  0.00 100 38.92 42.16 

Veg  0.51 1.71 0.99 3.56  0.64 2.00 1.22 3.63 

PMDI  -0.55 -0.99 -0.72 0.15  2.30 2.91 2.72 0.20 

City 4.94 31.28 19.94 6.59  4.94 31.28 19.94 6.59 

CBH 0.00 98.69 59.81 38.25  0.00 98.69 59.81 38.25 

Open 0.16 99.35 36.14 37.72  0.16 99.35 36.14 37.72 

Urban 0.00 6.98 1.03 1.76  0.00 6.98 1.03 1.76 

Insect Richness ND ND ND ND  4.00 8.00 6.14 0.99 

Insect Abundance ND ND ND ND  29.00 513.00 232.68 120.40 

Coleoptera ND ND ND ND  0.00 18.00 4.76 4.11 

Culicidae ND ND ND ND  5.50 159.5 49.99 38.38 

Diptera ND ND ND ND  0.00 16.00 3.97 4.32 

Hemiptera ND ND ND ND  0.00 85.00 18.55 22.81 

Lepidoptera  ND ND ND ND  2.00 53.00 20.08 12.97 

5
9
 



 

 

 Table 3. The most supported single-season single-species occupancy models for 5 bat 

species detected on the San Bernard National Wildlife Refuge in 2018 including the 

number of parameters (K), Akaike’s Information Criterion (AIC), ∆AIC, and the AIC 

weight (wi). The most supported models illustrate the observation-level covariates that 

influence detection probability (p) and site-level covariates that impact the probability of 

occupancy (). 

 

 

 

 

 

 

 

 

Models by Species K AIC ∆AIC wi 

T. brasiliensis  

     (Canopy), p(PMDI) 

     (Canopy, City), p(PMDI) 

     (.), p(.) 

 

4 

5 

2 

 

183.56 

184.49 

213.48 

 

0.00 

0.93 

29.91 

 

0.61 

1.00 

1.00 

L. borealis  

     (.), p(PMDI) 

     (.), p(.) 

 

3 

2 

 

224.53 

230.48 

 

0.00 

5.95 

 

0.95 

1.00 

N. humeralis  

     (.), p(PMDI) 

     (.), p(.) 

 

3 

2 

 

210.06 

214.33 

 

0.00 

4.27 

 

0.89 

1.00 

L. intermedius  

     (.), p(PMDI) 

     (.), p(.) 

 

3 

2 

 

220.99 

237.92 

 

0.00 

16.93 

 

1.00 

1.00 

P. subflavus  

     (Veg), p(PMDI) 

     (.), p(PMDI) 

     (.), p(.) 

 

4 

3 

2 

 

226.15 

228.10 

229.90 

 

0.00 

1.95 

3.75 

 

0.65 

0.90 

1.00 

60 



 

 

Table 4. The most supported single-season single-species occupancy models for T. brasiliensis and single-season single-species 

multi-state occupancy models for L. borealis, N. humeralis, L. intermedius, and P. subflavus detected on the San Bernard National 

Wildlife Refuge in 2019 including the number of parameters (K), Akaike’s Information Criterion (AIC), ∆AIC, and the AIC weight 

(wi). The most supported models illustrate the observation-level covariates that influence detection probability (p) and site-level 

covariates that impact the probability of occupancy () and high activity (R). 

 

 

 

Models by Species K AIC ∆AIC wi 

T. brasiliensis  

     (PMDI), p(Precip) 

     (.), p(.) 

 

4 

2 

 

219.13 

290.10 

 

0.00 

70.97 

 

1.00 

1.00 

L. borealis  

     (.), R(Hemiptera, Open), p1(.), p2(.) 

     (.), R(Hemiptera), p1(.), p2(.) 

     (.), R(.), p1(.), p2(.) 

 

7 

6 

5 

 

247.90 

250.03 

254.44 

 

0.00 

2.13 

6.54 

 

0.72 

0.97 

1.00 

N. humeralis  

     (.), R(City), p1(.), p2(.)    

     (.), R(Open), p1(.), p2(.)    

     (.), R(.), p1(.), p2(.) 

 

6 

6 

5 

 

297.96 

300.10 

306.36 

 

0.00 

2.15 

8.40 

 

0.74 

0.99 

1.00 

L. intermedius  

     (.), R(.), p1(.), p2(J.date) 

     (.), R(.), p1(.), p2(.) 

 

6 

5 

 

314.44 

319.77 

 

0.00 

5.33 

 

0.93 

1.00 

P. subflavus  

     (.), R(Coleoptera, Open), p1(J.date), p2(J.date) 

     (.), R(Coleoptera, Open, Urban), p1(J.date), p2(J.date) 

     (.), R(.), p1(.), p2(.) 

 

10 

11 

5 

 

298.59 

300.40 

307.60 

 

0.00 

1.80 

9.00 

 

0.71 

0.99 

1.00 

6
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Table 5. The untransformed coefficient values (Coeff.), standard errors (SE) and lower 

and upper 95% confidence intervals (LCI, UCI, respectfully) for all site-level coefficients 

included in the most supported single-season single-species occupancy model of each 

species in 2018.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables by Species Coeff. SE LCI UCI 

T. brasiliensis  

      (Intercept) 

      (Canopy) 

     p (Intercept) 

     p (PMDI) 

 

2.42 

-2.47 

0.34 

-0.82 

 

1.17 

1.19 

0.19 

0.22 

 

0.14 

-4.79 

-0.03 

-1.26 

 

4.71 

-0.14 

0.71 

-0.38 

L. borealis  

     (Intercept) 

     p (Intercept) 

     p (PMDI) 

 

2.90 

0.30 

-0.42 

 

1.04 

0.16 

0.18 

 

0.87 

-0.02 

-0.77 

 

4.93 

0.62 

-0.06 

N. humeralis  

      (Intercept) 

     p (Intercept) 

     p (PMDI)           

 

1.82 

-0.53 

-0.46 

 

0.72 

0.19 

0.18 

 

0.41 

-0.89 

-0.81 

 

3.22 

-0.17 

-0.10 

L. intermedius  

      (Intercept) 

     p (Intercept) 

     p (PMDI)           

 

2.90 

0.19 

-0.66 

 

1.03 

0.17 

0.20 

 

0.87 

-0.14 

-1.05 

 

4.92 

0.52 

-0.27 

P. subflavus  

      (Intercept) 

      (Veg) 

     p (Intercept) 

     p (PMDI) 

 

4.16 

2.80 

0.27 

-0.34 

 

2.97 

2.64 

0.17 

0.18 

 

-1.66 

-2.37 

-0.06 

-0.69 

 

9.99 

7.97 

0.59 

0.02 

62 



 

 

Table 6. The untransformed coefficient values (Coeff), standard errors (SE) and lower 

and upper 95% confidence intervals (LCI, UCI, respectfully) for all coefficients included 

for the most supported single-season single-species occupancy models of 5 bat species 

surveyed on San Bernard National Wildlife Refuge in 2019.   

 

Variables by Species Coeff. SE LCI UCI 

T. brasiliensis 

      (Intercept) 

      (PMDI) 

     p (Intercept) 

     p (Precip) 

 

2.21 

-2.62 

-0.50 

-0.14 

 

1.33 

1.64 

0.18 

0.21 

 

-0.39 

-5.84 

-0.85 

-0.55 

 

4.81 

0.59 

-0.16 

0.28 

L. borealis 

     (Intercept)       

    R (Intercept) 

    R (Hemiptera)       

    R (Open) 

    p1 (Intercept) 

    p2 (Intercept) 

    δ (Intercept) 

 

2.41 

-3.07 

4.04 

-3.42 

-1.36 

0.60 

-1.38 

 

1.39 

2.14 

5.13 

3.22 

0.26 

0.39 

0.51 

 

-0.33 

-7.26 

-6.01 

-9.74 

-1.87 

-0.17 

-2.39 

 

5.13 

1.13 

14.08 

2.89 

-0.85 

1.38 

-0.38 

N. humeralis 

     (Intercept)       

    R (Intercept) 

    R (City)       

    p1 (Intercept) 

    p2 (Intercept) 

    δ (Intercept) 

 

1.56 

1.15 

-7.87 

-1.43 

0.66 

-0.20 

 

0.66 

0.97 

4.36 

0.32 

0.24 

0.28 

 

0.26 

-0.75 

-16.42 

-2.05 

0.18 

-0.76 

 

2.85 

3.05 

0.67 

-0.81 

1.13 

0.35 

L. intermedius 

     (Intercept)       

    R (Intercept) 

    p1 (Intercept) 

    p2 (Intercept) 

    p2 (J.date) 

    δ (Intercept) 

 

2.83 

-0.85 

-0.89 

0.73 

0.75 

-0.12 

 

1.27 

0.50 

0.22 

0.34 

0.32 

0.36 

 

0.35 

-1.82 

1.31 

0.06 

0.13 

-0.83 

 

5.32 

0.13 

-0.46 

1.40 

1.37 

0.60 

P. subflavus 

     (Intercept)       

    R (Intercept) 

    R (Open)       

    R (Coleoptera) 

    p1 (Intercept) 

    p1 (J.date) 

    p2 (Intercept) 

    p2 (J.date) 

    δ (Intercept) 

    δ (J.date) 

 

1.717 

-0.45 

-2.53 

2.86 

-1.15 

-0.67 

1.19 

-0.55 

-0.37 

-1.04 

 

0.66 

0.77 

1.36 

1.68 

0.35 

0.32 

0.39 

0.35 

0.29 

0.26 

 

0.42 

-1.96 

-5.18 

-0.43 

-1.83 

-1.29 

1.11 

-1.23 

-0.93 

-1.74 

 

3.02 

1.05 

0.13 

6.15 

-0.46 

-0.05 

2.64 

0.12 

0.19 

-0.33 
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Table 7. Model averaged coefficients (Coeff), standard errors (SE), and lower and upper 

95% confidence intervals (LCI, UCI, respectfully) for all site-level covariates included in 

competitive occupancy models for bats surveyed on the San Bernard National Wildlife 

Refuge in 2018. 

 

Variables by Species Coeff. SE LCI UCI 

T. brasiliensis 

     Canopy 

     City 

 

-2.45 

0.98 

 

1.22 

1.04 

 

-4.85 

-1.05 

 

-0.06 

3.02 

P. subflavus 

     Veg 

 

2.80 

 

2.64 

 

-2.37 

 

7.97 
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Table 8. Model averaged coefficients (Coeff), standard errors (SE), and lower and upper 

95% confidence intervals (LCI, UCI, respectfully) for all site-level covariates included in 

competitive occupancy models for bats surveyed on the San Bernard National Wildlife 

Refuge in 2019. 

 

Variables by Species Coeff. SE LCI UCI 

T. brasiliensis 

     PMDI 

 

-2.62 

 

1.64 

 

-5.84 

 

0.59 

L. borealis 

     Hemiptera 

     Open 

 

2.71 

-3.42 

 

3.77 

3.22 

 

-4.68 

-9.74 

 

10.09 

2.90 

N. humeralis 

     City    

     Open    

 

-7.87 

-1.81 

 

4.36 

0.82 

 

-16.42 

-3.42 

 

0.67 

-0.19 

P. subflavus 

     Coleoptera 

     Open 

     Urban 

 

2.85 

-2.52 

0.54 

 

1.68 

1.36 

1.44 

 

-0.44 

-5.18 

-2.28 

 

6.14 

0.14 

3.35 
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Table 9. Back-transformed mean and standard errors (SE) estimates for detection probability (p) and occupancy probability () for all 

parameters contained in competitive and null models for 5 bat species surveyed on San Bernard National Wildlife Refuge in 2018.  

 

Species Model Parameter Mean SE 

T. brasiliensis  

 

 

 

(.), p(.) 

      

 

(Canopy), p(PMDI) 

 

 

 

 

(Canopy, City), p(PMDI) 

      

 (Intercept) 

 p (Intercept) 

 

 (Intercept) 

 (Canopy) 

 p (Intercept) 

 p (PMDI) 

 

 (Intercept) 

 (Canopy) 

 (City) 

 p (Intercept) 

 p (PMDI) 

 

0.79 

0.59 

 

0.92 

0.08 

0.11 

0.03 

 

0.94 

0.09 

0.73 

0.58 

0.31 

0.09 

0.04 

 

0.09 

0.09 

0.06 

0.02 

 

0.08 

0.10 

0.21 

0.05 

0.05 

L. borealis (.), p(.) 

 

 

(.), p(PMDI) 

 

 

 

 (Intercept) 

 p (Intercept) 

  

 (Intercept) 

 p (Intercept) 

 p (PMDI) 

0.95 

0.58 

 

0.95 

0.28 

0.15 

0.05 

0.04 

 

0.05 

0.10 

0.08 

N. humeralis      

 
(.), p(.) 

 

 

(.), p(PMDI) 

 

 (Intercept) 

 p (Intercept) 

  

 (Intercept) 

 p (Intercept) 

0.86 

0.38 

 

0.86 

0.37 

0.09 

0.04 

 

0.09 

0.04 
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 p (PMDI) 0.39 0.04 

L. intermedius      

 
(.), p(.) 

 

 

(.), p(PMDI) 

 (Intercept) 

 p (Intercept) 

  

 (Intercept) 

 p (Intercept) 

 p (PMDI) 

0.95 

0.54 

 

0.95 

0.55 

0.34 

0.05 

0.04 

 

0.05 

0.04 

0.04 

P. subflavus      

 
(.), p(.) 

 

 

(Veg), p(PMDI) 

 

 

 

 

(.), p(PMDI) 

  

 (Intercept) 

 p (Intercept) 

  

 (Intercept) 

 (Veg) 

 p (Intercept) 

 p (PMDI) 

 

 (Intercept) 

p (Intercept) 

p (PMDI) 

0.90 

0.57 

 

0.99 

0.94 

0.35 

0.22 

 

0.90 

0.35 

0.22 

0.07 

0.04 

 

0.05 

0.14 

0.11 

0.11 

 

0.07 

0.11 

0.11 
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Table 10. Back-transformed mean and standard errors (SE) estimates for all parameters contained in competitive and null occupancy 

and multi-state occupancy models for 5 bat species surveyed on San Bernard National Wildlife Refuge in 2019. Parameters included 

detection probability (p), probability of detecting species in state 1 given true state was 1 (p1), probability of detecting species in state 

2 given true state was 2 (p2), probability of correctly detecting state 2 given species was detected (δ), probability of occupancy rate 

(), and probability that high activity was observed given bat was detected (R). 

 

Species Model Parameter Mean SE 

T. brasiliensis  

 

 

 

(.), p(.) 

      

 

(PMDI), p(Precip)  

      

 (Intercept) 

 p (Intercept) 

 

 (Intercept) 

 (PMDI) 

 p (Intercept) 

 p (Precip) 

0.78 

0.32 

 

0.90 

0.07 

0.38 

0.47 

0.09 

0.03 

 

0.12 

0.10 

0.04 

0.05 

 

L. borealis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(.), R(.), p1(.), p2(.) 

 

 

 

 

 

(.), R(Hemiptera, Open), p1(.), p2(.) 

 

 

 

 

 

 

 

(.), R(Hemiptera), p1(.), p2(.) 

 

 (Intercept)       

 R (Intercept) 

 p1 (Intercept) 

 p2 (Intercept) 

 δ (Intercept) 

 

 (Intercept)       

 R (Intercept) 

 R (Hemiptera)       

 R (Open) 

 p1 (Intercept) 

 p2 (Intercept) 

 δ (Intercept) 

 

 (Intercept)       

 

0.92 

0.23 

0.20 

0.63 

0.23 

 

0.92 

0.05 

0.98 

0.03 

0.20 

0.65 

0.20 

 

0.94 

 

0.11 

0.11 

0.05 

0.10 

0.11 

 

0.11 

0.09 

0.09 

0.10 

0.04 

0.09 

0.08 

 

0.12 
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L. borealis         R (Intercept) 

 R (Hemiptera)   

 p1 (Intercept) 

 p2 (Intercept) 

 δ (Intercept) 

0.15 

0.82 

0.20 

0.66 

0.20 

0.10 

0.12 

0.04 

0.08 

0.08 

 

N. humeralis     (.), R(.), p1(.), p2(.) 

 

 

 

 

 

(.), R(City), p1(.), p2(.) 

 

 

 

 

 

 

(.), R(Open), p1(.), p2(.) 

 

 (Intercept)       

 R (Intercept) 

 p1 (Intercept) 

 p2 (Intercept) 

 δ (Intercept) 

 

 (Intercept)       

R (Intercept) 

R (City)       

 p1 (Intercept) 

 p2 (Intercept) 

 δ (Intercept) 

 

 (Intercept)       

R (Intercept) 

R (Open)       

p1 (Intercept) 

p2 (Intercept) 

 δ (Intercept) 

0.84 

0.49 

0.19 

0.66 

0.45 

 

0.83 

0.76 

4.0e-4 

0.19 

0.66 

0.45 

 

0.82 

0.51 

0.14 

0.19 

0.66 

0.45 

0.11 

0.13 

0.05 

0.06 

0.07 

 

0.10 

0.18 

2.0e-3 

0.05 

0.06 

0.07 

 

0.98 

0.18 

0.10 

0.05 

0.06 

0.07 

 

L. intermedius  

 

 

 

 

 

(.), R(.), p1(.), p2(.) 

 

 

 

 

 

 (Intercept)       

 R (Intercept) 

 p1 (Intercept) 

 p2 (Intercept) 

 δ (Intercept) 

 

0.94 

0.30 

0.29 

0.60 

0.47 

 

0.07 

0.11 

0.05 

0.07 

0.09 
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L. intermedius  

 

(.), R(.), p1(.), p2(J.date) 

 

 (Intercept)       

 R (Intercept) 

 p1 (Intercept) 

 p2 (Intercept) 

 p2 (J.date) 

 δ (Intercept) 

 

0.94 

0.30 

0.29 

0.68 

0.68 

0.47 

 

0.07 

0.11 

0.05 

0.08 

0.07 

0.09 

 

P. subflavus     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(.), R(.), p1(.), p2(.) 

 

 

 

 

 

(.), R(Coleoptera, Open), p1(J.date), p2(J.date) 

 

 

 

 

 

 

 

 

 

 

(.), R(Coleoptera, Open, Urban), p1(J.date), p2(J.date) 

 

 (Intercept)       

 R (Intercept) 

 p1 (Intercept) 

 p2 (Intercept) 

 δ (Intercept) 

 

 (Intercept)       

 R (Intercept) 

 R (Open)       

 R (Coleoptera) 

 p1 (Intercept) 

 p1 (J.date) 

 p2 (Intercept) 

 p2 (J.date) 

δ (Intercept) 

δ (J.date) 

 

 (Intercept)       

R (Intercept) 

R (Open)       

R (Coleoptera) 

R (Urban) 

p1 (Intercept) 

0.83 

0.41 

0.37 

0.87 

0.40 

 

0.85 

0.39 

0.07 

0.95 

0.24 

0.39 

0.87 

0.37 

0.41 

0.26 

 

0.85 

0.43 

0.10 

0.93 

0.63 

0.24 

0.08 

0.12 

0.06 

0.04 

0.07 

 

0.09 

0.18 

0.09 

0.09 

0.06 

0.07 

0.05 

0.08 

0.07 

0.07 

 

0.09 

0.22 

0.13 

0.12 

0.33 

0.06 
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P. subflavus     p1 (J.date) 

p2 (Intercept) 

p2 (J.date) 

δ (Intercept) 

δ (J.date) 

0.34 

0.87 

0.37 

0.41 

0.26 

0.07 

0.05 

0.08 

0.07 

0.07 
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Table 11. Specific sampling locations ordered north to south, total bats sampled (n) by site and for all sites combined, and fur THg 

concentrations [median, mean, standard deviation (SD) and range; μg/g] for all bats sampled from 2017–2019 across central and 

eastern Texas, USA. ND = not determined due to small sample size; SBNWR BP = San Bernard National Wildlife Refuge Brothers 

Pond. 

Species  Site     n          Median          Mean               SD            Min.           Max.   

L. borealis All sites combined 27 0.598 0.971 1.46 0.067 8.00  
Mineral Wells 3 0.793 0.673 0.113 0.591 0.802  
Palestine 1 8.00 8.00        ND 8.00 8.00  
Bell County 5 0.589 0.656 0.224 0.424 0.972  
Austin 6 0.492 0.472 0.121 0.295 0.598  
San Marcos 2 0.702 0.702 0.479 0.363 1.04  
SBNWR BP 3 1.10 0.788 0.626 0.067 1.20  
Lake Jackson 2 1.38 1.38 0.416 1.08 1.67  
Starr County 2 0.147 0.147 0.0660 0.101 0.194  
Unknown 3 1.10 1.115 0.0884 1.04 1.21 

L. cinereus Starr County 8 0.699 0.809 0.469 0.242 1.47 

L. intermedius All sites combined 54 1.27 1.73 1.58 0.240 9.56  
Austin 3 0.698 3.55 5.22 0.381 9.58  
Houston 3 0.567 1.21 1.13 0.552 2.51  
Starr County 22 1.17 1.32 0.806 0.244 2.76  
Hidalgo County 26 1.27 1.62 1.16 0.373 5.13 

L. seminolus All sites combined 2 2.17 2.17 0.104 2.09 2.24  
Houston 1 2.24 2.24 ND 2.24 2.24  
Unknown 1 2.09 2.09 ND 2.09 2.09 

M. auriculus S Walker County 1 8.95 8.95 ND 8.95 8.95 

M. velifer All sites combined 49 1.92 2.17 0.921 0.350 4.95 
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Johnson City 21 1.83 2.11 0.956 0.788 4.68  
Austin 1 2.53 2.53 ND 2.53 2.53  
San Marcos 25 2.02 2.19 0.877 1.09 4.95  
Hidalgo County 1 0.346 0.346 ND 0.346 0.346  
Unknown 1 1.40 1.40 ND 1.40 1.40 

N. humeralis   All sites combined 101 4.49 5.87 1.60 0.163           18.8 

 Georgetown 1 0.757 0.757 ND 0.757 0.757  
San Marcos 1 3.48 3.48 ND 3.48 3.48  
West Columbia 41 4.75 6.18 3.90 1.90 15.8  
SBNWR BP 5 5.68 6.53 4.29 2.42 13.5  
Brazoria 12 6.70 6.69 1.60 4.12 9.3 

 

Lake Jackson 15 9.66 10.8 4.85 3.05 18.8  
SBNWR Office 2 3.47 3.47 1.99 2.07 4.87  
Houston 2 1.78 1.78 1.57 0.675 2.89  
Starr County 6 2.05 2.31 1.01 1.33 4.24  
Hidalgo County 12 1.81 2.00 1.22 0.466 3.91  
Unknown 4 1.43 2.97 3.99 0.165 8.83 

P. subflavus All sites combined 69 5.83 6.04 3.15 1.39 20.1  
N Freestone County  10 4.38 4.13 1.78 1.39 6.62  
S Freestone County  10 6.09 6.16 2.13 2.56 10.1  
N Leon County  10 6.14 5.38 1.82 1.78 7.39  
S Leon County  10 5.30 5.74 2.84 2.17 12.4  
N Walker County  10 7.34 8.78 5.17 3.53 20.1  
S Walker County  10 6.58 7.21 2.78 3.34 13.2  
Austin 7 4.21 4.85 2.69 1.43 8.82  
San Marcos 1 2.82 2.82 ND 2.82 2.82 
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Unknown 1 5.83 5.83 ND 5.83 5.83 

T. brasiliensis All sites combined 115 0.827 1.02 0.756 0.320 5.82  
Mineral Wells 22 0.794 0.926 0.528 0.400 2.35  
Tom Green County 3 0.836 1.05 0.300 0.776 1.37  
Lavender 1 1.83 1.83 ND 1.83 1.83  
Bell County 1 1.35 1.35 ND 1.35 1.35  
Granger 1 0.679 0.679 ND 0.679 0.679  
Round Rock 3 0.918 0.784 0.218 0.532 0.918  
Largo Vista 1 1.45 1.45 ND 1.45 1.45  
Austin 31 0.832 1.03 0.580 0.403 2.53  
Johnson City 8 1.06 1.46 0.977 0.794 3.52  
Dripping Springs 1 0.450 0.450 ND 0.450 0.450  
N Hays County 2 0.732 0.802 0.409 0.541 1.12  
San Marcos 1 0.450 0.450 ND 0.450 0.450  
Lockhart 1 0.785 0.785 ND 0.785 0.785  
Comal County 5 0.840 0.778 0.267 0.496 1.08  
Brazoria 2 3.87 3.87 2.76 1.92 5.82  
Starr County 15 0.509 0.573 0.170 0.319 0.905  
Hidalgo County 3 1.47 1.38 0.383 0.966 1.72  
Unknown 13 0.843 1.12 0.889 0.374 3.69 
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Table 12. THg concentrations (µg/g) from the bat fur cleaning experiment comparing 5 

cleaning methods (F = 0.197; df = 4,70; P = 0.939). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment Median Mean SD Min. Max. 

Unclean control 1.06 1.06 0.504 0.394 2.09 

Acetone 1.22 1.22 0.542 0.378 2.44 

 

Chloroform 1.15 1.17 0.597 0.371 2.77 

 

Detergent 1.21 1.22 0.571 0.279 2.56 

 

DI water rinse 1.22 1.14 0.606 0.242 2.42 
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Table 13. Sample size and percent of each sex (male/female) and life stages (adult/juvenile) collected for 5 bat species from 2017–

2019 across 32 sites in Texas, USA. ND = not determined because data was not collected in field.  

  Sex    Life Stage 

Species Site M F ND %M %F %ND  J A ND %J %A %ND 

L. borealis All sites combined 8 15 4 30 55 15  13 9 5 48 33 19  
Mineral Wells 1 2 - 33 67 0  1 2 - 33 67 0  
Palestine - - 1 0 0 100  - - 1 0 0 100 

 Bell County 2 3 - 40 60 0  5 - - 100 0 0 

 Austin 3 3 - 50 50 0  4 2 - 67 33 0  
San Marcos 1 1 - 50 50 0  - 2 - 0 100 0  
SBNWR BP - 3 - 0 100 0  1 2 - 33   67 0 

 Lake Jackson - 2 - 0 100 0  2 - - 100 0 0  
Starr County 1 1 - 50 50 0  - 1 1 0 50 50 

 Unknown - - 3 0 0 100  - - 3 0 0 100 

L. intermedius  All sites combined 22 26 6 41 28 11  10 38 6 19 70 11  
Austin 1 2 - 33 67 0  - 3 - 0 1.0 0  
Houston 2 1 - 67    33 0  3 - - 1.0 0 0  
Starr County 10 10 2 45 45 10  1 19 2 4 86 10 

 Hidalgo County 9 13 4 35 50 15  6 16 4 23 62 0.15 

M. velifer  All sites combined 17 20 11 35 41 22  9 29 10 18 59 20 

 Johnson City 2 9 10 10 42 48  - 11 10 0 53 48  
Austin - 1 - 0 100 0  - 1 - 0 100 0  
San Marcos 15 10 - 60 40 0  9 16 - 36 64 0  
Hidalgo County - - 1 0 0 100  - 1 - 0 100 0 

 Unknown - - 1 0 0 100  - - 1 0 0 1 

N. humeralis    All sites combined 42 38 21 42 38 21  26 54 21 26 53 21 
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Georgetown - - 1 0 0 1.0  - - 1 0 0 100 

 San Marcos - - 1 0 0 100  - - 1 0 0 100 

 West Columbia 25 16 - 61 39 0  21 20 - 51 49 0  
SBNWR BP 2 2 1 4 4 2  1 3 1 20 60 20 

 Brazoria 4 4 4 33 33 33  - 8 4 33 67 0 

 Lake Jackson 5 10 - 33 67 0  - 15 - 0 100 0  
SBNWR Office - - 2 0 0 100  - - 2 0 0 100 

 Houston - - 2 0 0 100  - - 2 0 0 100  
Starr County 2 2 2 33 33 33  - 4 2 0 67 33 

 Hidalgo County 4 4 4 33 33 33  4 4 4 33 33 33  
Unknown - - 4 0 0      100  - - 4 0 0 100 

T. brasiliensis  All sites combined 34 39 42 30 33 37  24 49 42 21 42 37  
Austin 18 13 - 58 42 0  7 24 - 23 77 0  
Bell County - - 1 0 0 100  - - 1 0 0 100  
Mineral Wells 5 17 - 23 77 0  16 6 - 73 27 0  
Tom Green County - - 3 0 0 100  - - 3 0 0 100  
Lavender - - 1 0 0 100  - - 1 0 0 100  
Bell County - - 1 0 0 100  - - 1 0 0 100  
Granger - - 1 0 0 100  - - 1 0 0 100  
Round Rock - - 3 0 0 100  - - 1 0 0 100 

 Largo Vista - - 1 0 0 100  - - 1 0 0 100 

 Austin 18 13 - 58 42 0  7 24 - 23 77 0 

 Johnson City 1 4 3 1 50 37  - 5 3 0 62 38 

 Dripping Springs - - 1 0 0 100  - - 1 0 0 100 

 N Hays County - - 2 0 0 100  - - 2 0 0 100 

 San Marcos - - 1 0 0 100  - - 1 0 0 100 

7
7
 



 

 

 Lockhart - - 1 0 0 100  - - 1 0 0 100 

 Comal County - - 5 0 0 100  - - 5 0 0 100 

 Brazoria - - 2 0 0 100  - - 2 0 0 100 

 Starr County 8 5 2 53 33 13  - 13 2 0 87 13 

 Hidalgo County 2 - 1 67 33 0  1 1 1 33 33 33  
Unknown - - 13 0 0 100  - - 13 0 0 100 
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Table 14. Fur THg concentrations broken down by life stages (juvenile/adult) for 5 bat species sampled across central and eastern 

Texas, USA from 2017–2019. Sample size of each life stage collected at a specific location are reported in Table 13. 

 Juvenile  Adult 

 n Median Mean SD Min. Max.  n Median Mean SD Min. Max. 

L. borealis 13 0.587 0.753 0.379 0.389 1.67  9 0.591 0.551 0.378 0.0674 1.10 

 

L. intermedius 10 1.40 1.88 1.57 0.244 4.81  38 1.25 1.65 1.66 0.358 9.58 

 

M. velifer 9 1.73 2.02 0.840 1.18 3.56  28 2.10 2.10 0.857 0.789 4.95 

 

N. humeralis 26 3.14 4.29 3.76 0.467 14.1  54 7.10 7.45 4.30 1.33 18.8 

 

T. brasiliensis 24 0.794 0.944 0.519 0.401 2.35  49 0.737 0.992 0.668 0.319 3.52 
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Table 15. Fur THg concentrations (μg/g) by sex for 5 bat species that were sampled across central and eastern Texas from 2017–2019. 

Sample size of each sex collected at a specific location are reported in Table 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Male  Female 

 n Median Mean SD Min. Max.  n Median Mean SD Min. Max. 

L. borealis 8 0.587 0.584 0.224 0.389 1.04  15 0.591 0.712 0.440 0.0674 1.67 

 

L. intermedius 22 1.28 1.89 2.03 0.549 9.58  26 1.15 1.53 1.19 0.244 5.14 

 

M. velifer 17 2.12 2.15 0.899 1.09 4.95  20 1.80 2.03 0.810 0.788 3.56 

 

N. humeralis   42 4.62 5.78 3.72 0.467 14.1  38 5.86 7.13 4.94 0.902 18.8 

 

T. brasiliensis 34 0.726 1.02 0.720 0.401 3.52  39 0.827 0.936 0.523 0.319 2.36 
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Table 16. Predictive linear mixed-effects regressions (LMER) models assessing the impact of site-level covariates on the THg 

concentrations for P. subflavus, N. humeralis and T. brasiliensis sampled from 2017–2019 across central and eastern Texas, USA. 

Additional LMER models that included age and sex as fixed effects are included for N. humeralis, and T. brasiliensis. Models are 

ranked by corrected Akaike Information Criterion (AIC) value with the degrees of freedom (df), AIC weight (wi), marginal (R2
m) and 

conditional (R2
c) R2. 

 

Species Log THg models df AIC wi R2
m R2

c 

P. subflavus 

 (n = 67) 

~ (1|site.p) 3 108.6 0.54 0.00 0.14 

~ 1 + forest + (1|site.p) 4 109.7 0.32 0.11 0.14 

 Global model 8 111.3 0.14 0.19 0.20 

N. humeralis   

(n = 91) 

~1 + coal + Hg_emissions + (1|site.n) 5 168.1 0.68 0.47 0.47 

~1 + coal+ Hg_source + Hg_emissions + (1|site.n) 6 169.9 0.27 0.47 0.48 

Global model 8 173.5 0.05 0.47 0.47 

~ (1|site.n) 3 178.2 0.00 0.00 0.57 

N. humeralis    

+ age + sex  

(n = 83) 

~1 + age + emissions + (1|site.n) 5 149.4 0.22 0.51 0.52 

~1 + age + Hg_emissions + forest + (1|site.n) 6 149.4 0.21 0.54 0.54 

~1 + age + Hg_emissions + forest + Hg_source.n + sex + (1|site.n) 8 149.6 0.19 0.52 0.52 

~1 + age + Hg_emissions + forest + Hg_source.n + coal + sex + (1|site.n) 9 149.7 0.19 0.52 0.52 

Global model 10 150.8 0.12 0.15 0.86 

~1 + age + Hg_emissions + forest + Hg_source.n + (1|site.n) 7 151.1 0.09 0.54 0.54 

~ (1|site.n) 3 178.2 0.00 0.00 0.57 

T. brasiliensis 

 (n = 84) 

~ 1 + (1|site.t) 3 130.6 0.99 0.00 0.25 

Global model 8 139.5 0.01 0.09 0.66 

T. brasiliensis   

+ age + sex     

(n = 80) 

 Global model 10 126.8 0.61 0.19 0.38 

~ 1 + (1|site.t) 3 127.7 0.39 0.00 0.32 
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Table 17. Significance for coefficients of the selected LMER models describing THg variation in N. humeralis with and without age 

and sex as fixed effects sampled from 2017–2019 across central and eastern Texas, USA. 

Species Variable Coeff. SE LCI UCI T Value P value 

N. humeralis   intercept 1.57 0.06 1.45 1.68 26.57 <0.001 

 coal 1.96 0.60 0.78 3.20 3.25   0.002 

 Hg_emissions 2.46 0.60 1.27 3.72 4.07 <0.001 

N. humeralis      

+ age + sex  

intercept 1.73 0.08 1.57 1.89 21.72 <0.001 

Hg_emissions 0.52 0.07 0.39 0.66 7.31   0.002 

age.Juvenile -0.60 0.13 -0.87 -0.34 -4.59 <0.001 
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Figure 1. Fixed locations of acoustic bat detectors deployed summer 2018 and 2019 on the San Bernard National Wildlife  

Refuge.
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Figure 2. Probability of occupancy and 95% confidence intervals across canopy cover (%) for T. brasiliensis sampled during summer 

2018 on the San Bernard National Wildlife Refuge, Texas USA.  
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Figure 3. Probability of occupancy and 95% confidence intervals given a site was occupied with high activity across open habitat (%) 

within a 2-km radius for N. humeralis sampled during summer 2019 on the San Bernard National Wildlife Refuge, Texas USA.  
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Figure 4. Locations of 32 bat fur sampling sites across eastern and central Texas along with all potential point sources of Hg pollution 

[coal-fired powerplants (CFPP) and other sources such as cement factories, refineries and other sources] that release Hg pollution data 

to the Environmental Protection Agency’s Toxic Release Inventory program. Zoomed in maps on right include all fur sampling site 

names. 
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Figure 5. Bat fur THg concentrations for all species studied and all sites combined among 427 samples collected throughout central 

and eastern Texas, USA. Whiskers = ± 95% confidence intervals. Dots above whiskers are outliers. Letters indicate species with 

similar THg concentrations based on Dunn’s pairwise comparison results (P <0.05). Total n values for each species are reported in 

Table 11.
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Figure 6. THg concentrations for sex and life stage among 5 bat species sampled 

throughout central and eastern Texas, USA. Juvenile N. humeralis had lower THg 

concentrations than adults with significance denoted by asterisk (*). Samples were pooled 

across sites. Total n values for each life-stage and sex are reported in Table 13.
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Figure 7. Inter-site variation in THg concentrations compared for P. subflavus (top), N. humeralis (middle), and T. brasiliensis 

(bottom). Letters indicate sites with similar THg concentrations based on Tukey post-hoc test for P. subflavus and a Dunn’s pairwise 

comparison for N. humeralis and T. brasiliensis (P < 0.05). Total n values for each site are reported in Table 11 and specific site 

locations are reported in Figure 4.
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