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ABSTRACT 

 

IMPROVING URBAN VEGETATION CLASSIFICATION ACCURACY WITH 

MULTISPECTRAL IMAGERY AND LIDAR  

By 

Guinevere McDaid 

Texas State University-San Marcos 

August 2013 

SUPERVISING PROFESSOR: JENNIFER JENSEN 

 Urban areas are comprised of fine-scale heterogeneous land-cover classes and 

detailed land cover classifications often require multiple techniques and classification 

methods to produce an accurate land cover land-use map. Policy makers and urban 

developers need up-to-date, precise data in which to base decisions and to guide 

development decisions that meet multiple objectives.  Accurate and up-to-date land cover 

data, particularly in rapidly developing cities, is often unattainable at the spatial 

resolution desired by urban planners. Aerial remote sensing is a suitable and effective 

source for urban land cover mapping as the image datasets for classification are acquired 

at a high spatial resolution (e.g., 1 m). This study examines added utility of integrating1 

m image data, lidar height data, and lidar intensity data as a means of increasing the 

classification accuracy of urban vegetation classes compared with that of a classification 

using aerial image data alone. One meter National Agricultural Inventory Program 

(NAIP) data, acquired in 2010 were used as input to an object-oriented, supervised 

classification in ENVI EX to derive urban vegetation land cover in the downtown area of 

San Antonio, Texas. Classification of data adhered to the Texas Land Classification 

System (TXLCS). The classes used here include developed, developed open-space, 



 

xii 

 

broad-leafed evergreen, cold deciduous, mixed forest, and shadows.  These analyses 

indicate that the addition of lidar height data as a classification layer did not improve 

classification accuracy compared to image data alone.  The addition of lidar intensity data 

as a classification layer did however improve the classification accuracy compared to 

image data alone.  The integration of spectral and intensity data does produce a more 

accurate urban vegetation land cover map.
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1.0 INTRODUCTION 

1.1 Background 

Urban areas constitute spectrally heterogeneous land-cover classes and call for the 

application of multiple techniques and classification methods to produce an accurate land 

cover land-use (LCLU) map. Policy makers and urban developers need up-to-date, 

precise data in which to base decisions and regulations on as well as guidelines as to 

where new development should occur in relation to existing features on the surrounding 

landscape.  High resolution, up-to-date land cover data, particularly in rapidly developing 

cities, is often unavailable.  To solve this deficiency in information availability, aerial 

remote sensing is a suitable and effective source for urban land cover mapping.  

Urban areas are one of the fastest growing and constantly changing land cover 

types in the world. Recent efforts to build, develop, and create environmentally 

sustainable cities equipped to adequately provide suitable living environments for the 

rapidly growing urban populations are exacerbating the rate of change in which we are 

witnessing across these urban landscapes. For example, there has been a recent move 

towards mitigating urban heat island effects by using newly developed roofing materials 

designed to reflect more sunlight than the more traditionally used dark building material   

(Kleerekoper et al., 2012).  There has also been an increase in the amount of urban trees 

added to urban areas to provide for more temperature regulating effects (Solecki et al., 

2005). Although these changes to urban landscapes are generally considered to be 
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beneficial, it has changed the way that urban features on the landscape are classified. For 

example, a green roof or living roof is partially or completely covered with vegetation 

and could potentially be misclassified as some type of vegetated area as opposed to a 

building. Efforts to develop new methods or alter existing techniques are warranted to 

create accurate and high-resolution land cover maps, especially for these urban areas.  

1.2 Problem Statement 

The current literature has demonstrated that land cover classification accuracy is 

considerably improved when light detection and ranging (lidar) derived information is 

added to spectral information for the purpose of classifying land cover (Bork and Su, 

2007; Grebby et al., 2011; Mesas-Carrascosa et al., 2012).  The greatest increase in 

accuracy occurs when classifying highly variable or spectrally heterogeneous land cover 

types like those found in dense urban areas. Many studies have explored methods to 

improve the classification accuracy of urban features, such as roads and buildings. There 

have also been considerable efforts to increase the classification accuracy between plant 

species in non-urban environments; however, few studies have focused on improving the 

accuracy between urban vegetation classes. 

1.3 Objective 

The research objective is to determine if land cover classification accuracy of a 

high resolution aerial image is significantly improved when lidar derived information is 

included in the classification process. This will be determined by creating two urban land 

classification maps. Specific classes developed by the (USGS) Land Classification 

System will be used.  The image only and image plus lidar classification accuracy 
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assessments will be compared to determine if the addition of lidar data improves product 

accuracy.   

1.4 Justification 

 Recent studies have demonstrated the advantages of combining imagery and lidar 

data to perform urban land cover classifications, especially for providing increased class 

separability between spectrally similar classes like buildings and roads (Chen et al., 2009; 

Mallet et al., 2008; Huang et al., 2011).   Efforts have been made to improve the 

classification of individual tree species using this combinative approach (Bork and Su, 

2007; Popescu and Zhao, 2008; Ke et al., 2010; Dalponte et al., 2012; Cho et al., 2012; 

Heinzel and Coch, 2012). However, studies to improve the accuracy of urban vegetation 

classifications outside of the discrimination between vegetation and non-vegetation 

classes are lacking, and thus the justification for this research.   

Numerous forest related studies (Song et al., 2002; Brandtberg et al., 2003; 

Holmgren and Persson, 2004; Donoghue et al., 2007;  Kim et al., 2009; Heinzie and 

Koch, 2012; Yao et al., 2012) have demonstrated the usefulness of lidar data to provide 

further discrimination between spectrally similar vegetation species, especially when 

combined with image data (Dalponte et al., 2012).  Therefore,  it is reasonable to assume 

that the use of this integrative approach will increase the class separability between urban 

vegetation. 
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2.0 LITERATURE REVIEW 

2.1 Multispectral Image Classification 

 

Advances in the classification of multispectral imagery for the creation of land 

cover land-use (LCLU) maps emerged in the early 1990s and gained recognition as a 

powerful research tool across a range of disciplines. Some studies focused on research 

relating to forest cover mapping (Niemann, 1993; Danson et al., 1993; Adams et al., 

1995;  Martin et al., 1998 ), vegetation mapping (Pickup et al. and Henebry, 1993;  Pons 

and Solé-Sugrañes, 1994; Muller, 1997;  Kadmon and Harari-Kremer, 1999),  

geomorphology (Singh et al., 1993; Mantovani et al., 1996; Walsh et al., 1998; Froger et 

al., 1998) and urban development (Eyton, 1993, Aniello et al., 1995; Barnsly and Barr, 

1997; Ridd, 1998).  By the start of the twenty-first century, a rapid increase in the number 

of satellites capable of acquiring multispectral image data allowed for even further 

expansion of land cover land-use research.  For example, during the year 2000, sensors 

such as ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) 

and MODIS (Moderate Resolution Imaging Spectroradiometer) which are both mounted 

on the Terra satellite platform, as well as Hyperion and ALI (Advanced Land Imager) 

mounted on the EO-1 (Earth Observation 1) platform all became available sources for 

multispectral image acquisition. In 2001, MODIS mounted on the Aqua platform was 

also launched. 
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Over the last 12 years, extensive research into topics such as floodplain mapping 

(Straatsman and Baptist, 2008; Chormanski et al., 2011), urban sprawl (Jacquin et al., 

2008; Schneider 2012) , urban heat island effects (Weng et al., 2004; Onishi et al., 2010), 

habitat modeling (Stow et al., 2008; Hamada et al., 2011),  and climate change (Raup et 

al., 2005; Katra and Lancaster, 2008)  have emerged as common research themes with 

regard to multispectral image classification. For example, Forzieri et al. (2012) performed 

multiple types of land classifications on SPOT-5 multispectral image data in order to 

identify and quantify the vegetation hydrodynamic parameters across the landscape.  The 

authors successfully showed that their new method of floodplain roughness 

parameterization could provide accurate hydraulic output and enhance the roughness 

estimation.  Shahraki et al. (2011) used Landsat image data acquired on four different 

dates to quantify urban sprawl that has occurred over the last 35 years in the Iranian city 

of Yazd. Landsat TM images were used by Guo et al. (2012) to classify and quantify the 

magnitude of urbanization in Beijing, China based on land cover-specific surface 

temperatures.  Culbert et al. (2012) successfully model avian species biodiversity across 

the Midwestern United States based on multispectral image texture parameters.  All-in-

all, a diverse set of basic and applied research has emerged due to the availability of 

multispectral image datasets. 

2.2 Lidar-based Classification 

On the other hand, lidar data provide georeferenced, irregularly distributed 3D 

point clouds of high altimetric accuracy (Guo et al., 2011). Similar to radar, lidar is able 

to record 3D information about topographic features, structures, and landscapes.  Lidar 

systems can provide either single laser pulse returns or multiple returns that correspond to 
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the respective object’s height and structural characteristics. In addition to the multiple 

return lidar systems, full-waveform (FW) systems are able to record one dimensional 

signals that represent a continuous arrangement of echoes caused by reflections from 

different targets (Chehata, 2009). Waveform systems offer more information about the 

target feature and the physical characteristics of the area surrounding it since the entire 

return signal is digitized. 

Research involving the use of lidar data for classification includes the mapping of 

coral reefs and shallow water habitat modeling (Wedding et al., 2008; Chust et al. 2010; 

Collin et al., 2010; Tulldahl and Wikström, 2012) of coastal environments. Continuous 

improvements to lidar systems have allowed for precise as well as increasingly affordable 

data to become available, especially over large areas. 

The use of lidar systems began with the National Aeronautics and Space 

Administration (NASA) program in the 1970s, but it was not until the implementation of 

the Global Positioning System (GPS) in the late 1980s that the accurate positioning 

needed for high-performance lidar systems became available (Renslow, 2000). Even 

then, highly accurate real-time GPS recording was not publically available until selective 

availability was turned off in 2000 by the Clinton administration. Prior to 2000, land 

classification studies using lidar data are sparse in the literature because the technology 

was not commonly available for use.  However, at present, there is no shortage of current 

research evaluating the wide range of potential usages that lidar can facilitate. 
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2.3 Lidar for Vegetation Discrimination 

Since vegetation exhibits similar spectral properties (e.g., high reflectance in the 

near infrared wavelengths and low reflectance in the blue and red wavelengths) the 

instance of class overlap and subsequent misclassification can be problematic.  Accurate 

land classification using multispectral data is variably limited to distinguishing classes 

based on only a small range of variance between the spectral properties.  This is partly 

why lidar research has progressed so rapidly in forest management-related research.  Due 

to its unique ability to measure objects on the Earth’s surface in three dimensions, lidar 

has the capability to acquire structural information about vegetation like tree height, 

crown area, and crown base height which can be used to further distinguish between 

spectrally similar vegetation types. Individual trees have a diverse crown architecture that 

depends on species, age, position within the canopy, leaf-on/leaf-off conditions, and 

position of small gaps within tree crowns (Popescu et al., 2008).    Research by 

Brandtberg et al. (2003) used indices derived from laser reflectance data as well as height 

of branches to classify three different deciduous species. Holmgren and Persson (2004) 

used two groups of variables, crown shape-based metrics and intensity-based metrics, to 

differentiate Norway spruce and Scots pine.  

 Donoghue et al. (2007) evaluated the ability of lidar data to estimate the 

proportion of species in pine/spruce mixed plantations.  They used lidar intensity to 

separate spruce and pine species and found that the coefficient of variation and lidar 

intensity were the most useful predictors of the proportion of spruce. Song et al. (2002) 

applied filters to a gridded representation of intensity data and concluded that the relative 

intensity of (leaf-on) broadleaved trees was almost twice that of conifers.  Kim et al. 
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(2009) investigated the combined use of leaf-on and leaf-off  lidar datasets for their tree 

species study. They evaluated lidar intensity values of multiple coniferous and deciduous 

tree species with different foliage characteristics, such as the presence or absence of 

foliage, and the spacing and type of foliage components within individual tree crowns. 

They also examined the relative importance of the effects of these characteristics on 

lidar-based species classification.    Heinzie and Koch (2012) tested multiple complex 

tree feature combinations derived from FW lidar data in order to determine which lidar 

derived variables were the best to maximize the classification accuracy for six different 

tree species.  Yao et al. (2012) also used FW lidar derived tree shape parameters to 

perform a species classification on deciduous and coniferous trees.  

 Ke et al. (2009) evaluated the effects of adding lidar data to multispectral data for 

the improvement of forest species classification.  They showed that combining 

multispectral and lidar data together, in both image segmentation and object-based 

classification, improved their forest classification accuracy by 20 percent compared to 

using only multispectral data.   

 

2.4 Urban Classification with Multispectral and Lidar Data 

Research focused on urban feature extraction via multi-source remotely sensed 

data fusion emerged in the literature in the early 1990s. For example,  Haala (1994) 

performed feature extraction of buildings by fusing lidar and multispectral data together.  

Later, Haala (1997) conducted a pixel-based unsupervised urban land use classification 

using  Geographic Information Systems (GIS), high spatial resolution stereo and multi-

spectral images recorded from a Digital Photogrammetric Assembly (DPA) scanning 

airborne sensor.  In 2002, McIntosh and Krupnik used the addition of aerial imagery to 
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create a refined digital surface model (DSM) originally created from lidar data alone in 

an attempt to increase the accuracy.  By merging the edge information from the imagery 

with the lidar data, the authors were able to create a better representation of surface 

discontinuities and improved surface accuracies. 

In an effort to address these issues that are indicative of complex urban feature 

classification, a surge in lidar related analyses and techniques emerged during the 

beginning of the twenty first century.  The most widely used application of lidar data is to 

generate digital elevation models (DEMs) (Liu, 2008) which are 3D representations of a 

terrain surface. Two of the most commonly used DEMs are digital surface models 

(DSMs) which represent the terrain including all objects on it (e.g., buildings and 

vegetation) and digital terrain models (DTMs) which represent the terrain without surface 

features.    

 Axelsson (2000) and Vosselman and Mass (2001) both evaluated classification 

approaches that use a Triangulated Irregular Network (TIN) data structure to create 

DEMs for urban areas. Axelsson’s work focused on the creation of DEMs of very high 

density and accuracy by applying an adaptive TIN model designed for use on very 

discontinuous surfaces such as dense cities. Vosselman and Mass (2001) evaluated the 

use of a slope-based filtering algorithm that uses mathematical morphology capable of 

filtering out vegetation points while keeping building points. Ameri (2000) and Al-

Harthy and Bethel (2002) explored building extraction techniques using the difference 

between DSMs and DTMs.  
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  Zhou (2004) combined lidar data and orthoimagery for urban 3D digital building 

model (DBM), DSM and DTM generation.  Initially, an image processing for edge 

detection was conducted from orthoimagery; image interpretation was performed to 

extract the buildings, trees, roads, etc., and then to integrate the image knowledge into 

lidar point cloud for the generation of a 3D DSM, DTM, and DBM. 

 In  Gross et al. (2007) and Wagner et al. (2008), geometric and FW lidar features 

were derived from a FW 3D point cloud and used to distinguish between vegetation and 

non-vegetation points within urban areas.  Rutzinger et al. (2008) presented an object-

based analysis of a FW lidar point cloud to extract urban vegetation. First, the 3D point 

cloud was slightly over-segmented using a seeded region growing algorithm based on the 

echo width.  Each segment was then statistically analyzed in order to compute selected 

point features which included amplitude, echo width, and geometrical attributes. A 

supervised classification per statistical tree decision was then applied. 

 Huang et al. (2011) used lidar data as a complementary source to spectral signals 

to improve the accuracy of land cover mapping in urban areas. They used feature 

extraction algorithms combined with lidar-derived spectral information in their study.  

Hofle and Hollaus (2010) calculated an enhanced echo ratio feature which resulted in 

improved vegetation discrimination. Mallet et al. (2008) improved a rule-based 

classification using fix echo amplitude and width to differentiate non-vegetation features 

such as roof edges, building walls, and power lines. 

Guo et al. (2011) examined the relevance of multi-source data composed of lidar 

features (multiple return and FW) and multispectral RGB bands for mapping urban 
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scenes using the Random Forest classifier algorithm. In this study, four classes were 

created; buildings, vegetation, artificial ground, and natural ground and the Random 

Forests classifier algorithm was used.  According to the authors, this algorithm is 

appropriate for use with a multi-source framework and is able to process large datasets. 

Chen (2009) compared the accuracy between classifying urban landscapes using a 

traditional pixel-based approach with an approach that integrated the addition of lidar 

derived height data. The authors’ goal was focused on increasing the accuracy of the 

building and road classes.  In total, nine land cover classes (water, shadow, vegetation, 

shrub, and grassland, high building, low building, road, and vacant land) used which were 

extracted one by one using different segmentation parameters.  For example, from 

Quickbird imagery, Normalized Difference Water Index (NDWI), Seasonal Shift Index 

(SSI), and Normalized Difference Vegetation Index (NDVI) were used to delineate 

shadow, water, shrub, grassland, vacant land, and road pixels and a DTM and DSM 

created from the lidar data were used to identify high buildings, low buildings, and roads.  

The comparison of the classification accuracy between these methods resulted in an 

overall accuracy increase from 69.12 percent (pixel-based approach) to 89.40 percent 

(pixel-based approach combined with lidar height data). 

Several studies have used the fusion of lidar derived canopy height models 

(CHMs) with multispectral data to improve the separability between rooftops, roads, and 

buildings that are commonly misclassified due to their similar spectral and spatial 

characteristics (Lee and Shan, 2003), (Alanso and Malpica, 2008), and (Rottensteiner et 

al., 2005). The inclusion of canopy surface models (CSM) have also proved useful but 

require a labor intensive process of classifying lidar point data into ground and non-
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ground returns (Lefsky et al., 2002; Meng et al., 2010).  Hartfeild et al. (2011)  used a 

lidar derived CHM, lidar intensity and height data along with multispectral image data for  

an urban land classification, but also expanded their study to include the classification of 

seven other classes for the purpose of modeling suitable urban mosquito habitat. In their 

study, Classification and Regression Tree (CART) analyses were used to compare the 

enhancements and accuracy of a multi-sensor urban land cover classification but more 

specifically to evaluate how adding elevation and attribute height data extracted from the 

lidar data would help to discriminate attributes such as buildings, roads, and the often dry 

streams and waterways. The results of their study demonstrated that the combined use of 

lidar data and multispectral imagery along with NDVI data improved the accuracy of 

their urban land classification.  Lastly, Charaniya et al. (2004), combined lidar intensity 

data, a digital elevation model (DEM), and black and white photography to successfully 

distinguish between grass, trees, asphalt, and rooftops.
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3.0 METHODOLOGY 

3.1 Study Area 

The study area focuses on the north-east section of downtown San Antonio which 

is located in Bexar County, Texas (Figure 1). There is a mixture of broad-leaf evergreen 

and deciduous trees. There is only one predominant broad-leaf evergreen species, which 

is the Live Oak, within the study area with the occasional Mexican White Live Oak. 

Within the deciduous forest class there are over ten deciduous tree species dispersed 

throughout the study area which are listed in Table 1.  
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Figure 1. Study area in north east downtown San Antonio, Texas 
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Table 1. Land-cover class descriptions for the north east section of San Antonio 
 

Land Cover Class Description 

Developed Includes highly developed areas where people reside 

or work in high numbers. Examples include 

apartment complexes, row houses and 

commercial/industrial. Impervious surfaces account 

for 80 to100 percent of the total cover. 

 

Developed Open-space Includes areas with a mixture of some constructed 

materials, but mostly vegetation in the form of lawn 

grasses. Impervious surfaces account for less than 20 

percent of total cover. These areas most commonly 

include large-lot single-family housing units, parks, 

golf courses, and vegetation planted in developed 

settings for recreation, erosion control, or aesthetic 

purposes. 

 

Broad-leaved Evergreen Forest Area dominated by evergreen trees that have well-

defined leaf blades and are relatively wide in shape. 

Example species include Quercus virginiana var. 

fusiformis.  

 

Cold Deciduous Forest Area dominated by trees that shed their leaves as a 

strategy to avoid seasonal periods of low 

temperature. Example species include: Platanus 

mexicana, Lagerstromia indica, Carya illinoensis, 

Quercus macrocarpra, Quercus muehlenbergi, 

Quercus laceyl, Quercus buckleyi, Juglans 

microcarpa, Ulmus crassfolia, Acer grandidentatum, 

Prosopis glandulosa  

Mixed Forest Areas dominated by trees where neither deciduous 

nor evergreen species represent more than 75% of the 

canopy cover. 

 

Shadow Shadows 
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3.2 Site Selection 

 The study site selection was based on the presence of a wide variety of urban 

features and urban vegetation types located within this study area. The land cover classes 

used here are based on the National Land Cover Datasets Level II classification system 

and include developed, developed open-space, broad-leafed evergreen forest, cold-

deciduous forest, mixed forest, and shadow. A detailed description of these land cover 

classes is provided in Table 1.  The study area covers a total area of 206 hectares. 

 

3.3 Lidar Data Collection and Processing 

The lidar data used for this study were commissioned by the Texas Water 

Development Board (TWDB) in conjunction with the San Antonio River Authority 

(SARA) for the purpose of supporting flood mapping throughout Bexar County.  It was 

collected in October of 2010 during leaf-on season.  High density lidar data were 

acquired over the study area with a Terrapoint Mid-Range sensor mounted to a Pipper 

Navaho airplane.  The lidar acquisition parameters are provided in Table 2. The lidar 

vendor, Terrapoint, provided raw lidar data consisting of XYZ coordinates, off-nadir 

angle, and intensity information for all lidar returns within the area. Raw elevation 

measurements were tested against 18 Terrapoint-acquired static GPS points based on the 

National Standard for Spatial Data Accuracy (NSSDA) standards.  The classification of 

the lidar mass point cloud into ground and non-ground was also provided by the vendor 

along with a gridded DEM, hydro flattening breaklines, contours, and intensity 

information.  The generation and calibration of the lidar data was done using Terrapoint's 
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proprietary laser post-processing software for Midrange data.  This software combines 

the raw laser range and angle data file with the finalized GPS/IMU trajectory 

information.
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Table 2. Lidar acquisition parameters 
 

Acquisition Parameters 

Collection date October 2010 

Aircraft Piper Navaho 

Sensor Terrapoint Mid-Range 

Flight height above mean terrain (m) 600 

Laser pulse density/ (m²) 5 

Laser pulse rate (kHz) 150 

Swath width (m) 692 

Scan angle from nadir (°) ±30 

Horizontal accuracy (m) 0.01 

Vertical Accuracy (m) 0.19 
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3.4 NAIP Image Data and Processing 

 

Imagery used for this study came from the National Agriculture Imagery Program 

(NAIP).  NAIP acquires one meter resolution digital orthoimagery during the agricultural 

growing seasons in the continental U.S.  A primary goal of the NAIP program is to 

enable the availability of orthoimagery within one year of acquisition, however, for the 

purpose of this study, imagery that was acquired in May 2010 was used as it temporally 

coincided with the 2010 lidar data acquisition.  

One meter aerial image data were collected using a Leica ADS80 digital sensor 

and then downloaded using Leica XPro software.  The raw imagery was then 

georeferenced using GPS/INS 200Hz exterior orientation (EO) information (x/y/z/o/p/k). 

Tie points in three bands/looks (Back/Nadir/Forward) for each flight line were measured 

using Leica Xpro software. The resulting point data and EO data was then used to 

perform a full bundle adjustment.  Any blunders were removed, and weak areas were 

manually enhanced to ensure good coverage of points.  Once the cleaned point data and 

point coverage was considered acceptable, photo-identifiable GPS-surveyed ground 

control points were introduced in the corners and center of the block being adjusted.  The 

output from this bundle adjustment process is the revised exterior orientation data for the 

sensor with any GPS/INS, datum, and sensor calibration errors modeled and compensated 

for.  Using this revised EO data orthorectified image strips are created using the USGS 

NED DEM.  The orthorectified strips were overlaid with each other and with the ground 

control to check for accuracy.  Once the accuracy of the orthorectified image strips were 

validated , they were processed with a NWG proprietary dodging package that 
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compensates for the bi-directional reflectance function that is caused by the sun's position 

relative to the image area.  This compensated imagery is then imported into Inpho's 

OrthoVista 4.4 package which is then used for the final radiometric balance, mosaic, and 

digital ortho quarter quad (DOQQ) sheet creation (Figure 2).  These final DOQQ sheets 

contain a 300 m minimum buffer and are edge inspected to the existing mosaicked 

DOQQ sheets for accuracy validation.  Each individual image tile within the mosaic 

covers a 3.75 x 3.75 minute quarter quadrangle. The DOQQs are delivered in GeoTIFF 

format and the area corresponds to the USGS topographic quadrangles. The positional 

accuracy of the NAIP imagery has an overall root mean square error (RMSE) of 1.24 

meters (USDA-FSA-APFO Aerial Photography Field Office, 2010).
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Figure 2. Orthoimagery following the standard USGS Quarter Quad Grid
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3.5 Analysis Procedures 

Using ENVI EX, three object-oriented classifications were performed and 

presented here; imagery alone, imagery plus lidar-derived height information, and 

imagery plus lidar-derived intensity information.  ENVI EX is an object-oriented 

classification software that allows for feature extraction from spectral and spatial 

datasets. It segments an image into regions of pixels by evaluating the attributes of each 

region to create distinct objects, and then classifies the objects to extract features of 

interest.  The alternative, manual location and digitization of features in an image is 

tedious and time consuming, especially over large areas. Additionally, traditional pixel-

based extraction approaches are limited to classifying based solely on spectral 

characteristics of an image which can be less accurate when using multispectral images 

that are highly heterogeneous like urban areas. The automated workflow of ENVI EX 

(Figure 3) leads you through each step of the feature extraction process with dialog boxes 

and preset, but adjustable parameters.  Following image segmentation, a choice is given 

to either select specific training objects in the image that represent each class or a rule-set 

can be created that specifies certain parameters that an object must have in order to be 

assigned to a class. For the purposes of this study the former is used. ENVI EX also 

allows you to input existing GIS or field data to supplement the classification. 
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Figure 3.  Workflow of the classifications performed in ENVI EX taken from the ENVI 

EX User Guide
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 The workflow of the object-oriented classification used here consists of two 

primary steps: 1) creation of image objects using an image segmentation algorithm that 

incorporates user-defined scale and merge parameters and 2) supervised classification of 

the image using the object-based metrics along with any additional ancillary data that the 

user includes. The creation of image objects in ENVI EX was divided into four steps: 

Segment, Merge, Refine, and Compute Attributes.  

 For part two, all of the object attributes computed for each layer will be used for 

the classification unless specified otherwise by the user. Not all calculated attributes are 

useful when distinguishing between objects, and the resulting classification may not turn 

out as accurate if all attributes were used due to the noise introduced by extraneous 

attributes.  ENVI EX provides the option to either manually select the desired attributes 

to use in the classification, or to “Auto Select Attributes” which is especially useful if you 

are dealing with a large number of objects. This specification can be done during the 

supervised classification part by selecting the “Attributes” tab followed by the “Auto 

Select Attributes” tab.  

 From here supervised classification was performed using carefully selected 

training data of each land cover type.  The first classification was performed on the 

imagery alone. The scale was set to 30 with a merge level of 77.7. In ENVI EX, the scale 

parameter determines the size of the segments that are created on your image to delineate 

similar groups of pixels that represent the different objects on the landscape. The merge 

parameter is then used to group segments with adjacent segments that share the same 

spectral, spatial, and textural characteristics. This helps to mitigate any over-
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segmentation. The specific scale and merge values used here were determined through a 

trial and error process in order to determine the best way to achieve individual tree crown 

delineation for this particular study site.  These parameters were used on all three of the 

classifications performed here for comparison purposes. In other words, only the image 

bands were used as input layers in the segmentation and merge process. The lidar layers 

for the subsequent classifications, including intensity data and height data, were added 

after the image was segmented into objects.  

 A k-Nearest Neighbor (k-NN) algorithm was used to assign training segments to 

feature classes.  The k-NN classification method considers the Euclidean distance in n-

dimensional space of the object to the elements in the training data, where n is defined by 

the number of object attributes used during classification. This method is usually more 

robust than a traditional nearest-neighbor classifier, since the k-nearest distances are used 

as a majority vote to establish which class the object belongs to. The k-NN method is 

considerably less sensitive to outliers and noise in the dataset and typically produces a 

more accurate classification result compared with traditional nearest-neighbor methods 

(Hsu et. al., 2007).  

 

 3.6 Validation Procedures  

 Remote sensing image classification requires an assement of classification 

accuracy.  Reference data included field visits and high resolution Google Earth imagery.   

The verification of vegetation types was completed  in situ while the verification of 
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developed features was accomplished using Google Earth imagery.  To assess the 

accuracy of the final classifications, sample points were selected using a stratified 

random sampling design, stratified by land cover class. The number of sample points was 

calculated using the following equation based on multinomial probability distribution 

(Jensen, 2005). 

 

  
         

   
                                                                                                                                        (1) 

where N = number of samples, Π
i 
 is the proportion of a population (number of objects) in 

the ith class out of k classes with the proportion closest to 50% (in this case urban), bi   is 

the desired precision (10%), B is the upper (a/k ) x 100
th

 percentile of the Chi-square (x²) 

distribution with one degree of freedom, and k is the number of classes.  To achieve a 

90% desired level of confidence and 10 % precision (bi) of 10%, 150 samples between 

six classes (25 per class) were required.      

Currently, the standard for reporting classification accuracy assessment results 

focuses on the confusion (or error) matrix, which summarizes the comparison of map 

class counts with reference class counts. A confusion matrix was created for each of the  

classification maps. These three matrices were used to to provide a basic description of 

the classification map accuracies including  calculations of  producer’s accuracy 

(omission error), user’s accuracy (commission error), and  overall accuracy (Table 4).   

The producer’s accuracy refers to the percentage of segments of a certain land cover class 

that are correctly classified as that land cover class, while the user’s accuracy refers to the 

probability that a segment classified on the map actually represents that category on the 
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ground.   The user and producer accuracies for any given class typically are not the same 

(Jensen, 2005).  

 A comparison of accuracies between the three maps based on the Kappa 

coefficient of agreement (K
^
) for each classification was also performed. This analysis is 

based on the comparison of the predicted and actual class labels for each case in a 

reference set and can be calculated from Equation 2. 

   
     

    
                                                    (2) 

where pₒ is the proportion of cases in agreement (i.e., correctly classified segments) and 

Pc is the proportion of agreement that is expected by chance. The calculated coefficient 

provides an estimate of the accuracy of the map which together with that derived from 

another map is the basis of most map comparisons (Foody, 2004).  

This comparison also aims to establish whether or not the difference between the 

classification results produced can be inferred to indicate a statistically significant 

difference between the associated population parameters of accuracy. Significant 

differences in Kappa coefficients of agreement were tested by calculating a z score 

  
         

√        
         

  
                                                                       (3) 

where the numerator represents the difference between Kappa coefficients for two 

different maps, k1 and k2, and the denominator represents the square root of the sum of 

estimated variances of the two Kappa coefficients.    To determine if there is a significant 
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difference between two Kappa coefficients (two-sided test), the null hypothesis of no 

significant difference would be rejected at the widely used 5 percent level of significance 

(α = 0.05) if the absolute value of z is greater than 1.96 (Congalton et al., 1983; 

Rosenfield and Fitzpatrick-Lins, 1986; Congalton and Green, 1999).
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Table 3. Values calculated from the information provided by the confusion matrix 
 

Overall Accuracy    (# samples correctly classified) / (total # of samples) 

Producer’s Accuracy (# of samples correctly classified as class A) / (# ground reference 

samples in class A) 

User’s Accuracy (# of samples correctly classified as class A) / (total # of samples 

classified as class A) 
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4.0 RESULTS 

 The classification map using imagery alone is provided in Figures 4. The 

classification map using imagery and height data is provided in Figure 5, and the 

classification map using imagery and intensity data is provided in Figure 6. The accuracy 

results of all three classifications are summarized in Table 4. These z score calculations 

are provided in Table 5.  Interestingly, adding lidar height information to the image data 

did not increase but decreased the overall classification accuracy.  However, adding lidar 

intensity information did improve the overall classification. Urban vegetation 

classification using imagery alone resulted in an 83.89 percent overall accuracy.  In 

comparison, imagery plus lidar height data resulted in an overall accuracy of 82.78 

percent, and imagery plus intensity information resulted in an overall accuracy of 88.33 

percent. 

 Adding lidar intensity to the classification did increase the overall accuracy by 

4.44 percent, however, decreased the Kappa statistic of the broad-leafed evergreen class 

by 3.18 percent.  Adding height to the classification actually decreased the overall 

classification accuracy by 1.11 percent but increased the Kappa statistic of the broad-leaf 

evergreen and mixed forest classes by 12.56 percent and 3.94 percent respectively.  
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Figure 4. Classification map produced from imagery alone 
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Figure 5. Classification map produced from imagery plus height information 
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Figure 6. Classification map produced from imagery plus intensity information 
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Table 4. Accuracy assessment results for all three classifications performed for this study 

 
Classification using imagery alone 

 

Class name 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

KAPPA 

Statistic 

(%)
 

 

Overall KAPPA 

Statistic 

80.67% Developed 96.55 93.33 92.05 

Developed Open-space 75.00 90.00 87.50 

Broad-leafed Evergreen 100 56.67 52.15 Overall 

Classification 

Accuracy  

83.89% 

Cold Deciduous 67.57 83.33 79.02 

Mixed Forest 78.13 83.33 79.73 

Shadow 100 96.67 96.03 

 

 

Classification using imagery and lidar derived height information  

 

Class name 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

KAPPA  

Statistic 

(%)
 

 

Overall KAPPA 

Statistic 

79.33% Developed 100 100 100 

Developed Open-space 79.31 76.67 72.19 

Broad-leafed Evergreen 77.78 70.00 64.71 Overall 

Classification 

Accuracy  

82.78% 

Cold Deciduous 63.64 70.00 63.27 

Mixed Forest 78.79 86.67 83.67 

Shadow 100     93.33 92.11 

 

Classification using imagery and lidar intensity information 

 

Class name 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

KAPPA 

Statistic 

(%)
 

 

Overall KAPPA 

Statistic 

86.00% Developed 100 96.67 96.03 

Developed Open-space 78.95 100 100  

Overall 

Classification 

Accuracy  

88.33% 

Broad-leafed Evergreen 85.71 60 54.72 

Cold Deciduous 77.42 80 75.84 

Mixed Forest 96.55 93.33 92.05 

Shadow 93.75 100 100 

  



35 
 

 

 

Table 5. Kappa Z-tests used to determine if Kappa values from two classifications are 

significantly different from each other (Congalton and Green, 2008). The null hypothesis 

is rejected if the Z-statistic is greater than the critical value (1.96 for a 95% confidence 

level). The p-values for the Z-scores reported here correspond to overall Kappa values for 

the classifications. 

Class Imagery alone 

(K1) 

Imagery + Intensity 

(K2) 

Z score P(Z<=z) two-tail 

Developed 1 0.9205 1.0864  

 

 

p value =  0.84 

Developed 

Open-space 

0.7219 0.8750 0.8250 

Broad-leafed 

Evergreen 

0.6471 0.5215 1.2408 

Deciduous 0.6327 0.7902 0.8007 

Mixed 0.8367 0.7973 1.0494 

Shadow 0.9211 0.9603 0.9592 

     

     

     

Class Imagery 

Alone(K1) 

Imagery + Height 

(K2) 

Z score P(Z<=z) two-tail 

Developed 1 0.9603 1.0413  

 

 

p value = 0.46 

Developed 

Open-space 

0.7219 1 0.7219 

Broad-leafed 

Evergreen 

0.6471 0.5472 1.1826 

Deciduous 0.6327 0.7584 0.8343 

Mixed 0.8367 0.9205 0.9090 

Shadow 0.9211 1 0.9211 
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5.0 DISCUSSION 

5.1 Segmentation and image classification  

 The segmentation scale parameter used here was based only on the image bands 

for all three classifications.  Since the scale parameter is the most important factor in 

determining the object size and shape which in turn decides the maximum heterogeneity 

allowed between image objects (Chen et al., 2009),  it could be argued that segmentation 

scale parameters based on additional input layers ( i.e., height and intensity), could 

potentially add to the accuracy of these classifications. For example, in Ke et al. (2010), 

three types of segmentation schemes were evaluated for the purpose of determining 

which would provide the best object-oriented classification results for various tree types 

including six different deciduous species and four different coniferous species. They 

found that classification based solely on objects created from spectral metrics, acquired 

from high resolution multispectral imagery, produced less accurate results than using 

object-oriented schemes that were based on both spectral and lidar data combined.  They 

found specifically that the object-oriented scheme that integrated spectral data, lidar 

height metrics, and lidar topographic metrics resulted in the highest forest classification 

accuracies.  The authors also noted that using lidar-derived topographic and height 
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information helped reduce the large amounts of within class spectral variation due to 

relief displacement and the effects of shadows.  

 

5.2 Influence of adding lidar height and intensity information 

 The overall accuracy and Kappa statistic of the classification using both imagery 

and lidar height information changed very little from the classification using imagery 

alone. Using the height layer as input did increase Kappa statistic of the broad-leaf 

evergreen class and the mixed forest class from 52.15 percent to 64.71 percent and 79.73 

percent to 83.67 percent respectively.  However the decrease in Kappa statistic of the 

deciduous class from 79.02 percent to 63.2 percent (a decrease of 15.75 percent) 

averaged out the increases of those two classes resulting in very little change in overall 

accuracy between these two classifications. The large decrease in the deciduous class 

accuracy following the addition of height information could be due to the fact that there 

are close to  a dozen types of deciduous trees within this study area. Of the different 

species of deciduous trees in this study area, four (Quercus macrocarpra, Quercus 

muehlenbergi, Platanus Mexican, and Carya illinoensis) have a mature canopy height of 

45 feet, one (Quercus buckleyi) has a mature canopy height of 35 feet, five (Ulmus 

crassfolia, Acer grandidentatum, Prosopis glandulosa, Quercus laceyl, and Juglans 

microcarpa) have a mature canopy height of 30 feet, and one (Lagerstroemia indica) has 

a mature canopy height of 20 feet. The wide range in maximum canopy heights between 

the deciduous species could be a source of classification error.  Additionally, if the 

canopy structures of these deciduous trees have a wide range in variation of how their 

branches are spread and organized, it would make sense that adding a height layer 
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containing the coefficient of variation to the image classification might confuse the 

identification of this class.  

 The specific collection date of the lidar collected over this study area was early 

October before the leaves on the trees in this particular region fall off. This may have in 

turn affected the accuracy of the DEMs from which the height calculations used in the 

classification were based on. In two different studies done by Hodgson et al. (2003) and 

Hodgdon et al. (2005), it was determined that land cover, in particular higher vegetation 

types (e.g. forest canopy), strongly influence the accuracy of the lidar elevation. The 

authors in both studies established a correlation between the density of ground returns for 

various land cover types and the amount of error in elevation. The further the mean 

distance between ground returns for each class, the higher the error is in elevation for that 

class. Tree canopy cover influences the penetration rate of the lidar which consequently 

confuses the weeding algorithms used to classify the ground points (Hodgdon, 2003) 

which in turn leads to less accurate DEMs.  This could have contributed to the decrease in 

accuracy of the deciduous classes following the addition of height information due to the 

broad range in tree heights of the various deciduous species. Since there is only one 

dominant type of broad-leafed evergreen species in this study area, any error in elevation 

calculations would arguably be consistent over all broad-leafed evergreens allowing the 

software to identify a specific height pattern to associate with that class. This could 

explain why adding height information increased the accuracy of the broad-leafed 

evergreen class but decreased the deciduous class.    
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 Using leaf-on lidar may have also decreased the value of the additional 

information that lidar could potentially add to the classification. If lidar acquired during 

January or February was used, it may have provided the type of information needed to 

distinguish between deciduous trees from broad-leafed evergreen trees. If further break-

down of the deciduous class was explored, then using leaf-off data could be more useful 

as the vertical distribution, configuration and features of the leaf-off branches within each 

tree crown has been shown to be species specific (Brandtburg, 2003).  Brandtburg used 

common statistical measurements calculated from lidar height data to evaluate the 

difference between the vertical distributions of leaf-off branches of three different 

deciduous tree species.  It could also be argued that using imagery acquired during those 

leaf-off months would have had the same effect as using leaf-off lidar data as far as 

separating broad-leaf evergreen from deciduous trees. In fact, using imagery collected 

during the leaf-off time of year might eliminate the need for adding lidar to the study in 

the first place because there would potentially be a wider range of spectral, spatial and 

textural variation between deciduous trees and broad-leaf evergreen trees.  Lidar and 

aerial imagery are both expensive forms of data to acquire and often researchers use what 

data is available for their area of interest which is the case here. Since the NAIP imagery 

was acquired during the leaf-on period for the trees in this region, using lidar acquired 

during the leaf-off might have provided better separation between the deciduous class and 

the broad-leafed evergreen class.  

  The addition of intensity information to the classification increased the overall 

accuracy and kappa statistic by 4.40 percent and 5.33 percent respectively. Most of this 

increase was observed in the mixed forest class which improved from a kappa statistic of 
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79.73 percent to a 92.05 percent (a 12.32 percent increase).  This considerable increase 

could be due to the increased range of values within this class that the addition of 

intensity information provided for  each sample object that the image data alone did not 

provide.  

 Some studies have used lidar information to classify different tree types based on 

crown shape and or structure (Popescu and Zhao, 2008; Kim et al., 2011; Li et al., 2012), 

however, in this particular study area, there are many man-made structures and human-

behaviors that may influence and/or change the natural shape and structure of tree 

crowns, like stylistic pruning, power-line interference, adjacent buildings, asphalt, etc.  

This presents a challenge to establish a consistent pattern that can then be associated with 

any one tree type for the purpose of classification.   

 There are several parameters that through further evaluation and or adjustment 

(ie., segmentation scale, segmentation based on additional input layers,  or an increased 

number of height statistics used) could potentially improve the results here.   This study is 

limited to how the coefficient of variation differs between broad-leaf evergreen class and 

the deciduous class.   This statistic alone may not be sufficient to do distinguish between 

the two classes, especially when dealing with such a large number of structurally 

different tree species within the deciduous class and the potential outside factors 

influencing shape, structure and growth patterns of urban trees.  

 Of the studies described above that have successfully used height information to 

improve classifications of various tree types, none of them have dealt with the 

classification of deciduous trees and broad-leaf evergreen trees where there are close to a  
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dozen species of one type of tree (ie deciduous) and only one predominant species of the 

other type of tree (ie, broad-leaf evergreen). Further improvement to this classification 

might be possible if the deciduous class was broken down into individual species. 

Otherwise, it might be that the range in structural position of the leaves and branches 

within the deciduous class is just too wide for a unique pattern to be determined and then 

used in assigning trees to the deciduous class.    The use of additional statistics could also 

be explored to evaluate the effects on these classification results. Using only the 

coefficient of variation may not be sufficient to do distinguish between the two classes, 

especially when dealing with such a heterogeneous urban tree population.  

 Another possible source of error could be attributed to the presence of noise in the 

lidar data set as that is known to affect the accuracy of lidar measurements (Fang and 

Huang, 2004). Further work could be done to improve the results of these classifications 

by assessing the effectiveness of using different  filter algorithms to further clean the lidar 

data used here. Filtering out extremely high lidar points that were collected over power 

lines, in-flight birds,  and radio towers may provide for more accuracy in the creation of 

the vegetation class which could in turn potentially improve the image classification 

when used together.  The same could be done for extremely low points that were 

mistakenly omitted from the ground point classification done by the vendor. 

  Performing a rule based classification in ENVI EX instead of one that uses the 

training data to classify could result in an improved classification results. This method 

would likely require a little more user knowledge of the canopy shape and structure of 

each tree type in the study area in order to create meaningful rules for the software to 

base its object classifications on.  Experimenting with additional lidar layers that contain 
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different statistics calculated for each 1 square meter pixel and using as inputs into the 

image classification may improve the software’s ability to separate spectrally similar 

classes like deciduous and evergreen or even to separate the different deciduous species 

into their own class.   Further experimentation with the segmentation parameter as well as 

the merge parameters in ENVI EX which would change the shape and size of the objects 

that the respective lidar points would be associated with could also change how 

accurately the image could be classified as Ke et al. (2010) demonstrated.  

 The amount of moisture a plant receives effects the moisture content and 

chlorophyll content in their leaves which in turn affects how energy is absorbed or 

reflected within the internal leaf structure.  The variation in response between trees of the 

same class to the energy measured by the sensor can make it difficult for any definitive 

spectral or spatial characteristics to be associated with any one tree type, thus leading to 

misclassifications.  Also, in a dense urban setting, such as the one used for this research, 

outside of rainfall, the only water available to urban vegetation is from human provided 

sources or along riparian areas that maintain a consistent supply of water even in times of 

drought.  Further research into the variability of water availability between trees within 

urban areas, other than rain fall, would have to be evaluated before claims of uneven 

water distribution could be claimed as a possible cause of the extreme variation in tree 

health seen between trees of the same class. For example, in a study done by Nelson et al. 

(2000) it was determined that variation in tree canopy shape due to insects and drought 

affected how well lidar-based models could be used to accurately classify individual tree 

types. 
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6.0 CONCLUSION 

 The classification method used here has demonstrated that lidar-derived 

information did not necessarily improve the urban vegetation classification for downtown 

San Antonio when added to image data.  Adding height information to the image 

classification actually decreased the overall accuracy of the classification by 1.11. It did 

prove useful at improving the broadleaf evergreen class yet detrimental to the accuracy of 

the deciduous class. As mentioned earlier, a possible reason for this could be due to the 

large number of deciduous species with in the study area. Adding lidar-derived intensity 

information did lead to an increase in overall classification accuracy as well as a 

significant increase of to the mixed forest class.  

 The research presented here represents only a fraction of the extent that could 

potentially be covered.  Due to the two year time limitation of producing a thesis coupled 

with the steep learning curve of working with lidar and remotely sensed data, this 

research will stand to serve as a benchmark for future studies.  
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