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STRONG SOLUTIONS OF QUASILINEAR

INTEGRO-DIFFERENTIAL EQUATIONS WITH SINGULAR

KERNELS IN SEVERAL SPACE DIMENSIONS

Hans Engler

Abstract. For quasilinear integro-differential equations of the form ut−a∗A(u) =

f , where a is a scalar singular integral kernel that behaves like t−α, 1
2
≤ α < 1 and A

is a second order quasilinear elliptic operator in divergence form, solutions are found
for which A(u) is integrable over space and time.

1. Introduction

The purpose of this note is a study of quasilinear integro-differential equations
of the form

∂

∂t
u(x, t)−

∫ t

0

a(t− s) div g̃(∇u(x, s)) ds = f(x, t) (1.1)

in cylindrical domains Ω × [0, T ] ⊂ RN+1, together with zero boundary data for
u on ∂Ω × [0, T ] and initial data on Ω × {0}. Here a(·) is a scalar integral kernel
that behaves like t−α, 0 < α < 1 for t near zero. The equation occurs in the
description of simple shear motions (N = 1) and of antiplane shear (N = 2) of
certain idealized viscoelastic materials ([14]), and “power law” kernels a(t) = t−α

have been proposed elsewhere for such models ([13]). We are interested in large
time solutions without restrictions on the size of the data.

Recently, for Ω = [0, 1] ⊂ R, “strong solutions” with u2
xx integrable over Ω×[0, T ]

have been found under two different sets of assumptions, namely when α ≥ 1
2 and

0 < c ≤ g̃′(r) ≤ c′ < ∞ ([9]) and when the Laplace transform â maps the right
half plane into a sector in the right half plane, under a restriction for c

c′
that

depends on the angle of aperture of this sector ([8]). Also, weaker solutions with
only u2

x integrable can be found without restrictions for α, c, c′ ([11]), and smooth
solutions (as smooth as the data permit) can be found if 2

3
< α < 1 and only

0 < g̃′(r) ≤ C <∞ ([3]). In other work, large time solutions for small smooth data
have been constructed, weak solutions for more regular kernels have been found,
and the break-down of smooth solutions for regular kernels has been established;
see the references in [8] and [9].

1991 Mathematics Subject Classifications: 45K05.
Key words and phrases: Integro-differential equation, strong solution, singular kernel, quasilinear
c©1995 Southwest Texas State University and University of North Texas.
Submitted: December 15, 1994.
Supported by the National Science Foundation under grant # DMS - 9003543

1



2 Hans Engler EJDE–1995/02

We want to extend the results of [9] in several ways, namely by treating also
higher space dimensions and by allowing also nonlinear terms g̃ that grow poly-
nomially in their arguments, corresponding to “shear-thickening” behavior for vis-
coelastic materials. The function g̃ : RN → RN will be assumed to be “isotropic”,
i.e. to have the form g̃(ξ) = g(|ξ|2)ξ. We also use a slightly different class of inte-
gral kernels and modified assumptions for the data. The main restriction, namely
1
2 ≤ α < 1, however is not weakened in the present paper. We also give linear ex-
amples that show that more must be assumed for the data of the problem if strong
solutions are to be found for smaller values of α.

Throughout, Ω ⊂ RN is a bounded domain with a C2 - smooth boundary ∂Ω,
with exterior unit normal vector field ν : ∂Ω → SN−1. Subscripts , i denote partial
differentiation with respect to xi, 1 ≤ i ≤ N , and a subscript t is used to denote
partial differentiation with respect to t. We shall use the common symbols ∇ for
the gradient of a scalar function and for the derivative matrix of a vector field
and the symbol div for the divergence of a vector field: If φ = (φi)1≤i≤M and
ψ = (ψi)1≤i≤N are vector fields, then

∇φ = (φi,j)1≤i≤M
1≤j≤N

, divψ =
∑
i

ψi,i .

Also, ∆u = dvi∇u is the Laplacian of a scalar function u, and ∇2u is its Hessian
matrix.

The common notation for Sobolev spaces will be employed, and we write Hk

for W k,2 and Hk
0 for W k,2

0 . We also use spaces of vector-valued Hs([0, T ], V ),
for non-integer s = k + γ > 0, 0 < γ < 1, with a separable Hilbert space V .
Such spaces can be defined as complex interpolation spaces between Hk([0, T ], V )
and Hk+1([0, T ], V ) and can alternatively be characterized by the conditions that
v ∈ Hs([0, T ], V ) if and only if v(k) ∈ L2(0, T ;V ) and∫ T

0

∫ T

0

‖v(k)(t)− v(k)(τ)‖2V
|t− τ |1+2γ

dτ dt <∞ ,

see [1]. The norms of  L2(Ω,R) and L2(Ω,RN ) are denoted by ‖ · ‖, and the scalar
products on these spaces are denoted by 〈·, ·〉. Other norms on function spaces are
identified by subscripts. Euclidean norms of vectors and matrices are denoted by
| · |.

The convolution of two functions u, v that are supported on the positive half

axis is written as u ∗ v(t) =
∫ t

0
u(t − s)v(s) ds. The letter C is used for constants

whose values may be different in each occurrence and which can in principle be
estimated explicitly in terms of known quantities.

2. Main Result

Consider the quasilinear integro-differential equation

ut(x, t)−

∫ t

0

a(t− s) div
(
g(|∇u(x, s)|2)∇u(x, s)

)
ds = f(x, t) (2.1)
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in Ω× [0, T ], with initial and boundary data

u(·, 0) = u0, u∣∣∂Ω×[0,T ]
= 0 . (2.2)

The kernel a : [0, T ]→ R is assumed to be of the form

a(t) = aα(t) + c ∗ aα(t) (2.3)

with

aα(t) =
t−α

Γ(1− α)
, c ∈W 1,1([0, T ];R) (2.4)

and
1

2
< α < 1 . (2.5)

The case α = 1
2 will be discussed in section 3. We assume that the function

g : [0,∞)→ R is continuously differentiable and satisfies

g(r) + (2 + ε)rg′(r) ≥ ε > 0, rg′(r) ≤ βg(r) (2.6)

for some ε, β, for all r ≥ 0. Note that (2.6) implies that

ε ≤ g(r) ≤ g(1)rβ (2.7)

for all r ≥ 1. We define

G(r) =
1

2

∫ r

0

g(s) ds ; (2.8)

then the function r → G(r2) is strictly convex on R by (2.6). For the data, we
assume that

‖f(·, 0)‖ +

∫ T

0

‖ft(·, t)‖ dt <∞∫
Ω

G(|∇u0(x)|
2) <∞∫

Ω

|∇(g(|∇u0|
2)∇u0)|

2 <∞ . (2.9)

The main result of this note is the following.

Theorem 1. Under these assumptions, there exists a function u in

W 1,∞([0, T ], L2(Ω)) ∩ L2(0, T ;H2(Ω)) ∩H
1+α

2 ([0, T ],H1
0 (Ω))

that satisfies (2.1) in the sense of distributions and for which limt→0 u(·, t) = u0

in H1(Ω). Moreover, for some q > 1, ∇
(
g(|∇u|2)∇u

)
∈ Lq(Ω × [0, T ]), and thus

(2.1) holds in this space.

Proof. We construct Galerkin approximations, establish suitable a priori estimates,
and pass to the limit. This will yield a solution in the desired solution class. Thus
let

{ϕi
∣∣ i ≥ 1 } ⊂ L2(Ω)
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be a complete orthonormal system in L2(Ω) of eigenfunctions of the negative Lapla-
cian with zero boundary data. These functions are known to be in W 2,p(Ω)∩C∞(Ω)
for all p <∞. Let Vn = span(ϕ1, . . . , ϕn) for n = 1, 2, 3, . . . . For technical reasons,
we shall construct solutions on Ω× [0, T + 1]. Thus let T ′ = T + 1; we can extend
f and a such that all their properties still hold on the larger interval. Let fn be
a sequence in C1([0, T ′], L2(Ω)) that converges to f in W 1,1[0, T ′], L2(Ω)), and let
un ∈ C1([0, tn), Vn) be the unique maximal solution of the system

〈unt , v〉+ 〈a ∗ g(|∇u
n|2)∇un,∇v〉 = 〈fn, v〉 (2.10)

for all v ∈ Vn, with initial data defined by

〈un(0)− u0, v〉 = 0

for all v ∈ Vn. It follows from standard results on functional differential equations
([10]) that un exists and is unique for each n; possibly, tn < T ′, in which case

‖un(t)‖ → ∞ as t → tn .

It is also easy to see (by differentiating the equation) that in fact un ∈ C2((0, tn), Vn).
A Priori Estimate I. Let d ∈ W 1,1([0, T ′],R) be the resolvent kernel of c ([7]),

i.e. the function satisfying
c+ d+ c ∗ d = 0 . (2.11)

We use the notation

gn(t) = g(|∇un(·, t)|2)∇un(·, t) , gn(0) = gn0 . (2.12)

Then (2.10) is equivalent to

〈unt + d ∗ unt , v〉+ 〈aα ∗ g
n,∇v〉 = 〈fn + d ∗ fn, v〉 (2.13)

for all v ∈ Vn. We differentiate with respect to t; after some manipulations, the
result is the equation

〈untt + d(0)unt + d′ ∗ unt , v〉+ 〈aα(gn − gn0 ),∇v〉

+〈

∫ t

0

(−a′α(t− s))(gn(t)− gn(s)) ds,∇v〉 = 〈Fn(·, t), v〉 ,
(2.14)

where
Fn(·, t) = fnt (·, t) + d(0)fn(·, t) + d′ ∗ fn(·, t)− aα(t)dvi gn0 .

Note that the integral involving a′α is defined for all t, since |gn(t) − gn(s)| =
O(|t − s|), due to the differentiability of un. We now use the t-dependent test
function v = unt (·, t) ∈ Vn. The result is the identity

1

2

d

dt
‖unt (·, t)‖

2 + d(0)‖unt (·, t)‖2 + 〈d′ ∗ unt (·, t), u
n
t (·, t)〉

+aα(t)〈gn(t)− gn0 ,∇u
n
t (·, t)〉+

∫ t

0

(−a′α(t− s))〈gn(t)− gn(s),∇unt (·, t)〉 ds

= 〈Fn(·, t), unt (·, t)〉 .
(2.15)
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Now

〈gn(t)− gn(s),∇unt (·, t)〉 =
d

dt
Φn(t, s) (2.16)

where

Φn(t, s) =

∫
Ω

H(∇un(·, t),∇un(·, s)) ,

H(ξ, ζ) = G(|ξ|2)−G(|ζ|2)− (ξ − ζ)T g(|ζ|2)ζ .

(2.17)

Thus ∫ t

0

(−a′α(t− s))〈gn(t)− gn(s),∇unt (·, t)〉 ds

=
d

dt

∫ t

0

(−a′α(t− s))Φn(t, s) ds+

∫ t

0

a′′α(t− s)Φn(t, s) ds

(2.18)

and

aα(t)〈gn(t)− gn0 ,∇u
n
t (·, t)〉 =

d

dt
(aα(t)Φn(t, 0)) − a′α(t)Φn(t, 0) . (2.19)

Note that |Φn(t, s)| = O(|t − s|2); thus the integral involving a′′α(t) = t−α−2

Γ(−α−1)

converges. We insert these formulae into (2.15) and integrate with respect to t.
After a trivial estimate, the result is

1

2
‖unt (·, t)‖

2 −
1

2
‖unt (·, 0)‖

2 +

∫ t

0

(−a′α(t− s))Φn(t, s) ds+ aα(t)Φn(t, 0)

+

∫ t

0

( ∫ s

0

a′′α(s− τ)Φn(s, τ) dτ − a′α(s)Φn(s, 0)
)
ds

≤

∫ t

0

(
(‖Fn(·, s)‖ + ‖d′ ∗ unt (·, s)‖ + |d(0)|‖unt (·, s)‖)‖unt (·, s)‖

)
ds .

(2.20)

Next we note that for any ξ, ζ ∈ Rn

H(ξ, ζ) =

∫ 1

0

(1− s)(ξ − ζ)TK(ζ + s(ξ − ζ))(ξ − ζ) ds

where
K(λ) = g(|λ|2)I + 2g′(|λ|2)λλT

is the derivative matrix of the function λ → g(|λ|2)λ. By assumption (2.6),

µTK(λ)µ ≥ ε|µ|2

for all µ ∈ Rn, and thus for all ξ, ζ

H(ξ, ζ) ≥
ε

2
|ξ − ζ|2 . (2.21)

In particular,

Φn(t, s) ≥
ε

2
‖∇un(·, t)−∇un(·, s)‖2 ≥ 0 (2.22)
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for all 0 ≤ s, t ≤ T ′. Dropping now first all terms involving Φn on the left hand
side of (2.20) and applying Gronwall’s inequality shows that

sup
0≤t≤tn

‖unt (·, t)‖ ≤ C (2.23)

for some constant C that does not depend on n. Consequently, tn = T ′ for all n.
Next we return to (2.20) and infer that also

sup
0≤t≤T ′

(∫ t

0

(−a′α(t− s))Φn(t, s) ds+ aα(t)Φn(t, 0)

)
≤ C ,∫ T ′

0

(∫ s

0

a′′α(s− τ)Φn(s, τ) dτ + (−a′α(s))Φn(s, 0)

)
ds ≤ C

(2.24)

and therefore in particular

∫ T ′

0

∫ s

0

(s−τ)−α−2‖∇un(·, s)−∇un(·, τ)‖2 dτ ds+ sup
0≤t≤T ′

‖∇un(·, t)‖ ≤ C . (2.25)

The first estimate in (2.25) is equivalent to an a priori estimate inH
1+α

2 ([0, T ′],H1(Ω))
for the approximate solutions un. Finally, from (2.25), (2.24), and (2.9) we deduce
that

sup
0≤t≤T ′

∫
Ω

G(|∇un(·, t)|2) ≤ C . (2.26)

A Priori Estimate II. As in (2.11), let d be the resolvent kernel of c, and set

b = bα + d ∗ bα with bα(t) =
tα−1

Γ(α)
.

Then aα ∗ bα(t) = 1 and therefore also a ∗ b(t) = 1 for all t > 0. We form the
convolution of (2.10) with b and differentiate with respect to t. The result is the
identity

d

dt
〈b ∗ unt (·, t), v〉 + 〈g

n(t),∇v〉 = 〈b(t)fn(·, 0) + b ∗ fnt (·, t), v〉 (2.27)

for all v ∈ Vn. We now use the test function v = (t − T ′)∆un(·, t) ∈ Vn (recall
that ∆ maps Vn into itself) and integrate from 0 to T ′. After some integrations by
parts, we obtain

∫ T ′

0

〈b ∗ ∇unt (·, t), (t − T
′)∇unt (·, t) +∇un(·, t)〉 dt +

∫ T ′

0

(t− T ′)〈gn(t),∇∆un(·, t)〉 dt

=

∫ T ′

0

〈b(t)fn(·, 0) + b ∗ fnt (·, t), (t − T ′)∆un(·, t)〉 dt . (2.28)
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The absolute value of the integral on the right hand side of this identity can be
estimated from above by

∫ T ′

0

(|b(t)|‖fn(·, 0)‖ + ‖b ∗ fnt (·, t)‖) (T ′ − t)‖∆un(·, t)‖ dt (2.29)

≤ C(ε, T ′)‖b‖L2(0,T ′)

(
‖fn(·, 0)‖2 + ‖fnt ‖

2
L1(0,T ′;L2)

)
+ ε

∫ T ′

0

(T ′ − t)‖∆un(·, t)‖2 dt

for any ε > 0, since b ∈ L2(0, T ′), due to the restriction α > 1
2 . To estimate the

first integral on the left hand side of (2.28) in absolute value, we define

eα(t) =
tα/2−1

Γ(α2 )

such that eα ∗ eα = bα and thus b = eα ∗ eα + d ∗ eα ∗ eα. Then the integral can be
rewritten as

· · · =

∫ T ′

0

〈(eα+d∗eα)∗∇un(·, t),

∫ T ′

t

eα(τ−t) ((τ − T ′)∇un(·, τ) +∇un(·, τ))〉dτ dt .

Now

(eα + d ∗ eα) ∗ ∇unt (·, t) =
d

dt
(eα + d ∗ eα) ∗ wn(·, t) (2.30)

with wn(·, t) = ∇un(·, t) − ∇un(·, 0), and since ∇un ∈ H
1+α

2 ([0, T ′], L2(Ω)) due
to (2.25), with an estimate in this space that does not depend on n, it follows

that (eα + d ∗ eα) ∗wn(·, t) is in Hα+ 1
2 ([0, T ′], L2(Ω)). Its derivative is therefore in

Hα− 1
2 ([0, T ′], L2(Ω)), with an estimate that does not depend on n ([6]). Similarly,

∫ T ′

t

eα(τ − t) ((τ − T ′)∇unt (·, τ) +∇un(·, τ)) dτ

=
d

dt

(∫ T ′−t

0

eα(σ)((t − T ′ + σ)∇un(·, t+ σ)) dσ

)
(2.31)

=
d

dt

(
(t− T ′)

∫ T ′−t

0

eα(σ)∇un(·, t+ σ) dσ

)
+
d

dt

∫ T ′−t

0

σeα(σ)∇un(·, t+ σ) dσ .

As above, both integrals are in Hα+ 1
2 ([0, T ′], L2(Ω)) as function of t, and the entire

expression is therefore bounded a priori in Hα− 1
2 ([0, T ′], L2(Ω)). The first integral

on the left hand side of (2.28) can now be bounded independently of n.
Finally consider the second integral on the left hand side of (2.28). Fix t and set

w = un(·, t), then we want to estimate∫
Ω

g(|∇w|2)∇w · ∇(∆w) =

∫
Ω

∑
i,j

g(|∇w|2)w,iw,i,j,j .
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The following arguments are taken from [2], where more details can be found. After
an integration by parts, the integral equals

−

∫
Ω

∑
i,j

w,i,j(g(|∇w|
2)w,i),j +

∫
∂Ω

∑
i,j

g(|∇w|2)w,iw,i,jνj . (2.32)

Since the function w vanishes on the hypersurface ∂Ω, its gradient is perpendicular
to it and therefore parallel to the unit normal ν, i.e. ∇w = ν ∂νw, where ∂νw =
∇w ·ν. Also, at any point of this hypersurface, ∆w = ∆∂Ωw+(N−1)H∂νw+∂2

νw,
where ∆∂Ω is the induced Laplacian, H is the mean curvature of ∂Ω with respect
to ν and ∂2

νu = νT∇2wν ([15]). Since w vanishes on ∂Ω, this means that ∆w =
(N − 1)H∂νw + ∂2

νw. Since also ∆w ∈ Vn vanishes on ∂Ω, we obtain at each
boundary point∑

i,j

w,iw,i,jνj = ∂νw∂
2
νw = −(N − 1)H|∂νw|

2 = −(N − 1)H|∇w|2 .

Therefore the boundary integral reduces to a term containing only first derivatives
that can be estimated from above by means of a trace theorem:∫

∂Ω

∑
i,j

g(|∇w|2)w,i,jw,iνj = −

∫
∂Ω

(N − 1)Hg(|∇w|2)|∇w|2

≤ ε‖∇
(√

g(|∇w|2)∇w
)
‖2 + C‖g(|∇w|2)|∇w|2‖L1

≤ ε‖∇
(√

g(|∇w|2)∇w
)
‖2 + C1(1 +

∫
Ω

G(|∇w|2))
(2.33)

for any ε > 0 with suitable C,C1 > 0. Here Lemma 2 was used to arrive at the last
line.

The integral over Ω in (2.32) is

−

∫
Ω

∑
i,j

w,i,j(g(|∇w|
2)w,i),j

= −

∫
Ω

∑
i,j

(
g(|∇w|2)w,i,jw,i,j + 2

∑
k

g′(|∇w|2)w,i,jw,iw,j,kw,k

)

= −

∫
Ω

(
g(r2)D2 + 2g′(r2)d2

)
with the abbreviations r2 = |∇w|2, D2 = |∇2w|2 =

∑
i,j w,i,jw,i,j, d

2 = |∇2w∇w|2 =∑
i,j,kw,i,jw,iw,j,kw,k. On the other hand,

|∇
(√

g(|∇w|2)∇w
)
|2 = g(r2)D2 + 2g′(r2)d2 +

(g′(r2))2r2d2

g(r2)
.
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Using (2.6), this term can be estimated from above by a constant multiple of
g(r2)D2 + 2g′(r2)d2, and therefore

−

∫
Ω

∑
i,j

(g(|∇w|2)w,i),jw,i,j ≤ −δ‖∇
(√

g(|∇w|2)∇w
)
‖2L2

with some fixed δ > 0. Combining this last estimate and (2.33) with ε = δ/2, one
finally obtains∫

Ω

g(|∇w|2)∇w · ∇(∆w) ≤ −ε

∫
Ω

|∇
(√

g(|∇w|2)∇w
)
|2 + C(1 +

∫
Ω

G(|∇w|2)) ,

(2.34)
for some ε, C > 0. Using estimate (2.26), rearranging terms in (2.28), and combin-
ing all estimates, we thus deduce that∫ T ′

0

(T ′ − t)‖∇
(√

g(|∇un(·, t)|2)∇un(·, t)
)
‖2 dt ≤ C (2.35)

independent of n. In particular,∫ T

0

‖∇2un(·, t)‖2 dt ≤ C . (2.36)

Passage to the Limit. Estimates (2.23) and (2.36) imply that the set of all ∇un

is in a relatively compact subset of L2(0, T ;L2(Ω)) ([12]). We can therefore extract
a subsequence uM(n) such that

∇uM(n) → ∇u strongly in L2(0, T ;L2(Ω))

and pointwise a.e. on Ω× (0, T )

∇2uM(n) → ∇2u weakly in L2(0, T ;L2(Ω))

u
M(n)
t → ut weakly-* in L∞(0, T ;L2(Ω))

Also, u ∈ H
1+α

2 ([0, T ],H1(Ω)) by (2.25). Estimate (2.26) and Lemma 2 below
imply that the gn = g(|∇un|2)∇un are in a bounded subset of L∞(0, T ;Lp(Ω)) for
some p > 1. Therefore the subsequence can be chosen such that also

g(|∇uM(n)|2)∇uM(n) → ξ weakly-* in L∞(0, T ;Lp(Ω))

for some ξ ∈ L∞(0, T ;Lp(Ω)). Since also g(|∇uM(n)|2)∇uM(n) → g(|∇u|2)∇u
pointwise a.e., Lemma 3 implies that ξ = g(|∇u|2)∇u. Passing now to the limit in
equation (2.10), we see that

〈ut, v〉+ 〈a ∗ g(|∇u|
2)∇u,∇v〉 = 〈f, v〉

for all v ∈ ∪nVn and therefore by density for all v ∈ C∞0 (Ω). Therefore, u is a
distributional solution of (1.1) on Ω× [0, T ].
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Additional Regularity. For any differentiable function h : [0,∞) → R and any
sufficiently smooth function w : Ω̄ → R, we compute

∇
(
h(|∇w|2)∇w

)
=

(
h(|∇w|2)w,i,j + 2h′(|∇w|2)

∑
k

w,k,jw,i

)
i,j

Using again the notation r2 = |∇w|2, D2 = |∇2w|2, d2 = |∇2w∇w|2 and setting
g = h we obtain after estimating

|∇
(
g(|∇w2)∇w

)
| ≤ Cg(r2)D . (2.37)

With h =
√
g, we obtain at points where g′(|∇w|2) < 0

|∇
(√

g(|∇u|2)∇u)
)
|2 = g(|r2)D2 + 2g′(r2)d2 +

(g′(r2))2

g(r2)
r2d2

≥ g(r2)D2 + 2g′(r2)d2

≥ g(r2)D2 + 2g′(r2)D2r2

≥
ε

2 + ε
g(r2)D2 (2.38)

from (2.6). The same estimate holds trivially at points where g′(|∇w|2) ≥ 0. Now
let 1 < q < 2, to be fixed later. Then by (2.37), (2.38), and Hölder’s inequality

‖∇
(
g(|∇w|2)∇w

)
‖qLq ≤ C

∫
Ω

(
g(r2)D

)q
= C

∫
Ω

g(r2)q/2Dqg(r2)q/2

≤ C

(∫
Ω

g(r2)D2

)q/2(∫
Ω

g(r2)q/(2−q)
)1−q/2

≤ C

(∫
Ω

|∇
(√

g(|∇w|2)∇w
)
|2
)q/2(∫

Ω

g(r2)q/(2−q)
)1−q/2

.
(2.39)

If q = 1 + δ
1+2δ ∈ (1, 2) with δ as in Lemma 2, we can estimate further∫

Ω

g(r2)q/(2−q) ≤ C

(
1 +

∫
Ω

G(r2)

)
.

We use these estimates for w = u(·, t) for any fixed t and infer that

‖∇
(
g(|∇u(·, t)|2)∇u(·, t)

)
‖2Lq ≤ C‖∇

(√
g(|∇u(·, t)|2)∇u(·, t)

)
‖2

The right hand side is integrable over [0, T ], and therefore ∇
(
g(|∇u|2)∇u

)
∈

L2(0, T ;Lq(Ω)) with this q.



EJDE–1995/02 Quasilinear Integro-differential Equations 11

Lemma 2. If g : [0,∞) → R satisfies (2.6), then there exist δ,C > 0 such that
for all r ≥ 0

|g(r2)r|1+δ ≤ C(1 +G(r2)) ,

g(r2)r2 ≤ C(1 +G(r2)) .

Proof. A constant C can be found such that both inequalities are true for all r ≤ 1.

For r ≥ 1, we have with β as in (2.6) and δ =
1

2β + 1

d

dr

(
g(r2)r

)1+δ
= (1 + δ)gδ(r2)rδ(g(r2) + 2r2g′(r2))

≤ Cg1+δ(r2)rδ

≤ Cg(r2)r2δβ+δ

≤ Cg(r2)r = C
d

dr
G(r2) .

An integration implies the first estimate. The second estimate follows from (2.6)
in the form

g′(r2)r3 + g(r2)r ≤ (β + 1)g(r2)r

by integrating.

Lemma 3. Let Ω ⊂ RN be measurable and bounded and let zn be a sequence in
L1(Ω) satisfying

zn(x) → ξ(x) for a.e. x ∈ Ω

zn → ζ weakly in L1(Ω).

Then ζ = ξ almost everywhere.

Proof. The function ξ must be finite almost everywhere, otherwise the zn cannot
converge weakly. Let ε > 0. By Egorov’s Theorem, there exists a subset Ωε ⊂ Ω
such that zn → ξ uniformly on Ωε, |ξ| ≤ ε−1 on Ωε, and meas(Ω − Ωε) < ε . Set
ϕ(x) = sign(ξ(x)− ζ(x)) · IΩε(x), then∫

Ωε

|ξ − ζ| =

∫
Ωε

(ξ − zn)ϕM −

∫
Ωε

(ζ − zn)ϕM .

As n → ∞, both terms go to zero by assumption and because of the Dominated
Convergence Theorem. Therefore ξ = ζ a.e. on Ωε. As ε → 0, the conclusion
follows.

3. Extensions and Counterexamples

The question arises whether a result like Theorem 1 is still true if 0 < α ≤ 1
2
.

The short answer is that the theorem is no longer correct for this range of α’s.
Below, we give some counterexamples to show this. However, these counterexam-
ples are essentially related to regularity properties for linear equations. A suitable
modification can still be expected to hold for 0 < α ≤ 1

2 . For α = 1
2 , this is the

content of the next corollary. For nonlinear problems with 0< α < 1
2 , the question

of existence of solutions u for which u(·, t) ∈ H2(Ω) for t > 0 remains open, except
for the result in [8].
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Corollary 4. Let α =
1

2
, let the assumptions of Theorem 1 hold, and assume that

for some r > 1 ∫ T

0

‖ft(·, t)‖
r dt <∞ . (3.1)

a) If f(·, 0) ∈ H1
0 (Ω), then the statement of Theorem 1 remains true.

b) If f(·, 0) ∈ L2(Ω), then a solution u of (2.1) exists for which∫ T

0

t‖u(·, t)‖2H2 dt <∞ (3.2)

and u ∈W 1,∞([0, T ], L2(Ω)) ∩H
3
4 ([0, T ],H1

0 (Ω)).

Outline of Proof. We use the same approximation as in the proof of Theorem 1
and derive estimates (2.23) – (2.26) in the same way. In case a), we can assume
that the fn(·, 0) are all in H1

0 (Ω). We can then carry out a priori estimate II by
integrating by parts in the right hand side of (2.28), obtaining∫ T ′

0

(
〈−b(t)∇fn(·, 0), (t − T ′)∇un(·, t)〉 + 〈b ∗ fnt (·, t), (t − T ′)∆un(·, t)〉

)
dt .

Since b ∈ Lq(0, T ′) for all q < 2 and due to (2.25), this can be estimated by

C(b, ‖∇fn(·, 0)‖)+C(ε, T ′)‖b‖Lq(0,T ′)‖f
n
t ‖

2
Lr(0,T ′;L2) + ε

∫ T ′

0

(T ′− t)‖∆un(·, t)‖2 dt

with q =
2r

3r − 2
. No change is required for the remaining arguments, and the

conclusion follows as before.

In case b), we proceed as before and obtain approximating solutions that satisfy
(2.23) – (2.26). We then use the test function v = t(t−T ′)∆un(·, t) in the arguments
that follow (2.27). Instead of (2.29), we then obtain an estimate with the right hand
side

C0(ε, T
′, b)‖fn(·, 0)‖2 + C1(ε, T

′)‖b‖Lq(0,T ′)‖f
n
t ‖

2
Lr(0,T ′;L2)

+ε

∫ T ′

0

t(T ′ − t)‖∆un(·, t)‖2 dt .

The other terms in the identity that is analogous to (2.28) can be treated as before.
The additional factor t in the test function v leads to some longer version of (2.31);
we leave the details to the interested reader. In the passage to the limit, we now
only assert that

∇2uM(n) → ∇2u weakly in L2(δ, T ;L2(Ω))

for all δ > 0. This is sufficient to conclude the proof.

To construct counterexamples that show that the conditions in these results are
sharp, several facts about scalar integro-differential equations will be used.
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Lemma 5. For 0 < α < 1 fixed and for arbitrary λ > 0, let uλ, vλ : [0, 1] → R be
the solutions of

u′λ(t) + λaα ∗ uλ = 0 (0 ≤ t ≤ 1), uλ(0) = 1

v′λ(t) + λaα ∗ vλ = 1 (0 ≤ t ≤ 1), vλ(0) = 0

where aα is as in (2.4). Then

sup
λ

∫ 1

0

λ2tγu2
λ(t) dt <∞ iff 2α+ γ > 3 (3.3)

sup
λ

∫ 1

0

λ2tγv2
λ(t) dt <∞ iff 2α+ γ > 1 . (3.4)

Proof. It is known that

uλ(t) = E2−α(−λt2−α) , vλ(t) =

∫ t

0

E2−α(−λs2−α) ds

where

Eσ(z) =
∞∑
k=0

zk

Γ(1 + σk)

is the Mittag-Leffler function ([4], [5]). Therefore the estimates (3.3) and (3.4)
follow immediately for, say, 0 ≤ λ ≤ K, where K is any fixed finite value, and we
only have to prove them for large values of λ. If 0 < σ < 2, then

Eσ(−z) =
z−1

Γ(1− σ)
+O(z−2)

as z → ∞ ([4]). Therefore there exist constants c1, c2, c3, c4 > 0 such that

|uλ(t)| ≤ c1 (λt2−α ≤ c2)

c3λ
−1tα−2 ≤|uλ(t)| ≤ c4λ

−1tα−2 (λt2−α ≥ c2) . (3.5)

The equation for uλ shows that the Laplace transform of uλ is given by

ûλ(s) =
1

s+ λsα−1

which implies
∫∞

0
uλ(t) dt = 0. Therefore, with the same constants c1, . . . , c4 we

can also assume that

|vλ(t)| ≤ c1 (λt2−α ≤ c2)

c3λ
−1tα−1 ≤|vλ(t)| ≤ c4λ

−1tα−1 (λt2−α ≥ c2) . (3.6)
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Suppose now that 2α+ γ > 3. Then∫ 1

0

λ2tγu2
λ(t) dt =

∫ (c2/λ)1/(2−α)

0

λ2tγu2
λ(t) dt+

∫ 1

(c2/λ)1/(2−α)

λ2tγu2
λ(t) dt

≤

∫ (c2/λ)1/(2−α)

0

λ2c21t
γdt+

∫ 1

0

tγc24t
2α−4 dt

≤ Cλ2− γ+1
2−α + C

≤ C <∞

independently of λ. The same argument, using (3.6) instead of (3.5), shows that

sup
λ

∫ 1

0

λ2tγv2
λ(t) dt <∞

if 2α+ γ > 1. Suppose next that 2α+ γ ≤ 3. Then∫ 1

0

λ2tγu2
λ(t) dt ≥

∫ 1

(c2/λ)1/(2−α)

λ2tγu2
λ(t) dt ≥

∫ 1

(c2/λ)1/(2−α)

c23t
γ+2α−4 dt

and the last integral does not remain bounded as λ → ∞. Thus the supremum in
(3.3) is infinite if 2α+ γ ≤ 3. Using (3.6), it follows that the supremum in (3.4) is
infinite if 2α+ γ ≤ 1.

It is also possible to show that

sup
λ

∫ 1

0

λ2δtγu2
λ(t) dt =∞

if δ > 1 and that this supremum is finite for δ < 1 iff in addition 2δ(2−α) ≤ γ+1.
Similar statements hold for the supremum that can be formed with the vλ. Note
that the supremum is finite if 2δ(2 − α) = γ + 1 for δ < 1, but infinite in the case
δ = 1.

Counterexamples. Consider the problems

ut(x, t)−

∫ t

0

aα(t− s)∆u(x, s) ds = F (x, t) (0 < t ≤ 1, x ∈ Ω) (3.7)

with

F (x, t) = f0(x) +

∫ t

0

f1(x, s) ds

and initial data u(x, 0) = 0 in Ω. As before, let (ϕi)i be the set of eigenfunctions of
−∆ with zero Dirichlet boundary conditions, with eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤
. . . .

Suppose first that f0 =
∑
i ciϕi ∈ L

2(Ω) and f1 = 0. The solution of (3.7) then
is given by

u(·, t) =

∞∑
i=1

civλi(t)ϕi
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and thus

‖u(·, t)‖2H2 ≥ C‖∆u(·, t)‖2

= C

∞∑
i=1

c2iλ
2
i |vλi(t)|

2 . (3.8)

If α ≤ 1
2 , then there exist ci such that f0 ∈ L2(Ω) but

∫ 1

0
‖u(·, t)‖2H2dt = ∞,

according to Lemma 5. However, if γ > 1 − 2α ≥ 0, then
∫ 1

0
tγ‖u(·, t)‖2H2dt < ∞

for any such f0.

Suppose next that f0 = 0 and f1(·, t) = hi(t)ϕi. Then u(·, t) =
∫ t

0
hi(t −

s)vλi(s) ds · ϕi. Pick hi(t) = kih(kit), where h ≥ 0 is smooth, supported on [0, 1],∫ 1

0
h(t) dt = 1, and ki > 1 is so large that∫ 1

0

|vλi ∗ hi(t)|
2 dt ≥

1

2

∫ 1

0

|vλi(t)|
2 dt .

It follows that

‖u(·, t)‖2H2 ≥ C‖∆u(·, t)‖2 = Cλ2
i

∫ 1

0

|vλi ∗ hi(t)|
2 dt ≥ Cλ2

i

∫ 1

0

|vλi(t)|
2 dt = Mi .

(3.9)
If α ≤ 1

2 , then lim supMi =∞. On the other hand,∫ 1

0

‖f1(·, t)‖ dt =

∫ 1

0

hi(t) dt = 1 .

Choose ci such that
∑∞
i=1 |ci| <∞ and

∑∞
i=1 c

2
iMi =∞ and set

f1(·, t) =
∑∞
i=1 cihi(t)ϕi, then∫ 1

0

‖f1(·, t)‖ dt <∞ and

∫ T

0

‖u(·, t)‖2H2 dt =∞ . (3.10)

These arguments show that Theorem 1 does not extend to the case α ≤ 1
2

without
strengthening some assumptions or weakening some conclusions, as in Corollary 4.
Similar constructions can be used to show that the assumption u0 ∈ H2(Ω) can
only be weakened slightly if solutions are still to belong to L2(0, T ;H2(Ω)).
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