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HOMOGENIZATION OF BOUNDARY OPTIMAL
CONTROL PROBLEM
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ABSTRACT. In this article, we study the asymptotic behavior of solutions to
some optimal control problems, governed by an elliptic boundary value prob-
lem with Robin boundary conditions in a periodically perforated domain. The
coefficients of the differential operator in the state equation and in the cost-
functional are rapidly oscillating. We also study the boundary homogenization
of some optimal control problems.

1. INTRODUCTION

In this article, we study the convergence of solutions of an optimal control prob-
lem governed by a second order elliptic boundary value problem in a periodically
perforated domain. The sizes of the holes are same as the period, the holes can
intersect the boundary of the domain. The coefficients of the state equation and
the cost-functional are rapidly oscillating. The cost-functional involves a Dirichlet
type integral of the state function. We prescribe a linear Robin condition on the
boundary of holes and the homogeneous Dirichlet condition on the external bound-
ary. The Robin conditions appear in several physical situations such as chemical
reactive flows [I2] or climatization [20]. We use periodic unfolding method for the
homogenization.

Periodic unfolding method was introduced for the perforated domain in [§]. In
general, one does not need any extension operator in this method, which makes
things simpler while dealing with problems involving non-homogeneous boundary
conditions.

A version of our problem was studied by Kesavan et al. [I6] in a perforated
domain. Then Muthukumar et al. [I9] studied this problem in a periodically per-
forated domain using two-scale convergence. Recently Diaz et al. [I3] considered
an optimal control problem in a perforated domain for the case of critically small
holes, which after homogenization, gives rise to strange terms in the limit equations.
Cabarrubias [5] studied similar problems using unfolding method, where they prove
the energy convergence with L2-cost functional only. However in this paper, we es-
tablish the energy convergence associated with Dirichlet-cost functional.
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In homogenization of state and adjoint equation with of Robin’s boundary condi-
tion in a periodically perforated domain, we face two main difficulties. The first one
arises in obtaining the a-priori estimates for the state and adjoint variables. This
is because of presence of some surface terms due to Robin boundary conditions,
thanks to the boundary unfolding operators (cf. Section , we overcame this.

The second difficulty lies in the homogenization of the adjoint equation for which
we used the special cell problems introduced by Allaire [I] and further used in [19].
The presence of the Robin conditions on the boundary of holes, and the cost-
functional involving gradients and the oscillating coefficients B, together led
us to play repeatedly with these cell problems, which contributed the nontrivial
terms in the homogenized equation. Our paper generalizes the existing results for
the elliptic case in a periodically perforated domain with a more general condition
(Robin conditions) on the boundary of holes. Our second main result comprises of
studying the boundary homogenization of some optimal control problems.

The organization of this article is as follows: In Section [I} we introduce the
problem and the method used. In Section [1.1] we give the preliminaries and briefly
describe the setting of the problem and the optimality conditions. Section [2]is the
brief review of the periodic unfolding method for the perforated domain. In Section
we introduce some cell problems, state and prove our first main result Theorem
We also establish Theorem the ellipticity of the bilinear form defined
by perturbed matrix B# (see (3.6))). In Section we observe the existence of
unique optimal controls over certain convex sets. In Section[d we study our second
main result where we study the boundary homogenization of some optimal control
problems, in a sense that control is acted upon on a part of the external boundary.

1.1. Notation and problem setting. Suppose Q is an open bounded set of RY
(N > 2) with a Lipschitz continuous boundary 99 such that |02 = 0. Let Y, T
and Y* be as follows: Y = (0,1)" is a reference cell, or more generally a set having
the paving property with respect to a basis (b, ...,by) defining the periods,

N
Y = {y € RN Y= Zylbu (y17y2a"'7yN) € (O’ I)N}
i=1
T C Y is an open set with Lipschitz boundary with finite number of connected
components such that 9T does not contain the summits of Y. Perforated reference
cell Y* = Y\T is a connected open set. Let {e} be a positive sequence that
converges to zero and we set

N
G={¢eRY &= kib; (kr,....kn) €ZV}, Ec={(€G:c((+Y)C O}
i=1
The perforated domain €2} is defined by
O =O\T., where T, = Ugegé‘(f +T).

Following the notation introduced in [9] for the periodic unfolding method in per-
forated domains, we set

~

(). = interior (Ugega e(&+ 7)), A= O\

By construction, Q. is the interior of the largest union of (¢ +Y) cells such that
e(§+Y) is included in © and A is the subset of Q containing the parts from the
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FIGURE 1. Perforated domain Q} and the reference set Y.

e(€+Y) cells intersecting the boundary 992. We define the corresponding perforated

sets as

Qr =QN\T., AP =Q\Q.

We decompose the boundary of the perforated domain 2} as (see Figure |1

O =T5UT:,  where I = 90 N 0T and T = 9Q\I'%,

so that I'{ is the boundary of set of holes included in Q..

Boundary of holes inside Q2 is I'], the remaining part including holes inside dark
boundary is A} and the boundary of holes contained in this part together with the
external boundary 0f2 is I'§. Hence Q7 is a periodically perforated domain where
the size of the holes are of same order as the period.

We shall use the following notation throughout the paper.

|E| denotes the Lebesgue measure of the measurable set E.

V*=Y\T.

O = |Y*|/|Y| the proportion of the material.

My (v) is the mean value of v over the measurable set Y.

X e is the characteristic function of the set E.

u is the extension by zero on E of a function u defined on E.(= E N Q).
(ne) = (n1)X, the unit external normal vector with respect to Q..

Ac(z) = A(%) a.e. in Q, for any € > 0.

|ullo.z and ||ul|1 &, represents respectively L? and H'-norms defined over
the set F.

C22.(Y) is a subset of C*°(RY), and it consists of Y-periodic functions.
H]..(Y*) is the closure of C32 (Y) with respect to H'-norm.

per
H]..(Y*)/R is the space of equivalence classes defined by: ‘u ~ v < u—wv

is constant, for all u,v € H}. (Y*).

L?(Q; H],,(Y*)) is the space of functions f taking z € Q to f(z,-) €
Hy., (Y*) and ||f (2, )|y, v+) € L*(Q).

per
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and the constants at different places are denoted by C', which are independent of
€. Note that

Xar = O = |Y*|/|Y] weak™ in L>(1Q).

Now we discuss the setting of the problem. Let US; C L*(2Z) be a closed, convex
subset. For given constants 0 < «,;, < apr, we denote by M(au,, anr, ) the set of
all N x N matrices A = A(z) such that

Ac Loo(Q)NxN’
(A(2)€,€) > a,|é? and |A(z)€] < anrlé], V€ € RY and ae. x € Q.
Let A. € M(am,an,Q), Be € M(Bm, B, Q), where 0 < §,, < [ are given
constants.

Assume that B. is symmetric for every € > 0. We consider the optimal control
problem governed by the boundary value problem

—div(A:Vue) = f+6. in QF,
A:Vue -ne + heu, =g on I'f, (1.2)

(1.1)

g __ €
u®=0 only,

where f € L2(2), 0. € L?(Q}), n. is unit outward normal to I'5, h is a real, positive
number, ¢g°(x) = g(z/€), where g is Y-periodic function in L?(9T). For Ny > 0,
the following cost functional is associated with (|1.2)),

J.(0.) = 1/ B.Vu.Vu, dz + No 02 dx. (1.3)
2 Jo. 2 Jos

Then the optimal control problem given by (1.2) and admits a unique
solution 07 € UZ; minimizing the cost-functional over Ug;. We wish to study
the limiting behavior of 67 as € — 0. Further if 6 — 0 weakly in L2(£2), we would
like to characterize 6 as the optimal control of a similar problem in a fixed domain
Q. Using periodic unfolding, we study the homogenization of state and its
adjoint equations in periodically perforated domain, when the holes are of same
size as period.

We introduce the space

V.={ve HY(Q):v=0onT§}.
This is a Banach space equipped with

[ollv. = [IVvllizagom~,  Yu € Ve (1.4)
The weak formulation of is given as follows: Find u. € V solution of

yepdo(z) = /Q*(f—kﬂ)godx—l—s/ g°pdo(x), (1.5)

A VuVodr + hs/
Iy

Qr Iy
for all p € V..

The assumption that 0T is Lipschitz continuous, is necessary, in order to write
surface integrals on the boundary of holes, appearing in the variational formulation
of the problem. We obtain the following result as an application of Lax Milgram

theorem.

Theorem 1.1. There exists a unique solution of (1.5) when the assumptions on
the data stated after (1.2)) holds.
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1.2. Optimality conditions. The optimality conditions [I8, Theorem 1.3] are
given by fﬂ* 88‘{; (0 —6) > 0. Now, in view of [2I| Chapter 2] and [I5], page 140],
these conditions can be rewritten as

/ (b + MOZ)(O — 67) > 0.
Q

*
€

where p¥ = p.(0%) is the solution of the adjoint equation of , for 6 = 0%,
—div(*A.Vp.) = —div(B:Vu.) in QF,
(‘AcVpe) - ne —pehe = (BeVue) -ne on T, (1.6)
pe =0 onI§.
We consider the following optimal control problem for the cost functional :
{inf J.(uc,0) : (uc,0) € Ve x L*(QF), (ue,0) satisfies (L.2) }. (1.7

We have the following results, which can be proved along the same lines as in [I§]
and [21I, Chapter 2].

Theorem 1.2. For each € > 0, the optimal control problem (1.7)) admits a unique
solution.

Let u} = u.(6%) be the optimal state. Then the characterization of 6% is given
below.

Theorem 1.3. For (u?,0%), the optimal solution of (1.7)), let p* = p.(6%) be the

eV E

optimal adjoint state. Then the optimal control is given by
* 1 *
95 = _Mpa' (18)

2. THE PERIODIC UNFOLDING METHOD FOR PERFORATED DOMAIN

In this section, we briefly recall the definitions and properties of the unfolding
operator 7 and the boundary unfolding operator 7. For more details on this
topic, we refer to [§].

Let [z]y = Z;Vd k;b; be the unique integer combination of periods such that for
any x € RV, x — [2]y isin Y. Set {}y =z — [z]y. In particular, for any & > 0,

xza([g]y—k {g}y) for all z € RY.

Definition 2.1. For any Lebesgue-measurable function ¢ on 2, the unfolding
operator 7 is defined as

o (e[£]y +ey), ae for (z,y) € Qe x V™,

T () (x,y) = {O, a.e. for (z,y) € Ac x Y*.

*

Z, we will use the

In what follows, if ¢ is a function on a domain containing 2
notation 7 (¢) instead of 7" (d|qx).

Proposition 2.2. Let p € (1,400). Then
(1) T s linear and continuous from LP (%) to LP(2 x Y™*).

(2) T () = T2 ()T () for every ¢, ¢ € LP(7).
(3) Forw e LP(2), T2 (w) — w strongly in LP(Q x Y*).
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(4) For all ¢ € LY(QF) we have
1

p(@)de = | o) de— | o(x)ds = —
ﬁ; Q: Ax |Y| QxY*

T2 () (@, y) da dy.
Moreover, if {¢.} is a bounded sequence in L™ (Q%) for some r > 1, then

. 1 "
lim o ¢e(z) dz = lim V1 oy T2 (¢e) (2, y) dz dy.

(5) Let ¢ € LP(Q) be such that ¢p. — ¢ strongly in LP(Q). Then T (pe) — ¢
strongly in LP(2 x Y*).
(6) Let o € LP(Y™*) be a Y -periodic function and set p.(x) = ¢ (%£). Then
T (pe)(z,y) = @(y) a.e. in Qe x Y.
Proposition 2.3. Suppose Q is a bounded open subset of RN with Lipschitz bound-
ary OY. Let w. € W, P (09N ON:) satisfy
[Vwel|Lr .y < C,

where C' is a positive constant independent of €. Then there exist wy € Wolp(Q)
and @ € LP(Q; WLP(Y*)) with My« (@) = 0, such that up to a subsequence,

per
T (w.) — wo  strongly in LP(Q; WHP(Y™)),
T (Vw.) — Vawo + V@ weakly in (LP(Q x Y*)N (2.1)

we = Owy  weakly in LP(Q),
as € tends to zero, where © = |Y*|/|Y|.
We now recall the definition and properties of the boundary unfolding operator
T2
Definition 2.4. For any function ¢, Lebesgue-measurable on 8@:08@, the bound-
ary unfolding operator is defined as
o (e[fly +ey), ae. for (z,y) € 0. x OT,

b =
72 () (2,y) {0, a.e. for (z,y) € Ac x IT.

Proposition 2.5 ([8]). Let p € (1,+00). Then
(1) T2 is a linear operator from LP(OT.) to LP(Q2 x OT).
(2) T2(d0) = T2(S)TL () for every ¢, ¢ € LP(IT.).
(3) Let ¢ € LP(OT) be a Y -periodic function. Set ¢.(x) = ¢(Z). Then
T2 (9e)(@.y) = ¢(y) ae. in QL x IT.
(4) For all ¢ € L*(9T.), the integration formula is given by
1
¢(x) do(z) = == T2 (¢)(x,y) dado(y).
rs elY| Jaxor
(5) Let ¢ € LP(OT*). Then T2(¢) — ¢ strongly in LP(Q x 9T).
Proposition 2.6 (see [8 Proposition 5.7]). We have the following convergence
results:
(1) Let o € L?(2). Then as ¢ — 0, one has the convergence

/ T2(0) (&, ) de do(y) — Gdz do(y). (2.2)
RN x9T

RN x8T
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(2) Let ¢ € L?(2). Then T2(p) — @ strongly in L*(RN x 9T).
(3) Let . € L?(0T.) for every e, such that T2 (p.) — @ weakly in L?(RN x9T).
Then

1 ~
| eeio@ =g [ Bt dedoty),

for all ¢ € HY(Q).
(4) Let p. € HY(Q.) for every e and p € H*(Q) such that T (p:) — @ weakly
in L2 _(Q HY(Y™*)). Then

loc
TP(p.) = @ weakly in L2, (0 H? (9T)).

loc

Let g be a Y-periodic function in L?(97T) and let g°(z) = g(z/¢) for all z in the
set RN\ Ugegn (€ + T). Then we have the following two results (cf. [8, Cor 5.4,
Prop. 5.6]), which will be needed for the homogenization of some problems.

Proposition 2.7. For every ® € V. and g° as above, the following inequality holds

[ oD@ do@)] < £ (Morlo)l + ) [V¥norys (23)

3. MAIN RESULTS

To state and prove our first main result, we need the following hypothesis:
(H1) Let A. € M(am,an,Q), Be € M(Bm, Bu, Q).
(H2) Let A = A(x,y) € M(am,an,Q xY*), B € M(Bm, B, x Y*), such
that
T (A:) = Az,y) ae. in Qx Y™,
T2 (B:) = B(z,y) a.e. in QxY".

(H3) A, B are Y-periodic with respect to the second variable y.

Now we define some cell problems, needed to state our first main results, and for
the identification of the limits. Such cell problems were introduced by Allaire [T],
and further used by Muthukumar et al. [19).

For 1 <i < N,let yu; € H:..(Y*)/R be the solution of the cell problem

per
—div(A(z,y)[Vypi(z,y) +e]) =0 in Y™,
Az, y)[Vypi(r,y) + €] -v=0 on dY"\9Y, (3.1)

y — ui(z,y) is Y-periodic.
Let w; € H}

per

(Y*)/R be the solution of the adjoint cell problem
—div(*A(z,y)[Vywi(z,y) +€]) =0 in Y™,
YAz, y)[Vywi(z,y) + €] - v =0 on dY*\dY, (3.2)
y = wi(x,y) is Y-periodic.

Let ¢; € HL . (Y*)/R, be the solution of the cell problem

per
(tA(ma y)vywz(xv y) - B(.’E, y)(vyuz + ez)) V= 07 o1 GY*\aY, (33)

y— pi(x,y) is Y-periodic.
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Here {e1,ea,...,en} is the standard basis of RY. The homogenized matrix Ay is
defined as
(o)is = [ A Voss(on) + e [V + 5] do (3.4)
The homogenized transposed matrix tAg is
("Ao)iy = / PA(z, ) [Vywi(z,y) +ei] - [Vyw; (2, ) + e5] dy, (3.5)

and the perturbed matrix B¥# is
Y*

To see the forms of the above homogenized matrices, we refer to [7, Propositions
6.8, 6.9]. We now state a Poincaré inequality result for the perforated domain *
(when the holes can even meet the boundary).

Lemma 3.1 (see [2, Lemma A.4]). There exists a positive constant C, independent
of €, such that
[ullo,0x < ClIVullipz(zyw- (3.7)

The above lemma gives an equivalent norm on Vg, as |ju|lv. = [|[Vullo,q.. Now,
we state our first main result of the paper.

Theorem 3.2. Assume (H1)-(H3) hold. Let u. € V. and p. € V. be the solutions
of the following systems, respectively

—div(A:Vu.) = f+ 6. inQ,

A Vu. -ne + heu, = eg°  onTY, (3.8)

g __ &€
u* =0 only,

and
—div (tAEVpE — BEVUE) =0 1inQ},
(*A.Vp. — B.Vu.) -n. = p.he  onT5, (3.9)
p: =0 onTj,

where f € L?(Q) is fized, 0. € L*(2), h > 0 is a real number, g°(z) = g(x/¢),
where g is Y -periodic function in L?(OT). Then there exist functions ug, po €
HY(Q) and 09 € L*(2) such that for a subsequence, we have

U — Ouy  weakly in L* (Q),
Pe — Opy  weakly in L*(Q), (3.10)
0. — Oy weakly in L*(Q).
The functions ug and pg satisfy the following systems respectively,
|oT| |oT|

—div(4pV h—mug =06 0 —M in €,
iv(AgVug) + % ug (f +60) + % ar(g) in (3.11)
ug =0 on 09,
and or
T
—div(*AgVpo — B¥Vug) = h=—-po in €,
iv(*AoVpo ug) |Y|p m (3'12)

po =0 on 09,
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where © = |Y*|/|Y|, the matrices Ay, *Ag and B¥* are defined by (3.4), (3.5), and
(13.6) respectively.

Proof. We prove this theorem in three main steps. In the first step, we establish
the convergence of solutions . In the second step, we homogenize the state
equation, and in the third step, we homogenize the adjoint equation using the cell
problems introduced in the beginning of this section.

Step 1: Convergence of solutions of (3.8) and (3.9). Taking ¢ € D(Q) as a test
function in (3.8)), we have

AEVuEVgodx—l—he/ uggoda(x)z/ (f—l—gg)godx—i—a/ g°pdo(x). (3.13)
aT. Q

x aT.

Q
We first establish “a priori estimates” for u.. Considering u. as a test-function in

(3.13)), we have

am||vue||[2L2(Q;)]N + helluel|72 o

_ (3.14)
< 1z + 10l el +¢] [ guedol.
Te
Using the Poincaré inequality (3.7)) and Proposition in , we obtain
O‘mHVUEHfL?(Q;)]N < C(1+e+ [Mor(9)DIIVuellzzazy -
Hence we have N
|uell 1oz < C. (3.15)

Thus we deduce that there exists Uy € H'(Q) such that
uz — Uy weakly in L*().

By [8, Theorem 3.2 (2, 3, 4)], there exist ug € Hg(Q) and @ € L*(Q, H} . (Y™))
such that

(1) T (ue) — up weakly in L (S HY(Y™)),

(ii) 72 (Va(ue)) = Vyuo + Vo weakly in L2 (Omega x Y*).
To identify Uy, let ¢ € D(Q) and consider

~ 1 * *
[pdn= [ wpde= [ T (o) dody.
Q Q

|Y| Qxy*

The former convergences yield
Y*

Y] / upp dr = @/ ugp dx.
Yl Jo 0

But we know that [, u.odr — [,Uppdz, as e — 0. Consequently, we have
Up = Oug and we obtain the first convergence of (3.10). We note that ug is a
function of = only. Letting p. as a test function in the adjoint eq. (3.9), we have

/ tA.Vp.Vpe dx—/
Q

Q
By ellipticity of A, boundedness of B., and Cauchy-Schwarz inequality, we have

1
/ UepdT — — uo(x)p(x) de dy =
Q |Y| Qxy*

*
€

B.Vu.Vp. dr = hE/ pe do(x).
oT-

* *
€ €

5m||VPe||[2L2(Q;)]N
(3.16)
S 5MHVUE||[L2(Q;)]N HVPEH[L2(Q;)]N + hE‘ /3 1.p5 d0($)|
Ts
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It follows by (3.15]), Proposition [2.7] (with g°=1) and Poincaré inequality in
the last term, that
Binl VP2 ey < (BuC + he)[[Vpel| L2z~

This implies that

el 102y < C- (3.17)
A similar argument, as to get (3.10))(i), would give us the existence of pg € Hg ()
such that (3.10)(ii) holds. Now from (1.8) and (3.17), we have

||§6||L2(Q;) <C,
where is a positive constant. Thus there exists 6y € L?(Q) such that the convergence
(3.10)) (iii) holds.
Step2: Homogenization of the state equation (3.8]). We pass to the limit in (3.13]),
as € — 0. Using the Proposition [2.2] Proposition [2.5(4) and by unfolding in (3.13)),
we obtain

/~ T2HA)T (Vu) T (V) dady +h | T2(u) T (p) da do(y)

QxYy* QxoT

[ mum@dsds [ T 09T @) dedy (3.18)

QxY*
v [ T ddot)
Qx0T

From Proposition [2.23) and Proposition [2.6(2, 4), we obtain by passing to the
limit that

/ Az, y)(Vauo + V) V(z) drdy + h uotp dr do(y)
QxY* QxoT

:/ (f+90)<pdxdy+/ g dx do(y).
QxY*

QxoT
Since ug, f, 6y, and ¢ are functions of = only, we have

/ Az, y)(Vauo + Vyu)V(x) de dy + h|OT)| ugp dx do(y)
QxY*

QxoT (3'19)
— |y |/Q(f+90)sodx+/Qs0dw/8ng0(y)~

By denseness, this result is valid for all ¢ € H}(Q). We define a new test-function
ve = ep(@)§(Z), where o € D(Q), € € Hpo(Y™).

We observe that T*(ve) = e ()€ and Vo, = eV,9€(2) + ¢V4£(2). Hence
T (v.) =0 weakly in L*(Q; HY(Y™)),
T (Vve) — ¢V,€  weakly in L?(Q x V).

Taking v. as a test-function in (3.8) and by unfolding operator in the resulting
variational-formulation, we obtain

[ T AT (Fu) T (Ve dedy [

QxY* QxoT

T2 (ue) T2 (ve) dae do(y)

- / T ()T (voe) derdy + / T (6) T (v02) dac dy

QxY* QxY*
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[ T THw) dedaty),

QxoT
When passing to the limit, we obtain

| 4@ s)(Tot0+ 9, 006@)9,6(0) dody = 0.

It is known from [4], that the space C2°(2) @ C5e,(Y) consisting of all finite sums
of functions of the form g(x)h(y) (g € C°(Q),h € C2.(Y)) is dense in LP(2 x Y),

per

for 1 < p < co. It follows by denseness that for all ¢ € L*(€; H],(Y*)), we have

/ Az, y)(Vauo + V) Vy((z,y) drdy = 0. (3.20)
QxY™*

Finally adding (3.19) (for ¢ € H}(Q)) and (3.20)), we obtain the following varia-
tional formulation of (3.8)): For all ¢ € H(Q2) and all ¢ € L?(Q; H},.(Y*)),

per

/ LAz, y) (Vauo + V) (Ve + Vy((x,y)) dedy + h|OT| / ugp d
QXY™ Q

=1 [+ tuedot [ pda [ gdoty)

where (ug, @) is the unique solution of (3.21). The proof that ug is the solution of
(3.11)) follows along the same lines as in the proof given in [7, Chapter 9].
Taking successively ¢ = 0 and ¢ = 0 in (3.21]) yields

(3.21)

N
~ 8u0

i) = 3l g o) (3:22)
where p; satisfies the cell problem (3.1]). Substituting the value of % obtained in
in the variational formulatio and integrating by parts with respect
to x, after putting ¢ = 0, we obtain the expression for Ag. By a standard argument
[7], it is easily seen that the matrix Ag is elliptic. Then the uniqueness of ug as a
solution of state equation 7 follows from the Lax-Milgram theorem.

Step3: Homogenization of the adjoint equation. Taking ¢ € D() as a test-
function in (3.9)), we have

/ tAEVpEVgodx—/
Q

Q
By unfolding and using Propositions 2.5 and 5.2, we obtain

/~ T (" A) T (Vpe) T2 (V) da dy — /
QrxY™

B.VuVyodr — / pehep dx = 0.
oQx

* *
€ €

T(B) T2 (Vue )T (V) da dy

QrxY*
- [ TenT ) dedaty) =0
QzxoT
We pass the limit as € — 0 and obtain

/ LA(2,y)(Vapo + VD) Vi da dy

QxY*

- / B(z,y)(Vzuo + V,u)Ve dr dy (3.23)
Qxy*

:h|8T|/p0god:1c.
Q
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Next we take v, = 5@5(%) as a test-function in (3.9), where ¢ € D(Q) and £ €
Hy (Y7),

per

/~ T (AT (Vpe) T2 (Ve da dy — / T (BT (V) T2 (Vo.) di dy
QXY™

QXY™
b [ T THw) dedoty) =
Qx0T
which by passing to the limit gives

/Q A ) (Vo + VD) (@)Y (o) do dy

_ /Q . Bl o)(Vawo + Vi (@) V(o y) da dy

Using denseness arguments as before, for all ¢ € L*(; H}.(Y*), we have

/ LAz, 9)(Vopo + VD)V, C (2, y) dz dy
axy (3.24)

= / B(z,y)(Vauo + V,0)Vy((x,y) dz dy.
QxY*

Adding (3.23) and (3.24), we obtain the variational formulation of the adjoint
problem: For all ¢ € Hj(Q) and all ¢ € L*(€%; H}. (Y™)),

/ Az, y)(Vapo + VD) (Vo + V() de dy — hOT] / pop dz

QxY* Q

(3.25)

- / Bla,y)(Vauo + Vo) (Vap + VyC(a,y) da dy,
QxY*

where (po,p) is the unique solution of (3.25)).
(3.3

Now, taking ug as a test-function in (3.3)), we have

/ B(z,y)(Vypi + €;)Vug = / PA(x, y) Vi (2, y) Vug. (3.26)
QxY* QxY*

Letting ¢ = 0 in the variational-formulation (3.25)), and putting & = Zil Lbi g;‘_’,
we have

/ Az, y)(Vapo + Vo B)V,C (2 y) de dy

QxYy*

- / B(z, y) (i + Vs VooV (z, ) da dy.
QxY*

= [ A Vo)V oY (o) dady.
XY *
which follows by (3.26). This implies that

/ PA(x, y)VyD Vy((z,y) do dy

QxY*

- / A, y)V s, 9) VooV, y) der dy (3.27)
QxYy=

—/ YAz, y)VapoVy((z,y) dz dy.
QxY*
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Taking pg as a test-function in (3.2)), we obtain
/ tA(.Z‘, y)(Vywi + ei)vpo =0. (3.28)
QxYy*

Adding and subtracting [, . “A(z, y)(Vywi+€;)Vapo Vy((x, y) dz dy from (3.27),

we have

/ A, )V, 5V, C( y) der dy
QxY*
_ / A )V s y) Vato Vo (2, ) dar dy
QxY*
- / Az, y)V, (@i + €) VooVl y) dady
QxY*

+ / A )V ywiVapoV, C( y) da dy.
QAxY*

Integrating by parts with respect to y and using , we have
—div, (*A(z,y)Vyp) = — div, (*A(z, y) Vybi(z,y)) Viuo (3.20)
—divy (‘Ala, y)Vywi(z,y))Vapo. .
This equality shows that
N

dpo al Oug
p= Z;wiaxi + ;%Txl

Further taking ¢ = 0 in variational-formulation (3.25)) and integrating by parts with
respect to x, we obtain the desired homogenized adjoint equation:

T
— diV(tonpo — B#VUQ) = h|6Yv|p0 in Q,

po =0 on 9.

O

Below we prove that the bilinear form defined by B# (the perturbed matrix of
Bo),is H}(Q)-elliptic. A key step involves in establishing that

lim [ B.Vw.Vw.dr = / B#*VwVw dz, (3.30)
e—0 Qr Q
where w, satisfies below. The Robin condition on the boundary of holes in
(3.8) and hence the limit equation with nontrivial terms, leads us to play with the
various integration by parts, for passing to the limit in . An analogous result
with Neumann condition on the boundary of holes can be seen [16, Theorem 3.3].
To prove the ellipticity of the bilinear form, we shall need [8, Proposition 6.6]
involving extension operator and the unfolding method. We have the existence of
sequence {P¢} of linear extension operators [I0], such that for any € > 0,

Pe e L(V., Hy (),
Pv=v inQl, Yoel.
[Pv]|2() < Cllvll2s), Yve Ve
IVP 0|2y < ClVvllize@eyy Vv € Ve

(3.31)
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Although in [I0], the set of holes do not intersect the external boundary T'§, it is
easy to check (see [0, page 6]) that if we extend a function in V. as in [I0] inside
the holes contained in €2} and extend it by zero elsewhere, we obtain an extension

operator that still verify (3.31]).

Theorem 3.3. For every w € HE (), we have
/QB#VwVw dx > BmC_QHwaqé(Q),

where Be € M(Bm, Br, ) and C > 0 is a constant appearing in (3.31]).

Proof. Let
0T | ot
Y "
Then F € H-Y(Q). Let w. € V¢, be the solution of the problem:
—div(A:Vw) = (P*)*F in QF,
A:Vwe - ne + heue = eg®  on I7, (3.33)
u. =0 on I7.
Using ellipticity of A. and bounds of (3.32), we obtain ||V, || 2@~ < C. Tt
follows by (3.31))(iv) and [8, Proposition 6.6] (also see [10]) that
Pfw. —w weakly in Hj(Q).
Let us define ¢. € V. as the solution of the problem
—div (tAEVqE — BEVwE) =0 in Q,
(*A.Vq. — B.Vw,.) -n. = g.he on I, (3.34)
¢. =0 onlI¥§.

F = —div(AgVw) — ‘o Mo (g) + hier! (3.32)

Its homogenized equation is

ot}

—div(*4oVqo — B*¥Vw) = h-——qy in Q,
go =0 on 0.
Multiplying (3.34)) by w. and integrating by parts, we obtain
/ YA VgV, = / B.Vw.Vw, dz + / cw.hqs. (3.36)
: : H
Taking ¢. € V. as a test-function in (3.33)), we have
AEVwEVqS - AEV'IUE : nqus = <F, PEqE>H*1(Q),Hé(Q)' (337)

Qr s
Substituting F' from (3.32)) and using (3.36]) in the above equation, we obtain

/ B.Vw.Vw, dx = (—div(AgVw), P°q.) — 6/ (2hwe — ¢%)qe

=5
1

(3.38)
L o1 c
|Y| <hw MaT( )7P qE>H*1(Q),Hé(Q)'
By unfolding, the second term of the right-hand side of (| , it can be written as
oT
tim [ (BT (w) - T T 0.) deda(y) = O0] y (2w~ Mor(g)). (3.39)

e—0 QXBT ‘Y|
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Now passing to the limit as e — 0 in (3.38]), and using (3.39) we obtain

or
lim B.Vw.Vw, dz = / AgVwVqy — huqo. (3.40)
e—0 Qr Q ‘Y|

Multiplying (3.35)) by w and integrating by parts, we obtain

T
/tAOVqOVw:/B#VwVerhmqow. (3.41)
o ) Y

Substituting this value of [, *AgVqoVw in (3.40), we obtain (3.30).
We use the ellipticity of B, and (3.31]) to obtain

/Q* B.Vw,Vw, dx > Bm||w€|\%/€ > ﬁmC_2HPEwE||%Ié(Q). (3.42)
Passing to the limit in (3.42) as ¢ — 0, in view of (3.30)) and [8, Proposition 6.6],
we obtain

/QB#Vwdex > hgélfﬁmc**2||P€w5||§,é(Q) > ﬂmC*2||w|\§Ié(m, (3.43)

which shows the ellipticity of B#. O

Remark 3.4. A byproduct of the above proof is
—div(A:Vwe) = (P)" fe  in Q,
AcVwe - ne + heue =eg°  on I'],
ue =0 onlIj,
where f. — f strongly in H~1(Q). Then the proof of Theorem can be adapted

to prove that if Pew. — wo weakly in H{(Q2), then we have

lim [ B.Vw.Vw.dr = / B#*VwVuwdz. (3.44)
e—0 Q; Q

3.1. Convergence of optimal controls. Now we consider some optimal control
problems, where we take the convex set UZ; C L2(07), to be of obstacle type. Here
we will use the notation y. for xq:.

We consider U;, as one of the following sets:

ra = L2(0), (3.45)
ca={0€L*(Q)|0 > ¢ ae. in QF}

={0 € L*(Q)|0 > x-¢ a.e. in Q},

ra=10€ LX(QD)xetr € 0 < xethz ae. in 9}, (3.47)

(3.46)

where 1, 1 and vy are given functions in L?(§2). The first case considered above

is unconstrained, the second one is unilateral and the third one corresponds to

bilateral constraint. We define the limiting set U.,q C L2(2) corresponding to
(3.45), (3.46]) and (3.47) as follows:

Una = L2(9), (3.48)

Uw = {0 € L*(Q)] 6 > ©¢ a.e. in Q}, (3.49)

Una = {0 € L*(Q)| ©¢1 < 6 < Oy ae. in Q}. (3.50)
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Now, in view of classical linear control theory of Lions [18], there exists a unique
minimal-norm control 87 € UZ,;, minimizing the cost-functional (1.3) over any of

the closed convex sets (3.45)-(3.47). So that we have

B[ o< g < o) (3.51)
Q

where

Xe in case of (3.45)),
®. = { x.¢) in case of (3.46),
Xet2 in case of (3.47).

In all the cases defined in (3.45)-(3.47), J.(®.) is uniformly bounded, since |lu/|v,
of the solution u. of is bounded independent of € and B. € M (B, far, ).
Thus {é’; } € L?(Q2) will be bounded sequence, hence there exists a subsequence
converging weakly to 65 in L?(Q). By (8.7), {az} and {pz} (uZ, p: are solutions of
and of with . = 0%) will be bounded independent of . Therefore by
extracting a further subsequence (if necessary) we have u* — Quj weakly in L?(£2)
and p* — Op} weakly in L2(Q).

We define below the limiting optimal control problem. For that let 6y € U,gq,
and let ug € H{(£2) be the solution of

— diV(AOVUQ) + hlﬁzvlm = @(f + 90) + Ha}/IUMQT(g) in €,
ug =0 on 0f,

and the cost-functional by

1 No [ 62
9) == | B* de +— [ 2d
Jo(0) 2/9 VuoVug dx + 5 /Q@ z,
where Ag and B# are same as defined in ([3.4) and (3.6). With this framework, we
state the results on convergence of optimal controls. A proof of which follows by
Remark (also see Kesavan et al. [16] Theorem 4.1]).

Theorem 3.5. The limit 05 satisfies the optimality conditions
Jo(65) = guin Jo(0),
tim J.(67) = Jo(65).

4. BOUNDARY HOMOGENIZATION OF OPTIMAL CONTROL PROBLEMS

In this section, we study the boundary homogenization of some boundary control
problems. Let Q. = Q\T., where {T.} is a sequence of admissible holes in the sense
of Hy-convergence and T, do not intersect the external boundary 0f2. We assume
that 0 is partitioned into two parts I'%¢ and I'"¢ (corresponding to an e-periodic
structure for example) such that each connected component of I'%¢ and/ or T''*
has diameter going to zero with € or a directional thickness going to zero with ¢ for
some given linear subspace direction. These kinds of problems (considered below)
arise in oil exploitation.
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Let A, satisfy (L.1)), g. € L?(09), and US; C L*(I'"¢) be a closed, convex subset
representing the admissible controls. For § € U, the state equation is

—div(A:Vue) +ue. =0 in Q,
ANVu, -n.=g.+60 onThe

0,
ue = c¢. (unknown constant) on I'"¢ (4.1)

/ A NVue -n.ds = / ge ds
FU,E F(),E

AVu. -n. =0 on 0T..

We refer [14] for the physical significance of the boundary conditions on I'%¢. For
Ny > 0, we associate the cost functional

Fl,s

For the existence and uniqueness of solutions of (4.1)), (4.2), we refer to [21], Section
2.7, 2.2], [IT, Section 5, p. 265], and [I8]. To characterize the optimal control 67,
minimizing (4.2)), we introduce the adjoint state which is the solution of

—div(*A.Vp.) + p. = —Au. in .,
tA.Vp. -n. = Vu. -n. on ',

1.(6) = % /Q Vu. - V. dz + % 0% ds (4.2)

pe =d. (unknown constant) on I'*, (4.3)

/ A Vpe - neds = Ve -neds on I'Ve
FO,E Foyg

tAEVpE -ne = Vue -n. on 01,.

Let u* € HY(Q.), pt € H* () be the state and the adjoint state for § = 6. Then
0% satisfies the extremality condition

/ (0 + Nof2)(0 — 02)ds >0 V0 €U, (4.4)
Fl,s

We need the following hypotheses:
(H4) The characteristic function xpo.- of I'% satisfies
Ix € L>(09), 0 < x(x) for a.e. € 9Q and (1 — x)~ ' € L>(09Q).
and xro.. — x weak™ L>(99).
(H5) g. is bounded in L?(99) and there exists gy € R,

/ ge ds = go.
Ele)

(H6) A. Hop-converges to Ag in the sense of Briane et al. [3].

(H7) Every weak® limit point in L>®(£) of xq. is positive a.e. in Q, that is
Xa. — Xo weak* L=(9), then ;' € L=(Q).

(H58 For each e > 0, there exists an extension operator P¢ € L(V., H'(2)) such
that for all u € V,,

Prulo, =u,  [[P7ul0 < Cllufl1o.,

(4.5)

where
V. ={u € H'(Q.); u= M (constant) on I'*}.
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Here and in the sequel, C' denotes the several positive constants independent of e.
Then in view of assumptions (H4)—(H8), the state and adjoint equations (4.1]) and
(4.3) can be homogenized to

— diV(AoVUo) + xoup =0 in Q,
— div(*AgVpo — BY Vug) + xopo =0 in Q,
ug = constant on 0f2,

AoVugy - nds,= go —|—/ (1 —=x)0ds,

oQ o0

/ (*AgVpo — B#VUO) -nds = 0.
a0

The homogenization is known to us by Prof C. Conca [11], (cf. see Section [f]).

4.1. Optimal controls. For each € > 0, let the optimal control be denoted by 67
which is characterized by (4.4). Let o € L?(992) be a given function, let U5, and
U,q be the following sets of admissible controls
c=1{0. € L*(I'"®) : 0-(2) > o(2)|r1.c ae. € 00},
Upa = {0. € L*(09) : 0(z) > (1 — x)o(x) for a.e. z €T}
Let 0 € U,q and let us define

9 €
95 = X]_‘*l,a fx (S ad- (47)

1
Theorem 4.1. Let J. and 0. be given by (4.2)), and (4.7). Then we can pass to

the limit in the cost functional

lim J(0:) = Jo(0),

e—0

where

N [ 6

2 Joal—=x
Then 05 € Uaq 1s the unique minimizer of the above cost-functional over U,q, that
18

1
J()(a) = By /Q B?&VUOVUO dx + ds. (48)

Jo(65) < Jo(0) VO € Uaq. (4.9)
To prove the above theorem, we shall need the following key lemma.

Lemma 4.2. Let

0
0. = xr1.- : — 6 weakly in L?(99).
- X

Then
0 62

1iminf/ |X1"1,a |2ds > / ds.
=0 Jaq I—x oo l—X

Proof. By (H4), 22220y € L?(2). We define the convex functional ¢ : L?(2) — R
X)

(-
as
(0) = / 16]2 ds.
oN

Using convexity arguments and some simple calculations, we obtain

0 (8) — o ( fr_l‘;eo) > 2 /a ) fF_l;eo = f”‘;eo) ds. (4.10)
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Using that xp1.-0. = 0. and X7 . = xpu. for all 7 > 0, the right-hand side of (#.10)

becomes 4
2/ 0 (55 _ Xre 90) ds,
oo 1 —X I—x

which tends to 0 as ¢ — 0, by the weak convergence of 0. — 0y L2 (09Q)-weakly and

the convergence xri,- Lf (1 — x). Further we have
weak™

2
XTt.e N XT1,e 2
90(1 - X90> B /BQ (1- X)2|90| s

1 2,.—2 e
:/ +XFO, 2XF0 ‘90|2d5
a0 (1-x)

1 — Xro,z 2
— [ X024
/asz (1—x)?

|00
— ds.
/89 (1-x)

Then the result follows from the above observations. O

Proof of Theorem[/.1. Using the state equation associated with 6., and [16, Re-
mark 3.3], we have
2

o\ 1 No 0
Jg (XFl,E 1_ X) = 5 -[25 Vus . vu5 + 7 ‘/1—‘1‘2 XT1.e st — JO(Q) (411)

where Jy(0) is defined by (4.8).
On the other hand, using [16l Remark 3.3] (when B, = I for all € > 0), we have

lim [ |Vu|>dz = / B VuiVug d.
Qe Q

e—=0

Now we pass to the limit in the inequality

1602) < I (w1,

in view of (4.11)), we have

1 N,
Jo(0) > + / BEVuL - Vg +limsup 28 [ e (09)2ds. (4.12)
2 Jo =0 2 Jao
Thus taking 6 = 6§, we have
: 0
95 = XFl,E 1 fX.
Now putting 6} in (4.12) we have
9* 2 9* 2
limsup/ XT1,¢ (Xpl,sio) dsg/ (%) ds (4.13)
=0 Joq (1-x) oo l—Xx
which implies
9* 2 9* 2
limsup/ XT1.e (Xl“l,z o ) ds < / (%) ds. (4.14)
e=0  Joaq (1-x) oo l—X

Using xr1,: =1 — xro,c, we have

(1= xro)® =14 (xroe)® = 2xro. = 1 — xro.c
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Similarly,
(1 - XFO,E)?) = (1 — XFO,E)(l — XFO,E)2 = (1 — XFO,E)(]. — XFO,E)
= (1 — XFU,E) = Xpl,s.
With the above observations, (4.14)) implies
9* 2 9* 2
limsup/ Xp1,5< 0 ) ds < / (66) ds. (4.15)
=0 Joo 1—-x oo l—Xx

On the other hand, by a convexity argument, see Lemma also see [16, Propo-
sition 2.2], we have

liminf/ Xl“l,s( i )2 ds > / (65)° ds. (4.16)
=0 Jaq I-x a0 1—x
From and the last two inequalities and , we have

Jo(0) > Jo(05) VO € Unq. (4.17)
This completes the proof . O

5. ApPPENDIX BY C. CONCA
The variational formulation of (4.1)) is as follows: Find u. € V. such that for all
eV,

/ AEVUEVgodx—i—/ ugapda::/ (g5+9)<pds+<p|po,s/ ge ds (5.1)
Q. Q. rte r

0,e

Taking ¢ = u. as a test function in (5.1)),

/ A VuVu, dx —|—/ Ug * U = / getie + O|p1.e / e ds. (5.2)
Qe Q. o ITle

Since u. is constant on T'%¢, and using (1.1)), (H8)—(H10), we have

0,02 (lIgello.e. + [10llo,r2.<)
< Cllucll10. (llgellog. + 10]o,r)
[uelli,e. < C(go + [10llo,r1e) 5
thus we can extract a subsequence (still denoted by €) {u.} such that

Pfu. — ug weakly in H*(Q),

O‘mHus”%,QE < [ue

(A-Vue) = (AgVug)  weakly in [L*(2)]¥

where ug satisfies
—div(4pVug) + xouo =0 in Q. (5.4)
We set
V={ue H(Q):uec H(Q), u= M (constant) on 9Q}.
Clearly, V' C V; for all € > 0. Then for all ¢ € V| we have

/ (A/E—%s).vcpdawr/ Xa. Pfuspdx
Q. Q

:solzm/ geds+<p|ag/ (1 — xro. )0 ds.
o o0
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Passing to the limit in the above eq as € — 0, and using (5.3)), (H4), (H5) and (H9),
we obtain

—/ div(AgVug)p dx +/ Xotow dx = laa go —l—/ (1= x)bpds.
Q Q a0

Integrating by parts

—<p/ (AOVu0)~ndx+/ AoVrogoJr/ Xouop dx = plaa go+/ (1—=x)0pds.
a0 Q Q a0

Comparing the coefficients of ¢, then again integrate by parts and combine with

(5.4) we obtain
/ AOVu0~nds:g0+/ (1 —-x)0ds.
a0 a0

Now we show that ug is constant on 9. Since Peu. — ug weakly in H*(2). As
in the proof of [14, Theorem 1, p. 354], we have

xro.e Peuc| . — xuglog weakly L?(99).

P

On the other hand, since u, = ¢, on I'%¢, and

XFO,EUEh"O,s = XFO,ECE — C- X

where c is just the limit of sequence of real numbers c.. Comparing both the limits
of xro,eUc|ro.c, we obtain

XUolag = x - ¢ = up =con d, asx #0on IN.
Similarly Pp. — py weakly in H!(€2).
Set z. = 'A.Vp. — Vu.. Then up to a subsequence
ze — 29 weakly in [L*(Q)]V,
where z( satisfies
— diV(ZO) 4+ xopo =0 in Q. (55)
Arguing as we did for the state equation, we prove that

poleq = dp (constant), and / zo-nds = 0.
o0

To identify the limits zy and pg, we introduce the auxiliary functions pj, and vy,
k=1,...,N as done in [I6, p. 572].

ps, —xp — 0 weakly in H*(Q),
div(A.Vy3,) = (P7)* div(Ager) in Q,
(AcV(—pg + ) -ne =0 on 9T,
(AVps) — Agey,  weakly in [L2(Q)]V,

(5.6)

where (P.)* is the adjoint of P¢, and xj, is kth co-ordinate function and ey, is the
kth standard basis vector. Similarly introducing g € Ve, k =1,..., N satisfy

div(*A. Vs +Vug) =0 in Q.

. . A (5.7)
( Aavwk + V,uk) =0 on GTE
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It follows that Py — ¢ weakly in H'(Q2). Let ¢ € D(Q), then multiplying the

first equation of (4.1) by @5 and adjoint equation (4.3) by ous, integrating by
parts, and subtracting the second identity from the first, we obtain

0= - /Q SuE Vi do — /Q V(P*p.) (A1) + /Q EV(Po) da

- / (Puc )bV dx + / Xa.pP i Peu. dx.
Q Q
Let us denote by b? the weak limit in [L?(Q)]V of (*A. V5 +Vus). It is clear that
div(b)) =0 in Q. (5.8)
Passing to the limit in ([5.8]) using div-curl lemma [3| Lemma 1.1], we obtain

O:—/ zokagod:c—/Vpo(Aoek)godx—i—/(AOVuO)chwg dx
Q Q Q

—/Uobngdﬂf‘*‘/ XoPYptio dm_/XOPO‘PCUk dx
0 o Q

From (5.4), (5.5, and (5.8)), integrating by parts, we obtain
20 er = "AgVpg - ex + LAV Vug — b - V. (5.9)

Hence zg = tAOVpO—BfVuo, and B#ej, = b) —t AgV1?. Combining with (5.5)), we
obtain second equation of (4.6). Thus we obtain the homogenized equation (4.6]).

Acknowledgements: The author would like to thank the anonymous referee for

his/her useful comments which really improved the manuscript. This research was
supported by Women Scientist Scheme (WOS-A), DST, file no: SR/WOS-A/PM-
77/2017.

REFERENCES

[1] G. Allaire; Homogenization and two scale convergence, SIAM J. Math. Anal. 23 (1992), pp.
1482-1518.
[2] G. Allaire, F. Murat; Homogenization of Neumann problem with non-isolated holes, Asymp-
tot. Anal. 7 (1993), pp. 81-95, with an Appendix jointly written with A. K. Nandakumaran.
[3] M. Briane, A. Damlamian, P. Donato; H-convergence in perforated domains, in Nonlinear
Partial Differential Equations Appl., Collge de France Seminar, Vol. XIII, edited by D. Cio-
ranescu and J. L. Lions. Longman, New York, Pitman Res. Notes in Math. Ser. 391 (1998)
62-100.
[4] N. Bourbaki; Elélments de Mathématique: Intégration, Chapitre I1I, Springer, 2007.
[5] B. Cabarrubias; Homogenization of optimal control problems in perforated domains via un-
folding method, Applicable Analysis, 95 (2016), pp. 2517-2534.
[6] I. Chourabi, P. Donato; Homogenization and correctors of a class of elliptic problems in
perforated domains, Asymptotic Analysis, 92 (2015), 1-43.
[7] D. Cioranescu, P. Donato; An introduction to Homogenization, Oxford Lecture Series in
Mathematics and its Applications 17, Oxford University Press, 1999.
[8] D. Cioranescu, P. Donato, R. Zaki; The periodic unfolding method in perforated domains,
Portugal Math. 63 (4) (2006), pp. 467-496.
[9] D. Cioranescu, A. Damlamian, P. Donato, G. Griso, R. Zaki; The periodic unfolding method
in domains with holes, STAM J. Math. Anal., Society for Industrial and Applied Mathematics,
44 (2012), pp. 718-760.
[10] D. Cioranescu, J. Saint Jean Paulin; Homogenization in open sets with holes, J. Math. Anal.
Appl. 71 (1979), pp. 590-607.
[11] C. Conca; emphPersonal communication.
[12] C. Conca, J. I. Diaz, A. Linan, C. Timofte; Homogenization in chemical reactive flows,
Electron. J. Differ. Eqns 2004 (2004) No. 40, pp. 1-22.



EJDE-2022/12 OPTIMAL CONTROL PROBLEMS 23

(13]

(14]
(15]
[16]

(17)

J. 1. Diaz, A. V. Podolskiy, T. A. Shaposhnikova; On the convergence of controls and cost
functionals in some optimal control heterogeneous problems when the homogenization process
gives rise to some strange terms, J. Math. Anal. Appl. 506 (2022), pp. 1-13.

A. Damlamian, Li Ta-tsien; Boundary homogenization for elliptic problems, J. Math. Pures
et appl., 66 (1987),pp. 351-361.

S. Kesavan, T. Muthukumar; Low cost control problems on perforated and non-perforated
domains, Proc. Indian Acad. Sci. Math. Sci. 118, 2008, pp. 133-157.

S. Kesavan, J. Saint Jean Paulin; Optimal control on perforated domains, J. Math. Anal.
Appl., 229, 1999, pp. 563—-586.

S. Kesavan, J. Saint J. Paulin; Low cost control problems in: Trends in Industrial and Applied
Mathematics, Kluwer Academic Publishers, (2002), pp. 251-274.

[18] J. L. Lions; Optimal Control of Systems Governed by Partial Differential Equations, Springer-

Verlag, Berlin, 1971.

[19] T. Muthukumar, A. K. Nandakumaran; Homogenization of low-cost control problems on

perforated domains, J. Math. Anal. Appl., 351 (2009), pp. 29-42.

[20] C. Timofte; On the homogenization of a climatization problem, Stud. Univ. Babes-Bolyai

Math. 52 (2007), 117-125.

[21] J. P. Raymond; Optimal control of Partial Differential Equations, Université Paul Sabatier,

Available from: www.math.univ-toulouse.fr.

INDIRA MISHRA

INDIAN INSTITUTE OF INFORMATION TECHNOLOGY LuckNOow, CHAK GANJARIA, C. G. CiTY, LUC-
KNOW, UTTAR PRADESH 226002, INDIA

Email address: indira.mishral@gmail.com, indira@iiitl.ac.in



	1. Introduction
	1.1. Notation and problem setting
	1.2. Optimality conditions

	2. The periodic unfolding method for perforated domain
	3. Main results
	3.1. Convergence of optimal controls

	4. Boundary homogenization of optimal control problems
	4.1. Optimal controls

	5. Appendix by C. Conca
	Acknowledgements:

	References

