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RADIAL SOLUTIONS FOR INHOMOGENEOUS BIHARMONIC
ELLIPTIC SYSTEMS

REGINALDO DEMARQUE, NARCISO DA HORA LISBOA

ABSTRACT. In this article we obtain weak radial solutions for the inhomoge-
neous elliptic system

A%+ Vi(ja))|ult~2u = Q(lal) Fu(u,v) in RY,
A2+ Va(lz))|v]9 0 = Q(|z]) Fu(u,v) in RY,
u,v € DY?(RN), N>5,
where A2 is the biharmonic operator, V;, Q@ € C°((0, +00), [0, +00)), i = 1,2,
are radially symmetric potentials, 1 < ¢ < N, ¢ # 2, and F is a s-homogeneous

function. Our approach relies on an application of the Symmetric Mountain
Pass Theorem and a compact embedding result proved in [I7].

1. INTRODUCTION

In this article concerns the existence of nontrivial solutions for the inhomoge-
neous biharmonic elliptic system

A%u + Vi(Jz)|u|?%u = Q(|z|) Fy(u,v) in RY,
A% 4 Va(|z]) 0|20 = Q(|z]) Fy(u,v) in RV, (1.1)
u,v € D*(RY), N >5,

where A? is the biharmonic operator, V;, Q@ € C°((0,+c0),[0,+0)), i = 1, 2,
are radially symmetric potentials, 1 < ¢ < N, g # 2, and F is a s-homogeneous
function satisfying the following assumptions:

(A1) V; € C°((0, +00), [0, +00)), such that

Vi(r) Vi(r)

lim inf >0, liminf ——= >0, (1.2)
r—0 rao

r—+oo ra@
for some real numbers a and aqg.
(A2) Q € C°((0,+00), [0,+00)), is such that
lim sup %:) < oo, limsup Qgr)
r—4oc0 T r—0 oo

< 00, (1.3)

for some real numbers b and bg.
(A3) F € CY(RxR,R)is a homogeneous function of degree s, with s > max{2, q}.
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(A4) There exists C' > 0 such that
|Fu(u,0)] < C(lul*" + o), (u,0) € R?,
|Fy(u,0)] < C(lul*™ + [u]*7h), (u,v) € R2.
(A5) F(u,v)>0,Yu,v>0.
Nonlinear elliptic problems of fourth order without singularities in bounded do-
mains have been extensively studied by several authors, see [0, 20, [38] 40], and
references therein.

For application or motivation, we note that, when @ C R¥ is a bounded domain,
the problem

(1.4)

A?u+ cAu = f(z,u) in Q,
u=Au=0 on 09,

which arises in the study of traveling waves in suspension bridges (see [16, 24} [28])
and in the study of the static deflection of an elastic plate in a fluid.

For studies on the existence and multiplicity of solutions for nonlinear bihar-
monic problems in unbounded domains, the reader is referred to [19] B0, B5)] in the
radial case, and to [I] in the non-radial sub-(sup) linear case. Maximum principle
results for biharmonic equation in unbounded domains are obtained in [32]. Also
for unbounded domains, nontrivial solutions and multiplicity results are obtained
in [41 5] 6] 151 3T, [39] and in references therein. Additional results in the scalar case
may be found in [34] [36] 37, 41, 42].

Elliptic systems may be used to describe the multiplicative chemical reactions
catalyzed by catalyst. For the existence of nontrivial solutions to nonvariational
systems, potential systems and Hamiltonian systems including critical exponents
case see, for instance, [3|, 211 25] 26], [42]. See also [2} [7), 12} 13|, 14}, 27 29].

For results for fourth-order equations with singular potential see [30] and [6].
Alves et. al. in [6] proved the existence of solutions to the problem

A2u+ V(@) |u) = [u* 2u, inQcRY
ue D*(Q), N >5,

where 1 < ¢ < 2* —1 and V = V() is a potential that changes sign and has
singularities in 2. Wang and Shen in [39] proved existence of sign-changing solutions
for the problem

2 |u 22y r—2 . N
Afu=A\—————+ fa(@)|ul"""u, inQCR

||

ue DE?(Q), N >5,
motivated by the Hardy-Rellich’s inequality

— u2
/\/ —dxg/ | Au|?dz,
Ry |2[* RN

as improved in their work. Radial solutions for the biharmonic equation
A%u+ V(|z)]ul " *u = Q(|2]) f(u),

were obtained in [I1], when ¢ = 2, and in [I7], when ¢ # 2. Motivated by the work
of Alves [2] for elliptic systems, a natural question is whether or not the results of
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[17] can be extended to the elliptic system (1.1)). Here we answer this question in
the affirmative when (A3) and (A4) are satisfied.

Before stating our results, we to introduce some notation. Let Dj*(RY) be
the closure of C§°(RY) under the norm ||Aully and Dy’ 2(IRN) the set of radially

symmetric functions in D0 (RN ).
For p > 1 and a function v : RN — R define

LP(RY;v) = {u: RN — Ru is Lebesgue measurable and / v(z)|ufPde < +o00}
RN

endowed with the norm

1/p
o i= ([ vi@ludrae) ™.

Define the Banach space Xy, := D2*(RN) 0 LP(RYN; V;), with the norm
|

and Xy, , the set of radially symmetric functions in Xy, i =1,2.
We consider the product space X := Xy, x Xy, endowed with the norm

ol = ([ (8u?+1a0R)dz) 4 ([ @illabluf+ va(laDlomas) "

and X, := Xy, » x Xy, . Also, we endow the space L*(RY; Q) x L*(RY; Q) endowed
with the norm

1/
s 0) o0 = / QUal)([ul* + [o]")dz)

Let a* = M4 4 q%ql(a—l—N) and of = 2 4+ %(ao + N). Now, as in [17],
we define some indexes that will appear in our results.
The bottom indices are defined as

q, bga,bg—Norbz_Ner_&
%7 b <a and —N<b<—N+w_€’

+Q(b a) b>aZ_N+ Q(Z\;_4)7

Sy 1= “ _ _
q-+ 5\?_4), b>a,b>—Nand—N+W—e<a<—N+q(NT4),

%, b>a,b>—Nanda§—N+%—a,

g+ 229 4 <bh< N,

and the top indices are defined as

A=) g >bg > —Norby >ag>—N+ L 4 ¢
* q + 2(?\?:20), bO Z Qo and — N + (I(N2_4) < ag < -N + (I(N_4) + €,
s = q+ Q(b(;—*ao)’ bo > ag and — N — 112((1;7_—14)) <ap< —N+ fI(N 4)
0]
+00, bo > ag and a < —N — ‘12((1;/714)).
Consider also s, 1= q + w, with bg < ag < —N — ‘é((]::f)).
0]

Our main result is the following.
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Theorem 1.1. Let (A1)—(A5) be satisfied. If s. < s < s*, then system (1.1 has a
nontrivial solution (u,v) € X, by which we mean

[ @Qudesdoaide [ (Vilalultup + Va(lalol o)
RY RY (1.5)

= [ QUaD(ePulu,0) + 6F (u,0))ds
for all (p,¢) € X. Moreover, if F(u,v) = F(—(u,v)) and there exists n > 0 such

that F(u,v) > n(lul® + |v|*), for all (u,v) € R?, then system (L.1) has infinitely
many radial solutions (u,v) € X,., i = 1,2.

The proof of Theorem [I.1] will be given using arguments similar to those devel-
oped in [I7]. First we define an Euler functional I : X, — R associated with the
equation . Then, we obtain a Principle of Symmetric Criticality result, which
yields that the critical points of I are solutions of the system. Finally, we prove that
this functional has the mountain pass geometry and apply the Symmetric Mountain
Pass Theorem to obtain the result.

2. EXISTENCE RESULTS

In this section we will prove our main result. To do this, we will divide the
proof in some lemmas. Firstly, let us present the following embedding theorem
established in [I7].

Theorem 2.1. Let V;, i = 1,2, and Q be functions satisfying (L.2) and (L.3). If
Sx < 8%, then the embedding

Xv,r = L*(RY;Q),

18 continuous for all s, < s < s* when s* < 00, s, < s < o0 when §* = oo or
max{s., S« < 8 < o0o. Furthermore, the embedding is compact for all s, < s < s*
or max{Sy, S« } < 8 < 00.

Now let us define the Euler functional I : X, — R by

T =5 [ (80 +|A0P)de + 3 | Willalul? + V(oo

/ QUlal)F(u,v) da

By conditions (A1)—(A4) and the continuous embeddings obtained in Theorem
we have that I € C*(X,;R) with Fréchet derivative in (u,v) € X, given by

(I'(u, 0), (,9))
:/ (AU-AsoJrAv-MJ)dx*/ (Vi(lz)ul"*up + Va(|2|) o] *vi))da
RN RN

- / QD) (@ Fu(u,v) + ¥ Fy(u, v))de

for all (p,¢) € X,.
The proof of the next lemma follows the arguments presented in [I7].

Lemma 2.2. FEvery critical point of the functional I : X, — R satisfies (|1.5)).
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Proof. Let (u,v) € X, be a critical point of I. Given (¢,%) € X, define

1

@(r) = 108, . @(£)dS(E), P(r):

= m aBTw(g)dS(E)’ (2~1)

where OB, denotes the sphere of center 0 and radius r and |0B,| denotes its
Lebesgue measure.

Proceeding as in the proof of the mean-value formulas for Laplace’s equation
(see [18]), using polar coordinates in RV and divergence theorem, we conclude that

P = 575 [, e
00 = w75 [, v
e ==Yty s i [ aveasie)
a0 =50+ e [ svtaste
Since Ag = L6+ N1 4 5 and Ag = L) + N=1 44 we obtain
Ap= a;m [, 29(0)as(€) and A = ngr‘ | Av@as©. (22

From this we see that (¢,1) € X, and then
(I'(u,v), (#,9))
- / (AuAG + Av.Av)dz + / (Vi(lz)ul""*up + Va(|2|) o] *vi))da
RN RN
= o Q|2 (#Fu(u,v) + ¥ Fy(u,v))dz = 0.

Therefore, using polar coordinates in RV and Fubini’s Theorem again and the

identities (2.1) and (2.2) we obtain result. O

Before we prove the Palais-Smale condition for the functional I, we need to make
some remarks about assumptions of the function F'.

Remark 2.3. (a) Since F' is a C'' homogeneous function of degree s, then
sF(u,v) = uF,(u,v) + vF,(u,v) and VF is a homogeneous function of
degree s — 1.

(b) From (F}), (a) and the Young inequality we have |F(u,v)| < C(|ul® 4+ |v]®)
for all (u,v) € R?.

(c) Our prototype of F'is F(u,v) = (alu| + blv])* + c|u|®|v|?, u, v € R; a, b,
¢c>0and a+ 8 =s, with o, 5> 1.

Lemma 2.4. The functional I : X, — R satisfies the Palais-Smale condition.

Proof. Let {(uyn,v,)} be a sequence X, such that I’ (uy,, v,) = 0 and I(u,,v,) — ¢,
as n — 4oo. We shall see that {(un,v,)} is bounded in X. Indeed, since
I'(up,vs) — 0, we have ||I'(un,v,)|| < 1 for all n sufficiently large, and so,
(I (tn,, V5 )y (U, U0 )| < |[(tn, vp)]|- Since {I(un,vy,)} is convergent sequence, there
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exists a positive constant Cy such that |[I(uy,v,)| < Co. In this case, from (Fp)
and the Remark (a), we have

Co+ % (un, )
> I(tp,vp) — é([’(un,vn), (Un, V) (2.3)

> O [, (80l 180n e+ [ (Vi(lunl” + Vatlenf ]

where Cy and C' are positive constants. To conclude that {(un,v,)} is bounded,
we will split our arguments in the cases: 1 < ¢ < 2 and ¢ > 2.

Case ¢ > 2. Suppose {(un,v,)} is unbounded. Then, up to a subsequence,
[[(tn, vn)|| = +00, as n — +o00. From (2.3) we see that

Co 1 1
(s )12 5 [ (s 00) |
C ) ,
> T | (8P + 180, s o

+ [ Wl + VallaDlonl )]

for some positive constants Cy and C.
If { [on (Vi(|2])|tn|? + Va(|2])|vn|?)dz} is an unbounded sequence, then, up to a
subsequence,

/N(V1(|x\)|un|q + Va(|z|)|vn|?)dx — 400, asn — +o0.
R

This implies that [ (Vi(|z|)|un|? + Va(|z])|vn|?)dz > 1, for n sufficiently large.
Consequently, since g > 2, we obtain

(s vn)I* < 2[/ (| Aun|* + IAvn\Q)der/ Vil Dlunl? + Va(lz[) [vn|?)dz|.
RN RN

Combining this with (2.4) we deduce that
Co 1 1 S g
(s o) 12 s | (uny o)) 27
for some constants Cy, C > 0 and for n sufficiently large. So we obtain a contra-
diction.
On the other hand, if { [on (Vi(|2])|un|? + Va(|z|)|vn|9)dz} is bounded, we con-
clude that

(|Au,|* + |Av,|?)dz — 400, asn — +oo,
RN
up to a subsequence. Using (2.4) we see that, for some positive constants Cy and
c,

Co 11 1Aun 5 + [|Avnll3 + lunllg v, + lonllgv,

1, )2 5 (1 Cun, 0n)[2 = (s o) 2

1+ \Iun\lg,vﬁ-\lvn\lg,vz

_ O ‘lAunI|%+‘IAvn‘|§ — C
1+(”un”g,vl+”'Un”g,v2)l/q 2 ’

(lAun I3+ Ava [13)/2
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as n — +o00. Here we also have a contradiction.

Case 1 < g < 2. If { [on(|Aup|* + |Av,|?)dz} is an unbounded sequence, then,
up to a subsequence,

/ (|Au,|* + |Av,|?)dz — 400, asn — +oo.
RN

As a consequence [on (|Auy|? + |Av,|?)dz > 1, for n sufficiently large. Since
1 < g < 2, it follows that

[ (s on ) (|
%
<2/[( [ (Bunf+|8wde) + [ (Valiahlunl? + VallaDlon[7)da]
RN RN
<21[ [ (Bun o+ |Aunfd o+ [ (Vilal)funft+ ValaDlon ).
RN RN
Using this and (2.3)) we conclude that, for some positive constants Cy and C,
1 C
Co+ <t o)l 2 5, )1,

for n sufficiently large. But this is a contradiction.
Now, if { [on (|Auy|? + [Av,|?)dz} is bounded, then, up to a subsequence,

/N(V1(|x|)|un|q + Va(|z|)|vn|?)dx — 400, as n — +oo.
R

Hence, using (2.3]) again, we obtain
Co 1 1 1Au 13 + [[Av |13 + unllf v, + lvallg v,

+= >
[ (wn, )7 s [[(un, vn)]]271 | (wn, vn) |2

HAuan-i-HAvan +1
”un”g,vl‘i’”'un”ZYVQ

=C —C
[ (HAuan—i-HA'uan)l/2 1]q ’

(l‘un|‘27vl+”UN||ZYV2)1/q

as n — +o0o. We have again a contradiction and, therefore, {(uy, v,)} is bounded in
X,. Consequently, {u,} and {v, } are also bounded in X, v, and X, v,, respectively.
Using the fact that X, v,, ¢ € {1, 2}, is reflexive, we conclude that there exist u €
X, v, and v € X, y, such that u,, — u weakly in X,.y, and v, — v weakly in
X, vy, as n — +00 , up to subsequences. Hence (up,v,) — (u,v) weakly in X, as
n — +o00, up to a subsequence. Since X, y, is compactly imbedded in L*(RY; Q),
i € {1, 2} (see Theorem [2.I)), we deduce that u,, — u and v, — v strongly in
L*(RM;Q), as n — +o00. As a consequence, u, — u and v, — v a.e. in RV, as
n — +00.
Now we shall prove that

(I'(un, vn), (0, 90)) = (I’ (u,0), (0,9)),

for all (p,¢) € X,, as n — +o0.
For (¢,v) € X,., we define

Flou) (u,0) := / [Aulp + AvAy]da.
RN
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Note that Flo) € X/ and
<F(/<p,1p) (U, U), (Za ’U})> = / [AZAQO + AwA’lb]d"L‘7
]RN
for all (z,w) € X,.. Since (up,v,) — (u,v) weakly in X,., as n — 400, we deduce

that Fy ) (tn, vn) = Fe ) (u,v) strongly in X, as n — +o0, for all (¢,9) € X,
that is,
/ [Au, Ap + Av, Adlde — [AulAp + AvAy)dx, (2.5)

RN RN

as n — +oo, for all (p,9) € X,.
We consider (¢,9) € X, and define
gn = (V)T lun|*tn, b= (V2)'T [va| 20,
=1 PETEN
g:=MW1) @ [u|%u, h:= (Vo) @ |[v|T%.

So, gn — ¢ and h,, — h a.e. in RY. Moreover, {g,} and {h,} are bounded in
La/(a=D)(RN), Tt follows from Brézis and Lieb lemma [I0] (see also [22, Lemma
4.8]) that

/ gmpdm—)/ gpdr and hpdr — hydzx,
RN RN

RN RN
as n — +oo, for all ¢, € LI(RY). In particular, given (¢,%) € X,., we have
(Vi)Yap, (Vo) /%) € LI(RN), so that,

[ el gt = [ gvidia))/apas
and
/ o (Va(J2])) Y 20l — / h(Va(|2]) Y 4dz,
RN RN
as n — +oo. Hence,
/ V(e unipde — / Vi () lul" 2upds
RN RN
and
/ Va(le]) o] 2vntpde — / Va(la)) ol vide,
RN RN

as n — +00. Consequently,

/RN(Vl(IxDluan*Zunw + Va(|2])on] "~ vnep) da

2.6
= [ (AeDlul"2up + Va(jaD ol 2ov)da. Y
as n — +oo, for all (p,¢) € X,.
We define K : X, — X by
(K (u,v), (p,9)) := /RN QUlz))pFu(u,v) + »Fy(u, v)]dz.
First, we prove that
|1 Fo (s v) — Fou(u, v)| g —0 and | Ey (n, vpn) — Fy(u,v)| Q> 0,
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as n — 4o00. By using (A4), we will deduce that
Q)| Fu(un, vn) — Fu(u,v)

a.e. x € RV, for some function h € L'(RYN). In fact, since ||Q*u, — Q/ull; — 0
and [|Q* v, — QY/*v||; = 0, as n — 400, we conclude that

(1) QY*u, — Q'*u and Q'/*v,, — Q'/*v a.e. in RN, as n — +oc;

(2) |QY*up| < hy and |Q3v,| < hg ace. in RN, where hy, hy € L*(RY).

Hence, for some positive constant C,
Q)| Fulun, vn) — Fu(u, U)ls%l
< 277 Q) (| (1, 00) =)
SCGXMM%P+QGMWMP+QW@WP+QUMWW)Sh@%
where h(z) = C((h(@))* + (ha(2))* + Qal)lul* + Q(lz])|v]*).

Since Q(|z])| Fu(tn, vn)— Fy(u,v)|57 — 0 a.e. in RN, asn — +oo, we see, by the
Dominated Convergence Theorem of Lebesgue, that || £y (wn, vn)—Fu(u, v)|| = @ —
0, as n — +oo. Similarly, [|Fy,(un,vn) — Fy(u,v)|| =, @ — 0, as n — +oo.

On the other hand, using Holder’s inequality and the continuous embedding
X, vi = L*(RYN,Q), i € {1, 2}, we have, for all (¢,9) € X,,

|<K(unavn) - K(ua U)7 (903 ¢)>|

< [, QUaDIPu(un,00) = Fulu o)l

=1 < ()

T4 | Fu(u, v)

+ / Q)| Fo(ttm, 0n) — Fo(us, )| 6]
RN

< [ Fu(tn, va) — Fulu,v) SLQH‘P' 5,Q + [1Fy(un, vp) — Fy(u,v) Sil’QHl/} 5,Q
< Ol Fy(un, vn) — Fu(u,v) SLQ”(% Yl
+ Cl|Fy(un, vn) = Fo(u, 0) | =1 0l (0, )1,
for some positive constant C. Using this we see that
1K (tn, vn) — K (u, )|l x; < Cll|Fu(tn, vn) = Fu(u, v)]| =10
+ 1Fy (tn, vn) — Fo(u,v)|| <, @] — 0,

as n — 400, so that, we obtain (K (u,,v,) — K(u,v), (p,9)) — 0, as n — +o0;
that is,

(K (un,vn), (0, 0)) = (K(u,v), (p,9)),
as n — 400, for all (p, 1) € X,. Consequently,

/ Q)P F(ttn, 00) + 0 F (1t vt
By (2.7)

= [ QelePuuv) + P (u, ),
R
as n — 4o0, for all (¢,9) € X,. Moreover, since (un,v,) — (u,v) in X, and
K (un,vn) = K(u,v) in X/, as n — +o0o, it follows that
(K (un; vn), (un, vn)) = (K(u,0), (u,0)), (2.8)
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as n — +0o; that is,
/ QU [Fa (ttn, 0 Yt + Fo (11, v )0l — / Q) [Fa (s, v)u + Fy(u, v)0]dz,
RN RN

as n — 4o00. Combining (2.5)), (2.6) and (2.7) we obtain
(I'(un, vn), (@, 9)) = (I'(w,0), (9, 4)),

as n — +oo, for all (p,9) € X,.. Hence, as I' (uy,v,) — 0, as n — 400, we deduce
that I'(u,v) = 0. This implies

0= (I’(u,v), (uu 'U)>
- / [Auf? + | AvP]dz + / Vi () [ul? + V(e ol 9)dz — (K (u0), (u, 0)).
RN ]RN
Therefore,
(K (1, 0), (1, v)) = / 1w + Aol + / Wil lult + Vaalolde. (29)
On the other hand,

/ A ? + |Av, Pldz + / Vi (J2]) nl® + Va(|2]) o |7)de
RN RN

(2.10)
= <Il(un7vﬂ)7 (umvn» + <K(unvvn)7 (umvn»-
From , and we have
/ A ? + |Av, Pldz + / Vi (J2]) nl? + Va(|2]) o ) de
RY RY (2.11)

= [ 1AuP + jAoPlde+ [ Viel)luft + ValeD) ol da,
RN RN
as n — +00. As before, from the Brezis-Lieb Lemma, we can show that

[ villshiunttds = [ VaQehlu, ~uftdz > [ Vilel)fultaa,
RN RN RN
[ Vallaioaltdo— [ Vallablon ~vftdz = [ Va(lalpoftaz,
RN RN RN

/ |Aun|2dx—/ |A(un—u)|2dx—>/ |Auf2dz,
RN RN RN
/ |Avn\2da:—/ \A(vn—v)|2dx—>/ Av[2da,
RN RN RN

as n — +oo. This implies

[ WatiaDlualo + Va(laDloallde — [ Va(laDlun = uf? + Va(JaDlo, —vi7]da
RN RN

[ WallaDlul + Vale oo
RN

(2.12)
and

/ [|Aun|2+|Avn|2]dx—/ [|A(u, —u)\2+|A(vn—v)|2]da:
RN RN (2.13)
R /}RN[\AM +1Av[2de,
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as n — +o0o. By (2.11), (2.12)) and (2.13]), we obtain

/ (1At — ) 2+ Ay — 0) 2+ / Vi (|t — ] + Va (]| m — 0]]dz — 0,
RN RN

as n — +00. As a consequence, we deduce that

) = (a0 = ([ (1800 =) +180, = 0)Pytz)

1/q
([ llafn =+ Valal)fon — ol7)ds) =,
RN
as n — 4o00. Therefore, (uy,v,) — (u,v) in X,., as n — +o0. O

Lemma 2.5 (Geometry of the Mountain Pass Theorem). The functional I : X, —
R satisfies the following conditions:

(a) I(0,0) =0 and there exist ¢ >0, p > 0 such that I(u,v) > ¢ for ||(u,v)] =

P
(b) There exists (u,v) € X, with ||(u,v)|| > p, such that I(u,v) <O0.

Proof. First we note that I(0,0) = 0. Now, taking go := max{2, ¢} and using the
Remark [2.3[item (b), we conclude that

1 ul? v|?]dx x|)|ul? x|)|v|?]dx
Fuo)> [ [ (80P + |aoPldz+ [ Wael)luf” + Va(laDlolld

—cf QUalut + loflds.

for some constant C' > 0. By the continuous embedding X, v, < L*(RY;Q), i =1,
2, we deduce that

[ QUablude < o)l [ QUablofds <l o),
RN RN
for some positive constant C'. This and (2.14)) implies that

Tu0) > [ [ 1P + 80Pl -+ [ Viel)luft + Vallol) ol

(2.14)

“ (2.15)
—C|[(u,v)*,
for some constant C' > 0. For 0 < ||(u,v)|| < 1, we have
(| (w, v)[| %
q0/2 0/q
<20[( [ Ol +10020a)"™ " ([ il + vlelor i)™
RN RN
<o [ Q2+ iaoPyio s [ Qi+ valel?)ie]
RN RN
(2.16)

Combining ([2.15)) with (2.16)) we obtain
[[(w, v)[|*° = O (w, v) |7,

I(u,v) > oo
for some positive constant C' and for 0 < ||(u,v)|| < 1. So, there exist 0 < p < 1
sufficiently small and ¢ > 0 such that I(u,v) > ¢ > 0 for all (u,v) € X, with
|[(u, v)]| = p. This completes the proof of (a).
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Fixing (ug,vp) € X, such that F(ug,vo) > 0, we have, for all ¢ > 0,

etuosen) = 5 [ 18wl + 18w+ [ Wil o) + Vo)

—t* /RN Q(|z])F(ug,vo)dx.

This implies
I(t(ug,vp)) = —00 ast — +o0.

Thus, for ¢ > 0, sufficiently large, ||¢(uo, vo)|| > p and I(¢(up,vo)) < 0. Therefore,
(b) follows. This completes the proof. O

Finally, we can prove our main result.

Proof of Theorem[I.1]. As a consequence of Lemma [2.4] and Lemma we con-
clude, by using the Mountain Pass Theorem, due to Ambrosetti-Rabinowitz [g],
that there exists a sequence {(u,,v,)} in X so that

I(up,v,) — ¢ >0 and I' (up,v,) — 0,

as n — +oo. By Lemma [2.4] (un,v,) — (u,v) in X,, as n — +oo, up to a
subsequence. In view of I € C(X,,R), it follows that

I(un,vn) = I(u,v) and  I'(up,v,) — I'(u,v),

as n — +oo. This implies that I’ (u,v) = 0 and I(u,v) = ¢ # 0, that is, (u,v) € X,
is a nontrivial critical point of I. By Lemma we conclude that (u,v) is a radial
solution for the system in the sense of equation .

Our next goal is to apply the Symmetric Mountain Pass Theorem [33], Theorem
6.5] to complete the proof of Theorem So, we need to show that I satisfies the
following conditions:

(a) I(—(u,v)) = I(u,v), for all (u,v) € X,;
(b) For any nontrivial finite dimensional subspace U C X,., there exists R > 0
such that I(u,v) <0 for all (u,v) € U, with ||(u,v)| > R.
Since F'(u,v) = F(—(u,v)), (a) occurs.

Now, suppose that (b) is not true. Therefore, there exists a nontrivial fi-
nite dimensional subspace U C X, and a sequence {(un,v,)} in U such that
(e, vp)|| = 400, as n — 400, and I(uy,v,) > 0, for all n € N. Since U has finite
dimension, all norms are equivalent on U. In this case, since F'(u,v) > n(|u|®+|v|%)
for all (u,v) € R?, we obtain

/ QUal)F (ttn, o) > 1 / Q) (tn* + [vn]*)da
RN RN

= 1l (un, vn)5,o = Cll(tn, vn)l

‘ S
)

for some positive constant C'. Since s > max{2,q} = qo and ||(un,v,)| — +o0, as
n — 400, we deduce that

1 1
I ) < 5 / [ un? 4 Avn Pl + / Vi(2)lun|? + Va(|2])lon 7]z
RN RN

= Ol (un, va)|1?

1 S
< 5 un, o) |? + Ell(umvn)llq = Cll(un, va)|l

DN | =
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1 1

< (54 ) Ity )% = Cllans w1
q

for n sufficiently large and for some positive constant C'. As a consequence,

nEIqILloo I(un, vn) = —00;

that is, there exists n, sufficiently large, such that I(u,,v,) < 0, which is a contra-
diction. This completes the proof of (b).

So, by Symmetric Mountain Pass Theorem, there exists an unbounded sequence
of critical values for I, which corresponds to the existence of a sequence of nontrivial
critical points for I. Consequently, by Lemma equation holds, which
completes the proof of Theorem O
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