
2/6

Workshop Notebook 4: Batch Processing Images

Mandatory Disclosures
1. This is a whirlwind introduction, not exhaustive instruction
2. All images are by courtesy of the University Archives at Texas State University: http://www.univarchives.txstate.edu

(http://www.univarchives.txstate.edu)
3. img_qc_workshop is licensed under the GNU General Public License v3.0,

https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE
(https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE)

4. Any and all code provided is done so without any warranty or expectation of support by Jeremy Moore, Todd Peters, or Texas State
University

In []: image_directory = 'data/workshop-4/graduate_catalog-1966/'

In []: # importing
from pathlib import Path
from PIL import Image
import matplotlib.pyplot as plt
import img_qc.img_qc as img_qc

In []: # matplotlib options

magic that lets us plot directly in the notebook
%matplotlib inline

parameters for matplotlib to increase our default figure size -- NOTE: figure sizes are in INCHES
plt.rcParams["figure.figsize"] = (12,12) # set as needed for your screen and eyes

on a high-dpi monitor this will increase the quality of plots on-screen
%config InlineBackend.figure_format = 'retina'

Get Image Paths Using a Generator
In []: # get image_paths for TIFF images

image_paths = Path(image_directory).glob('*.tif')

image_paths

In []: # get image_paths list
image_paths_list = list(image_paths)

image_paths_list

In []: # try to get sorted image_paths list
image_paths_list = sorted(image_paths)

image_paths_list

Generator Objects Get Used Up
image_paths = Path(image_directory).glob('*.tif') created a generator that gets used up, which saves on memory and speeds up
operations. So we need to call it again if we want to get a sorted image_paths_list

In []: # get image_paths for TIFF images
image_paths = Path(image_directory).glob('*.tif')

image_paths_list = sorted(image_paths)

image_paths_list

Load First Image
We will use the first image to find the settings we need for all images

http://www.univarchives.txstate.edu/
https://github.com/photosbyjeremy/img_qc_workshop/blob/master/LICENSE

3/6

In []: # open first image in our list
image = Image.open(image_paths_list[0]) # list slicing

show image
plt.imshow(image)

Crop
Crop into the image on the top and left to make sure the black is cropped out

In []: # crop image
image_cropped = image.crop(box=(15, 15, 3400, 5100)) # start at pixel (15, 15) in upper-left to (3450, 51
00) in bottom-right

show image
plt.imshow(image_cropped)

Expand Canvas
In []: # sizes for expanding image canvas

get width_old & height
(width_old, height_old) = image_cropped.size # (width, height)

set width_new & height
width_new = 600 * 6 # 600 ppi * 6 in.
height_new = 600 * 9 # 600 ppi * 9 in.

dimensions_dictionary = {'width_old': width_old,
'height_old': height_old,
'width_new': width_new,
'height_new': height_new
}

for dimension in dimensions_dictionary:
 print(f'{dimension}: {dimensions_dictionary[dimension]}')

In []: # get border sizes

set width_border & height_border by subtracting old dimension from new and
divide by 2 to account for each side of the image
width_border = (width_new - width_old) // 2 # integer division so we don't get part of a pixel with a flo
at
height_border = (height_new - height_old) // 2

width_border, height_border

In []: # expand image with ImageOps.expand

import Pillow's ImageOps
from PIL import ImageOps

add white border to image
image_with_border = ImageOps.expand(image_cropped, border=(width_border, height_border), fill='white')

show image
plt.imshow(image_with_border)

In []: # get image dimensions to verify it's 6 x 9 in. @ 600ppi
image_with_border.size # (width, height)

Expand Canvas, Take 2
ImageOps.expand doesn't allow us to adjust each side independently and we have an odd border size to add.

Can add 1 pixel to the border we're adding above, but then the sizes will be 1 pixel too much! We need a different way of expanding the border.

Let's create a new image the size we want and paste our image in the center! (Or 1 pixel off from center.)

4/6

In []: # create new bitonal image

image_new = Image.new(mode='1', size=(width_new, height_new), color='white')

show image
plt.imshow(image_new)

In []: # paste image_cropped into the center of image_new
image_new.paste(image_cropped, box=(width_border, height_border)) # box = 2-tuple for upper-left corner

show image
plt.imshow(image_new)

Save Image
In []: # save image

image_new.save('data/workshop-4/test.tif', compression='group4', dpi=(600., 600.)) # set dpi with floats,
 ints fail

open image
test_image = Image.open('data/workshop-4/test.tif')

get info on image
print(test_image.mode)
print(test_image.info)
print(f'width: {test_image.size[0]} pixels') # (width, height)
print(f'height: {test_image.size[1]} pixels')

Batch Process all Image Paths
In []: # crop, expand, and save all images

set width_new & height
NOTE: already set above, but including here to remember what we set
width_new = 600 * 6 # 600 ppi * 6 in.
height_new = 600 * 9 # 600 ppi * 9 in.

def crop_and_expand_bitonal_images(image_paths_list, width_new, height_new, crop_box):
 for image_path in image_paths_list:

open image
image = Image.open(image_path)

crop image
image_cropped = image.crop(box=crop_box)

get width_old & height_old
(width_old, height_old) = image_cropped.size

get border sizes
set width_border & height_border by subtracting old dimension from new and
divide by 2 to account for each side of the image
width_border = (width_new - width_old) // 2 # integer division so we don't get part of a pixel wi

th a float
height_border = (height_new - height_old) // 2

create new bitonal image
image_new = Image.new(mode='1', size=(width_new, height_new), color='white')

paste image_cropped into the center of image_new
image_new.paste(image_cropped, box=(width_border, height_border)) # box = 2-tuple for upper-left

 corner

get image name
image_name = image_path.name

set output path
output_path = Path('data/workshop-4/output/').joinpath(image_name)

save image
image_new.save(output_path, compression='group4', dpi=(600., 600.)) # set dpi with floats, ints f

ail

create a new MatPlotLib figure so we can plot each image
plt.figure()

5/6

show image
plt.imshow(image_new)

crop_and_expand_bitonal_images(image_paths_list, width_new, height_new, crop_box=(15, 15, 3400, 5100))

Rotate every other image, save as Group4 compressed TIFF, resize, & save as
JPEG
Every other image (odd numbered images) needs to be rotated 180 degrees.

Save as Group4 compressed TIFF image.

Resize to 900 pixel width.

Save as JPEG: http://pillow.readthedocs.io/en/5.1.x/handbook/image-file-formats.html#jpeg

In []: # crop, expand, and save all images as Group4 compressed TIFFs and 900 pixel width JPEGs
rotate every other image

set width_new & height
NOTE: already set above, but including here to remember what we set
width_new = 600 * 6 # 600 ppi * 6 in.
height_new = 600 * 9 # 600 ppi * 9 in.

def crop_expand_and_rotate_bitonal_images(image_paths_list, width_new, height_new, crop_box):
 for image_path in image_paths_list:

open image
image = Image.open(image_path)

crop image
image_cropped = image.crop(box=crop_box)

get width_old & height_old
(width_old, height_old) = image_cropped.size

get border sizes
set width_border & height_border by subtracting old dimension from new and
divide by 2 to account for each side of the image
width_border = (width_new - width_old) // 2 # integer division so we don't get part of a pixel wi

th a float
height_border = (height_new - height_old) // 2

create new bitonal image
image_new = Image.new(mode='1', size=(width_new, height_new), color=255)

paste image_cropped into the center of image_new
image_new.paste(image_cropped, box=(width_border, height_border)) # box = 2-tuple for upper-left

 corner

get image name
image_name = image_path.name # includes extension

get image stem
image_stem = image_path.stem # does NOT include extension

get last character from image_stem
last_character = image_stem[-1] # list slicing

if last_character is even
if int(last_character) % 2 == 0: # set last_character as integer for modulus operation

rotate 180 degrees -- rotations divisible by 90 degrees do not require interpolation
image_new = image_new.rotate(180)

set output path
output_path = Path('data/workshop-4/output/').joinpath(image_name)

save image with group4 compression and 600 dpi
image_new.save(output_path, compression='group4', dpi=(600., 600.)) # set dpi with floats, ints f

ail

set jpeg name
jpeg_name = image_stem + '.jpg'

http://pillow.readthedocs.io/en/5.1.x/handbook/image-file-formats.html#jpeg

6/6

set jpeg output path
jpeg_output_path = Path('data/workshop-4/output/').joinpath(jpeg_name)

resize image_new to 1500 pixel height
image_resized = img_qc.get_image_resized_pillow(image_new, width=900)

image_resized.save(jpeg_output_path, quality=80, optimize=True) # default quality is 75

create a new MatPlotLib figure so we can plot each image
plt.figure()

show image
plt.imshow(image_resized)

crop_expand_and_rotate_bitonal_images(image_paths_lists, width_new, height_new, crop_box=(15, 15, 3400,
5100))

