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Abstract. Multi-agent systems provide an increasingly popular solution in prob-
lem domains that require management of uncertainty and high degree of adapt-
ability. Robustness is a key design criteria in building multi-agent systems. We
present a novel approach for the design of robust multi-agent systems. Our ap-
proach constructs a model of the design of a multi-agent system in Alloy, a declar-
ative language based on relations, and checks the properties of the model using
the Alloy Analyzer, a fully automatic analysis tool for Alloy models. While sev-
eral prior techniques exist for checking properties of multi-agent systems, the
novelty of our work is that we can check properties of coordination and interac-
tion, as well as properties of complex data structures that the agents may inter-
nally be manipulating or even sharing. The suggested work is the first application
of Alloy to checking properties of multi-agent systems. Such unified analysis has
not been possible before.

1 Introduction

Multi-agent systems provide an increasingly popular solution in problem domains that
require management of uncertainty and high degree of adaptability. Robustness is a key
design criteria in building multi-agent systems.

A common definition of a multi-agent system [26] stipulates that an agent is an
autonomous, interacting, intelligent (i.e. optimizing its actions) entity. Any MAS is a
distributed system but not every distributed system can be categorized as an MAS by
the above mentioned definition.

Management of uncertainty via adaptability and ability to provide a satisficing so-
lution to otherwise intractable problems are distinguishing features of multi-agent sys-
tems compared to centralized or other distributed systems. An agent knows of a great
variety of methods to solve their local tasks, thus an agent can tailor a method of achiev-
ing a goal according to resource availability for data processing, information exchange
and sources of information. Agents, due to their interaction, are capable of influencing
the choices of methods both by themselves and by other agents due to recognition of
various kinds of relationships between their subtasks that can be generalized as redun-
dancy, facilitation and enabling [19]. Agents can decide the degree to which an envi-
ronment state, their own state, and their partial knowledge about states of other agents



influence the amount of their contribution to the solution of a task imposed on the whole
MAS. Unlike components of other distributed systems, an agent can refuse a request or
can choose not to answer. At the same time, other agents are prepared to deal with a
possibility that their requests will be refused or not answered. This freedom of choice,
in a way, defines an agent’s autonomy and distinguishes it from a component of a con-
ventional distributed system. Thus, due to the above mentioned capabilities, agents are
able to adapt their solution methods to the dynamics of the environment [17].

Some MAS have explicit specifications of interaction protocols between the agents.
There has been a plethora of work on verification of MAS systems. Such approaches as
model-checking ([27], [21], [16], [3]), Petri-nets and situation-calculus [8] have been
applied to MAS verification. The vast majority of recent work on MAS verification are
various applications of model checking that take into account peculiarities of properties
that are desired to be verified in MAS. The peculiarities of such properties usually are a
consequence of bounded rationality in agents. Thus the set of operators (modalities) for
property specifications is often extended to include operators asagent beliefs, desires,
intentions. Once such additional operators are introduced, usually a method is suggested
to map a property specification that uses these MAS-specific operators into a formalism
understood by off-the-shelf model-checkers, e.g. into the propositional LTL.

Examples of properties might be: ”every request for a quote is answered within 4
time steps” [3], ”for all paths in each state if agent Train1 is in the tunnel then agent
Train1 knows that agent Train2 is not in the tunnel” [16], ”when sender is about to
send an acknowledgment then it knows that the receiver knows the value of the bit that
was most recently sent” [21] and ”some agent i eventually comes to believe that agent1
intends that i believes variable a has the value 10” [27].

As we can see from these examples most properties are some sort of reachability
properties on a state transition model of a MAS. It is understandable as model checking
is essentially an efficient brute-force global state transition graph reachability analysis.
ConGolog uses situation calculus which is also most suited for the specification and
analysis of event sequences, not data structures.

Most of the prior applications of Alloy have abstracted away from properties of
multi-threaded systems. We explore the use of Alloy in designing a rich class of dis-
tributed systems, known as themulti-agent systems(MAS).

We claim that the Alloy analyzer is better suited for checking data rich properties
than model checking approaches. In case of a model checking approach one needs
to create a number of particular instances of data structures. For some kinds of data
structures the size of such an enumeration can be prohibitively large, not to mention
the fact that a generator of instances of that data structure has to be created [22]. The
Alloy approach allows verification of data rich properties via capturing them in a simple
first-order logic formula. An example of such a property might be acyclicity in trees.
While the size of a formula needed by the Alloy is somewhat larger than that needed
by a model checker, it is likely that in ordinary (i.e. non-worst) cases we can find a
counter-example earlier than in model checking. Not having to check all the instances
of data structures makes the Alloy approach a better choice (provided the likelihood of
the worst case is low).



We explore an application of Alloy with its relational logic specification language
to multi-agent systems specifically focusing on properties of data structures in addition
to event sequences. We expect to be able to check properties of the following format:
”if agent a receives a data structure that satisfies property p then eventually agent a will
enter state sa if it believes that agent b is in state sb”, ”if agent a is in state sa and its task
structure t1 satisfies property p1 then on reception of data structure msg1 (from agent
b) agent a will modify t1 with some part of msg1 such that t1 will preserve property
p1” and so on. In addition to being able to specify such properties, we can check the
adequacy of a testcase set by determining if a property was evaluated.

2 Brief overview of Alloy

As software systems steadily grow in complexity and size, designing such systems man-
ually becomes more and more error-prone. The last few years have seen a new gener-
ation of design tools that allow formulating designs formally, as well as checking their
correctness to detect crucial flaws that, if not corrected, could lead to massive failures.

The Alloy tool-set provides a software design framework that enables the modeling
of crucial design properties as well as checking them. Alloy [13] is a first-order, declar-
ative language based on relations. The Alloy Analyzer [15] provides a fully automatic
analysis for checking properties of Alloy models.

The Alloy language provides a convenient notation based on path expressions and
quantifiers, which allow a succinct and intuitive formulation of a range of useful prop-
erties, including rich structural properties of software. The Alloy Analyzer performs
a bounded exhaustive analysis using propositional satisfiability (SAT) solvers. Given
an Alloy formula and ascope, i.e., a bound on the universe of discourse, the analyzer
translates the Alloy formula into a boolean formula in conjunctive normal form (CNF),
and solves it using an off-the-shelf SAT solver.

The Alloy tool-set has been used successfully to check designs of various applica-
tions, such as Microsoft’s Common Object Modeling interface for interprocess com-
munication [5], the Intentional Naming System for resource discovery in mobile net-
works [1], and avionics systems [7], as well as designs of cancer therapy machines [14].

The Alloy language provides a convenient notation based on path expressions and
quantifiers, which allow a succinct and intuitive formulation of a range of useful prop-
erties, including rich structural properties of software. Much of Alloy’s utility, however,
comes from its fully automatic analyzer, which performs a bounded exhaustive analysis
using propositional satisfiability (SAT) solvers. Given an Alloy formula and ascope,
i.e., a bound on the universe of discourse, the analyzer translates the Alloy formula into
a boolean formula in conjunctive normal form (CNF), and solves it using an off-the-
shelf SAT solver.

We present an example to introduce the basics of Alloy.
Let us review the following Alloy code for a DAG definition:

module models/examples/tutorial/dagDefSmall

sig DAG {
root: Node,
nodes: set Node,



edges: Node -> Node
}
sig Node {}

The keywordmodule names a model. Asig declaration introduces a set of (indivisible)
atoms; the signaturesDAGandNode respectively declare a set of DAG atoms and a set
of node atoms. Thefields of a signature declare relations. The fieldroot defines a
relationship of typeDAG x Node indicating that only one node can correspond to a
DAG by this relationship. The absence of any keyword makessize a total function:
each list must have a size. The fieldnodes has the same type asnodes but maps a
DAG onto a set of nodes defining a partial function. Alloy provides the keywordset to
declare an arbitrary relation. The fieldedges maps a DAG onto a relationship, i.e. on a
set of tuplesNode x Node , thus defining edges.

The followingfact constrains a graph to be a DAG:
fact DAGDef {

nodes = root.*edges
all m: Node | m !in m.ˆedges

}

The operator ‘*’ denotes reflexive transitive closure. The expressionroot.*edges

represents the set of all nodes reachable from the root following zero or more traversals
along theedge field. A universally quantified (all) formula stipulates that no atom m
of signatureNode can appear in traversals originating for that atom m. The operatorˆ

denotes transitive closure.
Here are some other common operators not illustrated by this example. Logical im-

plication is denoted by ‘=>’; ‘ <=>’ represents bi-implication. The operator ‘-’ denotes
set difference, while ‘#’ denotes set cardinality and ‘+’ - set union.

To instruct the analyzer to generate a DAG with 6 nodes, we formulate an empty
predicate and write arun command:
pred generate() {}

run generate for 6 but 1 DAG

The scope of 6 forces an upper bound of 6 nodes. Thebut keyword specifies a separate
bound for a signature whose name follows the keyword. Thus we restrict a generated
example to 1 DAG.

3 Subject system details

As the subject of our analysis we have chosen a cooperative multi-agent system with
explicit communication and with a utility-based proactive planning/scheduling.

A multi-agent system is cooperative if it can be assumed that agents strive to col-
lectively contribute to reaching some common goal. In such a cooperative MAS, agents
are willing to sacrifice their local optimality of actions if they are convinced that such a
sacrifice will help increase the global optimality of the combined actions in the whole
MAS. For simplicity we also assume there are no malicious agents in the chosen MAS.

3.1 Property examples derived from requirements

We can describe several properties informally at this stage, before we fix the assump-
tions of the MAS design further.

Some of the informal properties that are likely to be useful for such a negotiation:



1. negotiation must terminate;
2. the utility of the agreed upon combination of schedules must eventually increase

throughout the course of negotiation even though occasional decreases are allowed;
i.e. the negotiation must eventually converge on some choice of schedules that pro-
vides a local optimum of the combined utility (here local is used in the sense of
restrictions on action set and time deadline, not in the sense of local to a single
agent);

3. if agent B (the one who is requested to do an additional task) agrees to accomplish
the task at a certain point in negotiation then it cannot renege on that agreement in
the course of subsequent negotiation (somewhat related to the need to converge);
and,

4. the beliefs of one agent about an abstraction of partial state of another agent ob-
tained as a result of negotiation should not contradict the actual state of that other
agent.

3.2 Choice of the analyzed system

Next we will provide greater detail about the design of the chosen MAS. This detail will
let us illustrate the task allocation problem introduced generally above and to formalize
a property. The chosen system has been developed in the MAS laboratory headed by
Prof. Victor Lesser at the University of Massachusetts, Amherst. It has been used as a
testbed for a great number of experiments and technology transfer demonstrations in
the area of MAS ([23], [24], [11], [12], [18], [9], [10]). An agent is combined of several
components that include a problem solver, a negotiation component, among others. The
problem solver provides a schedule based on a current set of task structures assigned
for execution. The negotiation component drives the execution of negotiation protocols,
it is aware of protocol specifications and keeps track of current states of negotiation in-
stances undertaken by its agent. The task structures are specified in the TÆMS language
[6]. The schedules are provided by the Design-To-Criteria (DTC) scheduler ([25]) de-
veloped by Dr. Tom Wagner which is invoked as part of the agent’s problem solver
component operation. The DTC takes as input a task structure in TÆMS and a utility
function specification and provides as output a set of schedules ranked by their utilities.

In this system a simplified description of an agent’s cycle is as follows:

1. Local scheduling: in response to an event requesting a certain task to be performed,
obtain a number of high ranked schedules by utility;

2. Negotiation: conduct negotiation(s) within a predefined limit of time; and,
3. Execution: start execution of the schedule chosen as a result of negotiation(s).

The actual cycle of agent’s operation is more complex as an agent can react to
various kinds of events that it can receive at any of the mentioned cycle stages.

3.3 Relation between protocol FSMs, task structures, offers and visitations

Next we describe the task allocation problem in terms of this design. More details about
the cooperative negotiation example can be found in [28]. The negotiation protocol



of an agent starting the negotiation (agent A), the contractor, is given in Fig. 3. The
negotiation protocol of an agent responding to the request (agent B), the contractee, is
given in Fig. 4.

Let us assume that agent A needs a certain non-local task (this means that an agent
is not capable to do that task even though it appears in one of its task structures) to
be performed by some other agent. The negotiation’s goal is to increase the combined
utility of actions of both agents by choosing a particular way to perform the non-local
task at a particular time.

In the description that follows we mention the concepts of a protocol FSM, task
structures, offers and execution paths encoded in visitations. These concepts are related
to one another in the following way. The design of the particular MAS we are analyzing
contains a module called an agent. This module itself is an aggregate of several submod-
ules. One of these submodules is the “Negotiation” submodule that is responsible for
encapsulating knowledge about various protocols known to an agent. These protocols
are encoded as FSMs with states corresponding to abstractions of the states of an agent
in negotiation and transitions attributed with trigger conditions and actions. A sequence
of visitations corresponds to a path from a start node of such a protocol FSM to one of
the final nodes.

A task structure of an agent captures its knowledge about multiple ways in which
a certain task can be accomplished. The root of a task structure corresponds to a task
that an agent is capable of accomplishing. The leaves of a task structure correspond to
atomic actions both the set and partial order of which can vary to reflect the way to
accomplish an assigned task in a “utility-increasing” (but not guaranteed to be optimal)
way. As an agent progresses through a negotiation protocol according to an FSM, the
agent’s task structure changes to reflect the agent’s changing knowledge about other
agent’s state throughout that negotiation. Thus there are certain properties imposed on
a task structure that must hold while an agent is in certain states of a negotiation proto-
col FSM. A collection of task structures, in a way, determines an agent’s functionality
analogously to a set of function signatures that would define an interface of a module.
The roots of task structures serve similar purpose to function signatures at the agent
level of abstraction of describing a software system. An outside event corresponding to
a request to accomplish a certain task triggers an agent’s reasoning about whether it can
accomplish that task considering an agent’s knowledge about the way to accomplish
that task, that agent’s state, the environment state and partial states of some other agents
in the same MAS. The result of that reasoning is the current schedule that “interweaves”
instances of atomic actions from various tasks currently assigned to that agent in a time-
oriented partial order. That current schedule can be changed dynamically, as it is being
executed, in response to agents’ changing opinion about most reasonable schedule for
a certain moment in time.

We do not consider execution of schedules, but focus only on the negotiation phase
in which schedules always cover future time intervals. An offer is a data structure gen-
erated by actions associated with FSM transitions. An offer encapsulates the parameters
of a particular schedule formed on the basis of the agents’ task structures, such as qual-
ity achieved, start time and finish time. The agents negotiate over these parameters.



Another submodule of an agent module is “Communication”. The “Negotiation”
submodulerelies on ’Communication” in a fashion similar to how a networking ap-
plication relies on TCP/IP protocols. The design intentionally separated the concern of
ensuring reliable communication and naming mechanisms from the concern of ensuring
that a certain “utility-increasing” protocol is followed during a negotiation between a
pair of agents. Thus the issues of identifying agents to communicate with for a particular
purpose were separated from the “negotiation” submodule by the authors of the MAS
system we analyze. This was done to simplify their own analysis, to separate concerns.
Our Alloy specification reflects that separation.

In a way, the task structure specifies all possible behaviors of an agent responsible
for achieving the goal embodied by a task structure’s root. During the stages ofLocal
schedulingandNegotiationthe task structure can be modified, thus modifying specifi-
cation of a set of behaviors of an agent during anExecutionstage. The behavior of an
agent during the stages ofLocal schedulingandNegotiationis static, i.e. it is not mod-
ified during run-time. A schedule agreed upon as a result ofNegotiationis a selected
behavior (execution path) from a set of behaviors that was modified at run-time (repre-
sented by a task structure; to be performed in theExecutionstage). Thus a property we
describe below checks certain well-formedness of a behavior specification modified at
run-time and correctness of an implementation responsible for the modification.

3.4 Details of the task allocation problem in the chosen design

On Fig. 1 we see two task structures. One task structure, with the root TCR, was as-
signed to agent A, the other, TCE, was assigned to agent B. This assignment was due to
requests sent from the environment (e.g. a human or other automated system). TCE and
TCR turned out to be non-leaf nodes with elaborations. So agent A sent TCR structure
to its local scheduler, agent B did the same for TCE.

Thus Agent A receives the following schedules from its problem solver component:
M1, M2, M3, M4 - highest utility M1, M2, M3, M5 - lower utility, feasible Agent B
receives the following schedule: B3, B4 - highest utility

Next, agent A identifies M4 in its best schedule as non-local. It sends a request to
agent B to do it. The fact that agent A knows that B can do M4 is hardwired for the
example. The request initiates an instance of negotiation. Agent A plays the role of
a contractor, agent B - that of a contractee. Agent B must see whether it can do M4
by the deadline agent A needs it, while accomplishing its current task TCE within the
constraints. This is done by modifying the ”currently reasoned about” structure and
submitting it to the scheduler that will report if such a schedule is possible and, if yes,
then with what utility.

The TCE structure must be modified preserving its well-formedness constraints
(e.g. functional decomposition remains a tree); and forcing an M4 into a schedule by
choosing appropriate quality of M4 that reflects the combined utility of both schedules
(chosen by A and by B). Fig. 2 shows agent B’s task structure updated with an M4.
The quality attribute of M4 must be such that the problem solver of agent B must pro-
duce feasible (though not necessarily high ranking) schedules that contain M4 and still
accomplish the original TCE task.



Agent A’ s current task Agent B’ s current task

TCR

Task1 Task2

M1 M2 M4 M5M3

sum

sum exactly one

TCE

Task1 Task2

B1 B2 B3 B4

exactly one

sumsum

enables

q:10 q:10q:10 q:10 q:10 q:15q:70 q:40q:10
c:10 c:10c:10 c:10 c:10 c:5c:? c:10c:10
d:9 d:9d:5 d:10 d:7 d:5d:? d:9d:9

deadline:11 deadline:21 deadline:47deadline:50

Fig. 1. Pre-negotiation task structures.
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q:10 q:10 q:10 q:70 q:10
c:10 c:10 c:10 c:? c:10

q:10 q:10d:5 q:15d:10 q:40d:7 d:? d:9
c:10 c:10 c:5 c:10deadline:50 d:9 d:9 d:5 d:9

deadline:11 deadline:21 deadline:47

Fig. 2. Post-negotiation task structures.

Even if the agent B’s local scheduler returns an acceptable schedule (has M4 in it
and the original TCE is accomplished with the constraints on time and quality), agent
A can request to make a tighter fit.
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Fig. 3. Contractor’s FSM.
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Fig. 4. Contractee’s FSM.

With this description in mind we can rephrase property 3 in terms of the TÆMS
structures and negotiation protocol specifications in Figures 3 and 4 as:



Since agent B reaches state ”Accept” its task structure must contain a subtree cor-
respondingto task M4 and M4 must appear in a feasible schedule returned to agent
B.

4 Alloy specification for the negotiation model

Our approach implies modeling particular paths traversed in the agents’ negotiation
finite state machines (FSMs) in response to certain testcases. Thus we check an abstrac-
tion of an execution path in a particular implementation. Both FSMs contain cycles.
If a cycle diameter can be modeled with the scope that can be processed by the Al-
loy analyzer then we can iteratively check a certain property on an execution path that
corresponds to multiple iterations of a cycle.

The negotiation protocols and goal trees described in section 3 had to be simplified
to have a tractable scope for the Alloy analyzer. The simplifications include:

1. ignoring attributes of goal tree nodes (quality, duration, cost);
2. ignoring attributes of offers (mutual utility gain, cost, earliest start time);
3. ignoring attributes of schedules (start time and finish time of actions); and,
4. simplifying goal trees by removing intermediate nodes (e.g. no Task1, Task2) and

reducingthe number of leaf nodes (e.g. only B1 and B3 left in agent B’s goal tree).

The actual models used for analysis also contain only those atoms that are necessary
for verifying a property at hand. Thus transitions that were not traversed by a modeled
execution path and associated states were removed.

This amount of simplification was necessary to make the analysis feasible. Earlier
we constructed a more detailed Alloy specification of the analyzed system. The Alloy
analyzer was not able to cope with such a specification. We had to reduce its size grad-
ually while still keeping the analysis useful. We expect that the next generation of the
Alloy analyzer, Kodkod [20], would be able to deal with a larger specification.

The resultant Alloy model of the MAS for the purpose of verifying our assertions
consists of 3 modules. One module,negProtocol12 1abridgeDataProp , models
the FSMs, Visitations of transitions trough the FSMs (paths specified by transitions),
and assertions. Two more modules model the data structures manipulated by the agents -
their goal trees and schedules. Let us briefly go over the Alloy models in these modules.

ThenegProtocol12 1abridgeDataProp definessignatures forState , Transition ,
Visitation andOffer . Thus an FSM is modeled by constraining atoms ofState

andTransition signatures via the “fact” construct. ATransition signature con-
tains fields for source and destination states, a set of visitations of that transition by a
path and a set of transitions outgoing from the destination state of the transition.
abstract sig State {}

abstract sig Transition {
source, dest: State,
visit: set Visitation,
nextTrans: set Transition

}

fact Injection { all t, t’: Transition | t.source =
t’.source && t.dest =



t’.dest => t = t’ }

abstract sig Visitation {
trans: lone Transition,
nextVisit: lone Visitation,
offer: lone Offer

}
fact VisTransConsistent {

all visitation: Visitation | visitation in
visitation.trans.visit

}

The treeDefSmall module models a task structure (goal tree) of an agent.
module models/examples/tutorial/treeDefSmall

abstract sig Tree {
root: Node,
nodes: set Node,
edges: Node -> Node

}

{
nodes = root.*edges
all m: Node | m !in m.ˆedges

}

abstract sig Node {}

one sig TCR, M3, M4, M5, TCE, B1, B3, New_TCE extends Node{}

one sig AgentB_preTaskStrucTCE extends Tree {}
fact AgentB_preTaskStrucTCEDef {

AgentB_preTaskStrucTCE.root = TCE
AgentB_preTaskStrucTCE.nodes = TCE + B3
AgentB_preTaskStrucTCE.edges = TCE->B3

}

one sig AgentB_postTaskStrucTCE extends Tree {}
fact AgentB_postTaskStrucTCEDef {

AgentB_postTaskStrucTCE.root = New_TCE
AgentB_postTaskStrucTCE.nodes = New_TCE + TCE + B1 + M4
AgentB_postTaskStrucTCE.edges = New_TCE->TCE +

New_TCE->M4 + TCE->B1
}

TheschedDefSmall module models a schedule data structure of an agent. It im-
ports thetreeDefSmall so that schedule items could point to the nodes of task struc-
tures.
module models/examples/tutorial/schedDefSmall
open models/examples/tutorial/treeDefSmall

abstract sig SchedItem {
activity: Node

}

one sig SchedItemM3 extends SchedItem{}
fact SchedItemM3Def {

SchedItemM3.activity = M3
}

one sig SchedItemM4 extends SchedItem{}
fact SchedItemM4Def {

SchedItemM4.activity = M4
}



one sig SchedItemM5 extends SchedItem{}
fact SchedItemM5Def {

SchedItemM5.activity = M5
}

one sig SchedItemB1 extends SchedItem{}
fact SchedItemB1Def {

SchedItemB1.activity = B1
}

one sig SchedItemB3 extends SchedItem{}
fact SchedItemB3Def {

SchedItemB3.activity = B3
}

abstract sig Sched {
items: set SchedItem,
precedenceRel: SchedItem -> SchedItem

}

one sig AgentAschedWithNL extends Sched {}
fact AgentAschedWithNLDef {

AgentAschedWithNL.items = SchedItemM3 + SchedItemM4
AgentAschedWithNL.precedenceRel =

SchedItemM3->SchedItemM4
}

one sig AgentAschedWithOutNL extends Sched {}
fact AgentAschedWithOutNLDef {

AgentAschedWithOutNL.items = SchedItemM3 + SchedItemM5
AgentAschedWithOutNL.precedenceRel =

SchedItemM3->SchedItemM5
}

one sig AgentBschedWithNL extends Sched {}
fact AgentBschedWithOutNLDef {

AgentBschedWithOutNL.items = SchedItemB1 + SchedItemM4
AgentBschedWithOutNL.precedenceRel =

SchedItemB1->SchedItemM4
}

one sig AgentBschedWithOutNL extends Sched {}
fact AgentBschedWithNLDef {

AgentBschedWithNL.items = SchedItemB3
}

The consistency of the model has been successfully checked with an empty stub
predicate. The analyzer found a solution.

5 Alloy specification for the properties

The paths of execution of the two negotiation protocols are represented by atoms of
the Visitation signature. Thus it is via these atoms that we express a property that
can be informally phrased as “If agent A is led to believe by a certain sequence of
communications that agent B reaches a certain state then agent B should have indeed
reached that state, having been subjected to the same changes of observed environment
as agent A”. This informal statement pinpoints such feature of agents in a MAS as
bounded rationality. The property checks for consistency between a certain abstraction
of other agent’s state (agent B) that a certain agent (A) obtains via communication. In
the case of the particular system we used the communication is explicit. By modeling



the environment sensed by agents we could allow for checking such properties based
on implicit communication.

More specifically, in view of the simplifications we made, a property of this kind can
be informally restated as “if agent A reaches stateEvalCounterProposal then agent
B should have reached stateWait2 and beginning since that state, agent B’s current
schedule data structure should have contained an instance of atomic action M4”. Below
we can see how this property is formally expressed in the Alloy’s relational algebra.
assert AgentAbeliefCompliesWithAgentBState {

(some visitation: Visitation |
visitation.trans.dest = EvalCounterProposal) =>

(some visitation’: Visitation |
visitation’.trans.dest = Wait2 &&

M4 in visitation’.offer.agentBTaskTree.nodes)
}

The assertion has been successfully checked. No counterexamples were found for
the path containing visitations that corresponded to the expected states and data struc-
ture conditions. Conversely, once an inconsistency between agent A’s belief and agent
B’s state and data structures has been introduced into visitations, the analyzer pin-
pointed a possible counterexample.

We have also translated an Alloy specification of this property into a dynamic as-
sertion in Java using a systematic translation approach [2]. Consequently we were able
to test an actual implementation for partial correctness.

6 Specification difficulties

The main difficulty is keeping the Alloy model under a tractable scope while checking
useful properties. In the case of the design of this particular MAS the protocols are
specified via FSMs with loops. Thus we can check properties only within the scope
of the FSM’s diameter. Other difficulties are due to highly dynamic, hard to predict
behavior of sensing agents. One has to classify the dynamics of the environment sensed
by the agents and check the properties within each such situation. For instance, in the
example used in this paper we can classify the situations based on combinations of
“best” schedules of the 2 agents with regard to including the non local task (M4) into
their schedules. Some of the possible combinations (for all cases agent A has M4 in its
best schedule):

– agent B does not have M4 in its best schedule; the local utility of agent B’s schedule
outweighs the combined utility if agent B is forced to do M4;

– agent B does not have M4 in its best schedule; the local utility of agent B’s schedule
is below the combined utility if agent B is forced to do M4;

– agent B has M4 in its best schedule too, but not within the timeframe agent A needs
M4 to be finished

– agent B has M4 in its best schedule too, it is within the timeframe agent A needs
M4 to be finished

It should be possible to provide an Alloy model so that these combinations would not
have to be specified explicitly. Instead, the Alloy analyzer itself would check over all the



alternatives it sees in the model. A straightforward approach of modeling the attributes
of the nodes in the agents’ goal trees results in a too large scope for the Alloy to handle.
Perhaps the attribute values should be abstracted as features of the structure of goal
trees, not as numerical values.

7 Conclusions and Future Work

We have created and validated a model for verifying data structure rich properties of a
cooperative multi-agent system using a manually created execution path. To our knowl-
edge, our work is the first application of the Alloy analyzer for checking properties of a
multi-agent system.

Another step might be checking a property on all interior paths of a loop in an
FSM. One more interesting property would involve checking if an elaboration of the
non-local task is “interwoven” in one of the many alternative ways into the goal tree
of agent B. We expect that checking such a more complicated and a more realistic
case might highlight Alloy’s advantage over a model checking approach due to the
declarative nature of its relational algebra.

We also envision checking properties of a MAS in a model that recognizes the pos-
sibility of more than 2 agents interacting. In this case we will highlight the advantage
of the Alloy over model checking approaches in that we will not have to fix the number
of agents in a model, instead, for some properties that are invariants for MAS of var-
ious sizes in the number of agents, we can bound that number by a scope (such as in
[4] but enhanced with invariants on agents’ data structures). Such properties can check
correctness of multiple simultaneous negotiations or self-organization mechanisms of
multi-agent systems. It is not necessary to consider the problem of identifying agents
that should communicate for the purpose of checking invariants of multiple simulta-
neous negotiations. That problem can be dealt with separately allowing for a smaller
specification which is more likely to allow feasible analysis.

It would be interesting to see whether CSP-based models and tools (FDR) or B CSP
models would be useful for checking properties of negotiation in MAS systems with
explicit communication.
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