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EXISTENCE OF SOLUTIONS OF A NONLINEAR SYSTEM
MODELLING FLUID FLOW IN POROUS MEDIA

ÁDÁM BESENYEI

Abstract. We investigate the existence of weak solutions for nonlinear differ-
ential equations that describe fluid flow through a porous medium. Existence

is proved using the theory of monotone operators, and some examples are

given.

1. Introduction

In this paper we study a system of nonlinear differential equations that describes
the flow of a fluid through a porous medium. A porous medium, roughly speaking,
is a solid medium with lots of tiny holes. For example think of limestone. Such
medium consists of two parts, the solid matrix and the holes. The flow of a fluid
through the medium is influenced by the relatively large surface of the solid matrix
and the closeness of the holes. If the fluid carries dissolved chemical species, a
variety of chemical reactions can occur. Among these include reactions that can
change the porosity. This process was modelled by Logan, Petersen, Shores [8] by
the following system of equations in one dimension:

ω(t, x)ut(t, x) = α · (|v(t, x)|ux(t, x))x

+ K(ω(t, x))px(t, x)ux(t, x)− ku(t, x)g(ω(t, x))
(1.1)

ωt(t, x) = bu(t, x)g(ω(t, x)) (1.2)

(K(ω(t, x))px(t, x))x = bu(t, x)g(ω(t, x)), (1.3)

v(t, x) = −K(ω(t, x))px(t, x), t > 0, x ∈ (0, 1), (1.4)

with initial and boundary conditions

u(0, x) = u0(x), ω(0, x) = ω0(x) x ∈ (0, 1),

u(t, 0) = u1(t), ux(t, 1) = 0 t > 0,

p(t, 0) = 1, p(1, t) = 0 t > 0

where ω is the porosity, u is the concentration of the dissolved solute, p is the
pressure, v is the velocity, further, α, k, b are given constants, K and g are given
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real functions. For the details of making this model see the cited paper and the
references there. Observe, that v is explicitly given by ω and p in equation (1.4)
thus we can eliminate equation (1.4) by substituting it into (1.1). Further, observe
that for fixed u equation (1.2) is an ordinary differential equation with respect to
the function ω; for fixed ω and p equation (1.1) is a parabolic problem with respect
to the function u; and for fixed ω and u equation (1.3) is an elliptic problem with
respect to the function p. This shows that the above system is a hybrid evolu-
tionary/elliptic problem, thus theorems of ,,usual” systems of partial differential
equations do not work. In [5] a similar model was considered by using the method
of Rothe, further, some numerical experiments were done, however correct proof
on existence of solutions were not made (and one can hardly find papers dealing
with such kind of systems in rigorous mathematical way). In the following, we
investigate a generalization of the above system by using the theory of operators
of monotone type. We define the weak form of the system and prove existence
of weak solutions. The main idea consists of two parts. First the choice of the
appropriate spaces for the weak solutions (for the elliptic equation it will be not
the usual space because of the time dependence). The second is the idea of the
proof which is to apply the so called successive approximation (known e.g. from
the theory of ordinary differential equations) and combine this with methods of the
theory of monotone operators (can be found, e.g., in [2, 3, 4, 6, 7, 9, 10]. At the
end of this paper, some examples are given.

1.1. Notation. In this section we introduce some notation. Let Ω ⊂ Rn be a
bounded domain with the uniform C1 regularity property (see [1]), further, let
0 < T < ∞, 2 ≤ p1, p2 < ∞ be real numbers. In the following, QT := (0, T ) × Ω.
Denote by W 1,pi(Ω) the usual Sobolev space with the norm

‖v‖W 1,pi (Ω) =
( ∫

Ω

(|v|pi +
n∑

j=1

|Djv|pi)
)1/pi

where Dj denotes the distributional derivative with respect to the j-th variable
(later we use the notation D = (D1, . . . , Dn)). In addition, let Vi be a closed linear
subspace of the space W 1,pi(Ω) which contains W 1,pi

0 (Ω) (the closure of C∞
0 (Ω)

in W 1,pi(Ω)), and let Lpi(0, T ;Vi) be the Banach space of measurable functions
u : (0, T ) → Vi such that ‖u‖pi

Vi
is integrable and the norm is given by

‖u‖Lpi (0,T ;Vi) =
( ∫ T

0

‖u(t)‖pi

Vi
dt

)1/pi

.

The dual space of Lpi(0, T ;Vi) is Lqi(0, T ;V ∗
i ) where 1

pi
+ 1

qi
= 1 and V ∗

i is the
dual space of Vi. In what follows, we use the notation Xi := Lpi(0, T ;Vi). The
pairing between Xi and X∗

i is denoted by [·, ·], and Dtu stands for the derivative
(with respect to the variable t) of a function u ∈ Lpi(0, T ;Vi). It is well known (see
[10]) that if Dtu ∈ X∗

i then u ∈ C([0, T ], L2(Ω)) so that u(0) makes sense.
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1.2. Statement of the problem. Let us consider the following nonlinear system
(in QT ) which is the generalization of the system introduced in the first section:

Dtω(t, x) = f(t, x, ω(t, x), u(t, x)), ω(0, x) = ω0(x), (1.5)

Dtu(t, x)−
n∑

i=1

Di [ai(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x))]

+ a0(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x))

= g(t, x, ω(t, x)), u(0, x) = 0,

(1.6)

−
n∑

i=1

Di[bi(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x))]

+ b0(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x))

= h(t, x, ω(t, x), u(t, x)).

(1.7)

with boundary conditions homogenous Dirichlet or Neumann, for example
n∑

i=1

ai(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x))νi = 0,

p(t, x) = 0 x ∈ ∂Ω, t > 0,

where ν is the unit normal along the boundary. (The variable p is written by
boldface letter for the purpose of distinguishing it from exponents p1, p2). Moreover,
if ∂Ω = S1 ∪S2 where S1 ∩S2 = ∅, then we can pose different boundary conditions
on the elements of the partition. That is the case in the model (1.1)–(1.4) where
the partitions are the endpoints of the interval [0, 1]. Clearly, we can assume the
boundary conditions to be homogeneous by subtracting a suitable function from
the unknown function. The above system is indeed a generalization of the problem
(1.1)–(1.4), since (as we showed in the introduction) v can be eliminated form
(1.1)–(1.4), and in Proposition 2.5 we show that by some assumptions the solution
ω of equation (1.2) is strictly positive hence we can divide equation (1.1) by ω.
By using this observation that the above equations are three types of differential
equations we can give natural conditions on functions ai, bi, f , g, h which (as we
will see) imply existence of weak solutions of the above system. Before giving these
assumptions let us introduce a notation. In the following, a vector ξ ∈ Rn+1 is
written in the form ξ = (ζ0, ζ) where ζ0 ∈ R and ζ = (ζ1, . . . , ζn) ∈ Rn.

Assumptions.
(A1) Functions ai : QT ×R×Rn+1×Rn+1 → R (i = 0, . . . , n) are Carathéodory

functions, i.e. they are measurable in (t, x) ∈ QT for every (ω, u, Du,p, Dp)
in R×Rn+1×Rn+1 and continuous in (ω, u, Du,p, Dp) ∈ R×Rn+1×Rn+1

for a.a. (t, x) ∈ QT .
(A2) There exist a continuous function c1 : R → R+ and a function k1 ∈ Lq1(QT )

such that

|ai(t, x, ω, u,Du,p, Dp)|

≤ c1(ω)
(
|u|p1−1 + |Du|p1−1 + |p|

p2
q1 + |Dp|

p2
q1 + k1(t, x)

)
,

for a.a. (t, x) ∈ QT and every (ω, u, Du,p, Dp) ∈ R × Rn+1 × Rn+1 (i =
0, . . . , n).



4 A. BESENYEI EJDE-2006/153

(A3) There exists a constant C > 0 such that for a.a. (t, x) ∈ QT and every
(ω, ζ0, ζ,p, Dp), (ω, ζ0, η,p, Dp) ∈ R× Rn+1 × Rn+1

n∑
i=1

(ai(t, x, ω, ζ0, ζ,p, Dp)− ai(t, x, ω, ζ0, η,p, Dp)) (ζi − ηi) ≥ C · |ζ − η|p1 .

(A4) There exist a constant c2 > 0, a continuous function γ : R → R and a
function k2 ∈ L1(QT ) such that

n∑
i=0

ai(t, x, ω, ζ0, ζ,p, Dp)ζi ≥ c2 (|ζ0|p1 + |ζ|p1)− γ(ω)k2(t, x)

for a.a. (t, x) ∈ QT and every (ω, ζ0, ζ,p, Dp) ∈ R× Rn+1 × Rn+1.
(B1) Functions bi : QT × R × R × Rn+1 → R (i = 0, . . . , n) are Carathéodory

functions, i.e. they are measurable in (t, x) ∈ QT for every (ω, u,p, Dp) ∈
R × R × Rn+1 and continuous in (ω, u,p, Dp) ∈ R × R × Rn+1 for a.a.
(t, x) ∈ QT .

(B2) There exist a continuous function ĉ1 : R → R+ and a function k̂1 ∈ Lq2(QT )
such that

|bi(t, x, ω, u,p, Dp)| ≤ ĉ1(ω)
(
|p|p2−1 + |Dp|p2−1 + |u|

p1
q2 + k̂1(t, x)

)
for a.a. (t, x) ∈ QT and every (ω, u,p, Dp) ∈ R× R× Rn+1 (i = 0, . . . , n).

(B3) There exists a constant Ĉ > 0 such that for a.a. (t, x) ∈ QT and every
(ω, u, ζ0, ζ), (ω, u, η0, η) ∈ R× R× Rn+1

n∑
i=0

(bi(t, x, ω, u, ζ0, ζ)− bi(t, x, ω, u, η0, η)) (ζi − ηi)

≥ Ĉ · (|ζ0 − η0|p2 + |ζ − η|p2) .

(B4) There exist a constant ĉ2 > 0, a continuous function γ̂ : R → R and a
function k̂2 ∈ L1(QT ) such that
n∑

i=0

bi(t, x, ω, u, ζ0, ζ)ζi ≥ ĉ2 (|ζ0|p2 + |ζ|p2)− γ̂(ω)
(
|u|p1 + k̂2(t, x)

)
for a.a. (t, x) ∈ QT and every (ω, u, ζ0, ζ) ∈ R× R× Rn+1.

(F1) Function f : QT ×R2 → R is a Carathéodory function, i.e. it is measurable
in (t, x) ∈ QT for every fixed (ω, u) ∈ R2 and continuous in (ω, u) ∈ R2

for a.a. (t, x) ∈ QT . Further, for every bounded set I ⊂ R there exists a
continuous function K1 : R → R+ such that
(i) there exist nonnegative constants d1, d2 such that |K1(u)| ≤ d1|u|

p1
q2 +

d2 for all u ∈ R,
(ii) for a.a. (t, x) ∈ QT and every (ω, u), (ω̃, u) ∈ I × R

|f(t, x, ω, u)− f(t, x, ω̃, u)| ≤ K1(u) · |ω − ω̃|.
(F2) There exists a continuous function K2 : R → R+ such that for a.a. (t, x) ∈

QT and every (ω, u), (ω, ũ) ∈ R2

|f(t, x, ω, u)− f(t, x, ω, ũ)| ≤ K2(ω) · |u− ũ|.
(F3) There exists ω∗ ∈ L∞(Ω) such that for a.a. (t, x) ∈ QT and every (ω, u) ∈

R2, (ω − ω∗(x)) · f(t, x, ω, u) ≤ 0.
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(G1) Function g : QT × R → R is a Carathéodory function, i.e. it is measurable
in (t, x) ∈ QT for every ω ∈ R and continuous in ω ∈ R for a.a. (t, x) ∈ QT .

(G2) There exist a continuous function c3 : R → R+ and a function k3 ∈ Lq1(QT )
function such that

|g(t, x, ω)| ≤ c3(ω)k3(t, x)

for a.a. (t, x) ∈ QT and every ω ∈ R.
(H1) Function h : QT ×R2 → R is a Carathéodory function, i.e. it is measurable

in (t, x) ∈ QT for every (ω, u) ∈ R2 and continuous in (ω, u) ∈ R2 for a.a.
(t, x) ∈ QT .

(H2) There exist a continuous function c4 : R → R+ and a function k4 ∈ Lq2(QT )
such that

|h(t, x, ω, u)| ≤ c4(ω)
(
|u|

p1
q2 + k4(t, x)

)
for a.a. (t, x) ∈ QT and every (ω, u) ∈ R2.

2. Weak form

Let us define the operators A : L∞(QT )×X1 ×X2 → X∗
1 , B : L∞(QT )×X1 ×

X2 → X∗
2 , G : L∞(QT ) → X∗

1 , H : L∞(QT )×X1 → X∗
2 as follows:

:=
∫

QT

n∑
i=1

ai(t, x, ω(t, x), u(t, x), Du(t, x) dt dx,p(t, x), Dp(t, x))Div(t, x)

+
∫

QT

a0(t, x, ω(t, x), u(t, x), Du(t, x),p(t, x), Dp(t, x))v(t, x) dt dx,

:=
∫

QT

n∑
i=1

bi(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x))Div(t, x) dt dx

+
∫

QT

b0(t, x, ω(t, x), u(t, x),p(t, x), Dp(t, x))v(t, x) dt dx,

[G(ω), v] :=
∫

QT

g(t, x, ω(t, x))v(t, x) dt dx,

[H(ω, u), v] :=
∫

QT

h(t, x, ω(t, x), u(t, x))v(t, x) dt dx.

In addition, let us introduce the linear operator L : D(L) → X∗
1 by the formula

D(L) = {u ∈ X1 : Dtu ∈ X∗
1 , u(0) = 0}, Lu = Dtu.

With the operators introduced above, we define the weak form of system (1.5)–(1.7)
as

ω(t, x) = ω0(x) +
∫ t

0

f(s, x, ω(s, x), u(s, x)) ds (2.1)

Lu + A(ω, u,p) = G(ω) (2.2)

B(ω, u,p) = H(ω, u). (2.3)

It is well known (see e.g. [7]) that one gets the above weak forms by considering
sufficiently smooth solutions and then using Green’s theorem, after that one con-
siders the equations in the spaces Xi. It is clear that if the boundary condition is
homogenous Neumann than Vi = W 1,pi(Ω) (since the boundary term vanishes in
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Green’s theorem) and if we have homogeneous Dirichlet boundary condition then
Vi = W 1,pi

0 (Ω) (in order to eliminate the boundary terms in Green’s theorem). Fur-
ther, if we have a partition then for example in our one dimensional equation (1.1)
with homogenous boundary conditions V1 = {v ∈ W 1,p1(0, 1) : v(t, 0) = 0}, and in
addition V2 = W 1,p2

0 (0, 1). In the next section we prove that the earlier introduced
assumptions imply existence of solutions of the above system.

2.1. Existence of solutions.

Theorem 2.1. Suppose that conditions (A1)–(A4), (B1)–(B4), (F1)–(F3), (G1)–
(G2), (H1)–(H2) are fulfilled. Then for every ω0 ∈ L∞(Ω) there exists a solution
ω ∈ L∞(QT ), u ∈ D(L), p ∈ Lp2(0, T ;V2) of problem (2.1)–(2.3).

First we prove some statements which we will use in the proof of the theorem.

Proposition 2.2. Assume that conditions (F1), (F3) are satisfied. Then for every
fixed u ∈ Lp1(QT ) and ω0 ∈ L∞(QT ) there exists a unique solution ω ∈ L∞(QT )
of the integral equation (2.1), further, for the solution the estimate ‖ω‖L∞(QT ) ≤
‖ω0‖L∞(Ω) holds.

Proof. First we make an observation which we will use many times in the paper.
Namely, from (F3) and the continuity of f , it follows that f(t, x, ω∗(x), u) = 0 for
a.a. (t, x) ∈ QT and every u ∈ R. Now note that if equation (2.1) has got a solution
ω then ω is continuous in variable t (moreover it is absolutely continuous). Now let
us fix a point x ∈ Ω. If ω(t0, x) > ω∗(x) for some t0 ∈ (0, T ) then ω(t, x) > ω∗(x)
for all t ∈ [t0, t0 +ε] where ε is sufficiently small. Then by condition (F3) we obtain
f(t, x, ω(t, x), u(t, x)) ≤ 0 thus

ω(t, x) = ω0(x) +
∫ t

0

f(s, x, ω(s, x), u(s, x)) ds

= ω0(x) +
∫ t0

0

f(s, x, ω(s, x), u(s, x)) ds +
∫ t

t0

f(s, x, ω(s, x), u(s, x)) ds

≤ ω0(x) +
∫ t0

0

f(s, x, ω(s, x), u(s, x)) ds

= ω(t0, x),

that is, ω is decreasing in variable t. Similar to this, if ω(t0, x) < ω∗(x) for some
t0 > 0 then ω is locally increasing in t. From this it is easy to see that ω(t, x) ∈
[ω∗(x), ω0(x)] (or [ω0(x), ω∗(x)]) for a.a. (t, x) ∈ QT thus |ω(t, x)| ≤ |ω0(x)| +
|ω∗(x)| for a.a. (t, x) ∈ QT hence ‖ω‖L∞(QT ) ≤ ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω).

Let us define a function f̃ : QT × R2 → R by

f̃(t, x, ω, u)

=


f(t, x, ω, u), if |ω| ≤ ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω),

f(t, x, ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω), u), if ω ≥ ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω),

f(t, x,−‖ω0‖L∞(Ω) − ‖ω∗‖L∞(Ω), u), if ω ≤ −‖ω0‖L∞(Ω) − ‖ω∗‖L∞(Ω),

and consider the following problem instead of (2.1):

ω(t, x) = ω0(x) +
∫ t

0

f̃(s, x, ω(s, x), u(s, x)) ds. (2.4)
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Obviously f̃ also fulfils condition (F2), (F3), further, by choosing interval

I =
[
−‖ω0‖L∞(Ω) − ‖ω∗‖L∞(Ω), ‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

]
in condition (F1), we obtain that with some function K1

|f̃(t, x, ω, u)− f̃(t, x, ω̃, u)| ≤ K1(u) · |ω − ω̃|

for a.a. (t, x) ∈ QT and every (ω, u) ∈ R2, since f was extended as a constant
function outside of I. This means that function F̃ satisfies condition (F1) globally.
It is clear that if problem (2.4) has got a solution ω then ‖ω‖L∞(QT ) ≤ ‖ω0‖L∞(Ω)+
‖ω∗‖L∞(Ω). Since f̃ equals with f on interval I, every solution of (2.4) is a solution
of (2.1) and converse. From the above arguments it follows that it is sufficient to
show that the problem (2.4) has a unique solution ω ∈ L∞(QT ). In other words,
we may assume that condition (F1) is fulfilled by function f globally.
Existence. We use the method of successive approximation. Let ω0(t, x) := ω0(x)
((t, x) ∈ QT ), further,

ωk+1(t, x) := ω0(x) +
∫ t

0

f(s, x, ωk(s, x), u(s, x)) ds. (2.5)

Now fix a point x ∈ Ω. We show that with suitable constant cx > 0

|ωk+1(t, x)− ωk(t, x)| ≤
(
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

)
· ck+1

x

t
k+1
p2

[(k + 1)!]1/p2
. (2.6)

We proceed by induction on k. For k = 0 we have

|ω1(t, x)− ω0(t, x)| dt =
∣∣ ∫ t

0

f(s, x, ω0(x), u(s, x)) ds
∣∣

=
∣∣ ∫ t

0

(f(s, x, ω0(x), u(s, x))− f(s, x, ω∗(x), u(s, x))) ds
∣∣

≤
∫ t

0

|K1(u(s, x))| · |ω0(x) + ω∗(x)| ds

≤
(
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

)
·
∫ t

0

|K1(u(s, x))| ds.

Using condition (F1), Hölder’s inequality and u ∈ Lp1(QT ) we obtain∫ t

0

|K1(u(s, x))| ds ≤
( ∫ T

0

|K1(u(s, x))|q2ds
)1/q2

·
( ∫ t

0

1p2

)1/p2

≤
( ∫ t

0

(
d1|u(s, x)|

p1
q2 + d2

)q2

ds
)1/q2

· t1/p2

≤ const ·
( ∫ T

0

(|u(s, x)|p1 + 1) ds
)1/q2

· t1/p2

= cx · t1/p2 .

(2.7)

From the above two estimate follows (2.6) for k = 0. Now let us suppose that
estimate (2.6) holds for k − 1. Then using condition (F1) and the assumption of
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induction we get

|ωk+1(t, x)− ωk(t, x)|

≤
∫ t

0

|F (s, x, ωk(s, x), u(s, x))− F (s, x, ωk−1(s, x), u(s, x))|ds

≤
∫ t

0

|K1(u(s, x))| · |ωk(s, x)− ωk−1(s, x)| ds

≤
∫ t

0

(
|K1(u(s, x))| ·

(
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

)
· ck

x ·
s

k
p2

(k!)
1

p2

)
ds

≤
(
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

)
· ck

x ·
( ∫ T

0

|K1(u(s, x))|q2ds
)1/q2

·
(∫ t

0

sk

k!
ds

)1/p2

≤
(
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

)
· ck+1

x · t
k+1
p2

[(k + 1)!]1/p2
.

The induction is complete. From estimate (2.6) it follows that for a.a. x ∈ Ω and
every t ∈ (0, T )

|ωk+l(t, x)− ωk(t, x)| ≤
k+l∑

i=k+1

(
‖ω0‖L∞(Ω) + ‖ω∗‖L∞(Ω)

)
· ci

x

T
i

p2

(i!)1/p2
→ 0

as k, l → ∞, hence (ωk(t, x)) is a Cauchy sequence, therefore it is convergent to
some ω(t, x), ωk → ω a.e. in QT , moreover ωk(·, x) → ω(·, x) in L∞(0, T ) for a.a.
x ∈ Ω. We show that ω is a solution of equation (2.1). Observe that the left hand
side of the recurrence (2.5) converges to ω a.e. in QT , so it suffices to show that
the right hand side of (2.5) a.e. tends to the right hand side of equation (2.1). But
this is true since∣∣ ∫ t

0

(f(s, x, ω(s, x), u(s, x))− f(s, x, ωk(s, x), u(s, x)))ds
∣∣

≤
∫ t

0

|K1(u(s, x))| · |ω(s, x)− ωk(s, x)|ds

≤
∫ T

0

|K1(u(s, x))|ds · ‖ω(·, x)− ωk(·, x)‖L∞(0,T )

≤ cx · ‖ω(·, x)− ωk(·, x)‖L∞(0,T ) → 0 as k →∞.

Uniqueness. Suppose that ω, ω̃ ∈ L∞(QT ) are solutions of problem (2.1). Then
by condition (F1)

|ω(t, x)− ω̃(t, x)| ≤
∫ t

0

|f(s, x, ω(s, x), u(s, x))− f(s, x, ω̃(s, x), u(s, x))|ds

≤
∫ t

0

|K1(u(s, x))| · |ω(s, x)− ω̃(s, x)| ds

≤ ‖K1(u(·, x))‖Lq2 (QT ) ·
( ∫ t

0

|ω(s, x)− ω̃(s, x)|p2 ds
)1/p2

hence

|ω(t, x)− ω̃(t, x)|p2 ≤ cp2
x ·

∫ t

0

|ω(s, x)− ω̃(s, x)|p2ds.
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Then Gronwall’s lemma yields |ω(t, x) − ω̃(t, x)| = 0 for a.a. (t, x) ∈ QT which
means that ω = ω̃. �

Proposition 2.3. Assume (F1)–(F3) and let (uk) ⊂ Lp1(QT ), further, let ωk be
the solution of (2.1) corresponding to uk. If uk → u in Lp1(QT ) then ωk → ω a.e.
in QT where ω is the solution of (2.1) corresponding to u.

Proof. Suppose that uk → u in Lp1(QT ). Then for a.a. x ∈ Ω uk(·, x) → u(·, x) in
Lp1(0, T ). Let ωk, ω ∈ L∞(QT ) be the corresponding solutions of (2.1). Now fix a
point x ∈ Ω. Since (ωk) is bounded in L∞(QT ) by Proposition 2.2, we can apply
condition (F1), (F2) and we obtain

|ωk(t, x)− ω(t, x)|

≤
∫ t

0

|f(s, x, ωk(s, x), uk(s, x))− f(s, x, ω(s, x), u(s, x))| ds

≤
∫ t

0

[|K1(uk(s, x))| · |ωk(s, x)− ω(s, x)|+ |K2(ω(s, x))| · |uk(s, x)− u(s, x)|] ds

≤
( ∫ t

0

|K1(s, x)|q2ds
)1/q2

·
( ∫ t

0

|ωk(s, x)− ω(s, x)|p2

)1/p2

ds

+ ‖K2(ω(·, x))‖L∞(0,T ) ·
∫ T

0

|uk(s, x)− u(s, x)| ds.

By choosing u = uk and t = T in estimate (2.7) and by using the convergence of
uk(·, x) in Lp1(0, T ) we get that the first term containing uk on the right hand side
of the above inequality is bounded. In addition, by using the continuity of function
K2 it follows that ‖K2(ω(·, x))‖L∞(0,T ) is finite. From the above arguments we
obtain

|ωk(t, x)− ω(t, x)|p2

≤ const ·
∫ t

0

|ωk(s, x)− ω(s, x)|p2ds + const · ‖uk(·, x)− u(·, x)‖p2
L1(0,T ).

By Gronwall’s lemma |ωk(t, x) − ω(t, x)|p2 ≤ const · ‖uk(·, x) − u(·, x)‖p2
L1(0,T ) → 0

as k →∞ which immediately yields the a.e. convergence of (ωk). �

Remark 2.4. Since (ωk) is bounded in L∞(QT ) and a.e. convergent, from the
Lebesgue theorem it follows that (ωk) is convergent in Lα(QT ) for arbitrary 1 ≤
α < ∞.

Proposition 2.5. Suppose that conditions (F1)–(F3) hold, further, |w0| > 0 a.e.
in Ω and ω0 · ω∗ ≥ 0 (that is they have the same sign). Then for the solution ω of
(2.1) |ω(t, x)| > 0 holds for a.a. (t, x) ∈ QT .

Proof. Fix a point x ∈ Ω. Without loss of generality assume that ω0(x) > 0. First
suppose ω∗(x) > 0. In the proof of Proposition 2.2 we have shown that ω(t, x) ∈
[ω∗(x), ω0(x)] for a.a. t ∈ [0, T ] consequently ω(t, x) ≥ min(ω∗(x), ω0(x)) > 0.
Now suppose that ω∗(x) = 0. Define t∗ := inf {t > 0 : ω(t, x) = 0}. Then for every
t < t∗ we have ω(t, x) > 0. By using condition (F1), (F3) it follows that for
ω > ω∗(x) = 0, f(t, x, ω, u) ≥ −K1(u)ω. Then for a.a. t ∈ (0, t∗)

ω′(t, x) = f(t, x, ω(t, x), u(t, x)) ≥ −K1(u(t, x))(ω(t, x)ω.
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(Note that ω is absolutely continuous in variable t thus for a.a. (t, x) ∈ QT there
exists ω′(t, x).) By the definition of t∗ we can divide by ω(t, x) and we obtain
ω′(t, x)/ω(t, x) ≥ −K1(u(t, x)). Observe that the left hand side of the previous
inequality equals to (log ω(t, x))′ thus by integrating the inequality in (0, t) we
obtain log ω(t, x) − log ω0(x) ≥ −

∫ t

0
K1(u(s, x)) ds. By taking the exponential of

both sides it follows

ω(t, x) ≥ ω0(x) · e−
R t
0 K1(u(s,x))ds.

From the above estimate it follows that ω(t, x) > 0 a.e. in [0, T ]. The case ω0(x) < 0
can be treated the same way. �

Remark 2.6. This proposition shows that if |ω0| is a.e. positive and ω0, ω∗ has
a.e. the same sign, then for the solution ω of (2.1), 1

ω is a.e. finite. Consequently
operator A and B might depend on terms which contain 1

ω . The above proof also
shows that if the absolute value of the initial value ω0 is a.e. greater than a positive
constant, further, |ω∗| is greater then a positive lower bound, or K1 is bounded,
then the absolute value of the solution ω of equation (2.1) is also greater than a
positive constant a.e. in QT thus 1

ω ∈ L∞(QT ).

Proposition 2.7. If assumptions (A1)–(A4), (G1)–(G2) hold then for every fixed
ω ∈ L∞(QT ) and p ∈ X2 there exists a solution u ∈ D(L) of problem (2.2).

Proof. Since c1 and γ are continuous functions, for a fixed ω ∈ L∞(QT ) func-
tions c1(ω), γ(ω) are in L∞(QT ). On the other hand, from p ∈ X2 it follows
that |p|

p2
q1 + |Dp|

p2
q1 ∈ Lq1(QT ). This means that for fixed ω ∈ L∞(QT ) and

p ∈ X2 conditions (A1)–(A4) are similar to the Léray-Lions conditions for the op-
erator A(ω, ·,p) : X1 → X∗

1 . It is not difficult to verify that these conditions imply
that operator A(ω, ·,p) : X1 → X∗

1 is bounded, demicontinuous, coercive and pseu-
domonotone with respect to D(L) (see [2, 4, 7]). In addition, G(ω) ∈ X∗

1 since by
Hölder’s inequality and condition (G2)∣∣∣ ∫

QT

g(t, x, ω(t, x))v(t, x)dtdx
∣∣∣

≤ const ·
( ∫

QT

|g(t, x, ω(t, x))|q1dtdx
)1/q1

· ‖v‖X1

≤ const · ‖c3(ω)‖L∞(QT ) · ‖k3‖Lq1 (QT ) · ‖v‖X1 .

(2.8)

Then problem Lu + A(ω, u,p) = G(ω) has a solution u ∈ D(L) for every fixed
ω ∈ L∞(QT ) and p ∈ X2. �

Proposition 2.8. Under assumptions (H1)–(H2), (B1)–(B4), for every fixed ω ∈
L∞(QT ) and u ∈ X1 problem (2.3) has unique solution p ∈ X2.

Proof. Since ĉ1, γ̂ are continuous functions, for fixed ω ∈ L∞(QT ), the functions
ĉ1(ω) and γ̂(ω) belong to L∞(QT ). Further, u ∈ X1 implies that |u|

p1
q2 ∈ Lq2(QT )

and |u|p1 ∈ L1(QT ). Thus conditions B1-B4 are the Léray-Lions conditions for
operator B(ω, u, ·) : X2 → X∗

2 . From this it follows that for fixed ω ∈ L∞(QT )
and u ∈ X1 operator B(ω, u, ·) : X2 → X∗

2 is bounded, demicontinuous, coercive
and uniformly monotone (see [10]). In addition, H(ω, u) ∈ X∗

2 because Hölder’s
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inequality and condition (H2) yield∣∣∣ ∫
QT

h(t, x, ω(t, x), u(t, x))v(t, x) dt dx
∣∣∣

≤
( ∫

QT

|h(t, x, ω(t, x), u(t, x))|q2dtdx
)1/q2

· ‖v‖Lp2 (QT )

≤ const · ‖c4(ω)‖L∞(QT ) ·
(
‖u‖

p1
q2
Lp1 (QT ) + ‖k4‖Lq2

)
· ‖v‖X2 .

(2.9)

From the properties of operator B(ω, u, ·) it follows that problem B(ω, u,p) =
H(ω, u) has got a unique solution p ∈ X2 for every fixed ω ∈ L∞(QT ) and u ∈
X1. �

Now let us turn to the proof of theorem 2.1.

The proof of Theorem 2.1. The idea is the following. We define sequences of ap-
proximating solutions of problem (2.1)–(2.3), then we show the boundedness of the
sequences. After choosing weakly convergent subsequences we show that the weak
limits of the subsequences are solutions of the problem. For simplicity, in the proof
we omit the variable (t, x) of functions ai, bi if it is not confusing.
Step 1: approximation. Define the sequences (ωk), (uk), (pk) by the follow-
ing. Let ω0(t, x) ≡ u0(t, x) ≡ p0(t, x) ≡ 0 ((t, x) ∈ QT ) and for k = 0, 1, . . . let
ωk+1, uk+1,pk+1 be a solution of the system

ωk+1(t, x) = ω0(x) +
∫ t

0

f(s, x, ωk+1(s, x), uk(s, x)) ds (2.10)

Luk+1 + A(ωk, uk+1,pk) = G(ωk) (2.11)

B(ωk, uk,pk+1) = H(ωk, uk). (2.12)

By propositions 2.2, 2.7, 2.8, for given ωk, uk,pk there exist solutions ωk+1 in
L∞(QT ), uk+1 ∈ X1 and pk+1 ∈ X2 of the above system. By the above recurrence
we obtain the sequences (ωk) ⊂ L∞(QT ), (uk) ⊂ X1, (pk) ⊂ X2.
Step 2: boundedness. We show that the above defined sequences are bounded.
It is obvious that (ωk) is bounded in L∞(QT ) since by Proposition 2.2 for fixed ω0 ∈
L∞(Ω) for the solution of equation (2.10) estimate ‖ωk+1‖L∞(QT ) ≤ ‖ω0‖L∞(Ω) +
‖ω∗‖L∞(Ω) holds.

Now let us consider the sequence (uk). By choosing the test function v = uk+1

in (2.11) and by using condition (A4) and the monotonicity of operator L we obtain

[G(ωk), uk+1] = [Luk+1, uk+1] + [A(ωk, uk+1,pk), uk+1]

≥ c2

∫
QT

(|uk+1|p1 + |Duk+1|p1 − γ(ωk)k2)

≥ c2

(
‖uk+1‖p1

X1
− ‖γ(ωk)‖L∞(QT ) · ‖k2‖L1(QT )

)
where the term ‖γ(ωk)‖L∞(QT ) · ‖k2‖L1(QT ) is bounded because of the boundedness
of (ωk) in L∞(QT ). In addition, similarly to (2.8) we have

[G(ωk), uk+1] ≤ const · ‖c3(ωk)‖L∞(QT ) · ‖k3‖Lq1 (QT ) · ‖uk+1‖X1 . (2.13)

By combining the above two inequalities we obtain

‖uk+1‖p1
X1

≤ const · (‖uk+1‖X1 + 1) .

From this inequality, it follows that (uk) is a bounded sequence in the space X1.
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Let us see now sequence (pk). By substituting the test function v = pk+1 in
(2.12) and by using condition B4 we get

[H(ωk, uk),pk+1] = [B(ωk, uk,pk+1),pk+1] ≥ const ·
(
‖pk+1‖p2

X2
− ‖uk‖p1

X1
+ 1

)
where the term (as we have shown just before) ‖uk‖p1

X1
is bounded. On the other

hand, similarly to estimate (2.9) we have

|[H(ωk, uk),pk+1]| ≤ const·‖pk+1‖X2 ·‖c4(ωk)‖L∞(QT )·
(
‖uk‖

p1
q2
Lp1 (QT )+‖k4‖Lq2 (QT )

)
.

Since (ωk) is bounded in L∞(QT ) and (uk) is bounded in X1, therefore the terms
on the right hand side of the above inequality, not containing pk+1, are bounded.
Then the previous two estimates yield

‖pk+1‖p2
X2

≤ const · (‖pk+1‖X2 + const) .

This means that the sequence (pk) is bounded in the space X2.
We need also the boundedness of the sequence (Luk) in X∗

1 . By (2.11) it suffices
to show that |[Luk+1, v]| = |[A(ωk, uk+1,pk)+G(ωk), v]| ≤ const ·‖v‖X1 . By (2.13),
|[G(ωk), v]| ≤ const · ‖v‖X1 . In addition, by Hölder’s inequality

|[A(ωk, uk+1,pk), v]| ≤
( n∑

i=0

‖ai(ωk, uk+1, Duk+1,pk, Dpk)‖Lq1 (QT )

)
· ‖v‖X1 .

(2.14)
Observe that from condition (A2) it follows that for all i,

‖ai(ωk, uk+1, Duk+1,pk, Dpk)‖Lq1 (QT )

≤ const · ‖c1(ωk)‖L∞(QT )

(
‖uk+1‖p1

X1
+ ‖pk‖q2

X2
+ ‖k1‖Lq1 (QT )

)
.

The right hand side of the above inequality is bounded because of the bound-
edness of the sequences (ωk), (uk) and (pk) (and by the continuity of the func-
tion c1). Combining this with estimate (2.14) we obtain the desired estimate
|[A(ωk, uk+1,pk), v]| ≤ const · ‖v‖X1 thus (Luk) is a bounded sequence in the space
X∗

1 .
Step 3: convergence. In the preceding step we showed that the sequences
(uk), (Luk), (pk) are bounded (in reflexive Banach spaces) therefore each has a
weakly convergent subsequence (which will be denoted as the original sequence for
simplicity), so there exist u ∈ X1, w ∈ X∗

1 and p ∈ X2 such that

uk → u weakly in X1;

Luk → w weakly in X∗
1 ;

pk → p weakly in X2.

Further, from the properties of operator L (see [10] it follows that w ∈ D(L) and
w = Lu. Thus by applying the well known embedding theorem (see [7]) it follows
that there exists a subsequence of (uk) which is convergent in Lp1(QT ) hence it has
got an a.e. convergent subsequence. In what follows, we use these subsequences,
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that is, we suppose that

uk → u weakly in X1;

uk → u in Lp1(QT );
uk → u a.e. in QT ;

Dtuk → Dtu weakly in X∗
1 ;

pk → p weakly in X2.

Now we show that ω, u,p are solutions of problem (2.1)–(2.3).
We start with equation (2.10). Since uk → u in Lp1(QT ), further, ωk+1 is the

solution of equation (2.10), by Proposition 2.3 it follows that ωk → ω a.e. in QT

and functions ω, u satisfy the integral equation (2.1).
Now let us consider equation (2.12). First we show that pk → p in X∗

2 . By
condition B3 we have

[B(ωk, uk,pk+1)−B(ωk, uk,p),pk+1 − p] ≥ Ĉ · ‖pk+1 − p‖p2
X2

. (2.15)

On the other hand,

[B(ωk, uk,pk+1)−B(ωk, uk,p),pk+1 − p]

= [B(ωk, uk,pk+1),pk+1 − p] + [B(ω, u,p)−B(ωk, uk,p),pk+1 − p]

− [B(ω, u,p),pk+1 − p],
(2.16)

and we show that each term of the right hand side tends to 0. The last term
evidently converges to 0 since (pk) is weakly convergent in X2. In order to verify
the convergence of the second term, observe that

|[B(ωk, uk,p)−B(ω, u,p),pk+1 − p]|

≤
n∑

i=0

‖bi(ωk, uk,p, Dp)− bi(ω, u,p, Dp)‖Lq2 (QT ) · ‖pk+1 − p‖X2

(2.17)

and by condition (B2)

|bi(ωk, uk,p, Dp)− bi(ω, u,p, Dp)|q2

≤ const · (|ĉ1(ωk)|q2 + |ĉ1(ω)|q2)
(
|p|p2 + |Dp|p2 + |uk|p1 + |u|p1 + |k̂1|q2

)
.

Since (ωk) is bounded in L∞(QT ) and (uk) is convergent in Lp1(QT ), therefore the
right hand side of the above inequality is equi-integrable (see [4]) hence the left
hand side is equi-integrable, too. In addition, the left hand side a.e. converges to
0 (becuase of the a.e. convergence of (ωk) and (uk)), therefore by Vitali’s theorem
the left hand side converges in L1(QT ) to the zero function. From this (and from
the boundedness of (pk)) it follows that the right hand side of (2.17) tends to 0. By
recurrence (2.12) we have B(ωk, uk,pk+1) = H(ωk, uk), further, pk+1 → p weakly
in X2 hence in order to prove the convergence of the first term of the right hand
side of (2.16) it suffices to show that H(ωk, uk) → H(ω, u) in X∗

2 . By Hölder’s
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inequality

|[H(ωk, uk)−H(ω, u), v]|

≤
( ∫

QT

|h(t, x, ωk(t, x), uk(t, x))− h(t, x, ω(t, x), u(t, x))|q2 dtdx
)1/q2

· ‖v‖X2

=
( ∫

QT

bk(t, x) dt dx
)1/q2

· ‖v‖X2 .

It is clear from the above inequality that ‖H(ωk, uk) − H(ω, u)‖X∗2
≤ ‖bk‖1/q2

L1(QT )

so we only have to prove that (bk) converges to 0 in L1(QT ). By condition (H2) we
obtain

|bk| ≤ const · (|c4(ωk)|q2 + |c4(ω)|q2) (|uk|p1 + |u|p1 + |k4|q2) .

The right hand side of the above inequality is equi-integrable in L1(QT ) (because
of the convergence of (uk) in Lp1(QT ) and the boundedness of (ωk) in L∞(QT ))
thus (bk) is equiintegrable, too. Besides, (bk) a.e. converges to 0 since uk → u
and ωk → ω a.e. in QT and H is continuous in these variables. Then by Vitali’s
theorem (bk) tends to 0 in L1(QT ). From the above arguments it follows that
H(ωk, uk) → H(ω, u) in X∗

2 so the right hand side of the equation (2.16) converges
to 0 thus (2.15) implies that pk+1 → p in X2. This means that pk+1 → p in
Lp2(QT ), too, so we may assume that pk+1 → p a.e. in QT .

Now we show that B(ωk, uk,pk+1) → B(ω, u,p) weakly in X∗
2 . Then from recur-

rence (2.12) we obtain B(ω, u,p) = H(ω, u) (we have seen earlier that H(ωk, uk) →
H(ω, u) weakly in X∗

2 ) i.e. ω, u,p are solutions of problem (2.3). In order to verify
the weak convergence B(ωk, uk,pk+1) → B(ω, u,p) observe that

|[B(ωk, uk,pk+1)−B(ω, u,p), v]|

≤
n∑

i=0

‖bi(ωk, uk,pk+1, Dpk+1)− bi(ω, u,p, Dp)‖Lq2 (QT ) · ‖v‖X2 ,
(2.18)

and by condition (B2)

|bi(ωk, uk,pk+1, Dpk+1)− bi(ω, u,p, Dp)|q2

≤ const · |ĉ1(ωk)|q2

(
|pk+1|p2 + |Dpk+1|p2 + |uk|p1 + |k̂1|q2

)
+ const · |ĉ1(ω)|q2

(
|p|p2 + |Dp|p2 + |u|p1 + |k̂1|q2

)
.

The right hand side of the above inequality is equi-integrable in L1(QT ) (because of
the strong convergence of (pk) in X2 and the boundedness of (ĉ1(ωk)) in L∞(QT ))
thus the left hand side is also equiintegrable. Moreover, by the Carathéodory
conditions the left hand side is a.e. convergent to the zero function thus from Vitali’s
theorem it follows that the right hand side of (2.18) tends to 0. Consequently
B(ωk, uk,pk+1)−B(ω, u,p) → 0 weakly in X∗

2 .
In the case of equation (2.11) we can apply the same argument as in the case

of eaquation (2.12). We have already shown that Luk+1 → Lu weakly in X∗
1 .

Now we verify that G(ωk) → G(ω) in X∗
1 and A(ωk, uk+1,pk) → A(ω, u,p) weakly

in X∗
1 then these convergences from recurrence (2.11) yield (2.2). To the strong

convergence G(ωk) → G(ω) observe that by Hölder’s inequality

|[G(ωk)−G(ω), v]| ≤ ‖g(·, ωk)− g(·, ω)‖Lq1 (QT ) · ‖v‖X1
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which implies ‖G(ωk)−G(ω)‖X∗1
≤ ‖g(·, ωk)−g(·, ω)‖Lq1 (QT ). From condition (G2)

and the boundedness of (ωk) we have

|g(t, x, ωk(t, x))− g(t, x, ω(t, x))|
≤ const ·

(
‖c3(ωk)‖L∞(QT ) + ‖c3(ω)‖L∞(QT )

)
· |k3(t, x)|

thus the left hand side has a majorant in Lq1(QT ) hence by the a.e. convergence
of (ωk) and the continuity of G, Lebesgue’s theorem yields the convergence of the
left hand side to 0 in Lq1(QT ).

For the weak convergence A(ωk, uk+1,pk) → A(ω, u,p) we first show that uk →
u in X1. To this end, it suffices to show that Duk → Du in Lp1(QT ) since we have
verified so far that uk → u in Lp1(QT ). By the monotonicity of operator L,

[Luk+1 − Lu, uk+1 − u] + [A(ωk, uk+1,pk)−A(ωk, u,pk), uk+1 − u]

≥
n∑

i=1

∫
QT

(
ai(ωk, uk+1, Duk+1,pk, Dpk)− ai(ωk, uk+1, Du,pk, Dpk)

)
×

(
Diuk+1 −Diu

)
+

n∑
i=1

∫
QT

(
ai(ωk, uk+1, Du,pk, Dpk)− ai(ωk, u,Du,pk, Dpk)

)
(Diuk+1 −Diu)

+
∫

QT

(
a0(ωk, uk+1, Duk+1,pk, Dpk)− a0(ωk, u,Du,pk, Dpk)

)
(uk+1 − u).

(2.19)
Observe that by condition (A3) the first term on the right hand side of the above
inequality is greater than C · ‖Duk+1 − Du‖Lp1 (QT ). We show that the left hand
side and the integrals on the right hand side converge to 0, then the convergence
of (Duk) in Lp1(QT ) immediately follows. Consider the decomposition

[Luk+1 − Lu, uk+1 − u] + [A(ωk, uk+1,pk)−A(ωk, u,pk), uk+1 − u]

= [Luk+1 + A(ωk, uk+1,pk), uk+1 − u]− [Lu, uk+1 − u]− [A(ωk, u,pk), uk+1 − u].

The first term on the right hand side equals to [G(ωk), uk+1 − u] because of the
recurrence (2.11). By the strong convergence of (G(ωk)) and the weak convergence
of (uk) it follows that [G(ωk), uk+1−u] → 0. The second term tends to 0 since (uk)
is weakly convergent. By condition (A2), the a.e. convergence of (ωk), the strong
convergence of (pk) it is easy to see (similar to the case of operator B, see (2.17))
that the third term also tends to 0 which yields the convergence of the left hand
side of (2.19) to 0. By Hölder’s inequality∣∣ ∫

QT

(ai(ωk, uk+1, Du,pk, Dpk)− ai(ωk, u,Du,pk, Dpk)) (Diuk+1 −Diu)
∣∣

≤ ‖ai(ωk, uk+1, Du,pk, Dpk)− ai(ωk, u,Du,pk, Dpk)‖Lq1 (QT )

× ‖Diuk+1 −Diu‖Lp1 (QT )

where the coefficient of the bounded term ‖Diuk+1−Diu‖Lp1 (QT ) converges to 0 by
Vitali’s theorem. In fact, (ai(ωk, uk+1, Du,pk, Dpk)− ai(ωk, u,Du,pk, Dpk)) → 0
a.e. in QT , further,

|ai(ωk, uk+1, Du,pk, Dpk)− ai(ωk, u,Du,pk, Dpk)|q1

≤ const · |c1(ωk)| · (|uk+1|p1 + |u|p1 + |pk|p2 + |k1|q1)
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where the right hand side converges in L1(QT ). In order to verify the convergence
of the last integral on the right hand side of (2.19), we use Hölder’s inequality and
condition (A2) and obtain∣∣ ∫

QT

(a0(ωk, uk+1, Duk+1,pk, Dpk)− a0(ωk, u,Du,pk, Dpk)) (uk+1 − u)
∣∣

≤ const · ‖c1(ωk)‖L∞(QT ) ·
(
‖uk+1‖

p1
q1
X1

+ ‖u‖
p1
q1
X1

+ ‖pk‖
p2
q1
X2

+ ‖k1‖Lq1 (QT )

)
× ‖uk+1 − u‖Lp1 (QT ).

By the strong convergence of (pk) in X2 and (uk) in Lp1(QT ) and the by bound-
edness of (uk) in X1 the right hand side tends to 0.

Now the weak convergence A(ωk, uk+1,pk) → A(ω, u,p) in X∗
2 follows easily by

condition (A2), the strong convergence and by Vitali’s theorem (the same as in the
case of operator B). So we have shown that ω, u,p are solutions of problem (2.2).

Summarizing, we have verified that ω, u,p are solutions of system (2.1)–(2.3)
hence the proof of the theorem is complete. �

Remark 2.9. From the above proof it is clear that if we suppose

(A3’) There exists a constant Ĉ > 0 such that for a.a. (t, x) ∈ QT and every
(ω, ζ0, ζ,p, Dp), (ω, η0, η,p, Dp) ∈ R× Rn+1 × Rn+1

n∑
i=0

(ai(t, x, ω, ζ0, ζ,p, Dp)− ai(t, x, ω, η0, η,p, Dp)) (ζi − ηi)

≥ Ĉ · (|ζ0 − η0|p2 + |ζ − η|p2)

instead of A3, then the theorem remains true. Indeed, it simplifies equation (2.19),
on the right hand side will stand |ζ0 − η0|p2 + |ζ − η|p2 .

3. Examples

In this section we give some examples of functions ai, bi (i = 0, . . . , n) that fulfil
conditions (A1)–(A4), (B1)–(B4). Let us start with a general example. Suppose
that functions ai, bi have the form

ai(t, x, ω, ζ0, ζ,p, Dp) = (P (ω) + P(ω)Q(p, Dp))αi(t, x, ζ)

+
(
P̃ (ω) + P̃(ω)Q̃(p, Dp)

)
α̃i(t, x, ζ), for i 6= 0,

(3.1)

a0(t, x, ω, ζ0, ζ,p, Dp) = (P (ω) + P(ω)Q(p, Dp))α0(t, x, ζ0, ζ)

+
(
P̃0(ω) + P̃(ω)Q̃(p, Dp)

)
α̃0(t, x, ζ0, ζ),

(3.2)

bi(t, x, ω, u, ζ0, ζ) = (R(ω) +R(ω)S(u))βi(t, x, ζ0, ζ)

+
(
R̃(ω) + R̃(ω)S̃(u)

)
β̃i(t, x, ζ0, ζ), i = 0, . . . , n

(3.3)

where the following hold.
(E1) Functions αi, α̃i, βi, β̃i : QT × Rn → R (i = 1, . . . , n) are Carathéodory

functions, i.e. they are measurable in (t, x) ∈ QT for every ζ ∈ Rn and
continuous in ζ ∈ Rn for a.a. (t, x) ∈ QT . Functions α0, α̃0 : QT ×Rn+1 →
R are Carathéodory functions, i.e. they are measurable in (t, x) ∈ QT for
every (ζ0, ζ) ∈ Rn+1 and continuous in (ζ0, ζ) ∈ Rn+1 for a.a. (t, x) ∈ QT .
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(E2) There exist constants c1, ĉ1 > 0, 0 ≤ r1 < p1 − 1, 0 ≤ r2 < p2 − 1 and
functions k1 ∈ Lq1(QT ), k̂1 ∈ Lq2(Ω) such that
(a) |αi(t, x, ζ)| ≤ c1|ζ|p1−1 + k1(t, x), if i 6= 0,
(b) |α0(t, x, ζ0, ζ)| ≤ c1

(
|ζ0|p1−1 + |ζ|p1−1

)
+ k1(t, x),

(c) |α̃i(t, x, ζ)| ≤ c1|ζ|r1 , if i 6= 0,
(d) |α̃0(t, x, ζ0, ζ)| ≤ c1 (|ζ0|r1 + |ζ|r1),
(e) |βi(t, x, ζ0, ζ)| ≤ ĉ1

(
|ζ0|p2−1 + |ζ|p2−1

)
+ k̂1(t, x), if i 6= 0,

(f) |β̃i(t, x, ζ0, ζ)| ≤ ĉ1 (|ζ0|r2 + |ζ|r2), if i 6= 0
for a.a. (t, x) ∈ QT and every (ζ0, ζ) ∈ Rn+1 (i = 0, . . . , n).

(E3) There exist constants C, Ĉ > 0 such that for a.a. (t, x) ∈ QT and every
(ζ0, η0), (ζ0, η) ∈ Rn+1

(a)
∑n

i=1 (αi(t, x, ζ)− αi(t, x, η)) (ζi − ηi) ≥ C · |ζ − η|p2 ,
(b)

∑n
i=1 (α̃i(t, x, ζ)− α̃i(t, x, η)) (ζi − ηi) ≥ 0,

(c)
∑n

i=0 (βi(t, x, ζ0, ζ)− βi(t, x, η0, η)) (ζi − ηi)
≥ Ĉ · (|ζ0 − η0|p2 + |ζ − η|p2),

(d)
∑n

i=0

(
β̃i(t, x, ζ0, ζ)− β̃i(t, x, η0, η)

)
(ζi − ηi) ≥ 0.

(E4) There exist constants c2, ĉ2 > 0 and functions k2, k̂2 ∈ L1(QT ) such that
(a)

∑n
i=1 αi(t, x, ζ)ζi + α0(t, x, ζ0, ζ)ζ0 ≥ c2(|ζ0|p1 + |ζ|p1)− k2(t, x),

(b)
∑n

i=1 α̃i(t, x, ζ)ζi + α̃0(t, x, ζ0, ζ)ζ0 ≥ 0
(c)

∑n
i=0 βi(t, x, ζ0, ζ)ζi ≥ ĉ2(|ζ0|p2 + |ζ|p2)− k̂2(t, x),

(d)
∑n

i=1 β̃i(t, x, ζ0, ζ)ζi ≥ 0
for a.a. (t, x) ∈ QT and every (ζ0, ζ) ∈ Rn+1.

(E5) (a) Functions P,P, P̃ , P̃, P̃0 : R → R, Q, Q̃ : Rn+1 → R are continuous,
P̃ (ω)+ P̃(ω)Q̃(p, Dp) ≥ 0 and there exists a constant c > 0 such that
P (ω) + P(ω)Q(p, Dp) ≥ c for every ω ∈ R, (p, Dp) ∈ Rn+1. Further,

Q is bounded, |Q̃(p, Dp)| ≤ const ·
(
|p|

p2(p1−1−r1)
p1 + |Dp|

p2(p1−1−r1)
p1

)
where constant r1 is given in (E2).

(b) Functions R,R, R̃, R̃, S, S̃ : R → R are continuous, R̃(ω)+R̃(ω)S̃(u) ≥
0 and there exists a positive constant c such that R(ω)+R(ω)S(u) ≥ c

for every ω ∈ R and u ∈ R, further, S is bounded and |S̃(u)| ≤
const · |u|

p1(p2−1−r2)
p2 where constant r2 is given in (E2).

Proposition 3.1. If assumptions (E1)–(E5) hold then functions (3.1)–(3.3) fulfils
conditions (A1)–(A4), (B1)–(B4).

Proof. We verify only conditions (A1)–(A4), the other can be shown by using similar
arguments. From (E1) immediately follows condition (A1). In order to obtain (A2),
let us apply Young’s inequality with exponents p∗ = p1−1

r1
and q∗ = p1−1

p1−1−r1
and

use the growth condition imposed on α̃i and Q̃. We obtain∣∣∣(P̃ (ω) + P̃(ω)Q̃(p, Dp)
)

α̃i(t, x, ζ)
∣∣∣

≤ const ·
(
|P̃ (ω)|q

∗
+ |P̃(ω)|q

∗
|Q̃(p, Dp)|q

∗
+ (|ζ|r1)

p1−1
r1

)
≤ const ·

(
|P̃ (ω)|q

∗
+ |P̃(ω)|q

∗
·
(
|p|

p2
q1 + |Dp|

p2
q1

)
+ |ζ|p1−1

)
.

In addition,

|(P (ω) + P(ω)Q(p, Dp))αi(t, x, ζ)| ≤ const · (|P (ω) + |P(ω)|) · (|ζ|p1 + |k1(t, x)|) .
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Then using condition (E2) easily follows that

|ai(t, x, ω, ζ0, ζ,p, Dp)| ≤ const ·
(
|P (ω)|+ |P(ω) + |P̃ (ω)|q

∗
+ |P̃(ω)|q

∗
+ 1

)
×

(
|ζ|p1−1 + |k1(t, x)|+ |p|

p2
q1 + |Dp|

p2
q1

)
,

and similarly holds for i = 0. This means that condition (A2) holds.
Now by the nonnegativity of P̃ + P̃Q̃, the uniform positivity of the sum P +PQ,

and by condition E3,
n∑

i=1

(ai(t, x, ω, ζ0, ζ,p, Dp)− ai(t, x, ω, ζ0, η,p, Dp)) (ζi − ηi)

= (P (ω) + P(ω)Q(p, Dp))
n∑

i=1

(αi(t, x, ζ)− αi(t, x, η)) (ζi − ηi)

+
(
P̃ (ω) + P̃(ω)Q̃(p, Dp)

) n∑
i=1

(α̃i(t, x, ζ)− α̃i(t, x, η)) (ζi − ηi)

≥ c · |ζ − η|p1 ,

hence condition (A3) also holds.
Conditions (E4) and (E5) yield

n∑
i=0

ai(t, x, ω, ζ0, ζ,p, Dp)ζi

= (P (ω) + P(ω)Q(p, Dp)) ·
( n∑

i=1

αi(t, x, ζ)ζi + α0(t, x, ζ0, ζ)ζ0

)
+

(
P̃ (ω) + P̃(ω)Q̃(p, Dp)

)
·
( n∑

i=1

α̃i(t, x, ζ)ζi + α̃0(t, x, ζ0, ζ)ζ0

)
+

(
P̃0(ω)− P̃ (ω)

)
α̃0(t, x, ζ0, ζ)ζ0

≥ c · (c2 (|ζ0|p1 + |ζ|p1)− k2(t, x)) +
(
P̃0(ω)− P̃ (ω)

)
α̃0(t, x, ζ0, ζ)ζ0

By applying Young’s inequality two times and by condition (E2) we obtain∣∣∣(P̃0(ω)− P̃ (ω)
)
α̃0(t, x, ζ0, ζ)ζ0

∣∣∣
≤ const ·

(∣∣∣const(ε)
(
|P̃0(ω)|+ |P̃ (ω)|

)
α̃0(t, x, ζ0, ζ)

∣∣∣q1

+ εp1 |ζ0|p1

)
≤ const ·

(
const(ε)

∣∣∣|P̃0(ω)|+ |P̃ (ω)|
∣∣∣q∗q1

+ εp1 |ζ0|p1 + εp1 |ζ|p1

)
.

By choosing sufficiently small ε > 0 we obtain from the above two estimates that
n∑

i=0

ai(t, x, ω, ζ0, ζ,p, Dp)ζi

≥ const ·
(
|ζ0|p1 + |ζ|p1 − k2(t, x)−

∣∣∣|P̃0(ω)|+ |P̃ (ω)|
∣∣∣q∗q1

)
thus condition (A4) is fulfilled. �
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The simplest and most applied examples for functions αi, α̃i, βi, β̃i are the
following:

αi(t, x, ζ) = ζi|ζ|p1−2 (i 6= 0), βi(t, x, ζ0, ζ) = ζi|ζ|p2−2 (i 6= 0),

α0(t, x, ζ0, ζ) = ζ0|ζ0|p1−2, β0(t, x, ζ0, ζ) = ζ0|ζ0|p2−2,

α̃i(t, x, ζ) = ζi|ζ|r1−1 (i 6= 0), β̃i(t, x, ζ0, ζ) = ζi|ζ|r2−1 (i 6= 0),

α̃0(t, x, ζ0, ζ) = ζ0|ζ0|r1−1, β̃0(t, x, ζ0, ζ) = ζ0|ζ0|r2−1.
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