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ASYMPTOTIC REPRESENTATION OF SOLUTIONS TO THE
DIRICHLET PROBLEM FOR ELLIPTIC SYSTEMS WITH
DISCONTINUOUS COEFFICIENTS NEAR THE BOUNDARY

VLADIMIR KOZLOV

ABSTRACT. We consider variational solutions to the Dirichlet problem for el-
liptic systems of arbitrary order. It is assumed that the coefficients of the
principal part of the system have small, in an integral sense, local oscilla-
tions near a boundary point and other coefficients may have singularities at
this point. We obtain an asymptotic representation for these solutions and
derive sharp estimates for them which explicitly contain information on the
coefficients.

1. INTRODUCTION

Let B4 (0) = R} N B(J), where R} = {z = (2/,x,) : ,, > 0} and B(J) is the
ball with the center at the origin and with the radius § > 0. We consider solutions
to the Dirichlet problem

L(z,Dz)u=0 on B;(J), (1.1)
O ul, =0 fork=0,1,....m—1,[2'| <4 (1.2)

for the differential operator
L(z,Dy)u = L(Dg)u — N(z,Dy)u, (1.3)

where D, = —id,, and L(D,) is a strongly elliptic differential operator with constant
d x d-matrix coefficients. The operator

N(z,Dy)u= Y Dg(Nas(x)DJu) (1.4)
lal,|B|<m

will be treated as a perturbation operator and we shall characterize it by the func-
tion
Ay = Y @ N (). (1.5)

lal,[B]<m
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The function k is assumed to be bounded and the function
re [ sl (16)
r/e<|y|<r

is small. Other conditions on the operator L are its ellipticity and a local estimate
outside the origin; see (H1)—(H3) in Section[2.1} Under these assumptions, we prove
an asymptotic representation for solution u to problem (L.1]), (1.2)), see Theorems
and Conditions (H1)-(H3) are satisfied for an important particular case
k(y) < wg, where wp is a sufficiently small constant, see Remark Let us
formulate here our results under this assumption.

We are interested in variational solutions to problem , . Our goal is to
describe the structure of these solutions near the origin and derive explicit, sharp
estimates for them.

In order to formulate the main result we introduce some notation. Let Q(y) be
the matrix {ij(y)}%j:l with

Qi) =m! > (Nap(y)Dgyier, Dy E;(y)), (1.7)

lal,|B|<m

where (-,-) is the standard inner product in C¢, E; is the Poisson kernels of the
adjoint operator L*(D,) defined in Section and ey is the d-vector with kth
component 1 and all other components 0. Let

R(p) = o /S (Q(€) + Q*(€))db, (18)

2 n—1
+

where p = [£], 8 = £/[¢], d is a standard measure on the unit sphere S"~! and
Sfﬁl is the upper hemisphere. Our main result is the following asymptotic formula
for solution to (1.1)), (1.2)) subject to a certain mild growth condition at the origin:

S
u(e) ~ Cexo ([ (Rip)alp)a) + 1) L)arra, (19

p
where C is a constant, q is a vector function subject to |q(p)| = 1 for all p. The
functions Y (r) and rd.q(r) are small in the sense of (2.27). Moreover,

)

dp _

[T ze )l dy + ewd
r P r<|y|<d,yn>0

where ¢; and ¢y are two constants independent of . For more explicit formulation
of relation as well as for the corresponding relations for derivatives of u we
refer to Theorems 2.4] and 2.3l

A direct consequence of is the asymptotic formula u(z) ~ cz* for solution

u to (|1.1)), (1.2) proved in Corollary under the assumption that

/ k(x)|z| "dr < 0.
B (%)

We note that actually this result is proved without smallness assumption on the
function k.

Another application is the following. It is well known that any variational so-
lution belongs to the Sobolev space (W™P)4 with sufficiently large p, depending
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on esssup k (see [I] and [2] for second order equations). We prove the following
estimate for solutions to problem (1.1, (1.2) from (W™2(B,(8))%:

V()] < CJ(w,5)la] " exp / (e (0) + e ()] ")dy) (1.10)

[z <|y|<8,yn>0
for |x| < §/2 and k = 0,1,...,m — 1. Here Viu is the vector {0gu}|qj=r, A (y)
is the maximal eigenvalue of the matrix $Q(y). The constants C' and ¢ in (|1.10)
depend only on the operator L(D,,) and n, and

1/2
J(u,8) = 57"/2(/ |Vmu|2dy> .
ly|<é
Estimate follows directly from Remark 2, Corollary [2.8] with p > n and the
Sobolev imbedded theorem.

The case of a scalar operator L£(xz,D,) was treated in [4] under the smallness
assumption of the function k. But even in the scalar case this work improves
asymptotic formulae from [4] in the following way. In the exponent in and
in similar formulae in Corollaries we have a remainder term of the form
#?(y), whereas in [4] instead of this term we have (esssupj,;c<|¢|<jy| #(£))?. The
importance of this improvement will be demonstrated in the forthcoming paper on
estimates of solutions to Dirichlet boundary value problem for elliptic systems in
convex domains.

Let us describe the idea of the proof. We use the same reduction to the first order
evolution system as in [4]—[8] and transfer the study of behavior of solutions near
the boundary point to the study of behavior of solutions to the evolution system at
infinity. The next step is a reduction of the infinite dimensional system to a finite
system of ordinary differential equations perturbed by nonlocal integro-differential
operator, which was used in [4]-[8]. The new feature here is a more refine study of
this finite dimensional system, which is performed in Section [4.3

2. PRELIMINARIES AND FORMULATION OF MAIN RESULTS

2.1. Assumptions and some functional spaces. In parallel to (1.1, (1.2]) we
shall consider the Dirichlet problem

L(x,Dz)u= f(x) inR7, (2.1)
8’;nu op—o =0 fork=0,1,....m—1 on R\ O. (2.2)
We suppose that
L(z,Dy)u = Z D (Lap(z)DEu), (2.3)
la],| 8] <m

where the coefficients £,3 are measurable complex valued d x d-matrix functions
on R}, We write the operator L(D,) in (1.3) as

L(Dy)= Y LagDyt? (2.4)

lo|=[B]=m
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and assume that the matrix RRL(&) is positively definite for all £ € R™\O. According

o (03 and &)

T ~Lag if o] + |8 < 2m.

We consider solutions u from the space (W, P(R7\O))?, where wm P(RT\O),

loc

1 < p < oo, denotes the space of functions w defined on R’} such that nw €
Wmp (R7}) for all smooth functions 7 with compact support in W\O. We introduce
a family of seminorms in Wm’p(RT \ O) by

1/p

M (w0 K g ) = Z / Vaw@)Plaprar) >0 (26
(17‘ br

where K,, = {x € R : p < |z| <1}, a and b are positive constants, a < b and

Viw is the vector {9gw}|q|—r. Here and elsewhere | - | denotes the euclidian norm,

the only exception is the use of | - | for multi-index o = (a1, ..., ay), in this case

la| = a; + -+ ay. Due to (2.2)) the seminorm M7 (w; Kar,br) is equivalent to the

seminorm )
1/p
( / |Vmw(;1c)|p|x|pm_”dm) .

K.

ar,br

We say that a function v belongs to the space W4 R®\O), pg =p+gq,if

comp

€ W9(R7 \ ©) and v has a compact support in R \ O. By W,;.7""(R7 \ )

loc
we denote the dual of ngn’fp(R" \ O) with respect to the inner product in L?(R7).
We supply W, ""P(R™ \ ©O) with the seminorms
Em;m(f; Kgrpr) =17 " sup ’ fﬁdx’ , (2.7)
Rn

where the supremum is taken over all functions v € ng;gp(m \ O) supported in
ar < |z| < br and such that M (v; Korpr) < 1.

In what follows we use the same notations for the norms of scalar and vector
functions.

We require that the right-hand side f in (2.1]) belongs to (W_m’p R\ (’)))d and

loc

consider a solution u of lb in the space (Wm’p (RY \(’))) This solution satisfies

loc

/ Z (ﬁag(x)Dfu(x),ng(m))dx:/ (f,v)dz (2.8)

n
BY Jal,181<m

for all v € (nglﬁ’p(Rﬁ \ (’)))Ul7 p = p/(p —1). Here and elsewhere (-,-) is the
standard inner product in C% and the integral on the right is understood in the
distribution sense.

Let us formulate three assumptions on the operator L.

(H1) (Ellipticity of L) We suppose that the function &, given by (1.5)), is bounded

by a constant y~! and that

§H‘:/ Los(x DﬁuDuda:>’y Z/ (D, Dyu)dx (2.9)

lal,| 8] <m

for all u € (C§°(R))<.
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(H2) (A local estimate) We suppose that for certain p and py, 2 < p < pq, the
following local estimate is valid: if u € W;™?(K) solves problem (2.1, (2.2)

loc
with f € W,."P*(K), then u € W' (K) and

im;i (U, Kr/a,r) < bO (szfm;fn(f; K7‘/a2,a7') + mg@(u, KT'/(IQ,(IJ'))? (210)

where by is a constant independent of 7, w and f, but it can depend on
a > 1. We shall suppose that by > 1 and that

np/(n—p) f2p<n
pLs { 2p if 2p > n. (2.11)

Below we use the notation

KJS(T) N (/r/e<y<7" ﬁs(y)ly\_"dy)l/s (2-12)

for 1 < s <oo. If s =c0 then

Koo(r) = esssup k(x) = esssup Z x2m=1otBl N 5 (2)] (2.13)
IGKT/EJ‘ (EEK,‘/e)T ‘al \ﬁ|<m
Clearly,
ks(r) < Hi/s(r)n}le/s(r) for r > 0. (2.14)
(H3) (Smallness of N) We shall require that
bok p1p (1) < wo, (2.15)
pP1—pP

where p; and p are the same as in (H2) and wy is a small constant depending
on m, n, p, v and on the unperturbed operator L.

Remark 2.1. We note that in the case p; > p, (H3) follows from boundedness of

x and smallness of x1, because of (2.14). From (2.11) it follows that p; < 2p and

hence p; < p1p/(p1 — p). This together with (2.15) implies, in particular, that
bor1 (1) + bokip, (1) < cwp (2.16)

with ¢ depending on n. Assumption (2.11) implies also that p1 < pn/(n — p) if
p < n. This we need in order to handle commutators, see the proof of Theorem

24
Remark 2.2. If

Koo(T) < wp (2.17)
where wy is a sufficiently small constant, then clearly (H1) is satisfied. Condition
(H2) is valid with p; = p and by = 1. With this choice p and p; relation (2.17)
implies ([2.15)) possibly with another small constant wy. Moreover, for every p > 2
one can choose wy being sufficiently small such that if u € VVlle’2 (K) solves problem
(2.1), (2.2) with f € W ,"P(K), then u € W;5"(K) and

m;ﬂ(u7 Kr/a,r) < C(TQmm;m(f; Kr/a?,ar) + m;ﬂ(u7 Kr/az,ar))a (218)
with a constant ¢ depending on n, p, a and the operator L.
By the classical Hardy inequality
m;m((ﬁ - L)(U’)a Kr/e,r) S CKOO(T')le(U; K’r/e,'f) ) (219)
where ¢ depends only on n, m and p. Therefore, the boundeodness of the function
& implies that the operator L£(z,D,) maps continuously (W =P(R% \ 0))¢ into
(Wige ™" (RN 0))7.

loc
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2.2. Main results. Let Lj 5 denote the matrix adjoint to Lo and also let E; be
the Poisson kernel corresponding to the operator L(D,), i.e. it satisfies
> LigDYPEj(x) =0 inRY, (2.20)
lee|=|8|=m

it is a positive homogeneous of degree m — n vector valued function and subject to
the following Dirichlet conditions on the hyperplane x,, = 0:

9l BE;j=0 for 0<j<m-—2, and 07 'E; = (L) 'e;o(2'), (2.21)
where 0 is the Dirac function, e; is the column vector with j-th component equals

1 and all other components zero, and Ly is the coefficient before DiT in (2.4).
We shall use the notation

o) =b( [ W)y
K

r/e,r

(pr—p)/P1p
| (2.22)
where by, p; and p are the same as in (H2) and (H3). By (2.15) Q(r) < wp.

In what follows by ¢ and C (sometimes enumerated) we denote different positive
constants which depend only on m, n, p, v (the constant in (H1)) and the coefficients
Log.

Theorem 2.3. Let (H1)-(H3) be fulfilled and let 6 > 0. Let also Z € (VVECP(RR \
0))¢ be a solution of L(x,D;)Z =0 on R\ O subject to

M Z5 Ky je,r) —o(rm "exp C/ p)) (2.23)
asr — 0 and
m( g, _ (om "o dp
W23 = o exo (— [0 %)) (2:24)
asr — oco. Then Z € (W CPHRY \O)) and
(ro)kZ(x) = Jg exp / Y(p (zmmFq(r) + r™og(x)) (2.25)
fork=0,1,...,m. Here r = |z| and
Y(r) = (R(r)a(r),a(r)) + Ti(r), (2.26)

where R(r) is given by (1.8]), the vector function q and the scalar function L1 are
measurable and satisfy |q(r)| =1 and

/ " ,a(p)ldp < clma(r) + x(r), / "% < exr) (2.27)
r/e r/e P

for all v > 0 with
"oerraes)de e
X0 = by () (77 e B0, ()

P Sdé o
+T/ I DL ey (p)p2dp),

where p} = p1/(p1 — 1). The constant Jz in (2.25)) admits the estimates
M (Z; Ksje5) < [T2]10™ < oMy (Z; Ksje s) - (2.29)

(2.28)
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The functions vy, belong to LY ((0,00); (Wm—k.p (ST and satisfy
dp

T 1/p1
p1 p1
(00 oty 100 M sy 1) )

" T Q(s)ds n— ¢ P Qs)ds _
< cbo(r‘”/ I T, (p)p 1dp+r/ T () de)
0

T

(2.30)

where k=0,...,m—1 and W=k (S771) is the completion of C§°(S™") in the
norm of the Sobolev space W™ k-1 (Sﬁfl). In the case k = m estimate holds
without the second norm in the left-hand side.

The dimension of the space of such solutions Z is equal to d.

We note that by (2.16]) the left-hand side of (2.30)) is small. Let us formulate a
local version of the above theorem.

Theorem 2.4. Assume that (H1)-(H3) are fulfilled. Let u € (W,-P(R™ \ O))? be
a solution of L(x,Dz)u =0 on B;, 0 > 0, subject to

5
m m—n d
M (u; Ky jer) = o(r exp ( — C/ Q(p)f)) (2.31)
asr — 0. Then
u=27Z+w, (2.32)

where Z is a special solution from Theorem which admits the asymptotic rep-

resentation (2.25)) with

‘Jz| S cbodfmi)ﬁgi (’LL7 K5/47§) (233)
and
m r\mtl CIJQ(S)@ m
M (w5 Ky o) < cb0(5> eC 7O LM (s Ky 4. 5) (2.34)
forr <.

The proofs of these theorems are presented in Sections [3Hf]

2.3. Corollaries of the main results. In this section we present several corol-
laries of Theorems and concerning the case when (2.17)) is satisfied with
sufficiently small wy.

Corollary 2.5. Let p > 2. There exists wg > 0 depending on n, p and L such that
if 18 satisfied then the following assertion is valid. If Z € (Wl?f(M\O))d is
a solution of L(x,D;)Z =0 on R} \ O subject to (]WD and (]m[) with p replaced
by 2, then Z € (Wlﬁp(@\ 0)? and for every & > 0 representation w holds

fork=0,1,....,m, where Y is given by (2.26) with the same R and q. Moreover,
estimates (2.27)) are fulfilled with

x(r) = ﬁa(r)(r‘”/ €10 AL ey (0)p"dp
0
e
—H"/ ecﬂ’ﬂ(s)%@(p)p_gdp).
T
The coefficient Jz satisfies (2.29) and the remainder term vy is subject to (2.30)

with p1 replaced by p.
The dimension of the space of such solutions Z is equal to d.

(2.35)
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Corollary 2.6. Let p > 2 and § > 0. There exists wg > 0 depending on n, p and
L such that if (2.17)) is satisfied for r < & then the following assertion is valid. Let
u € (Wm’Q(M\O))d be a solution of L(x, Dy)u =0 on By subject to 1} with p

loc

replaced by 2. Then u € (Wm’p(M\O))d and satisfies 1' where Z is a special

loc

solution from Corollary which admits the asymptotic representation (2.25)) with

[ T2] < e8I (w3 Ky 16,0): (2.36)
r\mtl 5 s
M (wi Kype) S e5) € MOLMY (w3 Ky 16,9) (2.37)

forr < §/2.

The next two corollaries give a rougher but more explicit description of solutions
to Lu = 0. We denote by T_(p) and T4 (p) the minimal and maximal eigenvalue
of the matrix R(p).

Corollary 2.7. Let (2.17)) be fulfilled with sufficiently small constant wy depending

onn, p and L. Let also Z € (WZLC’Q(M\(’)))CI be a solution of L(x,D;)Z =0 on

R\ O subject to (2.23) and 2.24) with p replaced by 2. Then Z € (VVIZLCP(M\O))d
and for every § >0

n(2)(5) " esp / ") - (o))

p
S E)JTZT(Z, Kr/e,r) (238)
r\m g dp
<C(2)(5) e ([ (040)+ero) ™)
forr < d. Here
vo)= [ @ p=lel o=/l (2:39)

and J(Z) = MY(Z; Ks)e,5). The dimension of the space of such solutions Z is equal
to d.

Corollary 2.8. Let (2.17) be fulfilled with sufficiently small constant wy depending
onn, pand L. Let u € (sz(M\ 0))¢ be a solution of L(x, Dy)u =0 on By,

loc

6 > 0, subject to (2.31) with p replaced by 2. Then u € (I/VI?CP(M\ 0)* and

r\™ J
Wi Koer) < CTn) (5) oo ([ (Cep) + o)) a0
forr < §/2. Here
Ton (1) < MG 3 Ky 165 - (2.41)

The following consequence of Corollary [2.6] treats the case when u has the same
asymptotics as in the constant coefficient case.

Corollary 2.9. Let (H1) be valid and let
/ k(x)|z| "dr < 0. (2.42)
B(9)

Then there exists py > 2, depending on L, m, n and y such that if u € (Wm’z(Ri))d
be a solution of L(x, Dy)u=0 on Bjs, § >0, then u € (Wm-p (Bf)? and

u(z) = ez + v(x),
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where ¢ is a constant vector and v satisfies the relation
My, (v Ko jen) = o(r™) (2.43)

asr — 0.

The proofs of these corollaries can be found in Section [5]

2.4. Solvability results for the Dirichlet problem in R"}. The next statement
for d =1 and a = e is proved in [4, Proposition 1]. The proof for arbitrary d and
a > 1 is the same since the arguments there do not use the facts d =1 and a =e.

Proposition 2.10. (i) Let f € (W,,.""(R7 \ 0))¢, g € (1,00), be subject to

! m —m dp > m—1 —m dp
P Kpap)— + [ 0" M (1 K ) — < 00, (2.44)
0 p 1 p
where a > 1. Then the system
L(Dy)u=f inRY (2.45)

has a solution u € (I/i/m’q(@\ 0))4 satisfying

loc

m " m . m —m dp
9;nq (u;Kr/a,r) < C(/ rp 9nq (f;Kp/a,p)?
o p (2.46)
m m— —m p
+/ r +1p 1gﬁq (f;Kp/a,p)?)'
Estimate (2.46]) implies
o(r™) ifr—0
M™ (s K, ) ) = 9.47
0 (15 Krjar) {0(7""”‘1) if 1 — o0. (247)
Solution u € (lech(m\ 0))¢ of equation l) subject to 1) s unique.
(ii) Let f € (W I(R% \ 0))? be subject to
1 oo
m4ngm—m dp meyn—m dp
/ pmt m, (f;Kp/w,)wa/ pM, (f: Kpja,p)— <00 (2.48)
0 p 1 p
Then system (2.45)) has a solution u € (WI?C"I(@ \ O))¢ satisfying
m " m—n _m-+n —m dp
S):nq (U§Kr/a,r) < C(/ r P + 9th (f;Kp/a,p)?
o p (2.49)
m _m —m p
+/ rp 9:th (f;Kp/a,p)7>'
r p
Estimate (2.49)) implies
mT(U, K7-/a 7') = O(T ) Zfr —0 (250)
’ o(r™) if r — oo.

The solution u € (VVIZ"CQ(@\ 0))? of equation (2.45)) subject to (2.50) is unique.
The next proposition contains a solvability result for problem (2.1f), (2.2)).
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Proposition 2.11. Let (H1)-(H3) be fulfilled and let f € (W, "' (R \ O))¢ be
subject to
1 1 dy dp
/ pm+nec IRUOE mpl (f;Kp/e,p)?
o ] (2.51)
d
_|_/ pmeCfo(y)Tym;lm(f . Kp/e,p)?p <00,
1
Then there exists a solution u € (W-P* (RN 0)? of

loc

L(x,Dy)u=f 1inRY (2.52)
satisfying
my, .. " m—n_m+n _C [ Q(y)ﬂ —my g, dp
M (w5 K o) < cbo( pmnpmAneC LW o m g )P
0 ) " P (253
m _m o £ —-m
+/ rp L LW Dﬁpl (f;Kp/e,p)?)'
Estimate (2.53) implies
o(rmme=¢ ! DLy ifr —0
M (u; K, = - s 2.54
D (Uy r/e,r) {O(Tme_c Ik Q(S)%) Zf?" = . ( )

The solution u € (VVIZ"CP(M\ 0))? of problem (2.52) subject to (2.54) is unique.

Proof. (1) Solvability in (W™?2 (R%))%. Using Lax-Milgram Theorem together with
(H1) we obtain unique solvability of problem (2.52) in the space (W’”’Q(Ri))d for
every f € (W~"™2(R"))%

(2) Solvability in (lelc’pl (R7 \ 0)4. Since f € (W"P*(RT \ 0))¢ can be
approximated by functions from (W’mVQ(RQ‘_))d with compact supports in the norm

defined by the left-hand side in (2.51]), for establishing the existence result together

with estimate (2.53)) it suffices to prove (2.53) for solutions from (1).
We start with estimating the norm Sﬁ;m(Nu; Kr/a,r)- By Holder and Hardy

inequalities, we have

‘/K Z (Naﬁ(m)Dfu,Dg‘v)dx’

/e fal,|B1<m
, 1/s 1/p1 , 1/p’
< C’(/ H(CE)éd{L‘) (/ |Vmu\p1dm) (/ |Vimvl? d;v) ,
Kyja,r Kyja,r Kyjar
where p’ = p/(p — 1) and s = p1p/(p1 — p). This leads to
r2m9ﬁ;m(Nu; Kyjar) < Ckiso(r) (u; Ky o) (2.55)

with kg4 = ||K] L*(K,,.,). We write equation dj in the form Lu = f; with
fi = f + Nu. One can check that the function f; satisfies (2.48). Applying
Proposition ii) with ¢ = p, we obtain that

" —n _m-+n —m d
mzl(UEKT/a,r) < C(/O ™ "p * mp (f+Nu?Kp/a,p)?p

+/ L 9:)?p (f+Nu;Kp/a,p)?)'
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Now, using this estimate with a close to 1 together with (2.55|) and (2.10)) we arrive
at
mgi (U; Kr/e,r)

<ol [ ()" I i Kgeg) 4 ) 0 )

+/T,OO (g) ( mem " Ky/e, p)+"{3( )fm;”l(u Kopje, p)) C/lop>

Iterating this estimate we obtain

m > m d

W 0 K ge) € o [0 eI e ) L (250

where
gle™e7T) = p(t— 1)+ Y _(cho) / w(t — 1) rs(e” ™) u(m — 72)
k=1 R
ks(eT ) (T — T)dT .. dT

Here pu(t) = e~™ /nif t > 0 and p(t) = e~ /nif t < 0. Since (m —n — 0;)(0; +
m)u(t) = §(t), it can be checked that the function us(t,7) = g(e™t, e~ ") satisfies

((m—n—0,)(0y + m) — cbors(e™ ")) pus(t,7) = 6(t — 7).
Using [3, Proposition 6.3.1], we obtain

¢
,us(t,T)SC’exp(—m(t—T)Jrcbg/ lis(y)dy) ift>r,

ws(t, 7) < Cexp ((n —m)(t — 1)+ cboy /tT f—is(y)dy) ift<r.

These estimates together with (2.56) give (2.53|) with the norm 97 (u; K, /. ,-) in
the left-hand side. The last norm can be replaced by 9" (u; K, ., ) by using (2.10]).

(3 ) Umqueness Let Lu =0, u e (W, P(R™\ 0))% and let u be subject to (2.54)).

loc
By (2.10]) one can replace p by p; here. Let R be a large positive number and let
nr(r) be smooth function equals 1 for R=! <7 < R and 0 for r < (Re)~! and for

r 2 Re. We can suppose that [0¥ng(r)| < cpr~* with ¢, independent of R. Since

nru € (Wm2 (R%))%, we can apply uniqueness result from (1) and obtain from (2)
that

r d
My (nru; Ky je,r) Scbo< /O pmn gt [ Qw5 m,; (ﬁ(nRU);Kp/e,p)?p

o0 dy d
+/ rmpmeCf Q) mt (ﬁ(nRu) p/e,p) pp)’

which implies
- dy
M (u; Ky o) < o (rm_”Rm_”eC Jm QDS 0m (w): Ky ey 1/ 1)
4+ pmRTm CIRQ(U) m mm(u KRRe))

for eR™1 <7 < R. By ({2.54) the right-hand side tends to 0 as R — 0. Therefore
u=0. g
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3. FIRST ORDER SYSTEM ASSOCIATED WITH ([2.1)), (2.2

3.1. Reduction of problem (2.1)), (2.2]) to the Dirichlet problem in a cylin-
der. We shall use the variables

t=—log|z] and 0=x/|z| (3.1)

The mapping = — (0, ¢) transforms R” onto the cylinder IT = S~ x R.

The images of W,™:? (R7\O) and W,["P(R\ ©) under mapping (3.1)) we denote

loc

by W™P(I1) and W,_"P(II). These spaces can be defined independently as follows.

loc loc
The space WP (II) consists of functions whose derivatives up to order m belong

to LP(D) for every compact subset D of II and whose derivatives up to order m — 1
vanish on 9II. The seminorm 9N (u; Ko-a—t ) in WoP (R} \ O) is equivalent to
the seminorm

||u||Wm’p(Ht,,t+a) , tE R ’
where
I ye =0, 7)€l T € (t,t+a)}.

If @ = 1 than we shall use also the notation II; for II; ;4;. The space W'lgcm’p(l_[)
consists of the distributions f on II such that the seminorm

1w,y = sup | / fdrds) (3.2)
II,

is finite for every ¢t € R. The supremum in is taken over all v € Viflzzp/(l'[),
p' = p/(p— 1), supported in II; and subject to [v[lwm s,y < 1. The seminorm
is equivalent to 9" (f; Ke-1-t o—t).

In the variables (0, t) the operator L takes the form

L(D,) = e*™A(6, Dy, D,) , (3.3)

where A is an elliptic partial differential operator of order 2m on Il with smooth
matrix coeflicients. We introduce the operator N by

L(D,) — L(x, D) = *™N(0,t, Dy, D;). (3.4)
Now problem (2.1)), (2.2) can be written as
A(0,Dg, Dy)u = N(0,t,Dg, Dy)u + e 2™ f on II

we ()", o
where f € (W,/"P(II))%. By , the operator N satisfies
IN oty iy < €Hooe™) < €9
with the same 7 as in (H1). We put
wt)=Q(e™), (3.6)

where Q is given by (2.22)). Clearly, w(t) < wg, where wy is the same as in (H3).
By the change of variables (3.1)) we can formulate Proposition as follows
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Proposition 3.1. Let (H1)-(HS3) be fulfilled and let f € (W, .""P*(I1))? be subject
to

oo
/ e~ mEMTHC IT S| £l dr
0

0 . (3.7
+/ e=mTHC [T WSS | FllL i ydr < 00
Then problem (3.5) has a solution u € (ﬁ/l:)nc’pl (1)) satisfying the estimate
HUHW"L,M (1) < c(/t e(n—m)t—(m+n)T+C ng w(s)dS”fHW—WN (HT)dT
: ) (3.8)
+ / e—m(t+T)+C J: W(S)dSHf”W*m,m (H,.)dT> ]
Estimate (3.8)) implies
O(e(n—m)t—Cwa(s)ds) ,th — 400
l[ullwm.r,) = {o(e—Mt—C ftow(s)ds) ift - —oo. (3:9)

The solution u € (lenc’p(ﬂ))d of problem (3.5) subject to (3.9) is unique.

Let W—™7(S%~!) denote the dual of Wm’q(Sﬁfl), q =p/(p—1), with respect
to the inner product in LQ(Si_l). We introduce the operator pencil

AR s (Fmr(s3h)d — (e (s (3.10)

by

ANU(0) = r* 2 LD )r~ AU (0) = A0, Dy, \U(6). (3.11)
The following properties of A and its adjoint are standard and their proofs can
be found, for example in [6, Section 10.3]. The operator (3.10) is Fredholm for all
A € C and its spectrum consists of eigenvalues with finite geometric multiplicities.
These eigenvalues are

i(m+k) and im—n—%k) fork=0,1,..., (3.12)

and there are no generalized eigenvectors. The eigenvectors corresponding to the
eigenvalue im are c|z|~"x™ = cf™, where ¢ € C9.
We introduce the operator pencil .A*(\) defined on W™P(S% ') by the formula

A NU(0) = r 2L (D )r~ AU (8) .

This pencil has the same eigenvalues as the pencil A(\). Eigenvector corresponding
to the eigenvalue i(m — n) are linear combinations of |z|"~"™E;(z) = E;(0), where
E; are defined in Section 2.2 Moreover, the following biorthogonality condition
holds:

/ (L(D2)(exCal), By (x))dz = mls" | (3.13)

Ry

where ( is a smooth function equal to 1 in a neighborhood of the origin and zero

for large |z|. This relation can be checked by integration by parts. B
Using the definitions of the above pencils and Green’s formula for L and L one

can show that

(AN)* = A* (A + (2m — n)i), (3.14)
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where * in the left-hand side denotes passage to the adjoint operator in (L2(S}™"))<.

This implies, in particular,

(A>im))*E;(0) =0 for j=1,...,d. (3.15)

3.2. Reduction of problem (3.5)) to a first order system in t. To reduce
problem (3.5 to a first order system, first we represent the right-hand side f €
W, TP(II) as

loc
f=em> "D (3.16)
3=0
where f; € LY (R;W~7P(S%1)). This representation can be chosen to satisfy

m

M, ™ (fi Kot =) < ™ | fillw-swan) < 29 ™ (f3 Kemami 1-1),
=0

where ¢ and ¢ are constants depending only on n, m and p (see [4, Lemma 1]).
Next, we represent the operators 71/ D and r2™ D& (r—2m+lel . ) as polynomials
with respect to —rD,. we obtain

||

r‘ang‘u = Z Quu(0, Dg)(*T’DTY’u
1=0
]

DR (=) = Pat(0, Do) (= D) u

where Qni(0, Dg) and P, (0, Dy) are differential operators of order |a| — I with
smooth coeflicients. Furthermore, integrating by parts in

R™
+

we obtain
la|

> Qai(—rDy +i(2m — n)) Z (3.17)

=0

where P7, is the differential operator on Sn—1 ad301nt to P,;. Now we write A in
the form

A(0,Dy, D;) = Z D" A

where

D) =Y AjDj"*
k=0

with
Ajg =" Y Pam—i(0,Ds)LapQpm—r(0, D).
|a|=|8|=m
It is clear that
A (WEP(ST7)E — (W3n(571))1 (3.18)
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are differential operators of order < j+k on Sﬁ‘l with smooth matrix coefficients.
We also write

m
N(0,t, D, Dy)u = _ D"~ (N;(t, Dy)u) (3.19)
7=0
where
Nj(t, Dy) =Y N (t) D" * (3.20)
k=0
with
Ni= % Y. Pam—je CrTTINGQp o, (3:20)

m—j<|al<m m—k<|B|<m
where N,g is defined by (2.5)). By (3.21) the operators
Nij(t) - (Wk’p(si_l))d — (WP(537h)?
are continuous. By (3.21)) and (3.17)), for almost all r > 0

/ Z (Dy)u, D" (e (szn)tv))dﬁ
ST 1
/S" ) Z Z Z ( aﬁQﬁ,m—kD;n_kua

jok<m m—j<|a|<m m—k<|8|<m (3.22)

67(2m7|a|7|ﬁ|)tp* - DQ"_j (e(men)t,U))de
— &} a
=r /S" ) Z N g(x)Dwu,DH))dﬁ,

laf, |8 <m
where u and v are in (W,

loc (Rn \0))
Using the operators A,;(D,) and N, (¢, D;), and (3.16) we write problem (3.5]) in
the form

iDm TA( ZD’” T(N;(t,Do)u+ f;(t)) onR, (3.23)
=0

where we consider u and f; as functions on R taking values in function spaces
(Wmep(S11))4 and (W—7#(S71))? respectively. By (2.13) and (3.21)

||/\/‘jk(t)||(V’Vk,p(sifl))dﬂ(w—j,p(snfl))d < chiso(e™). (3.24)

Therefore, Nj acts from (WP (IT))% to (L2 _(R; W~ 3P(S171)))4. The local esti-
mate (H2) can be reformulated now as follows

(H2a) Let p and p; be the same as in (H2) and u € (Wm’p(H))d satisfies (3.23)

loc
with f; € (LP'(R; W71 (ST71))), then u € (W57 (I1))% and
J loc

loc

”u”Wm’pl (T, t4a)
m

< ¢cbg ( Z ”fj ||LP1 (t—a,t+2a;W =71 (Si*l)) + ||u||Wm’p(Ht7a,t+2a))7
=0

(3.25)

where ¢ may depend on a > 0.
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Let U = col(Uy, . .. ,Usy,), where

U, =D tu, k=1,...,m, (3.26)
U1 = Ao(Di)u — No(t, Di)u — fo, (3.27)
Upntj = Dilhpyj—1 + Aj—1(Di)u — Nj_1(t, Dy)u — fij_1 (3.28)
for 7 =2,...,m. With this notation takes the form
Dildor, + Ap (Di)u — Ny (¢, Di)u — frn = 0. (3.29)
Using we write as
m—1
(Ago — Noo() D" = Uns1 — > (Aom—r — Nom—r(t)) U1 + fo . (3.30)
k=0

Since Qa,\a| = Pa)|a‘ = 90‘, we have
Ao —Noo =L(0) = Y Nagle'0)0°*7,
lee|=|Bl=m

and by (H1) the matrix Agg — Nyg is invertible, and the norm of the inverse matrix
is bounded by a constant times v~ 1. Thus equation (3.30)) is uniquely solvable with
respect to D{*u, and

D"u =St , (3.31)
where
m—1
SHU = (Ago — Noo(t)) ™ (Z/lm+1 - Z (Ao, m—t — Noym—1i(t))Up11 + fo) (3.32)
k=0
and U = (U, ... U, Upms1). If we introduce the following two operators
m—1
Soll = Ags (Uns1 = > Ao sl ) (3.33)
k=0
S' (U = S(tU — (Ao — Noo(t) ™ fo (3.34)
then
m—1
S' (80U — Sof A5 (32 No s (W1 + Noo)S' (604 (3.35)
k=0
One verifies directly that
||S/(t)a||Lq(Sf;—1) < CZ ||uj+1||wm—j,q(si—1) (3.36)
§=0
and
180021y < €S Whysallg—ssn—
§=0
for ¢ € (1,00). From ([3.26]) it follows that
Dildy, =Uxq1 fork=1,...,m—1. (3.37)
By (3.31)) we have

Dy, = S(H)U. (3.38)
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Using (3.31)), we write (3.28) as

m—1

Dt = Umtjt1 — Z (Ajm—t = Njm—i () Us41
=0

— (Ajo — Njo(t))S(HU + f;
for j=1,...,m—1 and (3.29) takes the form

m—1

Dtu2m + Z (Am,m,—k *Nm,m—k(t))uk-&-l + (AmO *NmO(t))S(t)a - fm =0.

k=0

Relations (3.37)—(3.40) can be written as the first order evolution system

(ZDy + 0)U(t) — N)U(t) = F(t) on R,
where
F(t) = col(0,...,0, Fn(t), Frni1(t), ..., Fam(l))
with
Fon(t) = (Ao — Noo(t)) ™" fo(t),

Fonts () = f3(t) = (Ajo — Njo(t)) (Ao — Noo(t) " fot), j=1,...
The operator I is given by

N(OU = col(0, ..., 0, Mo (U, Rt (DU, . . ., Nam (U,

where )
Moy (m Nom—k(OUisr + Noo(£)S ()z))
and -
My (DU = anj,mfk(wum + Nio(8)S' (U
=

m—1
— AjoAy ( Z Nom—k () Uk 11 +,/\/00(t)8’(t)lfl)
k=0

17

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

for j=1,...,m. In (3.41)), by Z, we denote the identity operator. We also use the

operator matrix

A=-J+E£
with J = {jjk}f’}gzl given by
(m+1)
0
I
m)| 0 - o .. AE& o0
0 0 0 I

(3.48)
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and with £ = {£;;}37_, equal to

0 0 0 0
0 0 0 o0
Ayt Aom o Agy Aoy 0 .0
Ay — A1 oAgg Ao - Arn — A1oAgg Aon AwAyy - 0
A — Am,()AaolAO,m e Ap — Am,()Aa()lAO,l AmoAaol - 0
We put
T =By, x---x By x By x (B_,,)™ ™, (3.49)
R =DBpm-1 X %X By XxBygx (B_py)™, (3.50)
where

B; = (WoP(Syh)? for j=1,...,m, Bo=(LP(S}1)?,

, 3.51
B_; = (Wﬂ*p(Sf__l))d forj=1,...,m. ( )

By 1' the operator 2 : 7 — R is continuous. Sometimes we shall write Bf , Ip
and R, in order to mark the dependence of these spaces on p.

3.3. Spectral properties of the pencil \Z + 2. We introduce the operator ma-
trix E(X) = {Epg(N)}270_; as

(m)
61()\) 62()\) em()\) egmfl(A) egm(>\)
—I 0 0 0 0
0 -1 0 0 0
S : (3.52)
(m+1)| 0 0 - —Ag - 0 0
0 0 O —1I 0

where

€2m_j()\)=>\j, j=0,...,m—1,
m
em = A" A o,
j=0
k. m

emk(\) =D D NFTTTA k=1, m— 1.

s=0 j=0
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Let also
I 0 0 0 0
A I ... 0 0 AgAgy
Jn=| : A R
0 0 I 0 :
0 0 -\ I Am_1.0404

0
0
0

0

o

0

be two m x m-matrices. One can check directly that £71()) is given by

(m+1)
o -1 - 0 0 0
0 0 S 0 0 0
(m)| 0 0 —Ays 0 0
0 0 S 0 0 —1I
I 61()\) R em()\) egm_g()\) egm_l()\)
and that
1 0 0 0 0
A I 0
J()\)_l = )\2 A I
: : : I 0
)\m—l )\m—Q /\m—3 N T
The following assertion is proved in [4]
Proposition 3.2. For all A\ € C
L J(N) 0
EN(A\T + Q) = diag(AN), I,...,I) ( CBO) J() - M
where the m x m-matriz B(\) is defined by
Aom e Ao Apy
Al,m e A12 A11
B(A) = . . .
Amfl,m oo Am71,2 Amfl,l
0 .. 0 —AAoo
AAg)d Ao oo Ar0Agy Ao A0 Ay Aoy
Am—1.0400 Aom Am—1.0400 Ava  Am_1.0450 Aot
Moreover,

( J(N) 0 )‘1 B < J1(\) 0
=B(A) J(A) =M L e JTTU+M)

)

o

19

(3.53)

(3.54)

(3.55)
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where the elements of the matriz Q(A\) = {Q;r(A)}%—; are given by

j—1 m
Q=5 3 AR, (350
l q=k—1

Il
<

The relation (3.54]) allows one to establish the following correspondence between
A(X) and the linear pencil AZ + .

Proposition 3.3. (see [d]) (i) The operator
M+A:T >R (3.57)

is Fredholm for all A € C.
(ii) The spectra of the operator A and the pencil A(N) coincide and consist of
eigenvalues of the same multiplicity.

We put
¢j(0) =07 e; and ¥;(0) = (m))'E;0) j=1,....d,
where e; and E; are defined in the beginning of Section [2.2] E By (3.13) and (3.11] -
[ A@O0E0(6)) e ws(0)dot = 5. (3.59
i}

where 7 is a smooth function equal to 1 for large positive ¢ and 0 for large negative
t. The equality (3.58) can be written as

[ A Gm)on(0) vy )0 = i8] (3.59)

We introduce the vector functions
J~1(im) 0
L \2m .
®; = col(®;)i ) = ( Qlim) T (im)(I + M) > col(¢;,0,...,0). (3.60)

Owing to ) and - we obtain

(imZ +A)®; =0. (3.61)
Using (3.53)) and the definitions of the matrices M and B we get
O = (im) s, 1=1,...,m, (3.62)
-1 m
Cjmit =Y Y Ay 1mglim)PTg; (3.63)
p=0 q=0
forl=1,...,m
We introduce the vector ¥; = col(¥,;;)#™, by
U, = E*(—im) col(¢;,0,...,0) (3.64)

where £*(\) is the adjoint of £(X). Since 1, is the eigenfunction of the pencil

(A(X)* corresponding to the eigenvalue A = im (see (3.15)), it follows from ({3.54))
that

By 53

(—imT +A*)T; = 0. (3.65)

m—l m

]l_ZZA Z7,nZ1nlqp¢

p=0 q=0
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forl=1,....m—1,

ZA —im)™ 9, (3.66)

‘I’j,m+l = (—im)™ "y, (3.67)
fori=1,...,m. Clearly, ®; € 7, W, € R*, where
R = (W (S ) x (W ba(ST )¢
x (LAST) > (Wm™a(s1))h™
Proposition 3.4. The biorthogonality condition
(O, W) = id] (3.68)

is valid, where

(I)kv Z/n, (I)k37 ]G 9

Proof. We put

_ (TN 0
Bir = ( Q) J*(A)(HM) )C°1(¢’“’O""’O)
and U, = £*(\) col(1;,0,...,0). Then by (3.54) and (3.55 -
(AT 4+ A)Ppx, Ujn) = /S,H(A(A)ﬂék,wj)dﬁ

T
Differentiating this equality with respect to A, setting A = ém and using (3.61]),
a

(3.65) together with (3.59) we obtain (3.68]).

We introduce the spectral projector P corresponding to the eigenvalue A = im:

d
F=—i) (F,U,)®,. (3.69)

This operator maps R into 7. Using (3.61]) we obtain

AP = —imP. (3.70)
3.4. Equivalence of equation ([3.23)) and system (|3.41]). Here we collect def-
initions of some spaces which are used in the sequel. Let 7 and R be the spaces

defined by (3.49) and - We introduce the space T(a,b) of vector functions
U = col(U; ) i deﬁned on (a,b), taking values in 7 and supplied with the norm

b
Wlsiay = ([ (I + 1D R)ar)”
This definition is equivalent to
b)={U :U € Ly(a,b;T), D € Ly(a,b;R)}. (3.71)

Here p is the same number as in the definition of the spaces Bj.
By T'(a,b) we denote the space of vector-functions

U = U,...,.Uy),
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with values in B,,, X --- X By which is endowed with the norm
, mopb » » 1/p
24 oy = (3 / (O, ., + 1D, Ydr)
j=17a

where Bj is defined by || Also let T(a, b) be the product T(a, b) x L,(a, b; By),
which consists of the vector functions

U= U\ Uni1)
with the norm
1ty = LBy + Ut 12, o)
Furthermore, we use the spaces T .(R) and TlOC(R) endowed with the seminorms
U4 || (t,641) and HL{HT(t’tH), teR.
If uel loc(I) then by setting U; = D! we see that
U €T, (R) and U e Tc(R)

and

271/p||7;{||fr(t,t+1) < ullwo 14y, < 14" |7 2,641 - (3.72)

Let WP (Il,) be the closure of the space of smooth functions u defined on
I, » and equal zero in a neighborhood of OIINTL, ;. By S(a,b) we denote the space
of all vector functions U(t) represented in the form

Ut) =col (u(t),..., D" ut), ums1(t), ..., usm(t)) (3.73)

where u € WP (I, ),
Um+1 € Lp(a,b; By), Dyumi1 € Lyp(a,b; B_p,) (3.74)
Umpj, Ditmt; € Lp(a,b;B_p,), j=2,...,m. (3.75)

We equip the space S(a,b) with the norm

Ul (a.) = (||U||€vm»p(na,b) 17, 0,080y + 1P 4117, 05,09

n 1/p
> Um0y + 1Petmsi I )
j=2

Clearly, S(a,b) C T(a,b) and
14| 7(a,b) < cllUls(a.b) (3.76)

for all U € S(a,b). Furthermore, if m = 1, then S(a,b) = T(a,b) and the norms are
equivalent.

We use the notation T (R) for the space of vector functions defined on R whose
restrictions to an arbitrary finite interval (a, b) belong to T(a,b). In the same way,
the space Sjoc(R) is defined.

Lemma 3.5. (i) Ifu € (Wm’p( )% is a solution of (3.23), then the vector function

U given by (3.26)~(3.28) belongs to Sioc(R) and satisfies (3.41)).
(ii) If U € Tec(R) is a solution of (3-41), then U € Sioc(R) and the vector

function uw = U, belongs to (W P(ID))? satisfies (3

loc
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For the proof of the above lemma see [4].
Sometimes, to emphasize the dependence of the spaces T and S on p we shall
write T, and S, respectively.
Let us show that for solutions of the following local estimate is valid
(H2b) Let p and p; be the same as in (H2) and (H2a) and let U € T, 100(R)
be a solution of with Frny; € (L (Ry WP (ST71)))4, then U €
Tpl,loc(R) and

m

Hu”'frpl(t,tJra) < Cbo(z HferjHLpl (t—a,t+2a;W —9P1(ST71)) + ||u||'ﬁ'p(t7a,t+2a))'
§=0

Let U € Ty 10c(R) be asolution of (3.41) with Fy,ij € (L, 10c(R; WP1(ST71)))d,

Then by Lemma 3 5 3.5((ii) the function v = L{l is a solution of (3.23). Clearly, the
functions f; in and 1.' belong to (L, 1oc(R; W =9P1(S71)))d, By (H2a)

u € (Wloc’p ! R” and 1 ) holds. ThlS together with 1-) and 4) gives
(H2D).
4. DESCRIPTION OF SOLUTIONS TO THE HOMOGENEOUS SYSTEM
Our goal here is to describe all solutions U € T 1oc(R) to equation
(IDy + )U(t) — NROUE) = O on R, (4.1)
subject to

e(n—m)t—co Iy W(S)ds) as t — +o0

o
eI, 2041y = {O(e(erl)tco [ wds) ast s —o, (4.2)

where w is given by (3.6)) and ¢ is a sufficiently large constant. The main theorem
is contained in Section (4.6l

4.1. Spaces X and Y. Here we add some new function spaces to spaces T, T’, T
and S. By X(a,b) we denote the space of all vector functions
Uit) = (I -P)v(t) (4.3)

with V € S(a,b). We define the space Xjoc(R) of all vector functions on R which are
represented in the form with a certain V € Sjoc(R). Clearly, Xjoe(R) C Tioc(R)
and we shall use seminorms || - [|7(¢,¢41) in Xioe(R). If m = 1 then X(a, b) is a closed
subspace in T(a, b) consisting of functions v € T(a,b) satisfying (Z — P)v(t) = v(t)
almost for all ¢ € (a,b). For the case m > 2 we prove the following

Lemma 4.1. Let m > 2. Then
(i) if (Z —P)U =0 withU € S(a,b) then

d
U= e_’m Z Cj(I’j (44)
j=1
with some constants c;;
(ii) if v € X(a, b) then there exists U € S(a,b) such that v = (T — P)U and
U]l Tap) < cllViTap (4.5)

with constant ¢ depending only on b —a, n, m, p and P.



24 V. KOZLOV EJDE-2006/10

Proof. (i) The equality Y = PU implies

d
Ut =S hi(t)®y.
k=1

Since Us(t) = Dild1(t) and Pg1 = ¢, Pro = imey, we have that

d d
> Dih(t)gr = im Y hi(t)p.
k=1 k=1

Using linear independence of the functions ¢y we obtain that Dihy(t) = imhy(t)
or hi(t) = cre™ ™.

(ii) We introduce the factor space To = T(a,b)/K, where K is the subspace of
elements of the form . The norm is defined by

leAllz, = min &4 + Vi[z,.

Clearly the minimum is attained for a certain V. Suppose that the assertion (ii)
is not valid. Then there exist functions U; such that ||U||lr,p) = [UjllT, = 1 and
I(Z — P)Ujllr(apy — 0 as j — co. We write

PU;(t) =Y b (1)@

k=1
Using

d
et — > b bkl a5y — O,
k=1

d
||Z/l.72 - Zm Z h;cj)(t)d)k||Lp(ayb§B'mfl) - 07
k=1

d
| Dildj1 — Z Dthg)(t)¢k||Lp(a,b;Bm,1) —0
k=1

together with D;; = U;2, we obtain that
DAY — imhP || Lo(apy — 0 as j — oo.

Putting f,gj) = Dthg) — imhg), we obtain
h;cj)(t) = cg)e_mt + Flgj)(t) with Flgj)(t) = / e_m(t_T)fng)<7')dT,

where cg) are constants. Clearly, F,Ej) — 0 in WbP(a,b). If we introduce

d
Z/{j/ = Uj — Bimt Z C,(CJ)‘bk s
k=1

then ||} |v(apy > 1 and [|[PU;||1@ap)y — 0 as j — 0. Since (Z — P)U; = (T — P)U,;
we have also ||(Z — P)Ujll1(,p) — 0. This implies that ||U}|r@s) — 0 as j — 0.
This contradiction proves (ii). O

Corollary 4.2. The space Xjoc(R) is closed in Tioc(R).
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Proof. For m = 1 this is obvious. Let m > 2 and let v; € Xjoc(R) and v; — v in
Tioc(R). We put 6 = (k,k+ 3/2). Then v; — v in Tioc(dx) for each k € Z. By

Lemma ii) there exists Uj(k) € Tioc(dx) such that (Z — P)U;k) = v; on ¢ and
estimate |i holds for the interval ;. Therefore the sequence {Z/{J(k)} has the limit
UF) in Tyoe(6x) and (T — P)UF) = v. By Lemma (1)

d
Uk;_;,_l —_ Z/{k = e_mt ZC;—IC)(PJ
Jj=1

with some constants c(k). This implies that there exists U € Tjoc(R) such that
(Z-PU=vonR and U — U; has the same form as the right-hand side of (4.4 .
on each 0. Therefore, v € X, (R)

We shall also use the space Yio.(R) of vector functions
‘F(t):COI(O7aO7]_—m() ~7:m+1() -7:2m> (46)

with some Fpqj € Lpioc(R;B—j), 5 = 0,...,m. We equip this space with the
seminorms

i 1/p
1F ey = (W Fmssll iain ) -

§=0
We put
?:Bmme_lxmxleBo, (4.7)
ss(t) = rs(e™). (4.8)

We shall use also the notation X, Y,, B} and 7, parallel to X, Y, By and 7 in
order to indicate their dependence on p.
Let us prove the following estimate

Lemma 4.3. Let g > p, 6 >0 and let Ue L,(t,t+ 5;7}). Then
10 |y 05) < 50s O 1v5i2 (49)

where

sos(t) = ( /K - ms(x)\xr"dx)l/s (4.10)

and s = qp/(q — p).
Proof. Using definitions (3.46]) and (3.34) of the operators 9, and &', we have

m—1

Mmld || L, (2 045:87) < C( Z [Nom—,li+1ll L, ¢,046;88) + ||N008/u||L,,(t,t+5;B§)>-
k=0
(4.11)
By (3.36) and Hélder’s inequality, we get

IWNooS Glle, sy < os O avsit
By (3.21) the sum in the right-hand side in (4.11) is estimated by

m—1

ey > Y PIEMNINGQarli i1l L, t.e4sB2) -

k=0 |a|=m k<|B|<m
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Using Hardy’s and Holder’s inequalities we estimate this sum by the right-hand
side in 1) Thus the norm of M, U is estimated. The corresponding norms of
Mimt;U, 7 =1,...,m, are estimated analogously. ([

4.2. Spectral splitting of system (3.41]). Let

u(t) =PU(t), v(t)= (T —-PU{). (4.12)
Then

U(t) =ult) +v(t). (4.13)
Also, let . = col(uy, ..., ums1) and ¥ = col(vy, ..., Vyy1). Applying P to equation

(3.41)) and using (3.70)) we arrive at
(Dy —im)u —PN(t)(0+v)=PF onR. (4.14)

Applying T — P to (3.41]) we obtain
(IDy+A)v — (Z —P)N(t)v = (Z — P)(F+N(t)u) on R. (4.15)

Thus we have split system (3.41]) into the finite-dimensional system and the
infinite-dimensional systemdﬂél_.__l;[). Clearly, U € T 10c(R) implies that u and Dyu
belong to Ly 10c(R; 7;) for all ¢ > p.

The next proposition shows the equivalence of and the split system ,
(4.15]).

Proposition 4.4. (i) Let U € Tioc(R) be a solution of (3.41)). Then U € Sioc(R)
and the pair u,v given by satisfy syste.

(ii) Let u and v belong to Tioc(R), satisfy (4.14), (4.15) and be subject to u(t) =
Pu(t) and v(t) = (Z — P)v(t) on R. Then the function (4.13)) satisfies system
(3-21).

The proof of the above proposition is obvious. This proposition, combined with

Lemma ensures the equivalence of equation (3.23]) and the split system (|4.14)),
(@135).

4.3. The infinite-dimensional part of the split system. We start with the
case 91 = 0, i.e. we consider the system

(ID;+A)v=(Z—-P)F onR. (4.16)
We put
e~ (Mt for t >0
t) = - 4.17
u(®) {e("_m)t for t < 0. ( )

The following result is proved in [KM2, Lemma 8.

Lemma 4.5. (i) (Existence) Let F' € Y, 10c(R), ¢ € (1,00) and § > 0. Suppose
that

| BNl ryr < 0. (4.18)
Then ({4.16) has a solution v € Xg10c(R) satisfying
||V||Tq(t,t+6) <c /]RM(t - T)||F|\Yq(r,r+5)d77 (4.19)

where ¢ is a constant independent of F'.
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(ii) ( Uniqueness) Let v € Ty 10¢(R) satisfy with F =0 and Pv(t) =0 for
almost every t € R. Also let
n—m)t ;
[V, (t.e48) = {Z(Z(_(m+)1))t) Zji : i‘z (4.20)
be valid. Then v = 0.
Now, we study the system
(IDi+A)v—(Z-P)N(t)v=(Z—-P)F onR. (4.21)
We introduce the function
exp(—(m+1)(t—7)+co ftw(s)ds) fort >
polt,T) = {exp (n=m)t—7)+cof, a:(s)ds) for t < 7,

where ¢ is a sufficiently large positive constant depending on n, m, p, v and L.

(4.22)

Proposition 4.6. Let assumptions (H1)—-(H3) be fulfilled and let p and p; be the
same as in (H2). Then the following assertions are valid:
(1) Let F belong to Yp, 1oc(R) and let

‘/RMw(O,T)HFHYm(T’T_i_l)dT < 0. (4.23)

Then system (4.21) has a solution v € X, 1oc(R) satisfying
Wiy < [ maltDIPl,, e (424
90, ey < b0 [ ot Pl rrsnydr (4.25)

(ii) The solution v € X, 10c(R) to (4.21)) subject to

of e(r—m)t—co fot w(r)dr ast — +oo

Vit i+1) = (4.26)

0 ef(erl)tfco fto UJ(T)dT) ast — —oo

is unique. (We note that (4.23|) together with (4.24) imply (4.26)).)

Proof. (1). Solvability in X3(R). We introduce the space Ta(R), which consists of
vector functions U € Ty joc(R) with finite norm

(2m—n)t 2 1/2
Wl = ([ 1l )

The space S2(R) contains vector functions (3.73) with finite norm

Y 1/2
lsucey = ([ e 1l i)

The space X3(R) consists of v represented as (Z — P)U with U € So(R). Let also
Y2(R) consists of vector functions F from Ys joc(R) with finite norm

Y 1/2
N e Fa R

Consider first problem (3.41) with F € Ya(R). Using the solvability result for
(2.52) from (1) in the proof of Proposition and connection of problems (2.52)
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and (3.41)) established in Section |3| we obtain that for every F € Yao(R) there exists
the unique U € T (R) solving (3.41]) and it satisfies
U7 ®) < llFllvam)-
Therefore the function v = (Z — P)U belongs to Xz(R) solves (4.21) with F' = F.
(2). Local estimate for v. Let v = (Z — P)U with U € S, 10c(R) satisfy (4.21])
with F' € Yp, 1oc(R) and let m > 2. According to Lemma ii) we can suppose
that U is subject to (4.5)) with a =t — § and b = t + 29, where ¢ and § are fixed.
We write equation (4.21)) as
(IDy+20)U —N(t)v = F + PG, (4.27)
where
G = (ID,+2A)U —N(t)Vv — F.
System (4.27) consists of 2m equations. Since U € S, 10c(R) and the first compo-
nents of M(¢)v and F' are zero, we have (PG); = 0. But

d
(PG)(E) = k()%

and the vector functions (®;); = ¢, are linear independent, which implies h; = 0
and hence PG = 0. Thus system (4.27) becomes

(ID; + AU — N(U = F — N(t)PU. (4.28)
Since U € S; 10c(R) C Ty 10c(R) it follows that PU and 9, PU belong to Ly 1oc(R; 7y)
for all ¢ > p and

I1PU L, t,t45:7,) + 110-PU L, (8,045:7,) < cllUl|,(2,646)-
This implies
1PUI L, v5:7,) < Iz, tet6)- (4.29)

Now applying (H2b) to (4.28]) and using the last inequality together with Lemma
we obtain that U € T, 10c(R) and

m

Wl (cavs) < Do (D IEmrilln, esevasiw—so sn-ty) + WU, (o—s.0425))-
=0

Now using (4.5)) we arrive at
1Vl (ovsy < Do(IFlv,, (t—s1+26) + IVIIT, (t—s.t425))- (4.30)
P ( )
When m = 1, a direct application of (H2b) to the system (ZD; + A)v — N(t)v =
F — PN(t)v gives
1

”‘A’”Tm (t,t49) < CbO(Z I(F = Pm(t)‘})lH”Lm (t=3,t+28;W—3p1(ST™1))
j=0

+ 1vlir, (t—6,t425))-

This together with (4.29) implies (4.30) for m = 1. The local estimate (4.30)
together with (4.9), with ¢ = p1, gives

19911y, (t,048) < c(woll Fllv,, (t-s,428) + boxs s (D) V]T, (t—s.e425) ) (4.31)
where s = p1p/(p1 — p) and 3, s is given by (4.10)).
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(3). Euistence of solution. One can verify that every vector function F from
Y, 10c(R) subject to can be approximated by vector functions from Y5 (R)
with compact support in the norm defined by the left-hand side in . Therefore
it suffices to prove estimate and for solutions from (1). We write system
(4.21)) in the form

(IDy+A)v = (T — P)(F +N()).
Using v € Xo(R) one can check that the right-hand side satisfies (4.18)). Applying
to this equation Lemma with ¢ = p and using (4.31)), we arrive at

IVIiT, @8 <€ / w(t = 7)Y (1F[lv,, (t-s,+26) + borzs s (B[ V], (1—s.e4-25) ) dT-
R

Taking here § sufficiently small we derive the estimate

¥l sy < / u(t = 7 (1F I, erss) + boseaDIIVliz, eren) )7

Iterating this inequality we obtain

Vllz, sy < € / 0ot ), (ersnydr, (4.32)
where

9w (t, )

=p(t—r1) +Z(Cbo)k/ p(t = 7m1)5es () p(m1 — 72) - o35 () p(Th — T)dT1 L dT.
k=1 R

k

Since (m —n — 0¢)(0y + m + 1)u(t) = (n + 1)d(t), we can check that
((m—=n—09,)(0,+m+1)— (n+1)chors(e"))gu(t,7) = (n+ 1)5(t — 7).
Using [3, Proposition 6.3.1], we obtain
0u(t,7) < Cpiu(t, 7).

This together with eads to . Estimate together with the local
estimate (4.30) gives (4.25).

(4) Uniqueness. First we observe that we can start in (3) from a solution
v € X, 10c(R) subject to a certain growth restrictions at £oo, for example v has a
compact support with respect to ¢, and reasoning as above we will arrive at esti-

mates (4.24)) and (4.25)) for such v. This leads to uniqueness in the class of functions
with compact support. The uniqueness in the class of functions subject to (4.26)
is proved in the same way as in Proposition [2.11 O

4.4. The finite dimensional system. By Proposition [£.6] we can introduce the
operator 9 : F' — ¥ which is defined on F' € Y,, 1oc(R) subject to (4.23) and
IM(F) = v where v is the solution of (4.21]) from Proposition By (4.24) we
have

P, ey < b [ ot Pl (433)
Using the operator 9, we write in the form
(D — im)u — PO(a + M(DM))(t) = P(F + NM(F))(t) on R.
We rewrite this system as

(D; —im)u — PNOa — PK(a) = P(F + NM(F))(t) on R, (4.34)
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where
K[a)(t) = (Nt) — NO(@)i + NE)MNa) (4.35)
NO (U = col(0,...,0, N AU, N (U, ..., N (BU) (4.36)
with »
N U = Ags (D Non- k(W1 + Noo()So (1) (4.37)
k=0
and
RO = S Nk (Dl + Nyol0)So (011
F=0 . (4.38)
— AjOAaol ( Z Nom—k(6)Ui+1 +/\/00(t)80(t)1/?)
k=0

for j=1,...,m. Here &y is given by (3.33).
The vector function u can be represented as

= ”’”Zh (4.39)
where <I>] is given by (3.62) and ( - Insertmg 4.39) into (4.34), multiplying
- 3.69

then (4.58)) by vectors (3.64) and using and (3.69)), we obtain the system for
the vector function h = col(hq, ..., hq)

9¢h(t) — R(Hh(t) — (Mh)(t) = g, (4.40)
where

N
)k =Y R (t)h;(t)

Ri(t) = (MO (6)®;,¥y) and  (Mh)(t) = (Mh)y(t),..., Mh)a(1)),

d
(Mh)(t) = e™(K(e™™" Z hy®;)(t), Uy) . (4.41)

The right-hand side g(t) = (g1(¢t),. .., ga(t)) i]s defined by
gr(t) = ™ (F(t) + NM(F)(t), V) - (4.42)
Using (3.62)), (3.63)) and (3.33) we obtain that So®; = (im)™¢;. Therefore,
NO(4)®; = Agg No(t, im)p; ,
Mg ()8 = No(tim); — Ao Ao Not im)p;
for ¢ = 1,...,m, where we have used notation and formulae , .
This together with | m ) and (3.67) gives

Ri;(t) Z/n ) L(tim)p;, (—im)™ Yy )do . (4.43)
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Furthermore, u € Ly 1oc(R; 7;) if and only if h € (L]

lOC(R))d and
Crlbl|zage 1) < €™ ullz, @17, < CollbllLageeq1) (4.44)

with constants independent of ¢.

To derive estimates for M we need some formulae. Using definition (3.34)) of the
operator &’ together with (3.62) and (3.63) we obtain

S'(t)®; = (im)™p; + (Aoo — Noo) "' No(t,im); - (4.45)
Therefore,
(M (1) = NE) (1)) 5 = Agg Noo(t) (oo — Noo) ™ No(t, im) g,
and
(Mot (t) = N g (1) @5 = Ny (1) (Ao — Noo) ™" N8, im)
— AgoAg) Noo(Ago — Noo) " No(t, im) e,

for g =1,...,m. These relations together with (3.66) and (3.67)) give
(M(t) = NO(8)) Dy, T

= /Sn—l((AOO —Noo)*lNo(t,im)cpj,Z_/\/;O(t)(_im)quwk)do. (4.46)

+ q=0
We also need the formulae
Ny ®; = (Aoo — Noo) ™' No(t, im)e; , (4.47)
Mg ®; = Ny(t, im)p; — (Ago — Nyo) (Aoo — Noo) ™' No(t, im)e; (4.48)
for ¢ = 1,...,m, which can be checked directly by using the definitions of the
operator N, the vector function ®; and .

Using again definitions of the operator 9t and the vector functions ¥ one verifies
that

m—1

Z/ _ Wam—gUgias (=im)™ " )df
s=0 q—0 /5%

+Z/ (NooS'U, (—im)™ 1y )d6.

(4.49)

Now we estimate the norm of the operator M. We use the notation
fiw (T, 7) = po (2, T)em(t_T) : (4.50)
Using (4.33)) and the definition of M one can derive the following estimate
IO PP S T (451)
which is valid for h subject to

/ /lw(O, T)”h”Lpl (7-,7-+1)d7' < 0.
R

In what follows we shall need also another estimate for M.
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Lemma 4.7. For all h € (L2 (R))? subject to
[ 0.7, (D)l sy < 0 (452)
the following estimate holds:
M) L1 ,e41) < chosgy (t)/Rﬂw(taT)%pl (DBl L7 7snydr, (4.53)

where pi = p1/(p1 — 1) and s is defined by (4.8) and (2.12)).

Proof. We start with proving the estimates

(0, [y 51 < ). (4.54)
m—+1
‘(‘ﬁ(t)bﬁ ’ < s ( Z 1245 () [ yrm—s41. s(smhy (4.55)

where s € (1,00), 1/s' =1—1/s,

wn= X ([ e N oa) T wse

la],B]<m

and the constant ¢ depends on n, s and coefficients Log. By (4.47)) and (4.48])

||mm+k(t)‘i)j\|w—kvs(sfl) < c([INo(t,im)p;

(t,im)gc?j‘lw_k,s(sifl)) .

Using (3.20), (3.21) and that ¢;(0) = 6"e;, we can estimate the right-hand side by

¢ 303 e Cme B N (e )0 s

la|<m |B]<m

<ec Z Z e~ @m=lal=18Dt|| N 5 (e~t9)02m~

la|<m |B]|<m

-1y,

which is estimated by ¢3z;. Inequality (4.54)) is proved.
Using (4.49) and (3.35) together with (3.21)) and observing that 1 is equal to

¢y, times a smooth function, we arrive at

’m(t)b?,%)‘Sczm: Z Z o~ (2m—|al—=|B)t

q=0|a|<m ¢<|B|<m

x NGB8 g 601

-1y
Using the Hardy inequality for estimating the last factor we arrive at (4.55)).
We represent M as the sum Mj + My, where
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From (4.46) and (3.20), (3.21)) it follows that

Mi) e Yo 3 e Emlal BN gz

lo]=m m—k<|B]|

> Z Z 67(2’”7'&‘7"&‘”||N;59im7‘a|7jHLm(siflﬂh(t)\a

|Bl=m m—j<|a|

which implies

(Mi(h)()] < &5 ()7, (1) (D] (4.57)
Furthermore, by (4.55))
m—+1 d R
M) (0] O3 (1) 32 3 IIROUORs s 537
j=1 k=1

Now, using (4.33)) together with (4.54) with s = p; and (4.44), we obtain
M)l 01y < ool 41y [ o) (Dl

From (4.57)) it follows the same estimate for || My (h)||z1(¢,¢+1). These two estimates
give (4.53). The proof is complete. O

4.5. Homogeneous equation (4.34]). Here we shall study the homogeneous equa-

tion , i.e.
oth(t) — R(t)h(t) — (Mh)(t) =0 on R. (4.58)

We start with a uniqueness result.
Lemma 4.8. Ifh € (I/Vltc1 (R))? is a solution of (4.58)) subject to
ofent—e1fs “’(S)ds) ast — +0o

0
ofet—cle “’(s)ds) as t — —oo,

h()] = (4.59)

with sufficient large ¢; and h(tg) =0 for some to then h(t) =0 for all t € R.

Proof. Without loss of generality we can assume that ¢y = 0. By (4.59) the function
h satisfies (4.52)). Integrating (4.58]) from 0 to ¢ and using (4.53)) together with the

inequality
b b t+1
[isnaes [ [ rwlarar,
a a—1Jt

we arrive at

[h(2))|

t
< c/ %1(7—)Hh||Loo(7-77-+1)dT+Cb()/
-1

-1

t
sy (7) / i (72 8) 70 () B e (o178
if t <0 and
()|
0 0
<c [ samIblgrendr o [y / o (7 8) 520, (5) [ oo o1y 5
t—1 t—1

if t < 0. Now repeating the proof of [4, Lemma 12] we obtain h = 0. O
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Lemma 4.9. For each a € C\ O equation (4.58) has a solution h € (Wﬁ)’cp(R))d
which has the form

t
h(t) = |a] exp / A()dr O(t), (4.60)
0
where |O(t)] =1 for allt € R, ©(0) = a/l|a|, and
A(t) = R(R(t)O(1),O(t)) + A1 (t) (4.61)
where A1 satisfies the estimate
I8y < cbustg () [ (e, ) (1) (462)
R
where py and p1 are the same as in Lemma . Furthermore,
10|21 (t,e41) < Cop(t), (4.63)
where ©'(t) = dO(t)/dt and
p(t) = s (t) + boy, (t) / fu (t, T)52p, (T)dT . (4.64)
R

Proof. Tt suffices to prove the assertion for vectors a with |a| = 1. Let us first prove
the existence of a solution h subject to the estimate

h(0)] < Cexper /O t o(r)ar| (4.65)

with some positive constants ¢; and C. In order to construct a solution we shall
use the following iterative procedure: hy(t) = a, and

hk+1 =a-+ /0 (R(T)hk(’r) + (th)(T))dT

for £ = 0,1,... We introduce the Banach space B, which consists of measurable
vector functions h = (hq,...,hs) on R with the norm

i, =sup (oo (=] [ otriar]) Il

where the constant ¢; will be chosen later. Let us show that the sequence {hy}°
is convergent in By, if ¢; is sufficiently large. Using (4.43) we obtain |R(t)| < ¢ (t),
where 7¢; is defined by (4.56]). By the last estimate and by (4.53))

t
[hyt1 = hyl[poe (1) < 02/ o(T)hes1 — bl Lo 771y dr (4.66)
—1

for £ > 0 and

hit1 — hyllee41) < 2 /tol ©(7)hgs1 — gl oo (rr41)dT
for t <0. Let t > 0. Then implies
s = hills, < e~ e, (4.67)
Analogously, for ¢ < 0 we have

i1 — by, <—1§1<ugec1ft 10Ty hy |, - (4.68)
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By and by > 1, the function p does not exceed wy times a constant. There-
fore, we can choose ¢y sufficiently large and wq sufficiently small so that the con-
stants in the right-head sides in and are less than 1. This guarantees
the convergence of {h;}72, to h € B,. Clearly this vector function satisfies the
equation

h=a+ /0 (R(m)h(r) + (Mh)(1))dT,

which is equivalent to .

We define ¢(t) = |h(t)| and O(¢) = h(t)/q(t). We note that by Lemma [4.§| the
function q is positive for all £. Multiplying equation by O(t) and taking the
real part we obtain

% 1) ~ alt)a(r) ~ (Maa)(t) =0, (169)
where
a(t) = RR(WOM), O(1)) and  (Mag)(1) = RM(O)(1), (). (470)

(From it follows that
IMsqllr(t41) < chos, (t)/Rﬂw(t,T)%pl (Tllall 2=t 1) d - (4.71)
Let us show that
q(t) = exp /Ot A(T)dr, (4.72)

where A is a measurable function satisfying estimate (4.62]). We shall consider (4.69)
as an equation with respect to ¢ only, supposing © be fixed. Making substitution
q(t) = exp (fot a(7)dr) z(t) we arrive at the equation

dz

dt

where (M3z)(t) = (My)r—i(exp (f; a()dr)z(7)). One can check directly that
h

the operator My also satisfies the estimate (4.71]), possibly with another constant
¢o in definition of the function p. Equation has the form (173) in [4],
but the operator My is estimated in different norms. Therefore the representation
z(t) = exp (fot A1(7)dr) with Ay subject to follows actually from [4] Lemma
13] if one makes there evident changes caused by the only available L'-estimate for
M.

It remains to prove . Expressing h' from and using and

{58

() — (Ma2)(t) = 0, (4.73)

for estimating the second and the third terms in the left-hand side of 8|) we arrive
at

t
10l ey < lalCoolt) exp / A(r)dr,
0

From representation (4.60) and this estimate we derive (4.63). The proof is com-
plete. (I
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4.6. Solutions to the homogeneous system (3.41)). Using (4.41)), (4.70) and
(4.35)) we can represent the operator M in (4.69) as

d
Mi(a)(t) = R(N(t) - Nt Z 0> ORTy)g + ™M R(N Z@m
J=1 k=1

(4.74)
where the vector function v satisfies 1) with F =0 and & = e™™ Z?Zl 0, éjq.
Let a € C and |a| = 1. We denote by h the unique solution of (4.58) having the

form 1) Then ¢(t) := |h(t)| = exp fo 7)dr and this function satisfies
We represent the vector function v as

t
vV = exp ( —mt+ / A(T)dT) Vi(t). (4.75)
0
Inserting these ¢ and v into (4.58)) and using (4.74) we arrive at
A(t) —a(t) —b(t,A) =0, (4.76)

where a is given by (4.70) and
d d
b(t,A) = R((M(t) — NO (1) Z 0;0;,> 0,1 + RNV, ng‘l’k (4.77)
j=1 k=1
with V satisfying

d
(ID; + A+ im —iA)V — (T~ PNV = > (- P)©;M®; onR.  (4.78)
j=1
Using estimate (4.24]) for the function v and observing that v satisfies (4.21)) with

d
F =exp ( —mt+ /Ot A(T)dT) Z @j‘ﬁ@,
j=1

we arrive at the following estimate for V:

d
HVHfrm ety T IV, 1) < cbo z:/Rﬂw(?faT)||9(t‘1’jHYp1 (rr+1)dT .
=1
This together with (4.54) gives the estimate

Vil + Vi) < cbo [ pot g (ar, @70)

where fi,, is given by (4.50) and (4.22)) possibly with a larger constant c¢g. Here we
used the inequalities |A(7)| < cp(7) < cw(T).
Now we are in position to formulate and prove an assertion about solutions to

(4.1) subject to (4.2).

Lemma 4.10. Let U € Tp10c(R) be a solution to system (4.1) subject to (4.2).
Then

U(t) = cexp ( —mt+ /Ot A(T)dT) (i 0,0, + V) , (4.80)

where ¢ is a constant, the function A(t) admits representation (4.61), where Ay
satisfies (4.62)), the vector function © subject to |O(t)] = 1 and (4.63), and the

function V € T 1oc(R) satisfies equation (4.78) and estimate (4.79).
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Proof. By (4.13) and (4.39) we obtain
d
U=e™ hi(t)0; +v. (4.81)
j=1
Using (4.60) together with (4.75) we arrive at the representation (4.80) with V

solving equation (4.78) and satisfying estimate (4.79). The proof is complete. O

Let us denote by A4 (t) and A_(t) the largest and the least eigenvalue of the
matrix RR. We finish this section by the following two-side estimates for A.

Lemma 4.11. (i) The function A satisfies the estimates
A_(t) — c1po(t) < At) < Ay (t) + cap0(t) (4.82)
where
po(t) = bosey (t) / f (t, T) 52y, (T)dT . (4.83)
(ii) Furthermore, if 18 fulfilled 11i}ith a sufficiently small wy depending on
m, n, p, v and L then

b b b
/ A(r)dr < / A (m)dr + C/ 3 (1)dT + cw? (4.84)
and
b b b
/ A(r)dr > / A_(r)dr — c/ 22 (T)dT — cwi (4.85)
fora <b.

Proof. (i) The inequalities (4.82)) are a direct consequence of (4.61)), (4.62) and the

definition of AL.
(ii) Let

pa(t) = %2(t)4ﬂw(t,7)%2(7)d7.
We have

/ab pa(T)dT < c(/ab »9(T) /bﬂw(T’ $)sea(s)ds dr

+/abxg(T)(];Jr/boo)ﬁw(Tas)%Z(s)deT)'

The first double integral in the right-hand side is estimated by

b
c/ 22(7)dr.

Since fi, (7, 8) < ¢fi (T, 2)fiw(2z,8) if T <2< sorT >z > s and since »(7) < cwy,
we estimate the second term in (4.86)) by

(4.86)

o [ ot + st
which is less than cw3. Therefore

/b po(T)dT < c(/b 22(T)dT + cw(z)) (4.87)
This along with pioves and . ([
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Remark 4.12. An analog of estimate (4.87) for the function (4.83) is

b
| oo < o sty o s o + 8, (439)

where wy is the same constant as in (H3) and (2.16]). The proof is similar to that
of (4.87).

4.7. A solvability result for equation (2.52)). In what follows we need the fol-
lowing analog of Proposition i) for equation (2.52))

Proposition 4.13. Let (H1)-(H3) be fulfilled and let f € (W, "' (R \ O))¢ be
subject to
! 1 dy d
/ pmeC Jp 2w mglm(fQ Kp/e,p)i
0o P ; (4.89)
dy
+/ Pl I W oo K, )P <
1 P

with sufficiently large C. Then there exists a solution u € (Viflztc’pl R?\ 0) of
[£:52) satisfying
dp

r , ay
f)ﬁgi (’LL; Kr/e,r) < Cbo(/o rmpmec fﬁ Q)5 gﬁplm(f; Kp/e,p)?
oo (4.90)
m m— g dy —-m dp
+/ r +1p 1,C [20y) 5 gmpl (f; Kp/&p)?).

Estimate (4.90) implies

o(rme=¢ I Q(S)%) ifr—0

o(rmH e CIT %) ifr oo (4.91)

m;n(u;Kr/e,r) = {

The solution u € (VVIZICP(@\ 0))¢ of problem (2.52) subject to (4.91)) is unique.

Proof. Using the reduction to the first order system (3.41) from Section we
arrive at (3.41]) for the vector function (3.26))—(3.28]) with the right hand side given

by (3.42)—(3.44). Inequality (4.89) implies

/Re_ngw(OaT)H]:”Ypl (T,T+1)d7— < 00,

where
G (t,7) = ce”(t79)FC Jiwl)dz for ¢ > s and Go(t,s) = ceC Tz for ¢ < 5.

Relation takes the form

ofe=m1t=CJg “’(S)ds) as t — +oo

4.92
o e~ (m+Dt—co fto“’(s)ds) as t — —oo. (4.92)

U, 41y =
Furthermore, we shall use the spectral splitting
d
U=eY hi(t)P; +v(t),
j=1

where h = (hy, ..., hy) satisfies (4.40) and v solves (4.15)).
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(1). Solvability of equation . We solve equation (4.40|) by using the iterative
procedure

Othy i1 (t) — R(Hhgt1 (1) = (Mhy)(t) + g (4.93)

for k = 0,1,... and hy = 0. Here g = (g1,...,94) is defined by (4.42). The
ordinary differential equations d;h(t) — R(¢t)h(t) = f(¢) will be solved as

_/too G(r, t)f(T)dr

where G(t,7) is the Green matrix, which satisfies the estimate
G(1,1)| < celi R()Ids
Using the estimate |R( )|ds < ciw(t) and || we obtain

lhgir — hk||L°°(t,t+1)
< C/ e Jy ‘“(S)dszp/l (1) / fie (T, s)%pl Iy —hg_q ||Loo(s’5+1)d3 dr,
t—1 R

which implies
[hit1 = hgl e te41) < cwo / g1(t, s)w(s)[[hy —hg_1]|pe(s,s141)ds,
R

where
g1 (t, 5) = ef(t*S)JrCo Jiw(z)dz

for ¢ > s and
g1 (t,5) = e I w1

for t < s. We put
o0

(cwo) / g1(t, m)w(T1) ... g1(5,7)dry ..
i=0

J
Then

e}

D lhggs = byl (i) < C/ 92(7, 8)[[h || poe (s,541)ds

k=0 R

Furthermore, one can check that g, is estimated by the Green function of the second
order operator —0;(0; + 1) — cow(t) and therefore go(t,7) < cg, (¢, 7). This leads to
convergence of {hy} in L{° and to the estimate for the function h:

lmeesn) < [ 0(r 9 Fl,, usnds. (4.94)
By (4.51) we obtain also that
1|l Lon 1,641y < C/ng(ﬂ I Flly,, (s,s+1)ds - (4.95)

(2). Solvability of ({{-15). Using (4.94) and ({.95) together with estimate ({.25)

we arrive at

& ||Tm(t vy < cho / 0u(r, I Flly,, (o011, (4.96)
Estimates (4.94), (4.95) together with (4.96) lead to (4.90). Uniqueness result

follows from the uniqueness results from Proposition and Lemma O
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5. PROOFS OF THE MAIN RESULTS AND THEIR COROLLARIES

5.1. Solutions to the homogeneous equation (3.23)). Here we describe solu-
tions to the homogeneous equation ([3.23)).

Lemma 5.1. Let u € Wﬁ’p(ﬂ) be a solution to equation (3.23) with f; = 0,
7 =0,...,m, subject to
ol e(n—mt—co 3 W(S)ds) ast — 400

5.1
o e—(m+t—co [} “(5)d5> ast — —oo. (5.1)

[l w1,y =
Then u € Von?épl (I) and

DFu(t) = J(u) exp ( —mt + /O t A(T)dT) (zd: 0,6, (im)* + wk) (5.2)

for k=0,1,...,m, where A and © are the same functions as in Lemma .10 and

the function wy, belongs to L} (R; V(Vm*k’pl(Sffl)) and satisfies the estimate

1wl o (b1 wm ke (57 1)) T HathHLPl(t,t+1;W’"*’“*1’P1(STL’1))

< Cbo/,uw(t,T)%pl(T)dT
R

fork=0,1,...,m—1, where s is given by (4.8)). The remainder w,, satisfies also
(5.3) with k = m but without the second term in the left-hand side. The constant
J(u) in (5.2) admits the estimates

(5.3)

to
exllull 2, < 1 () exp (— mto +/O A@)r) < eollullizq,)  (54)

for every real number tg. The dimension of the space of such solutions is equal to
d.

Proof. Using the reduction of (3.23) to the first order system (3.41)), described in
Section we arrive at (4.1)) for the vector function U defined by (3.26])—(3.28]).

Moreover, U satisfies (4.2]) because of (5.1). By Lemma the vector function
U admits representati. Using , (3.62)) and (3.26]) we obtain (5.2)) for
k=1,...,m— 1 with w, = V}, and estimate follows from . By (3.31)),
and we obtain

D™y = cexp ( —mt + /01t A(T)dT) (zd: 0,8 (H)d; + 3'(t)v) .

Using (3.32)) and the definition of ®; we get
S'(t)®; = (im)™¢; + (Aoo — Noo(t) " No(t, im)¢; ,
which gives (5.2]) with ¥ = m and

d
W (t) = S ()V + Y 0;(Agg — Noo(t) " No(t,im)¢; . (5.5)

j=1
By (8:36) and (£.79)
ISV || 1o (11, < cbo / fieo (t, 7) 35, (T)dT .
R
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Using (3.20)), (3.21)) and that ¢; = 6]"e; we obtain
d
1> ©;(Aoo = Noo(t)) ™ No(t, im) | o )

Jj=1
se Z Z [Nagbi ™| Loy 11, < c36, -

la|=m |B]<m

Using the last two estimates and we arrive at for kK = m without the
second term in the left-hand side.

To obtain estimate we calculate the L?(Il;,) norms of the left-hand and
right-hand sides in with £ = 0. We have

to d
|J (u)| exp ( —mto + /0 A(T)dT> (H Z 0;¢ill2q,,) — ||W0||L2(Ht0))
j=1
< cllull2m,,) -
One can check that
d
| Z®j¢j”L2(Hto) > c1.
j=1

Furthermore,
Iwollz2am,,) < Cwo/ po(t, T)dT < cawp
R

because of (5.3)) and (2.16)). Therefore,
to

|J(u)| exp ( —mito + A(T)dT) (c1 — cowo) < cllullL2m,,)s

0

which implies the left-hand side estimate in (5.4 provided wy is sufficiently small.
The right-hand side estimate in (5.4)) is proved analogously. O

Corollary 5.2. Letu € ﬁ/lzf:’p(ﬂ) be a solution to equation l| subject to lb
Then for every tg

1
erlullzy) < lullwns,y exp (m(t — to) - / A(r)dr) < eollull2qr,,)- (5:6)
0

Proof. By (5.2)) the norm |||/ yym.»(m,) is estimated from below by

t m
glexp (= mt+ [ A@r) (16lwmsm = 3 19l sy 1)
0 Wm.p (I ) kZ:o Lp (t,t+1;Wm—kp(SE71)

where ¢(0) = 0. Since ||¢;||ywm.r1,) > 1 and

Z ”WkHLp(t_,t.s_l;wmfk,p(si*1)) < cawy,

k=0
which follows from (5.3) and (2.16]), we arrive at the left-hand side inequality in
(5.6) by using (5.4). The right-hand inequality in (5.6) is proved analogously.
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5.2. Proof of Theorem Let u € (WP(R \ 0)) be a solution of the
equation L(x, D,)u = 0 on R%} \ O subject to and . In the variables
t and 6, defined by , the function u belongs to (W,":"(IT)), satisfies (3.23)
with f; =0, j = 0,...,m, and is subject to (5.1) because of (2.23) and (2.24]).
Therefore, by Lemma u admits representation , which implies with
§=eto,

to

T(p) =A(logp™"), a(r)=0(logr "), Jz=J(u) exp(

and

A(T)dT)

0

vp(z) = vi(r) = wi(0,logr™1) .
Using definition (4.43)) of the matrix R together with the definitions of the vector
functions ¢; and 1, we have

R (8) m'z / N, (£, D) (€™ 0 e,), DI (cCm—mt B (¢740)))do

By (3:22)

Ryj(log 1) = mlr™ / S (Nap(@) D2 (ae;), D2 Ey())df
lal,|B]<m

Therefore, R(r) = RR(logr~1) and representation (2.26)) follows from (4.61) if we
take T1(p) = A1(logp~1). Since

x(r) = @o(bg?"_l)» (5.7)

where pq is introduced by (4.83)), estlma 7)) follows from (4.63)) and (4.62)), and

(2.30) and (2.29) follow from (5.3) and 1-) respectlvely The proof is complete

5.3. Proof of Theorem We introduce a smooth function ns = ns(r), which
is equal to 1 in a neighborhood of (0,d/2] and equal to 0 for r > 2§/3. We can
choose 7 such that |d*ns(r)/dr¥| < Crd=*. Let (s be another smooth function,
which is equal to 1 in a neighborhood of [§/2,2§/3] and is zero outside the interval
(6/3,35/4). We can suppose that |d*Cs(r)/dr¥| < Cré—%. We set us = nsu. Then
ugs satisfies

L(z,Dy)us = ) Dg(Lap(x)(DnsCsu —nsDJCsu))
|Oé‘,‘ﬂ‘§m
+ Y (D9ns —nsDY)(Lap(x)DYCsu).
|a‘,|ﬁ‘gm

If we denote the functional corresponding to the left-hand side in (5.8]) by f then
it is supported by 6/2 < |z| < 26/3 and, by Sobolev imbedding theorem and by

1),
m_zm(f; Kr/e,r) < C(S_met;n(gsu; Kr/e,r)7

where p1 = min(2n/(n — 2),p) if n > 2 and p; = p if n = 2. We can verify that
all requirements of Proposition T4.2zz7 are fulfilled and therefore there exists a
solution v € (Wm e (R" \ 0))? of problem lb 1) satisfying estimate 1)

loc
which takes, in our case, the form

(5.8)

r\m+1 5 ds o
mgi (U;Kr/e,r) < CbO(g) ecf" Q(S)ds mpl (U;K5/4,6) (59)
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for r < ¢ and
r\m r ds
M (0 ) < cbo (5 ) €I 2O LM (i K ) (5.10)

for r > §. The function Z = us — v satisfies all conditions of Theorem and

hence, admits representation (2.25). Thus we arrive at representation (2.32)) with
w =0+ (1 — ns)u and estimate (2.34]) follows from (5.9).

In order to prove we observe that
MY(Z; Ksje,5) < M5 (us; Kyje.s) + My (05 K e s)
and using we obtain
MY(Z; Ksje,5) < cboM (u; K ya.5)-

Using this estimate together with the right-hand inequality in (2.29)), we arrive at
(2.33)). This completes the proof of Theorem |2.4 O

5.4. Proof of Corollaries [2.5] and 2.6l

Proof of Corollaries[2.5. As it was noted in Remark [2.2] under assumption (2.17)
all conditions H1-H3 are satisfied with p; = p as well as with p; = p = 2 and

by = 1 provided wy is sufficiently small. Inclusion Z € (sz(m \ 0))? together

loc

with 1) implies Z € (Wﬂ;p(@\ 0))?¢ as well as 1) and 1' Thus we
can apply Theorem Choosing in (2.28)) py = p = 2 we arrive at (2.27) with x

given by (2.35). The required estimate for vy follows from (2.30)) if we take there
p1 =D (|

Corollaries is proved similarly. The only new element here is that first we
obtained (2.36) and (2.37) with 97" (u; Ks/8,5/2) instead of MG (u; Ks/16,5) but
using the local estimate for v we arrive at the required estimates.

5.5. Proof of Corollary To prove this assertion we use Corollary 2.5 In our

case p1 = p, bp = 1 and k,(r) < cwg. Therefore from the asymptotic representation
(2.25) we derive the estimates

1
d
szl e ([ Y(0)L) <M (2K

1
d
< eo|Jz|r™ exp (/ T(p)?p) :
Using (2.29) for estimating the constant Jz we obtain
s
r\m dp
C1J(Z)(g> exp (/ T(P)j)
< m;n(ZQKr/em) (5-11)
5
r\™ dp
< - ).
<c2)(5) e ([ 10)%)

Since T(p) = A(logp™') and T4 (p) = Ay (logp™?), estimates (2.38) follows from
(@84), (4.59) and (5.11).
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5.6. Proof of Corollary Here we apply Corollary [2.6] for proving this asser-

tion. Since
s 5
r ds dp
— ) < alsd
cow (¢ [ 20 T) < com ([ (Telp) +erto) D).
estimate (2.37) for the remainder w in (2.32)) implies
dp

M (13 K jer) < e (5 K160 (5 ) e ( / () + wlp) ). (5:12)

Using the right-hand inequality in (2.38) and this estimate, we obtain

O (0 K, ) < (D (1 Ky a6.) + MG(Z: Kies)) (5)
5 (5.13)
<exp ([ (1o + o) D).

Since
MI(Z; Ksje,5) < M(w; K e 5) + MI(w; Ky e s),
we apply (5.12)) to estimate the last term and obtain
MY (w; Ksye,s) < M5 (u; Ksyie,)-
This along with (5.13]) proves ([2.40)).

5.7. Proof of Corollary2.9] (1) Ewistence of pi and validity of (H2). Let us
show first that there exists p; > 2, depending on m, n, v and L such that the
following local estimate is valid: if u € WIZLC’Q(K ) solves problem , with
fe W, PH(K), then u € W,"P (K) and

c loc
mgi (u; Kr/e,r) < b (TQmSJt;lm(f; Kr/ez,er) + imgl(U; Kr/e2,e'r‘))7 (514)

where by is a constant depending on m, n, v and L. We note that this is (H2)
condition with p = 2.
Indeed, consider the operator

L (Wm™P(RL) — (W™™P(R)?  with p € [¢, g, (5.15)

where ¢ > 2 and ¢’ = ¢/(¢—1). The norm of this operator is bounded by a constant
depending on the constants v, m, n and q. By this operator has inverse for
p = 2 with the norm which depends on the same constants. Using Shneiberg result
[T1] (see also [6] and references there), we conclude that there exist constants p; > 2
and C' depending on v, m, n and ¢, such that the operator is invertible for
p € [p}, p1] and the norms of inverse operators are bounded by C.

Let 7 = n(7) be a smooth function on (0, 00) such that n(r) =1 for 7 € [e™1, 1]
and 7(7) = 0 outside [e~2, ¢]. Let also n,.(7) = n(7/r). Then L(n,u) = n,.f+ (L, —
n-L)u. Using that the operator is isomorphism for p; € [ph, pa] we obtain

||nru||vi,m,p1 (R7?) < (e fllw—mr (R%) +[[(Lnr — 77r£)“||w—mm1(m))~

This estimate together with Sobolev’s imbedding theorem implies .

(2) Validity of (H3). From it follows that x1(r) — 0 as » — 0. This
together with boundedness of x implies (H3) because of (2.14).

(3) Application of Theorem Since (H1)—(H3) are valid we can apply to
solution Theorem and we obtain the asymptotic representation with Z

satisfying (2.25)) and w subject to ([2.34]). The first inequality in (2.27) implies that
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the vector function q(r) has a limit as » — 0 because of (2.42)), which we denote
by qo. Let us show that the integral

é
dp
T(p)—
[
has a limit as » — 0. Using the definition (1.8 of R(p), we check that

(RipJale)ate)l <c [ w0 (5.16)

where p = |y| and 6 = y/|y|. From (4.88) and the definition (2.35)) of the function
X, it follows

5 é / 5
dp r  dp\1/p dp\1/p1
| o <o [ ) ([ o) e

5.17

A (5.17)

<C | kilp)— +cwp.
0 p

Therefore,

)
d
/ TP % < oo
0 14

because of (2.42)), and consequently,

) dp B r dp
/T T(p) % - C- / ()L (5.18)

where the last integral is absolutely convergent and, hence, is o(1) as r — 0. This
leads to

5
d
exp (/ T(p)f) =C1+0(1) asr—0. (5.19)
We put v = u — ¢z}, where ¢ = JzC1qp and Jz is the constant in (2.25). Due

to (2.34) in order to show that v satisfies ([2.43)) it suffices to show that Z — cz]
satisfies (2.43). By (2.25)) we have

007~ ex) = gzt (e ([ 10 L))~ Cra) + Jzrmunto)

r

By (2.30), q(r) — qo as r — 0 and by (5.19) this implies (2.43)).

Now the result follows from Corollary[2.4]and from the asymptotic representation

(2.25) for the first term in the right-hand side in (2.32]).
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