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ABSTRACT 

Crime linkage analysis tries to determine which crimes were committed by the 

same offender.  This is an important police investigative function, as research has shown 

that a significant proportion of most crime types are committed by a small number of 

prolific offenders. Case clearance is related to the amount of information available to 

investigators, and a series of linked crimes provides more information than individual 

cases examined alone. However, there are only a few available methods for crime 

linkage. These methods commonly utilize information provided by physical evidence, 

offender description, and crime scene behavior (i.e., proximity in time and space, modus 

operandi, and signature). Recognizing that very few factors definitively link crimes, 

researchers have demonstrated the utility of probabilistically linking crimes using less 

than definitive information. Bayesian methods provide a promising method of analyzing 

these links. While some research has demonstrated the efficacy of these methods, the 

initial work validating the models has relied on limited samples. As such, the 

generalizability of this research is unknown. This study assesses the validity of a 

Bayesian crime linkage method using computational methods.  

 Using empirical observations for both serial murder and commercial robbery as 

the basis of offender behavior, simulated observations were generated for distance, time 

difference, and 12 modus operandi (M.O.) factors for serial and non-serial offenses for 

each crime type. In total 3,500,000 linkage analyses were generated for each crime type 
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using the Bayesian crime linkage method. Receiver operating curve (ROC) analysis was 

utilized to assess the predictive capacity of the method on the simulated data. The mean 

area under the curve (AUC) for the entire set of linkage analyses was 0.81 for serial 

murder and 0.80 for commercial robbery indicating that the model represents a “good” 

predictor of serial linkage. 

 The Bayesian hypothesis test was applied to the likelihood ratio, and results 

indicated that the extreme level of evidence utilized in the test was a good indicator of 

linkage (exhibiting a median hit rate of 90% and a mean percent of series identified of 

43.22%) for the commercial robbery data using spatial and time difference in conjunction 

with all 12 M.O. factors. For the murder data using the same set of factors, the extreme 

level of evidence was less effective as a predictor (exhibiting a median hit rate of 54.55% 

and a mean percent of series identified of 56.38%). 

 The inclusion of additional information was shown to increase the predictive 

capacity of both models using AUCs as a measure of predictive validity. Using the levels 

of evidence from the Bayesian hypothesis test as decision thresholds, the inclusion of 

additional information increased both the percent of true positives and the percent of a 

series identified for all levels of evidence for the commercial robbery data. Adding 

additional information had little effect on the percent of true positives for the murder data 

at the highest and lowest levels of evidence and a negative effect at the two middle levels 

of evidence. In contrast, adding additional information had no effect on the hit rate using 
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the murder data at the three lower levels of evidence but increased the percent of a series 

identified at the highest level of evidence. The difference in performance between the 

commercial robbery and murder data was ascribed to the lower base rate of serial murder 

and the higher predictive capacity of distance for serial murder data. The higher 

predictive capacity of distance for serial murders resulted in overall higher likelihood 

ratios than those observed for the commercial robbery data. Greater performance capacity 

was found to be associated with longer serial distances and time differences, shorter non-

serial distances and time differences, and greater offender consistency and uniqueness for 

M.O. factors in both the murder and commercial robbery data. Distance and time 

measures were more important for serial murder linkage, though they were  

still strong factors for commercial robbery linkage. Consistency and uniqueness were 

found to have equal value in serial murder linkage, but uniqueness had twice the impact 

on commercial robbery linkage performance. The greater impact of uniqueness in serial 

commercial robbery linkage than in serial murder linkage was attributed to higher 

average levels of consistency in the commercial robbery M.O. data and the reduced 

ability of distance and time to predict commercial robbery linkage. 
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CHAPTER I 

 

STATEMENT OF PROBLEM 

 

Over 100 years ago, the idea that crime scene behavior could be used to link serial 

crimes emerged (Gross, 1906). Following this, elaborate schemes for recording crime 

scene data were developed (Fosdick, 1915). In the modern era, technological advances 

allowed for the adoption of sophisticated computer systems that could be used to manage 

recorded data. In addition to storing data, these systems were utilized in attempts to 

identify patterns that indicated the presence of crime series (Howlett, Hanfland, & 

Ressler, 1986). However, the early techniques employed to link crimes were based upon 

little empirical evidence, and few efforts were made to demonstrate their validity 

(Bennell & Woodhams, 2012).  

Recognizing these limitations, researchers began to study serial crimes and the 

methods used for linking them. The purpose of these studies was twofold. From a 

theoretical perspective, the studies were believed to illuminate whether a similar 

underlying psychological process influenced how different types of criminals committed 

their crimes (Bennell & Jones, 2005). At the extreme end of this perspective, researchers 

asserted that the characteristics of offenders were related to their crime scene actions and 

that the more similar two offenders were, the more similar their crime scene behavior 

would be (Mokros & Alison, 2002). Based upon this reasoning, it was believed that the 

features of a crime would provide insight into the type of individual that may have 

perpetrated the crime. However, research has demonstrated that this homology 
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assumption is too simplistic and may not provide a strong basis for offender profiling 

(Mokros & Alison, 2002). 

From a practical perspective, the studies were designed to determine whether 

investigative strategies previously employed to link serial crimes were sufficient, or 

whether other methods might prove superior. Several pertinent questions arose such as 

whether crime linkage methods should be developed for specific geo-demographic 

situations and/or crime types, or whether more general techniques would suffice (Bennell 

& Jones, 2005). Despite calls for linkage procedures to be compared to other approaches 

and to be vigorously tested to demonstrate their predictive validity (Funder & Colvin, 

1991), little research has focused on comparing linkage analysis methods (Dowden, 

Bennell, & Bloomfield, 2007). The failure to demonstrate robust predictive validity for 

such methods represents a substantial limitation in the crime linkage analysis literature. 

 

Linking Serial Crimes 

Crime linkage is an important part of a serial crime investigation (Bennell, Jones, 

& Melnyk, 2009; Burrell, Bull, & Bond, 2012). By pooling information from each of the 

individual crimes in a series, investigators receive more information than they would 

receive from a single isolated crime. This information gain carries several practical 

advantages (Woodhams, Hollin, & Bull, 2007). It can help police departments to allocate 

their resources in a more efficient manner (Woodhams et al., 2007) resulting in greater 

productivity during investigative efforts (Bennell et al., 2009; Grubin, Kelly, & 

Brundson, 2001; Labuschagne, 2012). It can increase the speed and likelihood of 

identifying and apprehending an offender (Burrell et al., 2012), as well as allow the use 
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of additional investigative tools such as geographic profiling (Rossmo, 2000). 

Furthermore, the additional information can sometimes strengthen the evidence in the 

case (Woodhams, Bull, & Hollin, 2007), thereby yielding more successful trial outcomes 

(Labuschagne, 2006). 

Despite the benefits of linking serial crimes, research has demonstrated that 

informal linkage decisions made by investigators are often based on limited, subjective 

impressions (Canter, 2000). These impressions frequently differ between officers (Maltz, 

Gordon, & Friedman, 1990), and consequently investigators often poorly perform when 

assessing linkages (Wilson, Canter, & Butterworth, 1996). To overcome these 

shortcomings, researchers have attempted to develop objective analytic models to 

establish crime linkages (Green, Booth, & Biderman, 1976; Grubin et al., 2001). 

Establishing a crime series is straightforward when certain types of evidence are 

present. Confessions, eyewitness testimony, physical and/or forensic evidence such as 

fibers, fingerprints, or DNA may be used to establish linkages (Grubin et al., 2001). 

However, these types of evidence may be rare or not available (Ewart, Oatley, & Burn, 

2005; Hazelwood & Warren, 2003). Even when such evidence is present at a crime 

scene, it is not always collected (Davies, 1991). 

In the absence of these types of physical evidence, behavioral indicators may be 

the only information available to investigators for a linkage analysis (Bennell & 

Woodhams, 2012). Thus, some type of behavioral analysis is often necessary to link 

serial crimes (Burrell et al., 2012; Mokros & Alison, 2002; Rossmo, 2000). This type of 

process relies on analyzing the patterns of behavior associated with the crime scenes 

themselves as similarities between crime scene factors can help determine the probable 
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extent of a crime series (Rossmo, 2000). Some of these factors include location in time 

and space, modus operandi (MO), and signature (Rossmo, 2000; Rossmo, Kringen, & 

Allen, 2012). 

Whereas position in time and space are straightforward ideas, M.O. and signature 

are more difficult concepts. M.O. itself is a vague term. M.O. stands for the method of 

operation, and it refers to the actions that an offender undertakes that are necessary for 

the completion the crime (Bennett, 1989; Rossmo, 2000; Rossmo et al., 2012). 

Additionally, M.O. is often conceived to include characteristics of the target (McCarthy, 

2007). In contrast, signature typically refers to actions undertaken by a criminal that are 

unnecessary to the commission of the crime (Douglas & Munn, 1992; Rossmo, 2000). 

While signatures are often thought of as behaviors that would be particularly useful in 

linking crimes, their rarity generally makes them unavailable for linking most serial 

crimes (Rossmo et al., 2012). Although some researchers have claimed that criminal 

signatures exist (Keppel, 2000; Keppel & Birnes, 1997), others have argued that they are 

likely rare and unlikely to be identifiable for more common crimes such as burglary 

(Canter, 2000). 

 In the absence of physical evidence and signature, the only information 

available for linking crimes may be crime scene characteristics that are known, such as 

location, time, and the more common M.O. factors typically recorded by police. Research 

has demonstrated that crime location, temporal factors, and M.O. factors all have 

potential in classifying crimes as linked or unlinked (Davies, Tonkin, Bull, & Bond, 

2012), with most research in the area focusing on the value of space and time. Despite the 

demonstrated value of spatial and temporal factors in linking crimes, M.O. characteristics 
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may be useful as well. The very concept of M.O. implies that there are behavioral 

similarities between linked crimes, that these are recognizable, and that they could be 

useful in the classification of serial offenses (McCarthy, 2007, Rossmo, 2000). However, 

M.O. factors have been the subject of less empirical study (Bennell, & Jones, 2005).  

 The best way to accurately classify crimes as linked or unlinked using M.O. 

factors would be to identify factors that reliably correspond to linked crimes but not to 

unlinked crimes. Unfortunately, it has proven difficult to identify such factors. Criminal 

behavior is complex and the identification of a set of actions that perfectly discriminate 

between linked and unlinked crimes is challenging. Empirical research suggests that 

perfect discriminators are unlikely to exist in the criminal context, making the value of 

this approach questionable (Bennell & Canter, 2002). 

However, the process of linking crimes using M.O. factors may still be effective if 

it can be shown that identifying factors occur at different rates for linked versus unlinked 

crimes. M.O. factors such as crime selection choices, entry behaviors, characteristics of 

the targeted properties, and items stolen may vary between offenders in patterns similar 

to the way spatial factors and temporal factors vary (Davies et al., 2012). Based upon this 

understanding, researchers have attempted to develop analytic linkage methods based on 

this variation (Green et al., 1976; Grubin et al., 2001). 

The use of this probabilistic approach in linking crimes requires identifying a 

linking feature or set of features reliably associated with crimes committed by the same 

offender that are not as commonly associated with crimes committed by different 

offenders (McCarthy, 2007; Rossmo, 2000). This implies there is value in determining 

which aspects of offenders’ crime scene actions are most often repeated across crimes. 
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Identified areas of behavioral repeatability may also have practical value as a basis for 

decision support tools in crime linkage (Rossmo, 2000). Variation in the frequency of 

some M.O. factors has been shown to have discrimination accuracy establishing crime 

linkages when used in conjunction with spatial and temporal factors (Davies et al., 2012). 

 

The Present Study 

Recently, a Bayesian model for linking serial crimes has been proposed (Rossmo 

et al., 2012). The method involves computing a likelihood ratio that indicates the 

likelihood of linkage for each crime in a potential series. Initial investigation has 

demonstrated support for the predictive validity of the method (Rossmo et al., 2012). 

However, the initial analyses were limited to spatial and temporal factors. Therefore, the 

impact and value of M.O. factors remains untested. 

 Building upon these prior analyses, the present study seeks to establish 

additional evidence of the predictive validity of the linkage method. Simulation models 

are employed, and the inclusion of M.O. factors is tested to determine the extent to which 

they increase the predictive validity of the linkage method. Finally, the study determines 

the value of information to the linkage method by establishing the characteristics of 

information related to model improvement. 
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CHAPTER II 

 

REVIEW OF THE LITERATURE 

 

 Two general areas of literature are important for crime linkage analysis. The first 

body consists of theoretical literature that describes offender behavior. Crime pattern 

theory, the journey to crime, routine activity theory, and social-cognitive theory provide 

insight into the ways in which offenders operate in space, in time, and behaviorally. 

Empirical support has been demonstrated for each of these four, and this understanding of 

offender behavior provides a theoretical basis for a crime linkage system. 

 The second body of literature consists of work focused specifically on crime 

linkage analysis. This work empirically tests the utility of various factors and different 

systems that can be utilized to predict linkage. Through a variety of techniques and 

multiple types of analysis, support has been demonstrated for the use of distance, time 

difference, and M.O. for crime linkage. 

 The first section of this chapter covers the four theoretical foundations. Each is 

explained as it applies to crime linkage analysis, and empirical evidence resulting from 

tests of each theory is presented. The second section of this chapter covers issues that are 

important for understanding crime linkage analysis. The third section outlines previous 

research on crime linkage methods. The fourth section presents an introduction to 

Bayesian probability and the proposed crime linkage method. The final section discusses 

the research questions addressed by the present study. 
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Theoretical Foundations 

 Four main theoretical areas have substantial importance for crime linkage 

analysis. The first, crime pattern theory, arose from the work of Brantingham and 

Brantingham (1981, 1984, 1993a, 1993b). Crime pattern theory focuses on spatial 

patterns in offending that arise from an offender’s awareness space which defines areas 

where offenders tend to commit crimes. As a result of regularities in individual offender’s 

awareness space, the theory suggests that geographic patterns in an individual offender’s 

crimes will emerge. 

 The second, journey to crime, focuses on the idea that offenders, like other 

hunting and foraging species, minimize effort when seeking criminal opportunities. Thus, 

with the exception of possibly avoiding criminal opportunities immediately near their 

homes or offices where they may be recognized, offenders will tend to commit crimes 

closer to these locations rather than farther away. As a result, the spatial location of an 

individual offender’s crimes will demonstrate distinct patterns. 

 The third, routine activity theory, arose out of the work of Cohen and Felson 

(1979). Routine activities focuses on the spatial and temporal patterns that arise from the 

sustenance activities of everyday life. Because these activities disperse individuals in 

patterned ways, offenders and targets intersect in distinct patterns. Thus, the underlying 

opportunity structure for crime is non-random, and spatial and temporal locations of 

crime exhibit distinct patterns. 

 The final theory, social-cognitive theory, asserts that individuals have inherent 

behavioral tendencies that they express when engaging in certain behaviors, and that the 
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expression of these behaviors represents an interaction between the individual’s 

underlying tendencies and the environment. This theory is particularly important for 

crime linkage systems that utilize M.O. factors, because M.O. factors are likely more 

useful for crime linkage analysis if an offender more commonly expresses them when 

committing their crimes. The following sections present each of these four areas in 

greater detail. 

 

Crime Pattern Theory 

Crime pattern theory arose from the work of Brantingham and Brantingham 

(1981; 1984; 1993a, 1994b). Brantingham and Brantingham noted that crime is not 

uniformly distributed across space. They argued that, “criminal behavior can be viewed 

as a complex form of subjective spatial behavior in which movement patterns depend on 

underlying spatial mobility biases, knowledge, and experience” (1984, p. 332). This view 

relies on the idea of a behavioral environment in which crime occurs. The behavioral 

environment can be broken down into the physical setting (buildings, roads, climate), the 

social setting (social and economic conditions as well as group and friend networks), the 

legal setting (laws and law enforcement behavior), and the cultural setting (the beliefs 

that influence actions). Brantingham and Brantingham (1984) view the first setting as 

primarily related to crime whereas the remaining three form a backcloth that exerts an 

indirect influence on crime. 

 Crime pattern theory is based on the idea that offenders use a spatially structured, 

hierarchical decision process when navigating the physical environment in search of 

criminal opportunity (McCarthy, 2007). The process consists of two distinct stages. In the 
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first stage, criminals identify a suitable area to commit an offense. In the second stage, 

criminals identify targets within the selected area. Crime pattern theory focuses on the 

first step, how criminals identify suitable areas. The theory is based on the idea that each 

offender has an awareness space or areas of familiarity, and that offenders exhibit a 

preference for committing their crimes within this space (Brantingham & Brantingham, 

1993a). 

 Criminals prefer to commit their crimes in familiar locations for several reasons. 

First, familiar surroundings allow offenders to identify environmental cues more easily. 

Second, offenders are more able to identify getaway routes in familiar places. Third, 

offenders blend in more easily in familiar surroundings. Finally, operating in familiar 

areas that are part of an offender’s everyday activities requires less effort than operating 

in other areas. 

 According to the theory, three important features define an offender’s awareness 

space. These three factors are nodes, paths, and edges (Brantingham & Brantingham, 

1993b). Nodes are the locations or the centers of activity where an offender engages in 

non-criminal acts. These include locations such as an offender’s home, an offender’s 

work or school, locations where an offender shops, and locations where an offender 

regularly goes for entertainment. Because an offender spends time at each of these 

locations, they develop familiarity with the areas. As a result, these areas serve as anchor 

points for offending. Of the locations mentioned, the offender’s home has been shown to 

be the most influential on location of an offender’s offenses (Rengert & Wasilchick, 

2000). 
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Paths are the routes that connect nodes. Together, nodes and paths form an 

activity space wherein individuals are most likely to commit crimes (Brantingham & 

Brantingham, 1993b). The greater activity space is influenced by the physical 

environment and the way in which an individual travels. For example, an individual’s 

activity space may include a path from home to work, but if the travel between the two 

locations is undertaken primarily by train, the individual may have limited awareness of 

locations along the path (Brantingham & Brantingham, 1984). Edges are the meeting 

zone of two or more distinct areas. The concept of edges extends the basic understanding 

of the importance of environment. Brantingham and Brantingham (1993b) contend that 

greater opportunity for crime exists near edges. 

Brantingham and Brantingham (1984) argue that it is possible to describe the 

process of target selection as spatial behavior. Specifically, they argue that an individual 

begins their search at or near a node that composes part of their activity space. The 

individual covers areas that they know before moving further away. Because potential 

targets and victims are unevenly distributed across space, an opportunity space exists 

separate from the offender’s activity space. Crimes occur at the intersection of both 

spaces. While criminals may encounter targets outside of their awareness space, 

offenders are more likely to encounter targets within or near their awareness space. 

Offenders assess the risk of individual targets seeking characteristics which suggest some 

targets are better than others. While offenders will vary in the factors that lead them to 

conclude that a target is suitable, the relationship between awareness space, opportunity 

space, and areas of crime occurrence are present in all criminal acts (Brantingham & 

Brantingham, 1984). 
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Journey to Crime 

The journey to crime is a logical extension of crime pattern theory. Journey-to-

crime focuses on the distances between an offender’s residence and their crime. While 

each offender is unique, at an aggregate level basic similarities regarding offenders’ 

search processes emerge. These similarities lead to general principles regarding criminal 

search patterns which aid in understanding their search behavior. As suggested by crime 

pattern theory, most offenders commit offenses near an anchor point from which they 

begin their search. While the anchor point is commonly the offender’s home, it may 

represent another location such as their place of work. 

The typical distance between an offender’s anchor point and the locations of their 

targets varies by type of crime and type of offender. However, the basic principle that 

offenders target opportunities near their anchor point rather than far away remains 

consistent. Although the search for criminal opportunities may not originate from the 

offender’s home (Pettiway, 1995), many studies support the contention that offenders 

generally live within a short distance from the location where they commit crimes 

(Canter & Larkin, 1993; Rengert, Piquero & Jones, 1999, Wiles & Costello, 2000; 

Ratcliffe, 2001; Bernasco & Lux, 2003; Bernasco, 2009; Sarangi & Youngs, 2006). 

While these studies have demonstrated variation in the actual distances travelled, some of 

the variation may be attributed to situational factors, sampling issues, and the particular 

distance metric used (McCarthy, 2007). 

 Importantly, the type of crime committed influences the actual distance travelled. 

For example, property crime trips tend to be longer than other crime types (Levine, 
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2004). This may vary as a function of the value of the property stolen. Bernasco (2009) 

suggests that optimal foraging strategy explains that when a higher reward is perceived, 

offenders will travel greater distances to commit crimes. Other crime types have different 

impacts on the journey to crime. Rossmo (1993) indicates that violent serial offenders 

typically do not offend within a buffer zone around their home because they perceive 

targets in close proximity to be too risky. 

Journey-to-crime research has utilized a variety of different distance measures. 

The majority of research uses either Euclidean or Manhattan distances. The Euclidean 

distance represents the shortest distance between two points and can be visualized as the 

hypotenuse of a triangle. The Manhattan distance represents the length of travel between 

two points along a right angle street network and can be visualized as the two right-angle 

sides of a triangle. While which distance measure is appropriate is the subject of an 

ongoing debate, both measurements provide similar results because they essentially serve 

as proxies for each other (O’Leary, 2009). 

Other researchers theorize that different distance measures might prove superior. 

However, shortest actual travel path and the quickest temporal path have both been found 

inferior to either the Euclidean distance or the Manhattan distance (Kent, Leitner, and 

Curtis, 2006). While some view such tests as overly technical, modeling different 

distance metrics provides insight into the nature of the criminal search. For example, 

Canter (2003) theorizes that actual travel paths might not completely define an offender’s 

awareness space. Instead, his research suggested that individuals may choose routes 

based upon their mental maps. Because an individual’s mental map is limited, the 

additional information required to find the shortest travel and quickest temporal path may 
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be far beyond the reach of an offender. Further, the observation that the distance an 

offender actually travels to commit a crime may be much longer than the measured 

distance from his or her home to the crime site (Rossmo, Lu, & Fang, 2011). 

 

Routine Activities 

 Routine activities is an approach for explaining how crime rates vary over space 

and time. While the theory is essentially a macro-level explanation of crime, it involves 

several micro-level assumptions about individual behavior and the nature of criminal 

opportunity. The approach states that three minimal elements must converge for a crime 

to occur: a motivated offender, a suitable target, and the absence of a capable guardian 

(Cohen & Felson, 1979). Routine activities themselves are the basic sustenance activities 

that individuals engage in as part of their daily lives. While these activities are non-

criminal, they distribute offenders, targets, and guardians over space and time thus 

affecting the spatial and temporal locations of crime. 

 The routine activities approach was based largely on Amos Hawley’s (1950) 

theory of community life. Hawley (1950) treated communities as a set of symbiotic and 

competitive relationships. These relationships vary as human activities are performed. 

Three important temporal aspects of Hawley’s work were essential for the development 

of the routine activities perspective. These temporal aspects include tempo, rhythm, and 

timing. Tempo is the number of events in a time period. Rhythm is the regular periodicity 

at which an event occurs. Timing concerns the coincidence of different, unrelated 

activities.  
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 Applying these temporal ideas to crime considering the three minimal elements 

(i.e., a motivated offender, a suitable target, and the absence of a capable guardian) is 

straightforward. Cohen and Felson (1979) contend that the organization of non-criminal 

activities affect the spatio-temporal convergence of motivated offenders, suitable targets, 

and capable offenders. These convergences have rhythms driven by the organization of 

everyday activities. For example, the incidence of certain crimes increases in the 

afternoons on weekdays as school children are let out because when children are released 

from school, the number of potential offenders and targets within areas around schools 

becomes larger. 

 The inclusion of the temporal aspects of daily life in the routine activity 

perspective provides a means to understand temporal patterns in crime. In conjunction 

with the ideas of awareness space and opportunity space, routine activities incorporates 

the idea of temporal convergence. Because individual offenders have non-criminal 

routines, their opportunities to offend also exhibit temporal regularity. 

 

Social-cognitive Theory 

 Social-cognitive theory is a behavioral theory that addresses whether individual 

behavior varies between individuals as the result of momentary situational influences or 

as a result of enduring differences in their personality (Schoda, Mischel, & Wright, 

1994). The theory asserts that individual differences in patterns of behavior result from 

underlying personal characteristics such as individual experiences, expectations, values, 

goals, and self-regulating strategies (Mischel, 1999). Importantly, the theory specifically 
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considers situations where individuals are similar in their behavior on average, but differ 

in the specific situations where they exhibit the behaviors. 

 According to the theory, the tendency to exhibit a behavior in some situations but 

not others is itself a distinct aspect of individuals. Enduring personality traits are viewed 

as interacting with situational characteristics to result in generally stable behavior. Thus, 

individuals exhibit sets of “temporally stable prototypic behaviors” (Mischel & Peake, 

1982, p. 754) that produce discriminative patterns. These patterns of behavior can be 

conceptualized as unique behavioral indicators of personality (Schoda, Mischel, & 

Wright, 1994). 

 Situational theories of behavior have long stood in opposition to dispositional 

theories. Essentially, dispositional theories of behavior assert that there are fixed 

dispositions or traits that define personalities (Casta & McCrae, 1997; Wiggins & 

Trapnell, 1997). These dispositions are believed to be invariant across situations and 

distinctive to the individual (Funder, 1937; Goldberg, 1993). In contrast, situational 

theories of behavior posit that intra-individual variation across situations results, in part, 

due to individual differences in their reactions to situations (Higgins, 1996). Essentially, 

the two perspectives differ in that dispositional theories focus on broad stable 

characteristics that differentiate between individuals and situational theories focus on the 

effect of the environment on behavior (Mischel & Shoda, 1995). 

 Social-cognitive theory represents a union of these two extremes, overcoming 

some of the problems inherent in viewing behavior under only one of the models. 

Whereas a dispositional approach would provide a theoretical basis for behavioral 

profiling of individuals, its inability to integrate variability in responses due to between-
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situation variation represents a substantial limitation. In contrast, social-cognitive theory 

provides a theoretical basis for explaining individuals that may be likely to exhibit 

behaviors yet do so only on certain occasions. 

 

Other Issues in Crime Linkage Analysis 

 Beyond these theoretical foundations, certain other ideas are important for 

understanding crime linkage analysis. These include the difference between signature and 

thematic models of behavior, the ideas of behavioral consistency and distinctiveness, and 

the issues related to classification instruments and prediction error. These ideas are 

explained in the following sections. 

 

Consistency and Distinctiveness 

Identifying the degree to which features of an offense help link it to others by the 

same offender is important for crime linkage methodologies (McCarthy, 2007). Two 

central assumptions about behavior are important considerations when assessing the 

value of behavior for linkage. The first assumption is known as the behavioral 

consistency hypothesis. This hypothesis asserts that an individual offender’s behavior is 

relatively consistent from crime to crime (Canter, 1995). The second assumption is the 

behavioral distinctiveness hypothesis. This hypothesis asserts that offenders’ behaviors 

are heterogeneous and vary largely between individual offenders (Goodwill & Allison, 

2006; Salfati & Bateman, 2005). 

Taken together, these two assumptions suggest there should be at least some 

differences in the behavioral characteristics associated with crimes committed by 
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different offenders and some similarities in the behavioral characteristics of crimes 

committed by the same individual offender. This consistency within offenders and the 

variation between offenders should help link an individual offender’s crimes to a series 

while distinguishing it from crimes committed by other offenders (Burrell et al., 2012). 

 Empirical research has demonstrated support for the behavioral consistency 

hypothesis. Grubin et al. (2001) showed evidence of behavioral consistency among serial 

sexual assaults. Salfati and Bateman (2005) showed evidence of behavioral consistency 

among serial murders. Bennell and Canter (2002) showed evidence of behavioral 

consistency among serial burglaries, and Burrell et al. (2012) showed evidence of 

behavioral consistency among serial robberies. Other research has echoed these findings 

(e.g., Bateman & Salfati, 2007; Bennell & Jones, 2005; Markson, Woodhams, & Bond, 

2010; Canter & Youngs, 2003; Santtila, Fritzon, & Tamelander, 2004; Sorochiniski & 

Salfati, 2010; Tonkin, Grant, & Bond, 2008; Woodhams & Toye, 2007). While these 

findings provide strong evidence that serial offenders are largely consistent in their 

behavior, some studies suggest behavioral similarity alone is insufficient to demonstrate a 

high likelihood of linkage, because other offenders may exhibit the same behaviors 

consistently as well (Klein, 1984). 

 Highly consistent behaviors that also exhibit high levels of distinctiveness 

between offenders can overcome this limitation. Substantial research has demonstrated 

support for the behavioral distinctiveness hypothesis across serial sexual assault, serial 

murder, serial burglary, and serial robbery as well (Bateman & Salfati, 2007; Bennell & 

Canter, 2002; Bennell & Jones, 2005, Bennell, Gauthier, Gauthier, Melnyk, & Musolino, 
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2010; Burrell et al., 2012; Grubin et al., 2001; Santtila et al., 2004; Woodhams & Toye, 

2007). 

Empirical evidence for both behavioral consistency and behavioral distinctiveness 

has been found for spatial location (Markson et al., 2010; Lundrigan, Czarnomski, & 

Wilson, 2010; Santilla, Laukkanen, & Zappala, 2007, & Tonkin et al., 2008) and 

temporal proximity (Goodwill & Alison, 2006; Markson et al., 2010). Since location of 

target may be the most crucial decision, and is the one that an offender has the most 

control over, it follows that this aspect of behavior will be more consistent than other, 

context-dependent behaviors (Bennell, & Jones, 2005; Harbers, Deslauriers-Varin, 

Beauregard, & Van Der Kemp, 2012). Likewise, consistency and distinctiveness of 

spatial behavior is important for crime linkage because location can be recorded in a 

reliable fashion by the police (Bennell & Jones, 2005). This allows for the detection of 

consistent patterns of spatial behavior. To a lesser extent, temporal aspects of crimes 

exhibit this same benefit. However, certain crime types, such as burglary, are less likely 

to result in accurate temporal data. Factors other than time and location may be even less 

reliable. 

Beyond the issue of reliability is the problem that the consistency assumptions 

underlying M.O. may be incorrect (Douglas & Munn, 1992). Serial offenders may 

modify aspects of their criminal activity over the course of their crime series due to a 

range of situational and learning factors. Due to a lack of empirical support for the 

presence of enduring personality traits (Shoda, 1999), it is believed that offender behavior 

changes depending upon the situation. However, researchers argue that these changes 

themselves are consistently manifested when an individual faces similar situations 
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(Mischel, 1999). Therefore, one individual’s reactions to a set of situations will be 

consistent and may also be distinct from another individual’s behaviors in the same set of 

situations (Mischel & Schoda, 1995). This implies that M.O. behavior can be both 

relatively consistent and distinctive. 

 The claim that time moderates consistency is problematic for the use of crime 

linkage. If this phenomenon occurs, events that happen closer in time will show a greater 

behavioral consistency than those that happen further apart (Pervin, 2010). It has been 

suggested that experience will aid behavioral control as individuals become more familiar 

with the situations they face (Hettema & Van Bakel, 1997), or it could be that as 

criminals become more experienced in offending, they specialize and refine their M.O. 

Another theory suggests that offenders may simply mature and change their offending 

patterns over time (Davies, 1992). However, research fails to find evidence that time 

moderates consistency (Markson et al., 2010; Tonkin et al., 2008; Woodhams, Hollin, & 

Bull, 2008; Woodhams & Labuschagne, 2011). Likewise, other empirical work suggests 

that there is little relationship between behavioral consistency, distinctiveness, and 

expertise (Snook, 2004; Tonkin et al., 2008). 

In addition to the research contradicting claims that M.O. changes over time, 

other research has shown that M.O. factors demonstrate statistically significant levels of 

behavioral consistency and distinctiveness (Grubin et al., 2001; Woodhams & Toye, 

2007). The empirical evidence contradicts the assertion that M.O. is too dynamic to be of 

practical value in linking serial crimes (Davies, 1992, Douglas & Munn, 1992). Although 

the use of some M.O. indicators may result in lower levels of discriminatory accuracy, it 
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is possible to identify certain elements that are relatively stable and distinct across a 

crime series (Bennell, & Jones, 2005). 

  

Signature and Thematic Models 

 Two distinct approaches to classifying offender behavior have emerged. The first 

of these is the thematic model. The thematic model asserts that comparison of behavioral 

characteristics of crime scenes should focus on themes of behavior, or that individual 

behaviors should be grouped together when the behaviors are suggestive of a general 

domain (Bateman & Salfati, 2007). This approach suggests that crime scene actions 

corresponding to the same domain of behavior should be considered the same actual 

behavior when attempting to link crimes (Salfati & Bateman, 2005). Thus, the thematic 

model implies that the consistency and distinctiveness of the presence of themes of 

behavior are the important considerations for crime linkage analysis. 

 Early crime linkage methodologies relied on this thematic approach using 

generalist typologies to link crimes (Clinard & Quinney, 1986). These methods attempted 

to differentiate between offenders using thematic categories such as skills and outlook 

(Osterburg & Ward, 1992) and degree of planning or typologies of items targeted (Waller 

& Okihiro, 1978). Recent attempts to develop crime linkage methods have used the 

thematic approach as well. For example Merry and Harsent (2000) used degree of 

professionalism, and Goodwin and Canter (1997) developed a typology of offenders on 

the basis of their script. 

 The second approach is the signature model. Whereas signature is often used 

when speaking about criminal behavior to refer to an offender’s unique behavior or 



 

 

22 

 

calling card (Douglas & Munn, 1992), the signature model of behavior for crime linkage 

is a different concept. The signature model for crime linkage uses specific behaviors 

rather than domains of behavior when attempting to link crimes (Bateman & Salfati, 

2007). Unlike the thematic approach, the signature approach makes no assumptions by 

grouping behaviors that may be unrelated. Under the signature model, the likelihood that 

two crimes are part of a series should be determined by comparing the specific behavioral 

characteristics present at the crime scene. 

 Researchers have argued that the thematic approach should be more effective at 

linking serial offenses compared to the signature approach as the use of themes is less 

sensitive to variations in consistency than the use of the key individual behaviors 

(Bateman & Salfati, 2007). Thus, comparing behavior thematically should result in 

greater behavioral consistency than would be found when comparing individual 

behaviors. 

However, the superiority of one approach over the other remains undetermined. 

Studies have found mixed support when analyzing both individual behaviors and 

behaviors corresponding to domains or themes (Bateman & Salfati, 2007; Salfati & 

Bateman, 2005; Woodhams et al., 2008). Although the assertion that the thematic 

approach yields greater consistency persists, some assert that individual behaviors may 

have more relevance for practice (Harbers et al., 2012). 

Due to the assumption-free nature of crime linkage using individual behaviors, 

there is less chance of linking crimes where different offenders exhibit different yet 

thematically similar behaviors. However, to utilize individual behaviors for crime linkage 

analysis it becomes important to clearly establish which features are the most consistent 
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and which are the least consistent from crime to crime (Harbers et al., 2012). Further, 

each individual behavior present at a crime that meets the consistency and distinctiveness 

requirements for linkage should be considered in conjunction with the other factors of the 

scene (Rossmo et al., 2012). This approach yields a set of individual behaviors exhibiting 

greater consistency overall than any individual behavior while avoiding the problematic 

assumptions of the thematic model. 

 Importantly, some crime linkage methods incorporate M.O. factors that can be 

viewed as either signature or thematic behaviors. For example, behavioral profilers with 

the Federal Bureau of Investigation (FBI) rely on type of crime, style of crime, primary 

intent, victim risk, offender risk, and escalation in addition to the time and the location of 

the crime (Douglas, Ressler, Burgess & Hartman, 1986). Several of the M.O. factors 

included by the FBI could be classified as thematic or signature depending on how 

broadly the categories are defined. 

 

Diagnostic Tests and Decision Outcomes  

 The goal of crime linkage analysis methods is to successfully classify linked and 

unlinked crimes using some set of information as the basis for the classification 

decisions. This process can be conceptualized as a diagnostic task (Bennell & Canter, 

2002). Diagnostic tests where there are two possible outcomes to be classified are called 

two alternative, yes-no tests (Swets, 1988). Crime linkage analysis is this type of test. For 

any set of crimes, there are two possibilities (i.e., the crimes are either linked or 

unlinked). Thus, there are two possible predictions. When tests result in the two possible 
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predictions and there are only two possible outcomes, there are four possible decision 

outcomes for each observation/prediction pair. These outcomes are presented in Table 1. 

 

Table 1: Decision Outcomes 

 

 Actually Linked Actually Unlinked 

Predicted Linked Hit False alarm 

Predicted Unlinked Miss Correct rejection 

  

 

 The four decision outcomes are known as hits, misses, correct rejections, and 

false alarms. Hits occur when the prediction that two crimes are linked is correct. Misses 

occur when the prediction indicates that two linked crimes are unlinked. Correct 

rejections occur when the prediction that two crimes are unlinked is correct, and false 

alarms refer to predictions that indicate that two unlinked crimes are linked. While hits 

are also known as true positive, misses are often referred to as false negatives. Similarly, 

correct rejections are also known as true negatives, whereas false alarms are sometimes 

called false positives. 

 The probability of certain types of linkage decisions are used to measure the 

accuracy of a diagnostic test, and these probabilities are calculated using the frequencies 

of the four decision outcomes (Swets, 1988). The calculation of the probabilities for each 

decision outcome are presented in Table 2 with the letters A,B,C and D indicating the 

frequency within each cell. 
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Table 2: Decision Outcome Probabilities 

 

 Actually Linked Actually Unlinked 

Predicted Linked 

A 

 ( )   
 

     
 

B 

 ( )   
 

     
 

Predicted Unlinked 

C 

 ( )   
 

     
 

D 

 ( )   
 

     
 

  

 

 The hit rate, or true positive rate, is known as the sensitivity of the test. The 

correct rejection rate, or true negative rate, is known as the specificity of the test. 

Whereas the sensitivity of the test indicates the probability that a crime classified as 

linked is actually linked, the specificity of the test indicates the probability that a crime 

classified as unlinked is actually unlinked. Since the probabilities in each column of 

Table 2 sum to one, two pieces of information can be used to summarize all the 

information indicated in Table 2; therefore, sensitivity and specificity are commonly used 

as measures of the performance of classification systems (Swets, 1988). 

 

Research on Crime Linkage Analysis 

 While several studies have addressed the behavioral assumptions of crime linkage 

systems, less empirical research has focused specifically on crime linkage analysis itself. 

Within crime linkage analysis research, some work has focused primarily on the value of 

spatial and temporal factors to discern linkage. Other research has used M.O. factors. The 

majority of crime linkage analysis research using M.O. factors has been based on 

thematic models of behavior with less research focusing on the signature approach. 
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Previous research on crime linkage analysis including M.O. factors is presented in this 

section. 

 Early efforts at MO-based linkage analysis relied on thematic models with a 

limited number of categories for each type of behavior analyzed (Clinnard & Quinney, 

1986; Waller & Okihiro, 1978). Because of the generalist typologies that were used, a 

substantial number of offenders were grouped in each class. As a result, the early studies 

failed to find variables that could classify linkage (McCarthy, 2007). 

 One early study conducted by Green et al. (1976) demonstrated predictive 

validity
1
 for crime linkage methods. Using seven M.O. factors for serial burglars 

(location of entry, side of entry, location on block, method of opening, day of week, value 

of property stolen, and type of property stolen), Green et al. (1976) demonstrated that 

measures of similarity calculated for pairs of crimes could predict linkage. The measures 

of similarity were plotted, and both objective and subjective methods were found to be 

capable of determining clusters of linkage. While the study showed that 93% of the 

offenses analyzed were correctly linked, there were two issues with the study. First, the 

study was based on simulated data generated without an empirical basis. Second, the 

cases selected for validation were chosen because they exhibited distinctive M.O. factors. 

Thus, the validation occurred on a biased sample of data. Without testing on data that 

corresponded to the indistinct nature of the majority of M.O. factors, the findings provide 

little insight into the utility of crime linkage analysis in most real-world applications. 

                                                 
1
 Predictive validity is defined as the extent to which a test correctly classifies some criterion (Cronbach & 

Meehl, 1955). Consistent with the idea of predictive validity, the word “predict” is used in crime linkage 

research when one factor has been determined be useful in correctly classifying serial crime. For example, 

distance measures have been shown to be able to correctly classify linked crimes; therefore, distance can be 

said to “predict” linkage. This should not be confused with the idea of future event prediction, as none of 

the studies referenced herein made predictions about future linked crimes.  
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 Bennell and Canter (2002) used logistic regression models to determine M.O. 

factors that distinguished between linked and unlinked crimes. Bennell and Canter (2002) 

analyzed M.O. factors in commercial burglary that included entry behavior, target 

characteristics, property stolen, and inter-crime distance. The study demonstrated that 

inter-crime distance, target characteristics, entry behaviors, and property stolen all had 

predictive validity. Of the factors, inter-crime distance was the best predictor of serial 

linkage accurately predicting 80% of serial burglary. The study defined an approach to 

evaluating crime linkage analyses that later research largely followed. However, the 

study had an important limitation; it did not actually mimic the real-world task of crime 

linkage. Instead of testing the ability of factors to correctly classify linked and unlinked 

crimes from all crimes that occurred within a jurisdiction during a period of time, the 

study analyzed the ability of factors to correctly classify a subset of pairs of crimes (some 

pairs committed by the same offender and others committed by different offenders) that 

removed many offenses committed by the same offender. While the authors argued that 

this approach increased the confidence in their results because the effect of very prolific 

criminals had been removed, the subset approach substantially altered the data that would 

have been considered by an actual crime analyst. 

 Bennell and Jones (2005) used the same techniques as Bennell and Canter (2002) 

on another set of burglary data. The data included both commercial and residential 

burglary. Consistent with the earlier study, the research showed that inter-crime distance, 

target characteristics, items stolen and entry behaviors were all predictive for serial 

commercial burglary. The same M.O. factors were predictive for serial residential 

robbery, and, of the factors studied, inter-crime distance demonstrated the greatest 
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predictive validity for both crimes. Interestingly, inter-crime distance was a better 

predictor (85-94% accurate) in the residential model than in the commercial model (76-

88% accurate). However, due to the use of the same techniques as the previous study, 

Bennell and Jones’ (2005) study suffered from the same limitations. 

 Woodhams and Toye (2007) studied crime linkage analysis for serial commercial 

robberies. Data on 71 offender behaviors were coded into four behavioral domains. These 

included target selection, planning, control, and property. Together with inter-crime 

distance, these factors were analyzed for predictive validity. The study showed evidence 

that all five factors were predictive of serial linkage. However, unlike previous research, 

Woodhams and Toye (2007) found the control domain to be the best predictor of linkage. 

The authors theorize that, while inter-crime distance is the best predictor for other types 

of crime such as burglary, the inter-personal nature of robbery lends itself to more 

controlling behavior. They assert that features of control such as use of weapons, 

language used, level of violence, and so on reflect an individual’s demeanor more 

accurately than other behaviors. This suggests that there should be both greater 

consistency and uniqueness exhibited in controlling behaviors. 

 McCarthy (2007) studied the effectiveness of linkage analysis on serial burglaries. 

Using data on how, why, when, and where each burglary was committed, McCarthy 

(2007) demonstrated the predictive validity of an optimal model based on 21 

characteristics of burgled premises, 34 behaviors of burglars during the commission of 

the crimes, and the Euclidian distance between crime sites. The model correctly classified 

98% of linked and unlinked burglaries. Further, McCarthy demonstrated that 94% 

accuracy could be achieved using only nine of the predictors. These predictors consisted 
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of three characteristics of the target (premises type, whether premises was in a cul-de-sac, 

and the presence of deadlocks), four behaviors of offenders (entry using a tool to disable 

a lock, use of a cutting tool, and not stealing CDs even though they were present), and 

distance between crime sites. Absolute distance between crime sights was found to be the 

best predictor of linkage. McCarthy (2007) found that the use of both conjoint presence 

(i.e., similarity due to the same factors being present in two crimes) and conjoint absence 

(i.e., similarities due to the same factors not being present in two crimes) of behavior 

resulted in greater predictive validity than conjoint presence alone.    

 Santilla et al. (2008) demonstrated the ability of a thematic linkage model to 

correctly distinguish between homicides that were part of different series. Based on 

pathologist findings, witness statements, and interrogation information, in conjunction 

with other data collected by the police, Santilla et al. (2008) derived a set of variables for 

offense information, victim characteristics, and situational factors. Using a nonparametric 

alternative to factor analysis, seven dimensions were found in the data. Five of the 

dimensions related to motivation, one related to level of planning, and the final related to 

crime scene behavior. In conjunction, these seven dimensions were capable of correctly 

classifying 63% of the crimes to the correct criminal. The authors acknowledged a 

noteworthy limitation; the data used for the analysis consisted of only solved homicides. 

As pointed out by Bennell and Jones (2005), solved cases may represent a biased sample 

as solved cases may exhibit higher levels of behavioral constancy and distinctiveness 

than unsolved cases. 

 Burrell, Bull, and Bond (2012) tested behavioral similarity as the basis for crime 

linkage of personal robbery. The data for analysis included 48 behavioral factors. These 
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factors comprised three domains of behavior (target selection, control, and property) 

which were analyzed in conjunction with temporal proximity and inter-crime distance. 

The analysis demonstrated that inter-crime distance was the best factor for crime linkage. 

While control was able to discern linkage, the optimal model in the study included both 

inter-crime distance and target selection. Property was not a valid predictor of serial 

linkage. Importantly, inter-crime distance was found to be a better predictor of serial 

linkage when analyzing larger areas. When the analysis was limited to smaller localities, 

while inter-crime distance was still predictive, it was less accurate. As a result, Burrell et 

al. (2012) conclude that distance alone should not be used to link serial crimes. 

 Davies, Tonkin, Bull, and Bond (2012) studied crime linkage analysis for serial 

auto theft. They coded their data into the domains of target selection, target acquisition, 

target disposal behaviors as well as inter-spatial distances for location of theft and 

location of dump and time differences between thefts. Both measures of distance, the 

measure of time difference, and the domain of target selection behaviors were found to 

have predictive validity. Importantly, Davies et al. (2012) addressed whether adding other 

behaviors would improve the predictive validity of the model. The study showed that 

adding time differences and additional measures of target selection increased the ability 

to identify linked crimes. 

 

Bayesian Probability 

 One of the primary tasks of detectives is the interpretation of available 

information (Kuykendall, 1982; Rossmo, 2004; Sanders, 1977), and investigators must 

decide what the information tells them about the possibility that a particular suspect 
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committed the crime in question (Blair & Rossmo, 2010). Similarly, evaluating what a 

given piece of evidence implies about the likelihood that two crimes are linked is the 

essence of crime linkage. However, researchers have demonstrated that, when presented 

with a specific piece of information, individuals are generally unable to correctly assess 

what it tells them about the likelihood of a particular outcome (Blair & Rossmo, 2010). 

Thus, one of the goals of a valid crime linkage method is to correctly quantify the 

likelihood of linkage (i.e., the certainty that the same offender committed the crime). 

 Probability is the mathematical system for quantifying chance; precisely, 

probability is the systematic and rigorous process for dealing with uncertainty (Gill, 

2006). Although humans think in probabilistic terms daily, issues, such as cognitive 

biases, often result in incorrect characterizations of probability (Gigerenzer & Murray, 

1987). However, a detailed application of the formal rules of probability yields the 

correct probability of an outcome. This has particular value for a crime linkage system 

that assesses the likelihood that two crimes are linked.  

 The correct assessment of conditional probabilities is an important consideration 

when applying probability to crime linkage analysis. Conditional probability allows 

additional information to affect the calculation of a probability (Gill, 2006). For example 

the probability that a male individual is guilty of some crime is different than the 

probability that he is guilty of the crime in light of evidence that the offender was female. 

Having the additional information (the evidence that the offender was female) changes 

the probability that the male suspect is guilty. Formally, probability statements that 

acknowledge this additional information are known as conditional probability statements. 
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Simple probability statements, such as the probability of event A occurring, are 

written as P(A). Conditional probability statements such as the probability of event A 

occurring given that event B has occurred are written as P(A|B) (Good, 2005). Applying 

this method of writing probabilities to crime linkage, an analyst might be interested in the 

simple probability of linkage, or P(L) where L implies linkage. More likely, however, an 

analyst would be interested in P(L|E), the probability of linkage given E, the presence of 

an item of evidence.  

 Bayesian probability is the field of probability that relates conditional 

probabilities (Gill, 2009). Bayesian probability follows from the work of Thomas Bayes, 

published posthumously in 1763. Bayes’ contribution to the field of probability is known 

as Bayes’ rule or Bayes’ theorem. The theorem provides a way of inverting conditional 

probabilities (Gelman, Carlin, Stern, & Rubin, 2004, Gill, 2009). 

 

Bayes’ theorem is: 

 

 ( | )   
 ( | )  ( )

 ( )
 

 

where: 

 ( | )                                 

 ( | )                                 

 ( )                                       

 ( )                                       

 

 



 

 

33 

 

 

 

 

Bayes’ theorem could be applied to the probability of crime linkage as follows: 
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where: 
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Bayes’ theorem is often expressed using odds rather than proportions. Odds are 

ratios of probabilities and are often considered more intuitive than probabilities (Gill, 

2006). When considering a sample space with only two possible outcomes, P and Q, by 

definition, Q = 1 – P. The odds are the ratio of P and Q, or the ratio of P and (1 – P). In 

other words, the odds are the probability of one outcome divided by the probability of the 

other outcome. Expressing Bayes’ theorem in this way removes the denominator (in this 

example the unconditional probability of the evidence) which can be difficult to 

determine. When using odds, Bayes’ theorem is expressed as: 

 

                                              



 

 

34 

 

 

 

 

Bayes’ theorem expressed in odds follows algebraically: 
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 Ideally, a crime linkage method would be most concerned with the posterior odds 

since the posterior odds summarize the probability of linkage given an item of evidence 

to the probability of non-linkage given an item of evidence. Ultimately, crime linkage 

analysis is interested in the probability of linkage, not the probability of evidence given 

linkage. However, Bayes’ theorem can only yield these probabilities with the inclusion of 

a prior which, for crime linkage, is usually unknown. 

Bayesian methods have been criticized because of their use of priors (Kruschke, 

2011). Because there may be little prior information available, some methodologists 

claim this element biases the posterior odds. If an incorrect prior was included in the 

crime linkage method, it could fundamentally alter the predictive validity of the method. 

There is, however, a way out of this conundrum. Some Bayesian methods, such as the 



 

 

35 

 

Bayesian hypothesis test, do not rely on the use of a prior. This allows a Bayesian 

evaluation without any bias due to the prior. In the Bayesian hypothesis test, both the 

numerator and the denominator of the Bayes’ factor can be viewed as hypotheses 

(Hoijtink, Klugkist & Boelen, 2008). Importantly, these are competing hypotheses that 

are mutually exclusive and fully exhaustive (i.e., a crime is either linked or not, and it 

cannot be both). 

 The Bayes’ factor is the value interpreted in the Bayesian hypothesis test. The 

Bayes’ factor is a ratio of the support for the one hypothesis (the numerator) to the 

support for the alternate hypothesis (the denominator). The Bayesian hypothesis test is 

viewed as quantifying the odds of the hypothesis expressed in the numerator. Because the 

Bayes’ factor consists of probabilities for each hypothesis, it can demonstrate evidence 

for either. A Bayes’ factor less than one indicates support for the hypothesis in the 

denominator while a Bayes’ factors greater than one indicates support for the hypothesis 

in the numerator (Wagenmakers, Wetzels, Borsboom, & Van der Maas, 2010). 

For example, a Bayes’ factor of two would indicate that the numerator hypothesis 

of crime linkage is twice as likely as the denominator hypothesis of no linkage. A Bayes’ 

factor of one indicates no support for either possibility. Finally, a Bayes’ factor of one-

half indicates that the unlinked hypothesis is twice as likely as the linked hypothesis. The 

Bayes’ factor can be interpreted as the weight of the evidence provided by the data 

(Good, 1985). Table 3 presents a classification system that summarizes the weight of 

evidence for various levels of Bayes’ factors: 
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Table 3: Strength of Evidence using Bayes’ Factor 

 

Bayes’ factor Interpretation 

 > 100 Extreme evidence for H2 

30 - 100 Very strong evidence for H2 

10 - 30 Strong evidence for H2 

3 - 10 Moderate evidence for H2 

1 - 3 Weak evidence for H2 

 1  No evidence 

1/3 - 1 Weak evidence for H1 

1/10 - 1/3 Moderate evidence for H1 

1/30 - 1/10 Strong evidence for H1 

1/100 - 1/30 Very strong evidence for H1 

 < 1/100 Extreme evidence for H1 

   Adapted from Jeffreys (1961) 

 

Bayes’ Factor for Crime Linkage 

Rossmo et al. (2012) proposed a Bayesian method for linking serial crimes 

involving estimating a likelihood ratio of the probability of linkage to the probability of 

non-linkage (LRfinal). Because the joint probability of multiple events is equal to the 

product of the probabilities of the individual events
2
, a final likelihood ratio can be 

computed by multiplying the likelihood ratios for each factor as follows:  

 

  

                                                 
2
 Calculating LRfinal this way assumes independence. 
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LRfinal = LRdistance  x  LRtime  x  LRMO(1)  x  LRMO(2)  x  LRMO(3)  x . . . . LRMO(i) 

 

where: 
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The numerators in each of the likelihood ratios for distance, time, and various 

M.O. factors can be viewed as measures of consistency of behavior within a crime series 

with a high probability indicating a serial offender exhibits a given behavior with greater 

frequency. In contrast, the denominators in each of the likelihood ratios can be viewed as 

measures of the distinctiveness of the behavior. High probability in the uniqueness 

measure indicates the behavior is common for the crime type, whereas a low probability 

indicates the behavior is rare. As the consistency measure of the serial behavior (the 

numerator) increases, holding uniqueness (the denominator) constant results in a larger 

likelihood ratio. However, as uniqueness (the denominator) increases, holding 

consistency (the numerator) constant, the likelihood ratio decreases. In this way, larger 

likelihood ratios indicate that either the behavior being measured is consistent within a 

series or generally unique for the type of crime being analyzed. 

 Importantly, likelihood ratios themselves are distinct from probabilities. As such, 

they are interpreted differently. Because probabilities express a precise estimate of the 

chance of an event, they have an absolute interpretation. For example, a probability of 1.0 
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(the upper bound of probability) expresses certainty. In contrast, likelihood ratios have no 

upper bound. Thus, they are not situated along a scale that allows for absolute 

interpretation. However, likelihood ratios are useful for making comparisons, and relative 

judgments about chance can be made using them. This characteristic poses no limitation 

for crime linkage systems that use likelihood ratios, because the task of crime analysis is 

largely related to prioritization of unsolved crimes. Likelihood ratios inform this task, as 

crimes exhibiting higher total likelihood have a greater chance of being linked than those 

with lower likelihood ratios. 

 Initial empirical work involving a sample of 162 cases consisting of 4,192 crimes 

showed support for the likelihood ratio (Bayes’ factor) method for crime linkage 

(Rossmo et al., 2012). The data consisted of a variety of crime types with robbery, sexual 

assault, burglary, and serial murder forming the majority (76.5%) of the crimes. As an 

important note, Rossmo et al.’s method (2012) graphically analyzed the log of the 

likelihood ratio. This study proceeds numerically analyzing the Bayes’ factor, which is 

the simple (unlogged) likelihood ratio. This is done for two reasons. First, the Bayes’ 

factor is easily interpretable. Second, numerically analyzing Bayes’ factor allows the 

analysis to be placed in the context of the Bayesian hypothesis test classification system. 

 

Research Questions 

The present research employed Monte Carlo simulation methods to assess the 

predictive validity of the proposed linkage method and to assess the utility of the 

Bayesian hypothesis test to crime linkage analysis using the likelihood ratio approach. 

Ultimately the analysis in this research addressed the following specific research 

questions: 
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1) Does the proposed linkage method demonstrate predictive validity? 

2) Does the Bayesian hypothesis test provide a useful framework for classifying the 

likelihood ratio generated from the method? 

3) What is the contribution of additional information? 

4) What are the characteristics of information that affect model performance?  
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CHAPTER III 

 

METHODOLOGY 

 

 The present study tested the predictive validity of the linkage method proposed by 

Rossmo et al. (2012). The analysis involved validation using simulated data generated 

under assumptions that were consistent with empirical analysis of serial murder and serial 

commercial robbery data. These assumptions were used to generate a pseudo-population 

of data for each crime type, and samples from this pseudo-population were drawn. Each 

sample included both serial and non-serial crimes as well as the data on a combination of 

factors (e.g., measures of distance, measures of time, and some number of M.O. factors) 

for each simulated crime. A linkage analysis was performed on each sample. Linkage 

likelihood ratios were calculated for these simulated factors following Rossmo et al.’s 

(2012) method. Decision thresholds suggested by the Bayesian hypothesis classification 

system were applied to these likelihood ratios yielding predictions indicating which 

crimes were believed to be part of a series and which crimes were not. These predictions 

were then compared to the data to determine predictive validity for the individual linkage 

analysis. 

 Monte Carlo methods were employed to perform this analysis on multiple 

samples, thus determining the overall predictive validity of the method given the 

information state used to generate the data. The procedure was repeated under different 

information states (e.g., inclusion of additional M.O. factors). This process generalized 

the predictive validity of the method across models and provided insight into the value of 
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different types of information (e.g., the number of variables, the consistency of variables, 

and the uniqueness of variables). The following section presents an introduction to Monte 

Carlo simulation techniques and explains the application of the technique to the 

validation of the crime linkage model. The second section explains the generation of the 

simulated data. The third section presents a description of the simulated data, and the 

final section presents the analyses performed to address the specific research questions. 

 

Monte Carlo Simulations 

 Monte Carlo techniques are computational techniques that rely on repeated 

sampling to obtain results. By sampling from a large dataset repeatedly, the method can 

provide information on the overall performance of a model as well as provide 

information on the variability in performance between samples. As the number of 

samples tested grows larger, the information provided by the simulation becomes more 

precise. 

 There are essentially four steps in general Monte Carlo simulations. The first step 

involves defining the information that will go into the simulation. The second step 

involves generating data randomly from probability distributions. The third involves 

sampling from this data and performing computations on the samples. The fourth 

involves aggregating the results. The following sections explain these steps.  

 

Data Generating Process 

 The first step in a Monte Carlo simulation involves defining the information that 

will go into the simulation. This process is based on the assumption that there is some 
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data generating process (DGP) that models measureable observations (Mooney, 1997). In 

a traditional analysis designed to estimate parameters, the DGP is unknown. If it were 

known, then there would be no need for estimation. However, in Monte Carlo simulation, 

the DGP is known because it is set up by the researcher. Once this DGP has been setup, 

simulated data are generated that are known a pseudo-population (Mooney, 1997). 

 Defining the DGP for a simulation involves assigning probability distributions 

that are used to randomly draw values from. Observations are then generated by sampling 

from these probability distributions. These observations form the pseudo-population of 

data. Samples are then drawn from this pseudo-population, and the measure of interest is 

calculated. This process is repeated many times (e.g., 100,000 times) drawing new 

samples each time. The measures generated from each round can be compared to evaluate 

the behavior of the estimates. Because of the importance of probability distributions to 

the DGP, an explanation of the probability distributions used in the present study follows. 

 

Distributions 

 To simulate criminal behavior, distributions were defined that represent spatial, 

temporal, and M.O. behavior. Observations for individual offenders were drawn from 

these distributions. Three specific distributions were utilized to generate the data: (1) the 

beta distribution; (2) the uniform distribution; and (3) the Bernoulli distribution. Beta 

distributions were utilized to generate distance and time difference observations for 

linked crimes, while the uniform distribution was used to generate these observations for 

unlinked crimes. The Bernoulli distribution was used to generate dichotomous 
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presence/absence characteristics for all M.O. factors for both linked and unlinked crimes. 

An explanation of each distribution follows. 

 The beta distribution is a very flexible distribution that is bounded between zero 

and one. It is particularly useful for social science simulation due to this flexibility 

(Mooney, 1997). The distribution is defined by two parameters, alpha (α) and beta (β). 

The parameters alpha and beta have no direct interpretation independently, but together 

they define the moments of the distribution as follows: 

 

 notation and parameterization: 

Beta(α, β) where α > 0 & β > 0 

 mean: 

 

   
 

  median (approximate): 

  
 
 

    
 
 

 

 mode: 

   

     
 

 variance: 

   

(   ) (      )
 

 

 The parameterization of the beta distribution allows for straightforward 

generation of probability distributions with known means, medians, modes, and 
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variances. Distributions can therefore be generated that define proportional distance and 

time differences. Observations can then be drawn from the distributions to represent 

values associated with linked crimes. Figures 1 to 3 demonstrate the versatility of the beta 

distribution using different parameters. 

 

Figure 1: Beta(2,7) Probability Density 
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Figure 2: Beta(5,5) Probability Density 

 

Figure 3: Beta(9,3) Probability Density 
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 The uniform distribution is another useful distribution for social science 

simulation (Mooney, 1997). All outcomes supported on a uniform distribution’s interval 

are equally probable. The distribution is defined by two parameters, a and b. The two 

parameters define the interval of support for the distribution, where a is the minimum and 

b is the maximum value of the x-variable. As with the beta distribution, the moments and 

functions for the uniform distribution are well known. They are defined as follows: 

 

 notation and parameterization: 

U(a, b) where -∞ < a <   < ∞ 

 mean: 

 

 
(   ) 

  median (approximate): 

 

 
(   ) 

 variance: 

 

  
(   )  

 

The uniform distribution is defined on the interval a, b. Thus, a U(0,1) distribution can be 

viewed as randomness on the interval from zero to one. Draws from the uniform 

distribution were used to represent proportional distance and time differences for 

unlinked crimes. The probability density for a uniform(0,1) distribution is shown in 

Figure 4. 
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Figure 4: Uniform(0,1) Probability Density 

 

 The Bernoulli distribution is the final distribution that was used to simulate data. 

The Bernoulli distribution is used to model a process that results in two possible 

outcomes with constant probabilities (Mooney, 1997). The distribution has a range of two 

values, zero and one, and is parameterized by a single parameter, p, where p is the 

probability of a getting a one on from a single random draw. The moments and functions 

for the Bernoulli distribution (Ber) are as follows: 
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 notation and parameterization: 

Ber(p) where 0 < p < 1 

 mean: 

  

 

  variance: 

 (   ) 

 

Since draws from the Bernoulli distribution result in zeros and ones, draws from the 

Bernoulli distribution were used to simulate the presence or absence of M.O. 

characteristics. For linked crimes, the probability used represented the consistency of 

behavior for the serial offender. For unlinked crimes, the probability represented the 

uniqueness of the M.O. characteristic in general. 

 

Model Parameterization 

 The parameters utilized for each of the distributions used in the simulations 

defined the behavior of the simulated offenders. Thus, the selection of these parameters 

was fundamental to the validity of the subsequent analysis. Therefore, the parameters that 

defined the distributions used for the DGP were determined based on empirical 

assessment of actual offender behavior. Four sets of data were used for this process. 

 The first data set provided observations on serial murderers’ spatial and temporal 

behavior. The second data set provided observations on serial murderers’ behavioral 



 

 

49 

 

consistency. The third data set provided observations on commercial robbers’ spatial and 

temporal behavior, and the fourth data set provided observations on commercial robbers’ 

behavioral consistency. Parameters were selected for the distributions used in the DGP 

that were consistent with these observations. The process is presented in Chapter 4. 

 

Generation of Simulated Data 

 The data were generated on a sample-by-sample basis by generating all 

observations for an individual sample for linkage analysis then proceeding to the next 

sample. Each sample consisted of both serial and non-serial crimes. The following two 

sections explain the data generating process that was used. The first section presents the 

method used to simulate serial crimes, and the second presents the method used to 

simulate non-serial crimes. Importantly, this process of generating simulated data was 

performed twice. The first time used assumptions based on serial murder, and the second 

time used assumptions based on serial commercial robbery. 

 

Serial Crime Data Generation 

 Serial crime data were generated for individual offenses within each case and 

included the sample number, a code indicating serial, a distance measurement, a time 

difference measurement, and measurements for each of the 12 M.O. factors for each 

serial crime. The number of serial crimes simulated for each case was randomly selected 

from a distribution that matched empirical observations of the number of serial offenses 

for the crime type being simulated. 
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 The distance measurements for each of the crimes within a case were randomly 

drawn from a beta distribution that closely resembled the empirical data on serial 

distances for the crime type being simulated. Because draws from the beta distribution 

range from zero to one, these distances were conceptually defined as proportional 

distances. The time difference measurements for each of the crimes within a case were 

randomly drawn from a beta distribution that closely resembled the empirical data on 

serial crime time differences related to the crime type being simulated. These 

measurements were bounded between zero and one, and were conceptually defined as 

proportional time differences. 

 Simulation of the serial M.O. data involved a two-step sampling process. First, a 

probability representing an offender’s consistency for a particular behavior was randomly 

drawn for each M.O. factor from a beta distribution that closely resembled an empirical 

distribution of offender consistencies generated from the observational data. In total, 12 

probabilities drawn for each sample, with each probability assigned to a single M.O. 

factor. The second step involved sampling observations for the presence or absence of a 

characteristic for each of the M.O. factors. These data were randomly drawn from 

Bernoulli distributions defined by the probabilities that were assigned to each factor in 

the first step. These draws resulted in either zeros or ones which were interpreted as the 

presence (1) or the absence (0) of the behavior. 

 

Non-serial Crime Data Generation 

 The non-serial data were generated using a similar process. The non-serial data 

also included an identifying number for the sample, a code indicating non-serial, a 
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distance measurement, a time difference measurement, and measurements for each of the 

12 M.O. factors for non-serial crimes. The number of non-serial crimes for each sample 

was randomly selected from a range of values such that the mean proportion of serial 

crimes to total crimes corresponded to a realistic expectation of the true proportion. It 

also provided for adequate difference between the murder and commercial robbery data 

to allow for comparison.  

 Generation of the non-serial distance data was accomplished by randomly 

sampling from a uniform(0,1) distribution. Because this distribution represents 

randomness on the interval from zero to one, these data were conceptually defined as 

proportional distances for non-serial crime. The time difference data were also simulated 

using random draws from a uniform(0,1) distribution. 

 Simulation of the non-serial M.O. data involved the same two-step sampling 

process used to simulate the serial M.O. data. First, probabilities for non-serial M.O. were 

sampled. Unlike the serial M.O. data simulation, the non-serial M.O. data simulation 

drew these probabilities from a uniform(0,1) distribution. Thus, these probabilities were 

random. The second step proceeded in precisely the same manner as the second step for 

the serial M.O. data. The sampled probabilities were assigned to individual M.O. factors, 

and the M.O. data were sampled from a Bernoulli distribution based on the assigned 

probabilities. 

 

Description of Simulated Data 

 In total, 3.5 million samples were generated for each of the crime types. A 

detailed description of the simulated data for each crime type follows. 
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 The 3.5 million samples for serial murder linkage analysis included 3,574,400,080 

individual simulated offenses. Of those, 52,571,380 (1.5%) were simulated serial 

offenses, and the remaining 3,521,828,700 (98.5%) were simulated non-serial offenses. 

Descriptive statistics for the individual samples drawn for serial murder linkage analysis 

are presented in Table 4. 

  

Table 4: Descriptive Statistics for Simulated Murder Data Samples 

 

 Mean Median Std. Dev. Min Max  

Total crimes 1,021.26 1,022 574.43 12 2,039 

Serial crimes 15 14 7.83 2 40 

Non-serial crimes 1,006.40 1,007 574.38 10 2,000 

Proportion of serial crimes 0.03 0.01 0.06 0.0005 0.80  

 

 While the maximum number of total crimes within a linkage analysis (2,039) for 

the murder data may seem high
3
, the number was chosen to yield an average proportion 

of serial murders around 0.02. Because the number of serial murders was modeled based 

on the empirical serial murder data, the distribution of the total number of murders was 

fixed to render this proportion. Thus, in this research, linkage analyses conducted on 

samples with high proportions of serial murders were exceedingly rare. The distribution 

of the proportion of serial offenses is presented in Figure 5. 

 

                                                 
3
 Serial murders may take place over large areas and/or over long periods of time, thus resulting in a large 

number of potential crimes for analysis. For example, in 2012 the Northeastern United States experienced 

2,106 murders and non-negligent manslaughters. The state of Texas alone experienced 1,144, and the city 

of Los Angeles experienced 299. 
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Figure 5: Distribution of Proportion of Serial Murder Offenses 

 

  The 3.5 million samples for the serial commercial robbery linkage analysis 

included 297,503,803 individual simulated offenses. Of those, 87,516,746 (29.4%) were 

simulated serial offenses, and the remaining 209,987,057 (70.6%) were simulated non-

serial offenses. Descriptive statistics for the individual samples drawn for serial 

commercial robbery linkage analysis are presented in Table 5. 
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Table 5: Descriptive Statistics for Simulated Commercial Robbery Data Samples 

 

 Mean Median Std. Dev. Min Max  

Total crimes 85.07 85 26.22 25 145 

Serial crimes 25 25 11.84 5 45 

Non-serial crimes 60 60 23.38 20 100 

Proportion of serial crimes 0.30 0.29 0.14 0.05 0.69  

 

 The simulated serial commercial robbery crimes were modeled based on the 

empirical serial commercial robbery data. In contrast to the murder data, the commercial 

robbery data was modeled to provide a higher proportion of serial crimes. This was done 

to provide a comparison between the effects of different proportions of serial offenses on 

the linkage method. The distribution of the proportion of serial commercial robbery 

offenses is presented in Figure 6. 

 

Figure 6: Distribution of Proportion of Serial Commercial Robbery Offenses 
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Analysis of Simulated Data 

 Analysis of the simulated data involved three steps. The first step was evaluation 

and aggregation. In this step, measures of predictive validity were generated for each 

linkage analysis performed on a sample of data. These measures were then aggregated 

across all samples to determine the overall performance for that model. The second step 

involved analyzing simulated data based on a different number of factors. In this step, 

factors that define the model were changed (e.g., additional M.O. factors were included) 

yielding a different model for comparison. New data were sampled, and the evaluation 

and aggregation was repeated on the new samples. Finally, results were generated for the 

new model. The third step involved evaluating the overall performance of the linkage 

method considering the factors that were used to generate the data. This step consisted of 

comparisons between models from the same DGP using different amounts of information 

(e.g., more M.O. factors). This final step identified the value of additional information 

and the differences in linkage performance due to the characteristics of the data used 

(e.g., distance, time difference, consistency, and uniqueness). A detailed description of 

the different types of analysis conducted to answer each research question is presented 

below. 

 

Evaluation and Aggregation 

 Each simulation followed a process where a sample of data representing a single 

set of crimes for linkage analysis was drawn from the pseudo-population. Crimes 

generated from the linked DGP were notated as linked, and crimes generated from the 
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non-linked DGP were notated as unlinked. The LRtotal was calculated for each of the 

observations in the sample. Measures of predictive validity were generated for the 

individual linkage analysis. The process was repeated using a different sample, and the 

performance measures were summarized for the entire set of linkage analyses conducted 

yielding a general conclusion about the linkage method’s behavior.  

 

Research Question One 

 The first research question asked, “Does the proposed linkage method 

demonstrate predictive validity?” This was a general question about the potential of the 

linkage method and was addressed prior to consideration of the Bayesian hypothesis test. 

To answer this question, receiver operating curve (ROC) analysis was utilized. 

 ROC analysis is a technique used to assess the ability of a diagnostic tool to 

correctly distinguish between two outcomes. Importantly, the sensitivity of a test (i.e., the 

true positive rate) and the specificity of a test (i.e., the true negative rate of a test) are 

both functions of the decision threshold used to classify observations. Thus, the decision 

threshold (also known as a cut score) plays an important role in the overall performance 

of a test. For example, a linkage model where the cut score is higher than any observation 

will classify all observations as unlinked. The test will therefore have a sensitivity of zero 

but a specificity of one. This implies that the probability of a false positive is 0.0, but the 

probability of a true positive is 0.0 as well. In contrast, a model where the cut score is 

lower than any observation will predict all crimes as linked. Thus, this model will have a 

sensitivity of one but will also have a specificity of zero. This means that the probability 

of a true positive is 1.0, but the probability of a false positive is 1.0 as well. 
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 Because the probabilities of true and false positives are a function of the cut score, 

analyses of classification performance based on the use of any particular cut score 

determine the impact of the cut score rather than the overall capacity of the classification 

system. ROC analysis overcomes this limitation and determines the predictive capacity of 

a model without consideration of a cut score. The ROC curve is the curve that emerges 

by plotting the specificity along the x-axis of a graph in decreasing order
4
 and the 

sensitivity along the y-axis in increasing order. A diagonal line splitting the graph from 

(0,0) to (1,1) (i.e., y = x) indicates that both true positives and false positives increase at 

an equal rate across possible cut scores. Therefore, this line represents a test that is 

uninformative. ROC curves are indicative of predictive capacity when they increase more 

rapidly along the y-axis than the x-axis. An example of a ROC curve generated from a 

crime linkage analysis is presented in Figure 7. 

 

                                                 
4
 This is equivalent to plotting P(false positive) along the x-axis in increasing order. 
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Figure 7: Example ROC curve 

 

 ROC curves provide an intuitive method for assessing the predictive capacity of 

tests. However, ROC curves themselves are graphical methods that correspond to 

analysis of a single sample of data. Therefore, they are not well-suited to aggregation 

across multiple samples as employed in Monte Carlo simulation. However, the area under 

the ROC curve (AUC) is appropriate for aggregation. Because the line y = x is 

uninformative, an AUC of 0.5 or less indicates that the model performs no better than 

chance. However, AUCs greater than 0.5 indicate predictive capacity. An AUC between 

0.50 and 0.70 is considered a predictive yet “poor” model, 0.70 to 0.80 indicates a “fair” 

model, 0.80 to 0.90 indicates a “good” model, and 0.90 to 1.0 indicates an “excellent” 

model. 
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 To demonstrate general predictive validity of the linkage model, the AUCs for 

each sample drawn for linkage analysis generated under a given DGP were calculated. 

The descriptive statistics for the AUCs for the set of samples were then calculated to 

provide a description of the overall performance of the model given the information used 

to calculate the LRfinal. 

 

Research Question Two 

 The second research question asked, “Does the Bayesian hypothesis test provides 

a useful framework for classifying the likelihood ratio generated from the linkage 

method?” Essentially, the Bayesian hypothesis test provides a set of cut scores to apply to 

the likelihood ratio to classify linked and unlinked crimes. Because this method 

incorporates cut scores, a different type of analysis was required. 

 To analyze the behavior of the linkage method under the Bayesian hypothesis test, 

the likelihood ratios generated for each set of data were used to predict whether each 

crime was linked or unlinked using decision thresholds from the Bayesian hypothesis 

test. For each linkage analysis, the number of actual hits was recorded along with the hit 

rate. The number of actual hits can be viewed as a measure of information gain, and the 

hit rate can be viewed as a measure of confidence in this information. Likewise, the 

proportion of a series detected was recorded. Along with the actual number of crimes, 

these data summarized all of the information necessary to evaluate the predictive validity 

of the method. 

 Analysis consisted of calculating descriptive statistics for the measures recorded. 

Additionally, histograms were generated for each of the measures recorded at each level 
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of evidence, and performance measures were plotted against performance percentile for 

the set of linkage analyses. This additional step provided greater detail into the 

performance of the linkage method at the different levels of evidence. 

 

Research Question Three 

 The third research question asked, “What is the value of including additional 

information in the linkage model?” Analysis for this question involved using Monte 

Carlo methods to run simulated experiments. Monte Carlo experiments follow the same 

logic as a laboratory experiment (Carsey & Harden, 2011). The researcher draws samples 

from the data calculating the measure of interest from each sample. Next, a single factor 

is varied and new samples are drawn. For each of these samples, the measure of interest 

is calculated. The measures generated from the samples obtained from the first model are 

then compared to the measures generated from the second model, and the effect of the 

varied factor is observed (Carsey & Harden. 2011). 

 Analysis of the previous research questions involved generation of performance 

measures for each DGP at each number of included factors. The analyses for research 

question three utilized graphical methods to interpret changes in the performance 

measures between models. Specifically, the measures of central tendency for the AUCs 

calculated previously for model (e.g., distance only, distance and time difference, 

distance and time difference in conjunction with a single M.O. factor, etc.) were plotted 

in order of ascending information. This analysis provided a description of the value of 

increasing information in general. 
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 A second set of analyses followed a similar strategy. Specifically, the 

performance measures for each of the models were plotted in order of ascending 

information at each level of evidence under the Bayesian hypothesis test. This process 

yielded a description of the effect of additional information on the linkage method when 

evaluated as a Bayesian hypothesis.    

 

Research Question Four 

 The fourth research question asked, “What are the characteristics of information 

that impact model performance?” To address this question, linear regression was utilized. 

Two regression models were estimated. In the first model, the AUCs for each serial 

murder linkage analysis were defined as the measure of performance, and this measure 

was regressed onto seven characteristics of the information used in each linkage analysis. 

These characteristics included median distance and time differences for the serial and 

non-serial crimes, serial offender mean behavioral consistency, mean behavioral 

uniqueness, and the proportion of serial offenses in the linkage analysis. This regression 

model estimated the effect of the information on the overall predictive capacity of the 

linkage method for serial murder. The second model was estimated by regressing the 

AUCs for the commercial robbery linkage analyses on the same set of independent 

variables. The estimates were then compared between the serial murder linkage analysis 

and the commercial robbery linkage analysis models. 
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CHAPTER IV 

 

LIKELIHOOD CALCULATIONS AND EMPIRICAL FOUNDATIONS 

 

 The first step in analyzing the linkage methodology involved a detailed 

consideration of the specific calculations used in generating the final likelihood ratio used 

to predict linkage. The following three sections present the calculation of the distance, 

time difference, and behavior probabilities used in the linkage method. Within each 

section, the empirical analyses conducted to provide a basis for the are explained. Finally, 

the processes used to generate probability distributions and define the DGPs for each 

simulation are discussed. 

 

Distance for Crime Linkage Analysis 

 Previous research has found geography to provide important information for 

crime linkage analysis. Crime pattern theory suggests that offenders operate from various 

nodes or anchor points, and that offenders develop an awareness space around the paths 

travelled between these nodes. This results in a mental map that the offender uses when 

seeking targets. Because offenders are most familiar with their nodes and the paths that 

they use in inter-nodal travel, they tend to have greater awareness in areas around these 

nodes and the travel paths that link them. 

Journey-to-crime research has demonstrated that offenders tend to commit crimes 

that exhibit predictable spatial relationships in relation to their anchor points. Some crime 

types exhibit a distinct pattern where an offender is less likely to commit an offense near 
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their anchor point. As they move away, the likelihood of offending increases until they 

reach a certain distance. The area inscribed by this distance is known as a buffer zone. 

After passing beyond the buffer zone, the likelihood of offending decreases as suggested 

by the least effort principle and foraging theory. The crime locations that emerge for an 

individual offender are based on these behavioral consistencies and should result in 

distinctive patterns. 

Interspatial distances provide one method for measuring the relationships between 

these locations. Several studies have demonstrated distinct patterns in interspatial 

distances for linked crimes. This consistency has been used in a variety of linkage tests, 

the majority of which have shown the utility of interspatial distance in differentiating 

between linked and unlinked crimes. 

The proposed Bayesian linkage method includes distance as a component. The 

final likelihood ratio evaluated in the method is the product of the distance likelihood 

multiplied by the time difference likelihood and the M.O. likelihoods. A description of 

the distance likelihood calculation and a discussion of the effects of the underlying 

assumptions follows. 

The distance likelihood is given by: 

 

            
 (        |      )

 (        |        )
 

 

The numerator, the probability of a distance given that the crime is linked, is 

estimated by assuming a probability density function for distances between linked crimes. 

The cumulative density function is evaluated at the observed distance, and the 
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corresponding probability is used. The following example assumes a Beta(2,5) 

distribution. The Beta(2,5) probability density is shown in Figure 8, and the cumulative 

density is shown in Figure 9. 

 

 

Figure 8: Beta(2,5) Probability Density 
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Figure 9: Beta(2,5) Cumulative Density 

 

Because the beta distribution is defined only on the interval from zero to one, 

distances must be converted into proportional distances where the longest possible 

distance equals one. The conversion is as follows: 

 

                       
                 

                         
 

 

 The denominator of the distance likelihood ratio, the probability of a distance 

given that the crime is unlinked, is estimated by calculating the probability of observing a 

distance up to the observed distance assuming that all possible distances within the 
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analysis area are equally probable. Ignoring edge effects
5
, this assumption allows the 

probability to be estimated by calculating the proportion of the area of a circle with a 

radius equal to the observed distance to the area of the entire analysis space. This 

proportion is given by: 

 

 (                |        )   
           

                            
 

 

Figure 10 provides a graphic illustration. 

 

 

Figure 10: Areas Utilized in the Calculation of P(distance|unlinked) 

 

                                                 
5
 An alternate method for estimating LRdist that addresses edge effects is presented in Appendix A. 

Location 1 

Location 2 

Distance 

Area of circle with radius equal to distance 

Total area of analysis space 

Analysis space 
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 An example of the distance likelihood ratio calculated for the observations in 

Table 6 follows: 

 

Table 6: Sample Data for LRdistance Calculation 

 

Factor Observation 

Distance 1.3  mi. 

Longest possible distance 7.2  mi. 

Area of analysis space 16.1
 
mi.

2 

 

 

 Using the data from Table 6, the probability of the distance given that the crime is 

linked is estimated by first converting the observed distance of 1.3 miles into a 

proportional distance.  

 

                       
       

       
       

 

The assumed Beta(2,5) cumulative density function is then evaluated at 0.18 which yields 

a probability of 0.30. Therefore the probability of the distance given the crime is linked is 

equal to 0.30, and this value is P(distance|linked), the numerator in the calculation of the 

distance likelihood ratio (i.e., LRdistance). 

 The probability of the distance given that the crime is unlinked is calculated by 

assuming that the observed distance occurred randomly. This allows the 

P(distance|unlinked) to be estimated by calculating the area of a circle with a radius equal 
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to the observed distance (1.3 miles) and then dividing this area by the total area of the 

analysis space (16.1 miles
2
). 

  

              (        |        )                   

 

 (        |        )   
        

        
       

 

Thus, 0.33 is the denominator of the likelihood ratio, and the distance likelihood ratio is 

given by: 

 

            
    

    
       

 

The distance likelihood ratio of 0.91 indicates that it is slightly more likely that the crime 

is unlinked than that it is linked. However, this conclusion can be altered drastically given 

minor changes to the assumptions that underlie the calculations. 

 Because the numerator of the likelihood ratio, the probability of the distance 

given that the crime is linked, is estimated using the assumed probability distribution, 

using a different probability distribution will change the likelihood ratio. Consider instead 

that the distance measures were assumed to follow a distribution with a lower median. A 

Beta(1,15) distribution is such a distribution. The probability density for a Beta(1,15) is 

plotted in Figure 11, and the cumulative density is potted in Figure 12. 
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Figure 11: Beta(1,15) Probability Density 

 

Figure 12: Beta(1,15) Cumulative Density 
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 Because the Beta(1,15) distribution demonstrates a lower median than a Beta(2,5) 

distribution, the cumulative density function results in a greater probability when 

evaluated at the same distance used in the previous example. The cumulative density of a 

Beta(1,15) when evaluated at 0.18 is 0.95. This replaces 0.30 in the previous example as 

P(distance|linked). Because nothing else in the calculation has changed, this results is a 

greater distance likelihood ratio. 

 

            
    

    
       

 

The conclusion that results from this higher likelihood ratio is that the hypothesis that the 

crime is linked is almost three times as likely as the hypothesis that the crime is unlinked, 

which is significantly different than under the previous assumption. 

 A similar change in the conclusion can be caused by a change in the area of 

analysis. Because the denominator, the probability of the distance given that the crime is 

unlinked, is a function of the total area of analysis, the likelihood ratio changes greatly 

when the area analyzed changes. Beginning with the previous example that resulted in a 

likelihood ratio of 2.88, consider the effect of changing the total area of analysis from 

16.1 square miles to 36.2 square miles. This changes the calculation of the denominator.  

 

 (                |        )   
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This change in the denominator results in a greater likelihood ratio. 

 

            
    

    
       

 

 Whereas the previous calculation based on 16.1 square miles rendered the 

conclusion that the hypothesis that the crime is linked is almost three times as likely as 

the hypothesis that the crime is unlinked, the calculation based on 36.2 square miles 

yields the conclusion that linkage is over six times as likely. However, this is an 

overestimate because there is another way in which a larger analysis area changes the 

likelihood. 

 A larger analysis area also affects the likelihood because as the analysis area 

increases, the longest possible distance increases. Because the numerator, the probability 

of a distance given that a crime is linked, is based on a proportional distance, increasing 

the longest possible distance reduces this probability. For example, assume that 

increasing the total analysis area from 16.1 square miles increases the longest possible 

distance from 7.2 miles to 12.1 miles. The calculation of the proportional distance now 

changes. 
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Thus, the proportional distance is reduced from 0.18 to 0.11. Evaluating the Beta(1,15) 

cumulative density function at 0.11 yields a probability of 0.83 which is lower than the 

previous probability of 0.95. This lowers the likelihood ratio. 

 

            
    

    
       

 

Although increasing the longest possible distance lowers the likelihood ratio, this 

reduction does not offset the increase caused by changes in the denominator. Thus, the 

resulting likelihood ratio experiences a net increase, and the conclusion tilts toward 

greater belief in the hypothesis that linkage exists. 

  In general, the changes in the conclusions that result from using a different 

distribution or from altering the analysis area correspond to an underlying issue. 

Specifically, crime linkage systems that utilize distances are essentially measuring 

clustering, and clustering varies based on the scale of analysis. Figure 13 illustrates the 

locations of several linked and unlinked crimes observed within a small area. Plainly, 

there is little evidence of clustering that might differentiate the linked crimes from the 

unlinked crimes based on their locations. 
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Figure 13:  Locations of Linked Crimes Appear Random 

 

However, when the same data, are evaluated at a different scale, the clustering of the 

serial crime locations becomes apparent. Figure 14 illustrates the same observations 

within a larger sample space.  
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Figure 14: Locations of Linked Crimes Appear Clustered 

  

 This implies that, for crime linkage analysis, the assumptions about the spatial 

distribution of crimes are inherently tied to the size of the area of analysis. Thus, a 

linkage model using proportional distance measures that analyzes the entire United States 

would generate high distance likelihood ratios for all the crimes in a given city despite 

the fact that it is unreasonable to conclude that all the crimes in a city are actually linked. 

The distance likelihood ratios would change drastically if the analysis were conducted 

only the city, and the substantive conclusions of the linkage analysis would differ 

markedly. 

 For this reason, it is important to consider the scale of the area of analysis and to 

select a probability distribution that generates proportional distance measures that are 

consistent with reasonable assumptions about offenders’ spatial behavior. These 
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assumptions should be rooted in empirical observations about offender behavior. 

Therefore, an empirical evaluation of offenders’ spatial behavior follows. 

 

Empirical Observations on Distance 

 To provide an empirical basis for offenders’ spatial behavior two datasets were 

analyzed. The first dataset consisted of 27 serial murders and included information on 

461 geographic locations. The second dataset consisted of 31 serial commercial robberies 

and included information on 519 geographic locations. The individual analysis for each 

crime type follows. 

 

Serial Murder 

 The serial murder dataset included 27 unique murder series with a total of 461 

sites. The 461 sites included both primary and secondary locations including where 

murderers encountered their victims, where they committed the actual murders, and 

where they dumped the bodies
6
. The mean number of sites per series was 17.07 with a 

median of 15. The maximum number of sites within a single series was 40, and the 

minimum was 4. The standard deviation was 10.21. The 461 sites corresponded to 10,939 

distance measurements. Analysis of the serial murder geographic data began with 

calculating descriptive statistics for the entire distribution of unstandardized distances. 

The results are presented in Table 7. 

 

                                                 
6
 Additional analyses were conducted using only the primary sites. These analyses resulted in no changes to 

the substantive conclusions about the distribution of distances for serial murders. Thus, these analyses did 

not significantly alter the distribution used for serial murder distance simulations and had no effect on the 

performance of the proposed linkage method.  
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Table 7: Descriptive Statistics for Unstandardized 

Serial Murder Distances 

 

Statistic Observation 

Mean 48.96 mi.  

Median 7.63 mi.  

Standard deviation 128.31 mi.  

Maximum 1033.75 mi.  

Minimum 0.00 mi. 
 

 

 

 The descriptive statistics in Table 7 indicate a highly skewed distribution, as can 

be seen in Figure 15. 
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Figure 15: Distribution of Unstandardized Serial Murder Distances 

 

 The next step involved standardizing the distances by dividing each distance 

within a single series by the longest distance within the series. Because the beta 

distributions used for the simulations are bounded from zero to one, the observed 

distances needed to be placed on this scale for analysis. While standardizing by the mean 

or median is a more common approach to standardization in general, this process would 

not have placed all distances on the interval from zero to one. Standardizing by the 

longest distance resulted in data that were measured as proportional distances, and the 

resulting scale ranged from zero to one. Since standardization using the longest distance 

was a linear transformation, the relative distances within a single series remained 
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unchanged. Descriptive statistics were calculated for the standardized data. The results 

are presented in Table 8. 

 

Table 8: Descriptive Statistics for Standardized
7
 

Serial Murder Distances 

 

Statistic Observation 

Mean 0.29  

Median 0.19  

Standard deviation 0.31  

Maximum 1.00  

Minimum 0.00 
 

 

 

 Standardizing the distances allowed the distance distribution to be approximated 

using a beta distribution. Additionally, standardization reduced the skew present in the 

total set of unstandardized data. The distribution of the standardized data is presented in 

Figure 16. 

 

                                                 
7
 The standardized distance measures are proportional distances and have no units of measure. 
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Figure 16: Distribution of Standardized Serial Murder Distances 

 

 The method used to approximate a distribution from sample data involved the 

moment matching approach (AbouRizk, Halpin, & Wilson, 1994). This approach takes 

advantage of the fact that the equations for the first two moments, the mean and the 

variance, are parameterized in terms of α and β. The mean of the beta distribution is 

defined as: 
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Rearranging this equation algebraically yields: 

 

     ( 
 

 
  ) 

 

The variance of the beta distribution is defined as: 

 

   
   

(   ) (      )
  

 

Substituting the previous solution for β, the variance equation, rearranged algebraically, 

yields: 

 

  ( 
      

  
   

 

 
 )    

 

 The equations for α and β are then solved using the mean and variance from the 

sample data to complete the moment matching. Using the mean and variance observed 

for the standardized serial murder distance data indicated that a Beta(0.34, 0.84) 

distribution was a relatively close approximation for the observed data. The summary 

statistics for the Beta(0.34, 0.84) distribution are compared with the summary statistics 

from the serial murder distance data in Table 9:  
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Table 9: Comparison of Standardized Data 

to Proposed Beta Distribution 

 

Statistic Data Beta(0.34, 0.84) 

Mean 0.29 0.29  

Median 0.19 0.17  

Standard deviation 0.31 0.30  

 

 

 Figure 17 presents the Beta(0.34, 0.84) distribution’s probability density. 

 

Figure 17: Beta(0.34, 0.84) Probability Density 
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 Graphical comparison of the cumulative density for a Beta(0.34, 0.84) distribution 

and the empirical cumulative density (ECD) of the serial murder spatial data is presented 

in Figure 18. 

 

Figure 18: Comparison of ECD for Serial Murder Data 

to CDF for Proposed Distribution 

 

Figure 18 demonstrates that the Beta(0.34, 0.84) distribution approximated the serial 

murder data. As such, distances for serial murder simulations were drawn from a 

Beta(0.34, 0.84) distribution.  As this distribution likewise represents an empirical 

understanding for distances in serial murder cases, P(distance|linked) was estimated from 

the Beta(0.34, 0.84) cumulative density function. 
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Serial Commercial Robbery 

 The serial commercial robbery dataset included 31 unique commercial robbery 

series with a total of 519 sites. Unlike the serial murder data, the serial commercial 

robbery data only included primary locations. Therefore, the locations represent the sites 

of the actual robberies. For the serial commercial robbery data, the mean number of sites 

per series was 16.74 with a median of 15. The maximum number of sites within a single 

series was 45, and the minimum was 3. The standard deviation was 10.99. The 519 sites 

correspond to 11,792 distance measurements. Analysis of the serial commercial robbery 

data began with calculating descriptive statistics for these unstandardized distances. The 

results are presented in Table 10: 

 

Table 10: Descriptive Statistics for Unstandardized 

Serial Commercial Robbery Distances 

 

Statistic Observation 

Mean 16.39 mi.  

Median 7.99 mi.  

Standard deviation 27.32 mi.  

Maximum 277.23 mi.  

Minimum 0.00 mi. 
 

 

 

 As with serial murder, the descriptive statistics in Table 7 indicated a highly 

skewed distribution, as can be seen in Figure 19. 
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Figure 19: Distribution of Unstandardized Commercial Robbery Distances 

 

 Next, the distances within each commercial robbery series were standardized by 

dividing each by the longest distance within the series. This placed all of the distances on 

the interval from zero to one allowing the observations to be referenced against a beta 

distribution. Descriptive statistics were calculated for the standardized data. 
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Table 11: Descriptive Statistics for Standardized
8
 

Serial Commercial Robbery Distances 

 

Statistic Observation 

Mean 0.33  

Median 0.27  

Standard deviation 0.24  

Maximum 1.00  

Minimum 0.00 
 

 

 

 As with standardizing the serial murder distance data, standardization reduced 

skew for the aggregated distribution of the serial commercial robbery data. This is 

illustrated in Figure 20:  

                                                 
8
 The standardized distance measures are proportional distances and have no units of measure. 
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Figure 20: Distribution of Standardized Commercial Robbery Distances 

 

 The equations for the parameters of a beta distribution with moments equal to the 

statistics observed for the standardized serial commercial robbery data suggested that a 

Beta(0.94, 1.96) distribution was a close approximation for the observed data. The 

summary statistics for the Beta(0.94, 1.96) distribution are compared with the summary 

statistics for the serial commercial robbery data in Table 12. 
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Table 12: Comparison of Standardized Data 

to Proposed Beta Distribution 

 

Statistic Data Beta(0.94, 1.96) 

Mean 0.33 0.32 

Median 0.27 0.28 

Standard deviation 0.24 0.24 

. 

 

Figure 21 presents the probability density for the Beta(0.94, 1.96) distribution. 

 

 

Figure 21: Beta(0.94, 1.96) Probability Density 
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 Graphical comparison of the cumulative density function for the Beta(0.94, 1.96) 

distribution and the empirical cumulative density of the commercial robbery spatial data 

is presented in Figure 22. 

 

Figure 22: Comparison of ECD for Commercial Robbery Data 

to CDF for Proposed Distribution 

 

 Figure 22 shows that the Beta(0.94, 1.96) distribution approximated the 

commercial robbery data. Thus, distances for serial commercial robbery simulations were 

drawn from a Beta(0.94, 1.96) distribution. Similar to the serial murder models, 

P(distance|linked) was estimated from the Beta(0.94, 1.96) cumulative density function 

for the commercial robbery data. 
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Time Difference for Crime Linkage Analysis 

 Criminological research also suggests that temporal information about crimes 

should provide information useful for crime linkage analysis. One method of measuring 

the relationship of events in time is to measure time differences between crimes. Studies 

have demonstrated distinct patterns in time differences for linked crimes. This 

consistency has been used in a variety of linkage tests. While generally less effective than 

distance, multiple studies have shown that time difference has utility in differentiating 

between linked and unlinked crimes. The proposed Bayesian linkage method includes 

time difference as a component. Therefore, a description of the time difference likelihood 

calculation and a discussion of the effects of the underlying assumptions follows. 

 The time difference likelihood is given by: 

 

        
 (               |      )

 (               |        )
 

 

 As with distance, the numerator, the probability of a time difference given that the 

crime is linked, is estimated by assuming a probability density function for distances of 

linked crimes. The cumulative density function is evaluated at the observed distance, and 

the corresponding probability is used. The assumed probability density function for this 

example is a Beta(1,5) distribution. The Beta(1.5) probability density is plotted in Figure 

23, and the cumulative density is plotted in Figure 24. 
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Figure 23: Beta(1,5) Probability Density 

 

Figure 24: Beta(1,5) Cumulative Density 
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 As with the distance measures, the time differences must be converted to 

proportional differences to fit a beta distribution. The conversion is similar to the distance 

conversion. However, since time is unidirectional within a single dimension, the 

denominator, the longest possible time difference, is simply the length of time searched 

by the analyst. 

 

                         
                        

                    
 

 

  The denominator of the time difference likelihood ratio, the probability of the 

time difference given that the crime is unlinked, is estimated by calculating the 

probability of observing a time difference up to the observed time difference assuming 

that all possible time differences are equally likely. This assumption allows the 

probability to be estimated by calculating a simple proportion. This proportion is the 

same as the proportional time difference and is given by: 

 

 (               |        )   
                        

                    
 

 

 An example of the time difference likelihood ratio calculated for the observations 

in Table 13 follows: 
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   Table 13: Sample Data for LRtime Calculation  

 

Factor Observation 

Time difference 3 days  

Length of time searched 62 days  

 

 

 Using the data from Table 13, the probability of the time difference given that the 

crime is linked would be estimated by first converting the observed time difference of 

three days into a proportional difference. 

 

                         
      

       
       

 

The assumed Beta(1,5) cumulative density function is then evaluated at 0.05 which yields 

a probability of 0.23. Therefore, the probability of the time difference given that the 

crime is linked is equal to 0.23, and this value is P(time difference|linked). Because the 

denominator of the time difference likelihood ratio is simply the proportional difference, 

the time difference likelihood ratio is given by: 
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 The time difference likelihood ratio of 4.60 indicates that the hypothesis that the 

crime is linked is 4.6 times as likely as the hypothesis that the crime is unlinked. As with 

the distance likelihood ratio, this conclusion rests heavily on the assumptions used in the 

calculation. Again, changes in these assumptions can substantially alter the conclusions 

drawn. 

 Because the numerator of the time difference likelihood ratio, the probability of 

the time difference given that the crime is linked, is estimated with an assumed 

probability distribution, using a different probability distribution will change the 

likelihood ratio. If an offender were believed to exhibit a larger gap between crimes, then 

a distribution with a higher median, such as Beta(3,5) distribution, would be appropriate. 

The probability density for a Beta(3,5) distribution is plotted in Figure 25, and the 

cumulative density is plotted in Figure 26. 

 

Figure 25: Beta(3,5) Probability Density 
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Figure 26: Beta(3,5) Cumulative Density 

 

 Because the Beta(3,5) distribution demonstrates a higher median than a Beta(1,5) 

distribution, the cumulative density function results in a smaller probability when 

evaluated at the same time difference used in the previous example. The cumulative 

density of a Beta(3,5) distribution when evaluated at 0.05 equals 0.004. This replaces 

0.23 in the previous example as P(time difference|linked). Because nothing else in the 

calculation has changed, this results in a lower time difference likelihood ratio. 
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Therefore, the conclusion changes from moderate evidence in support of the linked 

hypothesis to strong evidence in favor of the hypothesis against linkage. 

The same phenomena observed for the denominator in the distance likelihood 

ratio calculation is observed for the time difference likelihood ratio. Specifically, 

searching data over longer periods of time will raise the likelihood ratio. This is because 

the proportional difference which equals the probability of the time difference given that 

the crime is unlinked is inversely related to the length of the search. Consider the search 

period changing from 62 to 124 days. The calculation of the proportional distance now 

changes. 

 

                         
      

        
       

 

Thus the denominator in the time difference likelihood ratio is reduced from 0.05 

to 0.024 raising the ratio. 

 

        
     

     
        

 

Whereas the previous calculation based on searching 62 days rendered strong evidence in 

favor of the crime not being linked, the calculation based on searching 124 days 

represents only moderate evidence of the conclusion. 

 As with the distance likelihood ratio, the effects of the change in the period of 

analysis on the numerator must be considered as well. Because the proportional 
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difference decreased from 0.05 to 0.024, the cumulative density must be reevaluated at 

the new proportional difference to yield the proper probability of the time difference 

given that the crime is linked. Evaluating a Beta(3,5) distribution at 0.024 yields a 

probability of 0.0005. This lowers the likelihood ratio.  

 

        
      

     
        

 

 As has been shown, changes in the distribution used in the calculation of the 

likelihood ratio alter the substantive conclusions. As with distance, this issue results from 

changes in the ability to observe temporal clustering that varies based on the length of 

time searched. Figure 27 illustrates the timeline for a series of linked crimes alongside the 

timeline for the unlinked crimes in the same time period. There is little evidence of 

clustering that might help differentiate the linked crimes from the unlinked crimes. 
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Figure 27: Temporal Locations of Linked Crimes Appear Random 

 

Again, when evaluating the same data over a longer search period, the linked crimes 

appear clustered rather than random.  Figure 28 illustrates the same observations over a 

longer search period. 
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Figure 28: Temporal Locations of Linked Crimes Appear Clustered 

 

 Figures 27 and 28 imply that, for crime linkage analysis using time differences, 

the assumptions about the temporal distribution of crimes are inherently tied to the length 

of the time period searched. A linkage model using time differences when searching a 

longer period of time (e.g., five years) would generate higher time difference likelihood 

ratios for all the crimes in a given month, than the same linkage analysis conducted when 

searching a shorter period (e.g., six months) using the same distribution. 

 For this reason, it is important to consider the length of time searched and to 

select a probability distribution that generates proportional time difference measures that 

are consistent with reasonable assumptions about offenders’ temporal behavior. These 

assumptions should be rooted in empirical observations about offender behavior. 

Therefore, an empirical evaluation of offenders’ temporal behavior follows. 
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Empirical Observations on Time Difference 

 The analyses undertaken to provide an empirical basis for offenders’ temporal 

behavior utilized the same two datasets that were analyzed for spatial behavior. In 

addition to information on the geographic locations associated with each incident, both 

datasets included the dates that each incident took place. This allowed for temporal 

analyses to be conducted on both the serial murder and the serial commercial robbery 

data, and the individual analysis for each crime type follows. 

 

Serial Murder 

 All 27 series in the serial murder dataset included temporal information. 

However, date information was missing for 17 incidents. This left a total of 444 incidents 

with known dates. The mean number of incidents with date information per series was 

16.44 with a median of 15. The maximum number was 40, and the minimum was 4. The 

standard deviation was 9.22. The 444 incidents with date information yielded 9,885 time 

difference measures. Analysis of the serial murder temporal data began with calculating 

descriptive statistics for the unstandardized time differences. The results are presented in 

Table 14. 
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Table 14: Descriptive Statistics for Unstandardized 

Serial Murder Time Differences 

 

Statistic Observation 

Mean 775.73 days  

Median 281.00 days  

Standard deviation 1,483.43 days  

Maximum 16,480.43 days  

Minimum 0.00 days 
 

 

 

 The descriptive statistics in Table 14 indicate a highly skewed distribution. This is 

further demonstrated in Figure 29. 

 

Figure 29: Distribution of Unstandardized Serial Murder Time Differences 
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 The next step involved standardizing the time differences by dividing each 

difference within a single series by the longest difference within the series. Descriptive 

statistics were calculated for the standardized data. The results are presented in Table 15. 

 

Table 15: Descriptive Statistics for Standardized
9
 

Serial Murder Time Differences 

 

Statistic Observation 

Mean 0.29  

Median 0.19  

Standard deviation 0.30  

Maximum 1.00  

Minimum 0.00 
 

 

 

 As with the serial murder distance data, standardization reduced the skew present 

in the unstandardized data. The distribution for the standardized data is presented in 

Figure 30. 

                                                 
9
 The standardized time difference measures are proportional differences and have no units of measure. 
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Figure 30: Distribution of Standardized Serial Murder Time Differences 

 

 Following the method of moment matching previously presented indicated that a 

Beta(0.39, 0.96) distribution is a close approximation to the observed data. The summary 

statistics for a Beta(0.39, 0.96) distribution are compared with the summary statistics 

from the serial murder time difference data in Table 16. 
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Table 16: Comparison of Standardized Data 

to Proposed Beta Distribution. 

 

Statistic Data Beta(0.39, 0.96) 

Mean 0.29 0.29  

Median 0.19 0.18  

Standard deviation 0.30 0.30  

 

 

 Figure 31 presents the Beta(0.39, 0.96) distribution’s probability density. 

 

 Figure 31: Beta(0.39, 0.96) Probability Density 
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 Graphical comparison of the cumulative density for a Beta(0.39, 0.96) distribution 

and the empirical cumulative density (ECD) for the serial murder time difference data is 

presented in Figure 32. 

 

Figure 32: Comparison of ECD for Serial Murder Temporal Data to 

CDF for Proposed Distribution 

 

 Figure 32 demonstrates that the Beta(0.39, 0.96) distribution approximated the 

serial murder temporal data. As such, time difference for serial murder simulations were 

drawn from a Beta(0.39, 0.96) distribution. Likewise, P(time difference|linked) was 

estimated using a Beta(0.39, 0.96) cumulative density function. 
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Serial Commercial Robbery 

 All 31 series in the commercial robbery dataset included temporal information. 

However, date information was missing for one incident. This left a total of 518 incidents 

with known dates. The mean number of incidents with date information per series was 

16.71 with a median of 15. The maximum number was 45, and the minimum was 3. The 

standard deviation was 11.0. The 518 incidents with date information yielded 11,772 time 

difference measures. Analysis of the commercial robbery temporal data analysis began 

with calculating descriptive statistics for the unstandardized time differences. The results 

are presented in Table 17. 

 

Table 17: Descriptive Statistics for Unstandardized 

Commercial Robbery Time Differences 

 

Statistic Observation 

Mean 89.63 days  

Median 40.00 days  

Standard deviation 168.75 days  

Maximum 1788.0 days  

Minimum 0.00 days 
 

 

 

 The descriptive statistics in Table 17 indicated a highly skewed distribution. This 

is further demonstrated in Figure 33. 
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Figure 33: Distribution for Unstandardized Commercial Robbery Time Differences 

 

 The next step involved standardizing the time differences by dividing each 

difference within a single series by the longest difference within the series. Descriptive 

statistics were calculated for the standardized data. The results are presented in Table 18. 
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Table 18: Descriptive Statistics for Standardized
10

 

Commercial Robbery Time Differences 

 

Statistic Observation 

Mean 0.33  

Median 0.28  

Standard deviation 0.25  

Maximum 1.00  

Minimum 0.00 
 

 

 

 As with the commercial robbery distance data, standardization reduced the skew 

present in the aggregated unstandardized time difference data. The distribution for the 

standardized data is presented in Figure 34. 

 

                                                 
10

 The standardized time difference measures are proportional differences and have no units of measure. 
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Figure 34: Distribution of Standardized Commercial Robbery Time Differences 

 

 Following the method of moment matching previously used indicated that a 

Beta(0.87, 1.73) distribution was a close approximation to the observed data. The 

summary statistics for a Beta(0.87, 1.73) distribution are compared with the summary 

statistics from the serial murder time difference data in Table 19. 
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Table 19: Comparison of Standardized Data 

to Proposed Beta Distribution 

 

Statistic Data Beta(0.87, 1.73) 

Mean 0.33 0.33  

Median 0.28 0.29  

Standard deviation 0.25 0.24  

 

 

 Figure 35 presents the Beta(0.87, 1.73) distribution’s probability density. 

 

 Figure 35: Beta(0.87, 1.73) Probability Density 
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 Graphical comparison of the cumulative density for a Beta(0.87, 1.73) distribution 

and the empirical cumulative density (ECD) for the commercial robbery time difference 

data is presented in Figure 36. 

 

Figure 36: Comparison of ECD for Commercial Robbery Temporal Data 

to CDF for Proposed Distribution 

 

 Figure 36 demonstrates that the Beta(0.87, 1.73) distribution approximated the 

commercial robbery temporal data. As such, time distance for commercial robbery 

simulations were drawn from a Beta(0.87, 1.73) distribution. Likewise, P(time 

difference|linked) was estimated using a Beta(0.87, 1.73) cumulative density function. 
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Modus Operandi for Crime Linkage Analysis 

Social-cognitive theory suggests that behavioral information about crimes should 

provide information that is useful for crime linkage analysis, and criminological research 

has supported this suggestion by demonstrating both offender consistency and 

distinctiveness. Likewise, research has shown that patterns of behavior can be used to 

establish crime linkage. The proposed Bayesian linkage method includes M.O. factors as 

a component of the linkage analysis. Therefore, a description of the time difference 

likelihood ratio calculation follows. 

 The M.O. likelihood ratio is given by: 

 

    ( )   
 (        |      )

 (        |        )
 

 

 The numerator, the probability of observing a behavior given that the crime is 

linked, is estimated by assuming a probability for the individual offender’s consistency. 

The denominator, the probability of observing a behavior given that a crime is unlinked, 

is estimated using the base rate of the behavior in the data being analyzed for linkage. 

Therefore, under the assumption that an offender is 75% consistent in exhibiting a certain 

behavior and observing this behavior in 25% of the population of linkage analyses, the 

M.O. likelihood ratio is: 

 

    ( )   
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 The M.O. likelihood ratio of 3.5 indicates that the hypothesis that the crime is 

linked is 3.5 times as likely as the hypothesis that the crime is unlinked. As with the 

previous likelihood ratios, this conclusion rests heavily on the assumption used in the 

calculation, specifically the assumption that the offender in question is 75% consistent in 

exhibiting the behavior. Changing this assumption drastically alters the conclusion. For 

example, assuming that the offender is 50% consistent lowers the likelihood ratio. 

 

    ( )   
    

    
      

 

 Lowering the consistency reduces the M.O. likelihood ratio to 2.0 thus reducing 

the evidence of linkage from moderate to weak evidence. Similarly, assuming that an 

offender is more consistent is his or her behavior raises the likelihood ratio. For example, 

assume that the offender is perfectly consistent exhibiting a M.O. behavior in 100% of 

linkage analyses. The likelihood ratio becomes: 

 

    ( )   
    

    
      

 

 Altering the assumption about the offender’s consistency therefore changes the 

conclusion. It is important to note that, while changes in assumptions concerning 

consistency alter the conclusions, the denominator ultimately has a greater effect on the 

likelihood ratio. Considering that the likelihood ratio is a ratio of probabilities and that 

probabilities are bounded between zero and one, extremely high likelihood ratios are only 
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possible with very small denominators. As the denominator approaches zero, the 

likelihood ratio approaches infinity regardless of the value of the numerator. Thus, 

uniqueness of behavior has a greater overall effect on the likelihood ratio and subsequent 

conclusions than consistency. Figure 37 demonstrates the effects of consistency and 

uniqueness on the likelihood ratio. 

 

Figure 37: Effects of Consistency and Uniqueness on Likelihood Ratio
11

 

                                                 
11

 As uniqueness is defined as P(behavior|unlinked), low probabilities on this measure indicate rare 

behaviors. As the uniqueness measure increases, behavior becomes more common. 
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 DNA evidence is an example of this phenomenon. Because the probability that 

two crimes are unlinked given matching DNA evidence is extremely low (i.e., DNA is 

very unique), the likelihood ratio associated with this evidence would be very high. This 

results in the substantive conclusion that there is little possibility that two crimes with the 

same DNA evidence present are unlinked. 

 Because the numerator is estimated using the base rate of a behavior in the data 

analyzed for possible linkages, there is potentially less assumptive error in this 

calculation. In contrast, assumptive error concerning offender consistency can still 

substantially alter conclusions resulting from M.O. likelihood ratios. Therefore, an 

empirical basis for consistency assumptions is necessary. 

  

Empirical Observations on Modus Operandi 

 To provide a glimpse on offender consistency for M.O. factors associated with 

various types of serial crime, two datasets were used. The first dataset included M.O. 

factors for a variety of serial murders. Because serial murder is a rare occurrence, the data 

included closed serial murders that occurred between 1963 and 1993 in the United States, 

Canada, and the United Kingdom. The second dataset included M.O. factors for closed 

serial commercial robberies that occurred between 2009 and 2012 in San Antonio, Texas. 

 

Serial Murder 

The serial murder dataset consisted of 18 serial murderers. The mean number of 

crimes committed by each offender was 13.83 (SD = 7.27) with individual series ranging 



 

 

115 

 

from 5 to 33 crimes. The data set included information on 12 separate M.O. 

characteristics. The M.O. characteristics included: (1) gender of victim; (2) victim/killer 

relationship; (3) selection method; (4) victim traits; (5) victim activity; (6) hunting style; 

(7) attack style; (8) approach; (9) control method; (10) murder method; (11) crime 

location set; and (12) attempt to hide body. 

 Gender of victim was coded as either male or female. Victim/killer relationship 

was coded as either stranger or acquaintance. Killer selection method was coded as 

either random or patterned, with patterned representing selection of victims based on 

their membership in a specific group (e.g., child), their unique characteristics (e.g., living 

near a freeway ramp), or their unique actions that are not part of typical routine activities 

(e.g., hitchhiking). Victim traits were coded as either specific or non-specific with 

specific indicating victim selection based on individual traits (i.e., a particular 

appearance, action, response, etc.). Victim activity was coded as either home, work, 

commuting, walking or jogging, hitchhiking, other travel, visiting friend, outdoor 

recreation, bar, other social event, or prostitution. Hunting style and attack style were 

coded as either hunter, poacher, stalker, troller, or trapper. A hunter sets out in search of 

a victim from their home. A poacher sets out in search of a victim from a site other than 

their home. A troller opportunistically encounters victims while involved in other, non-

predatory activities. A trapper is an individual that assumes a position or creates a 

situation that allows him to encounter victims in a location under their control. Killer 

approach was coded as either confidence approach, surprise, or blitz. Control method 

was coded as either firearm, knife, blunt instrument, strangulation, physical force, 

intoxicant, threat, or blitz (i.e., where the victim was immediately killed). Murder method 
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was coded as either firearm, knife, blunt instrument, strangulation, physical force, or 

poison. Crime location set describes which actions (encounter, attack, murder, disposal) 

were undertaken at each of the known sites involved in the crime and was coded as either 

E → A → M → D (all actions occurring at different sites), E → A → MD (encounter at 

site one, attack at site two, and murder and disposal at site three, etc.), E → AM → D, EA 

→ M → D, EA → MD, E → AMD, EAM → D, EAMD. Body disposal was coded as 

either displayed, dumped, other-not hidden, casually hidden, or well hidden.  

 The data were recoded dichotomously for each of the factors corresponding to a 

given M.O. characteristic. For example, victim gender was coded in the variables female 

and male. Each of these variables was dichotomously coded indicating that the victim 

was female with female equal to one and male equal to zero. This allowed the offender’s 

consistency for a given M.O. characteristic to be calculated using the proportion of 

crimes exhibiting a specific M.O. factor. From these consistency measures for each 

offender, descriptive statistics were calculated for each behavior. The means, standard 

deviations, the minimums and maximums, and the number of offenders exhibiting each 

characteristic are presented in Table 20. 
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Table 20: Descriptive Statistics for Serial Murder Consistency 

 

MO Characteristic Mean Std. Dev. Min Max N 

Victim gender      

     Male 0.53 0.36 0.10 1.00 13 

     Female 0.83 0.20 0.40 1.00 14 

Victim/killer relationship      

     Stranger 0.90 0.14 0.58 1.00 18 

     Acquaintance 0.29 0.16 0.10 0.50 9 

 Selection method      

     Patterned 0.73 0.26 0.20 1.00 15 

     Random 0.57 0.30 0.13 1.00 13 

Victim traits      

     Specific 0.72 0.26 0.10 1.00 14 

     Non-specific 0.58 0.36 0.10 1.00 13 

Victim activity      

     Home 0.60 0.33 0.13 1.00 8 

     Work 0.26 0.12 0.10 0.39 5 

     Commuting 0.28 0.17 0.17 0.59 5 

     Walking or jogging 0.43 0.26 0.10 0.82 10 

     Hitchhiking 0.29 0.19 0.10 0.59 7 

     Other travel 0.42 0.37 0.12 1.00 8 

     Visiting friends 0.40 0.16 0.29 0.59 3 

     Other outdoor 0.82*    1 

     Bar 0.26 0.16 0.10 .50 7 

     Other social activity 0.68 0.11 0.59 0.80 3 

     Prostitution 0.48 0.31 .010 1.00 6 

Hunting style      

     Hunter 0.58 0.34 0.12 1.00 11 

     Poacher 0.75 0.29 0.24 1.00 13 

     Stalker 0.82*    1 

     Troller 0.47 0.36 0.10 1.00 6 

     Trapper 0.19 0.06 0.13 0.25 3 
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Table 20-Continued 

 

MO Characteristic Mean Std. Dev. Min Max N 

Approach      

     Surprise 0.60 0.33 0.25 1.00 6 

     Biltz 0.63 0.39 0.12 1.00 5 

Attack style      

     Hunter 0.88 0.22 0.20 1.00 17 

     Stalker 0.51 0.31 0.25 1.00 6 

Control method      

     Firearm 0.67 0.38 0.21 1.00 6 

     Knife 0.73 0.29 0.36 1.00 4 

     Blunt 0.15 0.01 0.14 0.15 2 

     Strangle 0.68 0.16 0.50 0.80 3 

     Physical force 0.45 0.28 0.12 0.85 9 

     Intoxicant 0.75 0.38 0.17 0.95 4 

     Threat 0.50 0.47 0.17 0.83 2 

     Blitz 0.65 0.33 0.17 1.00 10 

Murder method      

     Firearm 0.74 0.30 0.25 1.00 9 

     Knife 0.53 0.34 0.12 1.00 9 

     Blunt Instrument 0.45 0.26 0.12 0.90 9 

     Strangle 0.62 0.31 0.10 1.00 10 

     Physical Force 0.46 0.33 0.10 0.95 7 

     Poison 0.83*    1 

Crime location set      

     E → A → M → D   0.24 0.19 0.10 0.38 2 

     E → A → MD   0.27 0.14 0.13 0.40 3 

     E → AM → D   0.54 0.32 0.20 1.00 8 

     EA → M → D   0.24 0.10 0.13 0.33 3 

     EA → MD   0.19 0.13 0.10 0.33 3 

     E → AMD   0.63 0.27 0.18 1.00 8 

     EAM → D   0.19 0.06 0.14 0.25 3 

     EAMD   0.88 0.18 0.50 1.00 7 
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Table 20-Continued 

 

MO Characteristic Mean Std. Dev. Min Max N 

Hidden body      

    Display 0.93*    1 

    Dumped 0.38 0.29 0.14 0.75 6 

    Other – not hidden 0.64 0.28 0.10 1.00 9 

    Casually hidden 0.31 0.23 0.10 0.78 9 

    Well hidden 0.58 0.30 0.13 1.00 11 

* As only one offender exhibited the behavior; standard deviations, minimums, and maximums are not presented.  

 

 Table 20 demonstrates that offenders were very consistent for some M.O. 

factors and inconsistent for others. The mean of the mean consistencies reported in Table 

20 was 0.54 (SD = 0.22), and the median was slightly higher at 0.57. This indicated that 

offenders were, on average, slightly more than 50 percent consistent. For linkage 

analysis, an important issue concerns M.O. characteristics for which offenders are 

inconsistent. The first quartile for the mean of mean consistencies reported in Table 20 

was 0.40 and the third quartile was 0.73, supporting the contention that offenders were 

generally more consistent than inconsistent across this set of M.O. factors. This 

phenomenon is illustrated in Figure 38. 
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Figure 38: Histogram of Mean Consistencies for Serial Murder M.O. Behaviors 

 

Another important consideration is the frequency at which each individual M.O. 

consistency is observed. Calculating a distribution consisting of all observed individual 

offender M.O. consistencies provided a way to establish the relative chance that an 

observed behavior occurred with a given consistency. When considering consistency in 

this way, the mean consistency was 0.59 (SD = 0.32), and the median was 0.59 as well. 

The first and third quartiles were 0.28 and 0.91 respectively. Figure 39 presents the 

distribution of individual offender M.O. consistencies. 
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Figure 39: Histogram of Individual Offender M.O. Consistencies for Serial Murder 

 

 This illustrates the important consideration that, for serial murder, offenders 

exhibited very high levels of consistency (over 0.90) for more than 25% of M.O. factors.  

 The previously used method of moment matching indicated that a Beta(0.79, 

0.55) distribution was a close approximation to the observed serial murder M.O. data. 

The summary statistics for a Beta(0.79, 0.55) distribution are compared with the 

summary statistics from the serial murder M.O. data in Table 21. 
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Table 21: Comparison of Observed Data 

to Proposed Beta Distribution. 

 

Statistic Data Beta(0.79, 0.55) 

Mean 0.59 0.59 

Median 0.59 0.62 

Standard deviation 0.32 0.32 

 

 

 Figure 40 presents the Beta(0.79, 0.55) distribution’s probability density. 

 

 Figure 40: Beta(0.79, 0.55) Probability Density 
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 Graphical comparison of the cumulative density for a Beta(0.79, 0.55) distribution 

and the empirical cumulative density (ECD) for the serial murder temporal distance data 

is presented in Figure 41. 

 

Figure 41: Comparison of ECD for Serial Murder M.O. Data 

to CDF for Proposed Distribution 

 

 Figure 41 demonstrates that the Beta(0.79, 0.55) distribution approximated the 

serial murder M.O. data. As such, M.O. probabilities for serial murder simulations were 

drawn from a Beta(0.79, 0.55) distribution. P(behavior|linked) was estimated at 0.59, the 

mean of the Beta(0.79, 0.55) distribution. 
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Serial Commercial Robbery 

 The dataset for serial commercial robbery consisted of crimes from 15 serial 

commercial robbers. The mean number of crimes committed by each offender in the set 

was 12.29 (SD = 6.30) with individual series ranging from 3 to 22 crimes. The dataset 

included information on 12 M.O. characteristics. The M.O. characteristics included: (1) 

target; (2) time of day: (3) day of week; (4) attempt to hide identity; (5) use of gloves; (6) 

use of a bag; (7) transportation; 

(8) presence of a co-offender; (9) weapon used; (10) use of physical violence; (11) 

mannerism; and (12) items stolen. 

 Target was coded as a bank, government building, automotive supply store, gas 

station or convenience store, grocery store, fast food establishment, restaurant, retail 

store, or hotel or motel. Time of day was coded into one of four categories morning (6:00 

am to 1:59 pm), afternoon (2:00 pm to 5:59 pm) evening (6:00 pm to 10:59 pm), and 

night (11:00 pm to 5:59 am). Day of week was coded by day (Sunday to Saturday). 

Attempt to hide identity was coded as mask, bandanna, hat, or sunglasses. The use of 

gloves was dichotomously coded as gloves (yes = 1 or no = 0). Bag was coded as either 

improvised or brought. Transportation was coded as either vehicle or on foot. The 

presence of a co-offender was coded as absent or present. The use of a weapon was 

coded as a hand gun, shotgun, knife, or hidden weapon. Physical violence was coded as 

implied or used. Mannerism was coded as calm and confident, loud and aggressive, 

reassuring, instructional, or restrained. Items stolen were coded as cash, 

cellphone/electronics, jewelry, purse, store products, or items from individuals. 
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 As with serial murder, the data were recoded dichotomously for each of the 

variables that form a given M.O. characteristic. For example, time of day was recoded 

into four new variables: (1) morning; (2) afternoon; (3) evening; (4) and night. Each of 

these variables was coded as either yes (1) or no (0). For example, a morning robbery was 

coded as morning = 1, afternoon = 0, evening = 0, and night = 0. As before, an offender’s 

consistency for a given M.O. characteristic was calculated using the proportion of crimes 

exhibiting a specific M.O. factor. From these consistency measures for each offender, 

descriptive statistics were calculated for each of behaviors. The means, standard 

deviations, the minimums and maximums, and the number of offenders exhibiting each 

of the characteristics are presented in Table 22. 
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Table 22: Descriptive Statistics for Serial Commercial Robbery Consistency 

 

MO Characteristic Mean Std. Dev. Min Max N 

Target      

     Automotive supply store 0.41 0.43 0.11 0.71 2 

     Gas station 0.60 0.38 0.33 0.88 2 

     Grocery store 0.63*    1 

     Fast food 0.64 0.28 0.16 1.00 9 

     Restaurant 0.73 0.25 0.50 1.00 3 

     Retail store 0.52 0.33 0.11 1.00 10 

Time of day      

     Morning 0.62 0.21 0.25 0.77 5 

     Afternoon 0.53 0.32 0.15 1.00 7 

     Evening 0.51 0.28 0.25 1.00 7 

     Night 0.51 0.28 0.22 1.00 6 

Day of week      

     Sunday 0.47 0.23 0.15 0.71 5 

     Monday 0.24 0.08 0.14 0.33 7 

     Tuesday 0.34 0.23 0.11 0.71 8 

     Wednesday 0.47 0.33 0.14 1.00 7 

     Thursday 0.25 0.15 0.11 0.50 7 

     Friday 0.20 0.06 0.11 0.25 4 

     Saturday 0.32 0.18 0.11 0.67 10 

Hide identity      

     Mask 0.84 0.33 0.25 1.00 5 

     Bandanna 1.00**    3 

     Hat 0.82 0.20 0.50 1.00 8 

     Sunglasses 0.89 0.18 0.68 1.00 3 

     Hoodie 0.57 0.39 0.22 1.00 4 

Gloves      

     Used 0.76 0.35 0.25 1.00 4 

Bag used      

     Improvised 0.71*    1 

     Brought 0.72 0.26 0.25 1.00 7 
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* As only one offender exhibited the behavior; standard deviations, minimums, and maximums are not presented.  
** All offenders exhibiting the behavior were 100% consistent. Standard deviations, minimums, and maximums are not 
presented. 

 

 Table 22 demonstrates that serial commercial robbers varied in their M.O. 

consistency across factors. However, serial commercial robbers were slightly more 

  Table 22-Continued    

      

MO Characteristic Mean Std. Dev. Min Max N 

Transportation      

     Vehicle 1.00**    9 

     On foot 1.00    3 

Co-offender      

     Absent 1.00**    11 

     Present 1.00**    4 

Weapon      

     Knife 0.33*    1 

     Hand gun 0.94 0.19 0.33 1.00 12 

     Shotgun 1.00*    1 

     Hidden weapon 0.33*    1 

Physical violence      

     Implied 0.99 0.03 0.89 1.00 12 

     Used 0.39 0.34 0.11 0.77 3 

Mannerism      

     Calm and confident 0.78 0.31 0.29 1.00 6 

     Loud and aggressive 0.89 0.18 0.50 1.00 9 

     Reassuring 1.00*    1 

     Instructional 0.67 0.34 0.13 1.00 10 

     Restrained 0.77 0.24 0.53 1.00 3 

Items stolen      

     Cash 0.98 0.04 0.89 1.00 12 

     Cell phone/electronics 0.31 0.03 0.29 0.33 2 

     Jewelry 0.56 0.38 0.33 1.00 3 

     Purse 0.50 0.24 0.33 0.67 2 

     Store products 0.19 0.07 0.14 0.24 2 

     Items from individuals 0.53 0.27 0.14 0.77 5 
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consistent than serial murderers. The mean of the mean consistencies reported in Table 

19 was 0.61 (SD = 0.27), and the median was slightly higher at 0.62. Thus, on average, 

offenders were more than 50% consistent. The first quartile for the means reported in 

Table 19 was 0.33, and the third quartile was 1.0. This indicated that the consistency of 

serial commercial robbers was more evenly distributed across lower ranges than the M.O. 

consistencies for serial murderers. This is illustrated in Figure 42.  

 

Figure 42: Histogram of Mean Consistencies for 

Serial Commercial Robbery M.O. Behaviors 

 

 Analyzing the frequencies of individual offender M.O. consistencies yielded a 

higher mean consistency of 0.67 (SD = 0.33) and a median of 0.73. The first and third 

quartiles were 0.33 and 1.0 respectively. Figure 43 presents the distribution of individual 

offender M.O. consistencies. 
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Figure 43: Histogram of Individual Offender M.O. 

Consistencies for Serial Commercial Robbery 

 

 As with serial murder, the general conclusion was that serial commercial robbers 

were highly consistent with more than 25% of the distribution demonstrating perfect 

consistency (i.e., consistency = 1.0), across many M.O. factors. 

 Moment matching indicated that a Beta(0.67, 0.33) distribution was a close 

approximation to the observed commercial robbery M.O. data. The summary statistics for 

a Beta(0.67, 0.33) distribution are compared with the summary statistics from the 

commercial robbery M.O. date in Table 23. 
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Table 22: Comparison of Observed Data 

to Proposed Beta Distribution. 

 

Statistic Data Beta(0.67, 0.33) 

Mean 0.67 0.67 

Median 0.73 0.76 

Standard deviation 0.33 0.33 

 

 

 Figure 44 presents the Beta(0.67, 0.33) distribution’s probability density. 

 

 Figure 44: Beta(0.67, 0.33) Probability Density 
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 Graphical comparison of the cumulative density for a Beta(0.67, 0.33) distribution 

and the empirical cumulative density (ECD) for the commercial robbery M.O. data is 

presented in Figure 45. 

 

Figure 45: Comparison of ECD for Commercial Robbery M.O. Data 

to CDF for Proposed Distribution 

 

 Figure 45 demonstrates that the Beta(0.67, 0.33) distribution approximated the 

commercial robbery M.O. data. As such, M.O. probabilities for commercial robbery 

simulations were drawn from a Beta(0.67, 0.33) distribution. P(behavior|linked) was 

estimated using 0.67, the mean of the Beta(0.67, 0.33) distribution. 
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CHAPTER V 

 

PREDICTIVE VALIDITY OF THE LINKAGE MODEL 

 

 To address the four research questions, a variety of separate analyses are 

presented. The first section addresses the first research question, whether the proposed 

linkage method using the likelihood ratio demonstrates predictive validity, using ROC 

analysis. The second section addresses whether the Bayesian hypothesis test provides a 

useful framework for classifying the likelihood ratio using descriptive statistics and 

graphical methods to analyze various measures of performance at the different levels of 

evidence. The third section assesses the value of adding additional information to the 

model using graphical methods to analyze the results of both the ROC analysis and the 

Bayesian hypothesis analysis. The last section addresses the final research question, 

identifying the characteristics of information that impact model performance, using linear 

regression models to assess the relationships between characteristics of the data and 

measures of predictive validity from each linkage analysis. 

  

Validation of the Likelihood Ratio for Linkage Analysis 

 Validation of the likelihood ratio for crime linkage involved calculating the AUC 

for each of the 3.5 million sets of crimes for both the murder and commercial robbery 

simulations. Descriptive statistics were calculated for the AUCs from each set of crimes 

that corresponded to the same crime type. The analysis of each set of AUCs is presented 

in the following two sections. 
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Serial Murder AUC Analysis 

 AUCs were calculated for each of the 3.5 million simulated murder linkage 

analyses. Descriptive statistics were then generated for the entire set of AUCs. The 

descriptive statistics for the murder AUCs are presented in Table 24, and the distribution 

of AUCs is presented in Figure 46. 

 

Table 24: Descriptive Statistics for Murder AUCs 

 

Statistic Observation 

Mean 0.81  

Median 0.83  

Standard deviation 0.10  

Maximum 1.00  

Minimum 0.34 
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Figure 46: Histogram of Murder AUCs 

 

 The descriptive statistics indicated that across all models (i.e., from the distance 

only model to the model that included distance, time, and 12 M.O. factors) the likelihood 

ratio exhibited “good” predictive capacity on average (mean AUC = 0.81) for serial 

murder linkage analyses. Further the median of 0.83 indicated that 50% of serial murder 

linkage analyses exhibited either “good” or “excellent” predictive capacity. Table 25 

presents the proportion of linkage analyses exhibiting AUCs at different levels of 

predictive capacity for the murder models. 
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Table 25: Serial Murder AUC Performance Levels 

 

Level of Performance Proportion 

Uninformative (AUC < 0.5)  0.01 

Poor (0.5 ≤ AUC < 0.7)  0.12 

Fair (0.7 ≤ AUC < 0.8)  0.27 

Good (0.8 ≤ AUC < 0.9)  0.40 

Excellent (AUC ≥ 0.9)  0.20 

 

 

Serial Commercial Robbery AUC Analysis 

AUCs were calculated for each of the 3.5 million simulated commercial robbery 

linkage analyses. Descriptive statistics were then generated for the entire set of AUCs. 

The descriptive statistics for the commercial robbery AUCs are presented in Table 26, 

and the distribution of AUCs is presented in Figure 47. 

 

Table 26: Descriptive Statistics for Commercial Robbery AUCs 

 

Statistic Observation 

Mean 0.80  

Median 0.81  

Standard deviation 0.14  

Maximum 1.00  

Minimum 0.32 
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Figure 47: Histogram of Commercial Robbery AUCs 

 

 The descriptive statistics indicated that across all models (i.e., from the distance 

only model to the model that included distance, time, and 12 M.O. factors) the likelihood 

ratio exhibited “good” predictive capacity on average (mean AUC = 0.80) for 

commercial robbery linkage analyses. Further the median of 0.81 indicated that 50% of 

the linkage analyses exhibited either “good” or “excellent” predictive capacity. Table 27 

presents the proportion of cases exhibiting AUCs at different levels of predictive capacity 

for the commercial robbery models. 

 

 

 

 



 

 

137 

 

 

Table 27: Commercial Robbery AUC Performance Levels 

   

Level of Performance Proportion 

Uninformative (AUC < 0.5) 0.02  

Poor (0.5 ≤ AUC < 0.7) 0.26  

Fair (0.7 ≤ AUC < 0.8) 0.21  

Good (0.8 ≤ AUC < 0.9) 0.20  

Excellent (AUC ≥ 0.9) 0.30 
 

 

     

Crime Linkage Using the Bayesian Hypothesis Test 

 Analyzing the utility of the Bayesian hypothesis test as a method to predict serial 

crime linkage consisted of calculating descriptive statistics for the percent of a series 

identified, the number of actual serial crimes identified, and the percent of true positives 

for each level of evidence for each set of crimes of a given type using the same number of 

factors to predict linkage. Histograms of each measure as well as performance plots were 

also generated. The descriptive statistics, histograms, and performance plots are 

presented in the following two sections. 

 

Serial Murder Linkage at Different Levels of Evidence 

 To assess the utility of the Bayesian hypothesis test for murder linkage analysis, 

three measures of predictive performance were assessed using the murder data. The first 

measure, the percent of a series identified, provided a comparative measure of the 

method’s ability to predict linkages. The number of hits provided insight into the actual 
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information gain yielded by the model, and the percent of true positives provided an 

estimate of the confidence in the estimates. Means and medians for each of these 

measures at each level of evidence are presented in Table 28 for the full information 

model (i.e., serial murder predictions based on distance and time difference in 

conjunction with 12 M.O. factors
12

). Detailed distributional information as well as 

performance plots are presented in Figures 48 to 51. 

 

Table 28: Serial Murder Linkage for Full Information Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 199,048 214,634 221,099 242,946 

Percent of samples with predictions 79.62 85.85 88.44 97.18 

     

Percent of series identified     

     Mean 18.57 22.44 26.22 56.38 

     Median 13.33 17.65 21.74 52.94 

     

Number of hits     

     Mean 2.91 3.44 3.92 8.04 

     Median 2.00 2.00 3.00 7.00 

     

Percent of true positives     

     Mean 12.31 19.13 29.17 54.98 

     Median 4.69 7.96 14.81 54.55  

 

                                                 
12

 A detailed descriptive analysis of serial murder linkage performance using incomplete information (e.g., 

distance only, distance and time, or distance, time, and one MO factor, etc.) is presented in Appendix B.   
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Figure 48: Serial Murder Full Information Model at the Substantial Level of Evidence 
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Figure 49: Serial Murder Full Information Model at the Strong Level of Evidence 
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Figure 50: Serial Murder Full Information Model at the Very Strong Level of Evidence 
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Figure 51: Serial Murder Full Information Model at the Extreme Level of Evidence 
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 The analysis indicated that, for the serial murder data, the substantial, strong, and 

very strong levels of evidence resulted in poor predictions (i.e., median true positive 

percentages of 4.69, 7.96, and 14.81). In 50% of the linkage analyses at these levels of 

evidence, approximately 85 to 95% of the predictions were false positives. This indicated 

that the substantial, strong, and very strong levels of evidence represent decision 

thresholds that do not discriminate between linked and unlinked murders when using all 

available information.  

 At the extreme level of evidence, the performance improved. The median true 

positive percentage of 54.55% indicated that in 50% of the linkage analyses, more 

predictions were correct than incorrect. As indicated in Figure 49, at the extreme level of 

evidence, the model was 100% accurate in approximately 10% of linkage analyses. Thus, 

the extreme level of evidence demonstrated utility in discerning between linked and 

unlinked murders. 

 

Serial Commercial Robbery at Different Levels of Evidence 

 To assess the utility of the Bayesian hypothesis test for commercial robbery 

linkage, the same three measures of predictive performance were examined using the 

commercial robbery data. Means and medians for each of these measures at each level of 

evidence are presented in Table 29 for the commercial robbery full information model 

(i.e., serial murder predictions based on distance and time difference in conjunction with 
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12 M.O. factors
13

). Detailed distributional information as well as performance plots are 

presented in Figures 52 to 55. 

 

Table 29: Commercial Robbery Linkage for Full Information Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 233,534 200,981 146,436 88,035 

Percent of samples with predictions 93.41 80.39 58.57 35.21 

     

Percent of series identified     

     Mean 34.04 34.49 35.36 43.22 

     Median 27.59 26.32 25.00 31.25 

     

Number of hits     

     Mean 8.72 8.12 7.53 7.91 

     Median 6.00 5.00 5.00 5.00 

     

Percent of true positives     

     Mean 43.76 55.62 64.20 71.54 

     Median 38.46 58.33 75.00 90.00  

                                                 
13

 A detailed descriptive analysis of serial commercial robbery linkage performance using incomplete 

information (e.g., distance only, distance and time, or distance, time, and one MO factor, etc.) is presented 

in Appendix C.   
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Figure 52: Commercial Robbery Full Information Model at the Substantial Level of 

Evidence 
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Figure 53: Commercial Robbery Full Information Model at the Strong Level of Evidence 
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Figure 54: Commercial Robbery Full Information Model at the Very Strong Level of 

Evidence 
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Figure 55: Commercial Robbery Full Information Model at the Extreme Level of Evidence 
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 The analysis indicated that, for the commercial robbery data, the substantial level 

of evidence resulted in poor predictions (i.e., a median true positive percentage of 

38.46%). In 50% of the linkage analyses, approximately 60% of the predictions were 

inaccurate at the substantial level of evidence. 

 At the strong, very strong, and extreme levels of evidence, the performance 

improved. The median true positive percentages of 58.33%, 75%, and 90% indicated that 

in 50% of the linkage analyses, more predictions were correct than incorrect for the 

strong level of evidence. Using the very strong level of evidence, more than 3 out of 4 

predictions were correct in more than 50% of linkage analyses, and, at the extreme level 

of evidence, more than 9 out of 10 predictions were correct in 50% of the linkage 

analyses. Figure 52 indicates that, at the strong level of evidence, the model was 100% 

accurate in approximately 25% of linkage analyses. Similarly, Figure 53 indicates that the 

model was 100% accurate in approximately 40% of linkage analyses using the very 

strong level of evidence. Finally, Figure 54 indicates that the model was 100% accurate 

in approximately 45% of linkage analyses using the extreme level of evidence. 

 

The Value of Additional Information 

 For any particular sample, the inclusion of additional information (e.g., adding 

additional M.O. factors) altered the predictive capacity of the linkage method. These 

changes sometimes improved and, other times, degraded the method’s ability to 

accurately predict crime linkage. Figures 56 through 62 illustrate the changes that 

occurred in a single linkage analysis as the amount of information used in the calculation 

of LRfinal was increased. As these ROC curves represent the linkage method’s 
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performance for a single linkage analysis, the figures are illustrative rather than 

informative about performance. 

 

 

Figure 56: Example ROC Curve Based 

on Distance Only 
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Figure 57: Example ROC Curve Based 

on Distance and Time 

 

Figure 58: Example ROC Curve Based 

on Distance, Time, and One M.O. Factor 
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Figure 59: Example ROC Curve Based 

on Distance, Time, and Two M.O. Factors 

 

Figure 60: Example ROC Curve Based 

on Distance, Time, and Three M.O. Factors 
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Figure 61: Example ROC Curve Based 

on Distance, Time, and Four M.O. Factors 

 

Figure 62: Example ROC Curve Based 

on Distance, Time, and Five M.O. Factors 
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 Figures 56 to 62 demonstrate the fact that including additional information has the 

potential to increase predictive capacity as well as reduce it. Because, it is important to 

understand how the inclusion of additional information generally affected the linkage 

model across a large number of cases, the following analyses were conducted. 

 Determining the impact of adding additional information involved two separate 

sets of analyses for each crime type. The first set of analyses involved comparing ROC 

curves generated using a different number of factors in the calculation of LRfinal. The 

second set of analyses involved comparing changes in performance measures resulting 

from different numbers of factors in the calculation of LRfinal for predictions rendered 

using the Bayesian hypothesis test. The following two sections present these analyses for 

both the serial murder and commercial robbery data. 

 

Serial Murder Linkage and Additional Information 

 Analysis of the value of additional information in the serial murder linkage tests 

began with a comparison of AUC values that emerged when including different numbers 

of factors. The changes in the mean and median AUCs for each model are presented in 

Figure 63. 
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Figure 63: Changes in Serial Murder AUC with Additional Information
14 

 

 Figure 63 indicates that inclusion of additional information increased the 

model’s predictive capacity using the serial murder data. Importantly, including the time 

difference measurements substantially increased the model’s predictive capacity. Adding 

additional M.O. factors resulted in less substantial gains. 

 The next set of analyses assessed the value of additional information for serial 

murder linkage under the Bayesian hypothesis test. The analyses involved plotting the 

means and medians of two measures of model predictive performance, the hit rate (i.e., 

the percent of crimes classified as linked that are actually linked) and the percent of a 

                                                 
14

 The x-axes for Figures 62 to 79 are cumulative (i.e., ‘Dist’ represents the distance only model, ‘Time’ 

represents the model based on distance and temporal difference, ‘1 MO’ represents the model based on 

distance and time difference in conjunction with one MO factor, etc.).  
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series identified against the information used in the model to generate LRfinal. This 

process was performed at each of the four levels of evidence. 

 

Figure 64: Changes in Serial Murder Hit Rate at Substantial Evidence 
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Figure 65: Changes in Serial Murder Percent Identified at Substantial Evidence 

 

 Figures 64 and 65 indicate that the including additional information had a slight 

negative impact on the percent of true positives for the serial murder data at the 

substantial level of evidence. However, the inclusion of the time difference measurement 

substantially increased the percent of a series identified without altering the hit rate. The 

additional M.O. data had little impact on the percent of a series identified. Given that the 

individual M.O. likelihood ratios were calculated assuming a consistency (the numerator 

of LRMO) of 0.59, including additional M.O. factors raised the total likelihood ratio 

whenever the behavior exhibited a uniqueness (the denominator of LRMO) less than 0.59. 

This implied that, on average, including additional M.O. factors raised the total likelihood 

ratio for crimes that were correctly predicted as linked by a model based on less 
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information. In turn, this resulted in these crimes being correctly classified but at a higher 

level of evidence. 

 

Figure 66: Changes in Serial Murder Hit Rate at Strong Evidence 
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Figure 67: Changes in Serial Murder Percent Identified at Strong Evidence 

  

 Figures 66 and 67 indicate that the inclusion of the additional information had a 

negative impact on the percent of true positives for the serial murder data at the strong 

level of evidence as well. As with the substantial level of evidence, the inclusion of the 

time difference measurement substantially increased the percent of a series identified. 

However, unlike the substantial level of evidence, the inclusion of the time difference 

data had a negative effect on the hit rate. The inclusion of additional M.O. data increased 

the percent identified when eight or more factors were included. 
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Figure 68: Changes in Serial Murder Hit Rate at Very Strong Evidence 

 

Figure 69: Changes in Serial Murder Percent Identified at Very Strong Evidence 
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 Figures 68 and 68 indicate that the inclusion of the additional information had a 

negative impact on the percent of true positives for the serial murder data at the very 

strong level of evidence as well. The negative effect of including the time difference data 

was more extreme than observed at the strong level of evidence. However, the inclusion 

of the time difference measurement substantially increased the percent of a series 

identified. The additional M.O. data increased the percent identified when eight or more 

M.O. factors were included. The additional M.O. data reduced the hit rate as more 

information was included. However, the effect was less substantial than the effect of 

including time difference. 

 

 

Figure 70: Changes in Serial Murder Hit Rate at Extreme Evidence 
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Figure 71: Changes in Serial Murder Percent Identified at Extreme Evidence 

  

 Figures 70 and 71 indicate that including additional information had a negative 

impact on the percent of true positives for the serial murder data at the extreme level of 

evidence as well. As before, the inclusion of the time difference measurement 

substantially increased the percent of a series identified. The additional M.O. data 

increased the percent identified regardless of the number of M.O. factors included. Thus, 

including additional M.O. information resulted in a greater number of total true positives 

while increasing the number of false positives. This indicated that the decision threshold 

for the extreme level of evidence may have simply been too low for the serial murder 

data. 
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Serial Commercial Robbery Linkage and Additional Information 

 Analysis of the value of additional information in the serial commercial robbery 

linkage tests began with a comparison of AUC values between the predictions that 

resulted from inclusion of different numbers of factors. The changes in the mean AUC 

for each model is presented in Figure 72. 

 

Figure 72: Changes in Commercial Robbery AUC with Additional Information 

 

 Figure 72 indicates that inclusion of additional information increased the 

model’s overall predictive capacity using the commercial robbery data. While the 

inclusion of the time difference measurements resulted in a greater increase to the 

model’s predictive capacity than the inclusion of M.O. factors, the inclusion of additional 

M.O. factors resulted in greater gains than observed for the serial murder models. 
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 The next set of analyses to determine the value of additional information for 

serial commercial robbery involved plotting the means and medians of two measures of 

model predictive performance, the hit rate and the percent of a series identified, against 

the information used to generate LRfinal. As with the serial murder analysis, this process 

was performed at each of the four levels of evidence. 

 

Figure 73: Changes in Commercial Robbery Hit Rate at Substantial Evidence 
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Figure 74: Changes in Commercial Robbery Percent Identified at Substantial Evidence 

 

 Figures 73 and 74 indicate that the inclusion of the time difference measurement 

had a positive effect on both the hit rate and the percent of a series identified at the 

substantial level of evidence for the commercial robbery data. The inclusion of M.O. data 

had little effect on either performance measure. 
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Figure 75: Changes in Commercial Robbery Hit Rate at Strong Evidence
15

 

                                                 
15

 No predictions were made at the strong level of evidence or above for the distance-only model. For 

comparability with other graphs, models where no predictions were made are still included on the x-axis in 

figures where this occurs. 
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Figure 76: Changes in Commercial Robbery Percent Identified at Strong Evidence 

 

 Figures 75 and 76 indicate that the additional information had a negative impact 

on the percent of true positives for the commercial robbery data at the strong level of 

evidence as well. However, the inclusion of additional data (temporal distance and M.O. 

information) increased the percent of a series identified. 
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Figure 77: Changes in Commercial Robbery Hit Rate at Very Strong Evidence 

 

Figure 77: Changes in Commercial Robbery Percent Identified at Very Strong Evidence 
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 Figures 77 and 78 indicate that the adding M.O. information had an initial 

negative impact on the percent of true positives for the commercial robbery data at the 

very strong level of evidence. However, the additional information from the next five 

M.O. factors increased the hit rate. After six M.O. factors were included, additional M.O. 

information had a negligible impact on the hit rate. Including additional M.O. 

information had a positive effect on the percent identified. The first M.O. factor included 

had the greatest impact with each additional M.O. factor having a lower but consistent 

effect.  

 

Figure 79: Changes in Commercial Robbery Hit Rate at Extreme Evidence 
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Figure 80: Changes in Commercial Robbery Percent Identified at Extreme Evidence 

 

 Figures 79 and 80 indicate that the inclusion of the additional information had a 

positive impact on model performance at the extreme level of evidence. Adding M.O. 

information had a positive impact on the hit rate for the first six M.O. factors. After that, 

the impact of additional M.O. information was negligible. More M.O. information 

generally improved the percent of a series identified, with the first M.O. factor having the 

greatest impact. 

 

Characteristics of Information that Impact Model Performance 

 To assess the characteristics of information that impacted model performance, 

linear regression analysis was utilized. Two linear regression models were estimated. 

Because AUC is a measure of the overall predictive capacity of a test, each regression 
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model was estimated using the AUC for the type of linkage analysis (i.e., serial murder or 

commercial robbery) as the dependent variable. This analysis informed about the effect 

of the characteristics of the information on the overall ability of the proposed linkage 

method to correctly classify linked and unlinked crimes. 

  The first model involved regressing the AUCs for the serial murder linkage 

analyses on seven characteristics of the information used to perform the linkage analyses. 

These characteristics included the proportion of serial offenses, the median serial 

distance, the median non-serial distance, the median serial time difference, the median 

non-serial time difference, the mean consistency, and the mean uniqueness. The second 

model involved regressing the AUCs for the commercial robbery linkage analyses on the 

same set of information characteristics. All seven characteristics were independent, with 

each one exhibiting a variance inflation factor less than 1.02. The regression models are 

presented in the following sections. 

 

AUC Regression for Serial Murder Linkage 

 The first model was based on the serial murder linkage analyses. The model was 

significant (p < 0.001), and all of the individual coefficients were significant (p < 0.001) 

as well. The model explained 54.8% of the variation in the predictive capacity of the 

linkage method as measured by the AUCs. On average, greater predictive capacity was 

related to lower serial crime proportions, lower serial distances, lower serial time 

differences, and lower M.O. uniqueness. Additionally, predictive capacity was related to 

greater non-serial distances, greater non-serial time differences, and greater offender 

M.O. consistency. The regression estimates are presented in Table 30. 
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Table 30: Serial Murder Linear Regression for AUC  

 

 Coefficient 

Serial proportion -0.006 

Serial distance -0.454 

Non-serial distance 0.329 

Serial time -0.427 

Non-serial time 0.309 

Consistency 0.230 

Uniqueness -0.230 

Intercept 0.732 
  

R
2
 0.548  

 

 Serial distance was the strongest predictor followed by serial time difference. 

Behavioral consistency and uniqueness had equally strong effects albeit in differing 

directions. Because uniqueness is defined as P(behavior|linkage), higher values of the 

uniqueness measure represent behaviors that are less unique. Therefore the differing 

directions of these two effects are consistent with the expected behavior outlined in 

Chapter 4. With the exception of the proportion of serial offenses, the other effects were 

all in the anticipated directions. 

 Because two-outcome classification systems typically perform better when the 

base rate of the outcome being classified is closer to 0.5, the proportion of serial crimes 

was expected to have a positive relationship to predictive validity which suggested that 

the linkage method’s performance should improve as the proportion of serial murders 

increased. However, the observed negative effect indicated the opposite, that the 

performance of the model degraded as the proportion of linked murders increased. 

However, it is important to note that this effect 
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(-0.006) was negligible. While the effect was statistically significant, the finding of 

statistical significance was driven largely by the sample size, and the effect of the 

proportion of serial crimes on AUC was substantially lower that the effects of the other 

information.  

  

AUC Regression for Commercial Robbery Linkage 

 The second linear regression model was estimated using the commercial robbery 

data. Again, the AUC for each linkage analysis was used as the dependent variable. The 

model was significant (p < 0.001). As in the serial murder model, all of the coefficients 

were likewise significant (p < 0.001), and the model explained 54.7% of the variation in 

performance as measured by the AUCs. On average, greater predictive capacity was 

related to lower serial crime proportions, lower serial distances, lower serial time 

differences, and lower M.O. uniqueness. Additionally, predictive capacity was related to 

greater non-serial distances, greater non-serial time differences, and greater offender 

M.O. consistency. The regression estimates for the commercial robbery analysis are 

presented in Table 31. 
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Table 31: Commercial Robbery Linear Regression for AUC  

 

 Coefficient 

Serial proportion -0.008 

Serial distance -0.158 

Non-serial distance 0.218 

Serial time -0.110 

Non-serial time 0.068 

Consistency 0.116 

Uniqueness -0.239 

Intercept 0.886 
  

R
2
 0.547  

 

 Unlike the serial murder model, behavioral uniqueness was the strongest predictor 

followed by non-serial distance and serial distance for the commercial robbery data. The 

reduced effect for distance was attributed to the lower spatial clustering observed in the 

serial commercial robbery crimes. Behavioral consistency was more strongly related to 

linkage performance for two reasons. First, because distance was less able to predict 

commercial robbery linkage than serial murder linkage, the M.O. information had more 

potential to impact the performance. Second, because greater M.O. consistency was 

present in the commercial robbery data, the M.O. likelihood ratios were higher for the 

same level of uniqueness than in the serial murder linkage analyses. This allowed for a 

greater overall effect for uniqueness in the commercial robbery data. As before, the 

proportion of serial crimes was negatively related to linkage performance, but the effect 

was again negligible as in the serial murder regression model.  
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CHAPTER VII 

 

CONCLUSION 

 

 This study attempted to provide evidence of the predictive validity of the 

Bayesian crime linkage method proposed by Rossmo et al. (2012). The analysis 

attempted to answer four specific research questions: (1) does the proposed linkage 

method demonstrate predictive validity; (2) does the Bayesian hypothesis test provide a 

useful framework for classifying the likelihood ratio generated from the method; (3) what 

is the value of additional information; and (4) what are the characteristics of information 

that impact model performance? This chapter presents the interpretation of the findings 

related to each question. Three sections are presented in this chapter. The first section 

discusses the findings placing them into the context using information presented in the 

study as well as previous research on crime linkage methods. The second section 

discusses limitations of the study, and the third section discusses directions for future 

research on crime linkage analysis. 

 

Discussion 

 The analysis indicated that the proposed linkage method exhibited predictive 

validity. Evidence of the utility of the Bayesian hypothesis test for crime linkage was 

split, with some evidence indicating that the levels used for the Bayesian decision 

thresholds worked well for commercial robbery but poorly for serial murder. Evidence 

indicated that the inclusion of additional information improved the predictive capacity of 
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the test, but that the inclusion of additional information was problematic for the Bayesian 

hypothesis test applied to the serial murder data at lower levels of evidence. Finally, 

multiple analyses indicated that several of the characteristics of the data were related to 

greater predictive ability. The following section of this chapter is divided into four 

distinct parts, each part addressing the interpretation of a single research question. 

 

Research Question One 

 The analysis directed at the first research question was the most fundamental in 

demonstrating the predictive validity of the linkage method. Using AUCs to quantify 

predictive capacity, the results demonstrated that the model exhibited predictive validity 

for both the murder and commercial robbery data. This was an important finding because 

it established the model’s capacity to differentiate between linked and unlinked crimes. 

The analyses conducted thereafter would have been meaningless if the AUC analysis had 

failed to demonstrate predictive capacity for the likelihood ratio. 

 The findings of the AUC analysis were consistent with previous research that 

demonstrated the predictive capacity of distance, time difference, and M.O. factors using 

other linkage methods. Incorporation of this information through the proposed likelihood 

ratio generated valid predictions as suggested by the previous research. The evidence 

indicated that the proposed likelihood ratio is a viable way of incorporating this 

information for making classifying crimes as linked. 

 Importantly, the AUC analysis indicated that the model’s predictive capacity was 

relatively similar for both the serial murder and commercial robbery data (serial murder 

mean AUC = 0.81, commercial robbery mean AUC = 0.80). This was an interesting 
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finding considering that the two models varied substantially in the base rate of the 

occurrence of serial crime, the average distance (i.e., serial murder exhibiting shorter 

distances than serial commercial robbery), the average time difference (i.e., serial murder 

exhibiting shorter time differences than serial commercial robbery), and the average 

behavioral consistency (i.e., serial murder mean consistency = 0.59, serial commercial 

robbery mean consistency 0.67). However, this finding provides additional support for 

the linkage method in general, as the similar performance observed likely resulted from 

both the serial murder and commercial robbery simulations referencing the same 

distributions for data generation and likelihood ratio estimation. This indicates that the 

linkage method results in valid predictions when the underlying assumptions are correct. 

 

Research Question Two 

 The analysis addressing the second research question provided additional insight 

into the predictive ability of the linkage method and provided information concerning the 

behavior of the method when evaluated at the levels of evidence suggested by the 

Bayesian hypothesis test. In general, the Bayesian hypothesis test was a useful tool for 

predicting linkages from the commercial robbery data, but was not as useful for serial 

murder predictions. Predictions for both crime types made at the extreme level of 

evidence were the most accurate. 

 The substantial level of evidence was determined to exhibit poor performance 

overall (e.g., median 95.31% false positive rate for the full information serial murder 

data, and median 61.54% false positive rate for the full information commercial robbery 

data). The strong and very strong levels of evidence resulted in poor predictions for the 
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serial murder data (e.g., median false positive rates for the full information model of 

92.04% and 85.19%, respectively). However, these levels of evidence performed better 

for the commercial robbery data (e.g., median false positive rates for the full information 

model of 41.67% and 25%, respectively). Finally, the extreme level of evidence 

performed best for both sets of data. Predictions made for the murder data at the extreme 

level of evidence resulted in a median false positive rate of 44.45%. Predictions made for 

the commercial robbery data at the extreme level of evidence were substantially better 

with a median false positive rate of 10%. Importantly, at the extreme level of evidence, 

predictions were 100% accurate for approximately 25% of serial murder linkage analyses 

and 45% of commercial robbery linkage analyses. The greater performance for the 

extreme level of evidence suggests that this level may be most appropriate for conducting 

linkage analysis. 

 The lower performance of the Bayesian hypothesis test for classifying the serial 

murder data in general likely resulted in part from the lower base rates of serial crime in 

the serial murder dataset. The serial murder data exhibited very low rates of linked crimes 

(mean proportion of linked crimes = 0.03, median proportion of linked crimes = 0.01) 

compared to the commercial robbery data (mean proportion of linked crimes = 0.30, 

median proportion of linked crimes = 0.29). Thus, although the true positive rates 

observed for serial murder predictions were low, they represented substantial gains over 

chance predictions. Additionally, the lower performance resulted from overall higher 

likelihood ratios generated by the serial murder data. This indicated that the decision 

thresholds in the Bayesian hypothesis tests were simply too low for accurate serial 

murder linkage. 
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 Although this finding indicated that the Bayesian hypothesis test may be 

problematic for use in serial murder linkage analysis, these results did not indicate that 

the linkage method itself does not have potential to be used in linking serial murder. The 

results of the AUC analysis indicated that the proposed linkage method has the ability to 

correctly classify linked murders. In contrast, the results of the Bayesian hypothesis test 

analyses only indicated that the Bayesian levels of evidence were improper decision 

thresholds for classifying the likelihood ratio. The performance of the Bayesian 

hypothesis test varied between the crime types, indicating that a fixed numeric threshold 

may be inappropriate for the linkage method. Instead, the graphical method of analyzing 

the log of the likelihood ratio advanced by Rossmo et al. (2012) may be superior. 

Because the graphical method does not rely on a fixed decision threshold, it may be 

potentially more useful across a wide range of likelihood ratios. Additionally, since 

graphical analysis orders the crimes analyzed and prioritization is a fundamental task of 

crime analysis, graphical analysis may be a more intuitive approach to accomplishing the 

goals of crime linkage analysis. 

 

Research Question Three 

 The analysis addressing the third research question provided insight into the value 

of adding additional information to the model. The first set of analyses addressing this 

issue involved calculating the mean AUCs for each crime type for each model (i.e., the 

distance only model, the distance and time model, the distance, time, and one M.O. factor 

model, etc.). These AUCs were then compared as the models included more information. 
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 For both crime types, the inclusion of additional information consistently 

increased the predictive capacity of the linkage method. This finding was consistent with 

Davies et al.’s (2012) conclusion that more information increases the predictive capacity 

of linkage analysis. For both types of crime, distance had the greatest predictive capacity, 

inclusion of time difference increased predictive capacity, and inclusion of M.O. factors 

had less substantial effects. Whereas the distance only model for the serial murder data 

had a mean AUC of 0.71, the distance and time model had a mean AUC of 0.81. Each 

additional M.O. factor increased the AUC for the murder data by approximately 0.4. The 

same phenomenon was observed for the commercial robbery data although the effect was 

smaller. Whereas the distance only model for the commercial robbery data had a mean 

AUC of 0.72, the distance and time model had a mean AUC of 0.74. Each M.O. factor 

increased the mean AUC for the commercial robbery data, but the effect of each 

additional M.O. factor was less than the effect of the previous. 

 The greater increase observed when incorporating the temporal information in the 

serial murder predictions was likely due to the fact that serial murder observations were 

more closely clustered in time when time was measured proportionally. The mean 

proportional serial murder time difference was 0.29, whereas the mean proportional serial 

commercial robbery time difference was 0.33. While this difference may seem trivial, 

considering the rapid increase of the cumulative density functions used to generate the 

time difference linkage probabilities, this difference had a large effect on LRtime which 

translated into a large effect on LRfinal. 

 The lesser apparent value of the M.O. information and the diminishing effect of 

including more information was expected. Considering that distance alone was a fair 
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predictor for both sets of data, there was less left to predict after the distance information 

had already been incorporated. Additionally, the inclusion of M.O. information for the 

serial murder data may have added less to the predictive capacity of the method due to 

the base rate of serial offending. Individual samples in the serial murder data had as many 

as 2,000 non-serial crimes. Due to the large number of non-serial crimes, several 

individual non-serial crimes likely had 100% accordance for all M.O. factors despite the 

low probability of this occurring. Because the mean consistency for non-serial offenders 

was 0.5, the probability of observing all 12 factors was 0.5
12

 (0.0002). With 1,000 crimes 

in a sample, the expectation of a non-serial crime exhibiting this perfect set of factors was 

0.2. For high, although not perfect, levels of M.O. match (e.g., matches on 9 of the 12 

factors), this issue was more problematic. The probability of observing a match on 9 of 

the 12 factors was 0.002. Thus, in a sample of 1,000 cases, two crimes would have been 

expected to exhibit these high levels of concordance. 

 This also explains the observation that, for both types of crime, inclusion of 

additional M.O. information tended to lower the true positive rate. However, because of 

higher consistencies for serial crimes, adding this information tended to increase the 

percent of a series identified for both crime types. 

 Importantly, the lower levels of evidence (i.e., the substantial and strong levels) 

both showed initial gains in the percent of a series identified as additional information 

was included. However, these gains quickly reached a point of diminishing returns. The 

same phenomenon was observed for the commercial robbery data at the substantial level 

of evidence. This is likely due to the fact that, for crimes correctly predicted as linked, the 

inclusion of additional information, on average, elevated the likelihood ratio. Thus, the 
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predictions made at lower levels of evidence were reclassified as predictions at higher 

levels of evidence. For the murder data at the extreme level of evidence adding additional 

information resulted in a consistent gain in the percent of a series identified. For the 

commercial robbery data, the increases in the percent of series identified were seen at the 

three higher levels of evidence (i.e., the strong, the very strong, and the extreme levels of 

evidence). 

 

Research Question Four 

 The analysis used to address the fourth research question provided insight into the 

types of information that were related to better predictive performance. The linear 

regression analysis indicated that the relationships between characteristics of spatial and 

temporal information and predictive performance were consistent with the prior 

assumptions. Specifically, the linkage method performed better when serial crimes were 

closer together in space and time and when non-serial crimes were further apart in space 

and time. This is consistent with the theoretical analysis in Chapter 4 that indicated 

predictions based on spatial and time difference are essentially based on the clustering of 

the data. It is likewise supportive of Burrell et al.’s (2012) conclusion that distance is 

better for determining linkages when analyzing larger areas. 

 Overall, the relationships between M.O. behavioral consistency and uniqueness 

were in the directions expected. As serial offenders exhibited greater consistency, the 

predictive performance of the method improved. Likewise, as behavior became more 

unique, the performance of the method improved. The magnitudes of the effects for 

consistency and uniqueness were equal for the serial murder linkage analysis, but the 
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effect for uniqueness was almost twice the magnitude than the effect for consistency in 

the commercial robbery data. Because this increased effect for uniqueness is related to 

greater consistency in the commercial robbery data, this finding underscores both the 

value of relying on distinct evidence when it is available and the value of incorporating 

behaviors that are most consistent into crime linkage analysis models. 

  

Study Limitations 

 While the results of this study provide evidence that the proposed method has 

utility linking crimes, there were several important limitations that should be 

acknowledged. Some of these limitations were related to the use of simulated data, while 

others were related to the processes used to estimate the probabilities and to calculate the 

likelihood ratios. 

 

Limitations of Simulated Data 

 Analysis of simulated data provides useful conclusions when the assumptions 

used to generate the data closely mirror reality. In this study, simulated data for serial 

crimes were generated based on empirical assessments of serial offender behavior. 

Specifically, empirical data on spatial and temporal distances between serial murders and 

between serial commercial robberies were analyzed. The observations made from these 

data were then generalized to distributions that were reasonable approximations about 

serial offenders’ spatial and temporal behavior. These distributions, in turn, were used to 

simulate serial spatial and temporal observations. Thus, the assumptions used to generate 

the serial spatial and temporal data had empirical support. 
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 The same process was used to provide an empirical basis for M.O. observations. 

Empirical data on offender M.O. behavior was analyzed, and observations from these 

data were generalized to distributions designed to approximate offenders’ M.O. behavior 

in serial crimes. However, two important issues concerning this process are noteworthy. 

First, the data used to estimate distributions for offender M.O. behavior had fewer 

observations than the data used to estimate distributions for spatial and temporal 

behavior. Likewise, the data used for the M.O. behavior analysis included few M.O. 

factors. In reality, offenders exhibit many behaviors in the commission of their crimes. 

Considering this reality, generalizing about an offenders’ average behavioral consistency 

from analyzing limited data with information on only a few M.O. factors is problematic. 

Thus, while the analysis involving M.O. factors presented is informative, it should be 

viewed as exploratory. 

 The second limitation related to the assumptions used to generate the data results 

from the simulation of non-serial offender behavior. Unlike the serial behavior, the non-

serial behavior lacked an empirical basis. Instead, non-serial spatial, temporal, and M.O. 

data were generated randomly. Because research indicates that criminal opportunity is 

non-random, generating the non-serial data in this way was a significant limitation. 

However, the nature of the simulations was designed to limit the effect of this problem. 

The power of Monte Carlo simulation for testing the linkage method came, in part, from 

the sheer number of linkage analyses performed. While the random nature of the non-

serial data was problematic, the size of the simulation somewhat offset this issue. 

Importantly, the data generation for non-serial offenses resulted in observations that were 
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random on average when all samples were viewed at the same time but exhibited non-

random pattering within samples. 

 

Limitations of Probability and Likelihood Ratio Estimation 

 The most important limitation related to the estimation of the probabilities used to 

calculate the likelihood ratios concerns the underlying assumptions. Analysis of empirical 

data was used to generalize probability distributions. Because this analysis of empirical 

data represented an understanding of behavior, these same probability distributions were 

used to estimate probabilities for distance and time difference observations as well as for 

estimating probabilities for M.O. consistency. Therefore, there was no average 

assumptive error in this study. If there were substantial variations between the actual 

distributions of offender behavior and the distributions used to estimate the probabilities 

employed to calculate the likelihood ratios, then the error between these two sets of 

distributions would have an impact on the predictive validity of the method. The effect of 

assumptive error on linkage prediction is an important consideration for crime linkage 

analysis; however, that question was beyond the scope of this study. 

 Another limitation of the study relates to the estimation of serial consistency. 

Analysis of empirical data rendered a set of M.O. consistencies, and the mean of all 

consistencies was used as the estimate of P(behavior|linked) for all M.O. factors. While 

this measure of central tendency represents the best guess of this probability for any 

unknown factor, this could be a biased estimate. Because offenders may be much more 

consistent in certain behaviors than others, estimating this probability using the mean 

empirical consistency for the actual behavior observed may result in greater predictive 
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validity. As addressed earlier, the limited empirical data used to understand offender 

M.O. behavior made it difficult to pursue this approach. The mean of all consistencies is 

a viable estimate of the probability but represents a limitation if better estimates could be 

found.   

 The final limitation concerns the number of M.O. factors used. AUC analysis of 

both the serial murder and commercial robbery data indicated that the overall predictive 

capacity of the method improved as more information was added. Neither model reached 

a point where the AUC failed to increase as additional information was added. Therefore, 

it is possible that inclusion of additional M.O. information may improve model 

performance. The decision to include only 12 M.O. factors was based on preliminary 

analyses that indicated performance maximization at 8 to 10 M.O. factors and on certain 

computational limitations. However, the full scale simulation presented in this research 

failed to demonstrate this phenomenon. Thus, limiting the analysis to 12 M.O. factors 

was another important limitation of the study.  

  

Directions for Future Research 

 While this research provided additional support for the validity of the proposed 

Bayesian method for linking serial crimes, the results are best viewed as exploratory. 

However, the findings and limitations of the study provide guidance for future research 

both on this linkage method as well as on crime linkage analysis in general. Several of 

these directions for future research are presented in this section. 

 To improve understanding and development of crime linkage systems, several 

issues should be addressed. Importantly, some of these issues involve additional studies 
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on offender behavior rather than studies directed at crime linkage. Specifically, a greater 

understanding of behavioral consistency among offenders is necessary for developing 

improved crime linkage tools. 

 As noted in the limitations, different offenders likely vary in their consistency 

between behaviors. Identification of the behaviors that offenders are most consistent at 

exhibiting is fundamental to using M.O. to predict crime linkage. The analysis for the 

fourth research question demonstrated that offender consistency was a strong predictor of 

predictive performance. Therefore, using a set of behaviors that are believed to be more 

consistent overall should render better predictions. Additionally, identifying a set of 

behaviors that exhibit utility for crime linkage has important implications. Once these 

behaviors are identified, procedures can be implemented to insure that data are collected 

for these behaviors from crime sites. Current analysis assumes that the absence of a 

record of a behavior is an indication that the offender did not exhibit the behavior. As it is 

possible that the behavior was simply not noted in the police report, the effect of 

measurement error on crime linkage is unknown. Developing protocols to improve the 

collection of data to be used for linkage analysis would help address this issue. 

 In addition to this general direction, understanding the behavior of the proposed 

linkage method requires additional research. Primarily, the method needs to be subjected 

to a test of validity using empirical rather than simulated data. Because the simulated data 

are based on empirical assumptions, it is possible that empirical data collected for 

different types of serial crimes, from different areas and at different times, may be unlike 

the assumptions applied in this study. Testing the linkage method using empirical data for 
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a variety of crime types from different areas and at different times will add to the 

generalizability of the method. 

 Finally, the effect of assumptive error on the linkage method needs to be assessed. 

Analyzing the predictive validity of the crime linkage method using incorrect 

assumptions about offenders’ spatial, temporal, and M.O. behaviors will provide insight 

into whether general assumptions are sufficient for the method, or whether assumptions 

about offender behavior should be generated specifically for different jurisdictions. 
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APPENDIX SECTION 

 

APPENDIX A 

 

A brief discussion of edge effects and an alternate method for estimating LRdistance is 

presented in this Appendix. 

 

 The calculation used to generate LRdistance presented in Chapter 4 has two specific 

limitations. First, the calculation of P(distance|unlinked) ignores the location of the 

crimes within the analysis area. Thus, the method does not control for the changes in 

probability that occur when observations are situated near the edge of the analysis space. 

This is not particularly problematic when locations are situated well within the 

boundaries of the analysis area and the area is large relative to the distances being 

analyzed. However, it may become problematic when the distances become longer. The 

following figures demonstrate the issue. 
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Locations of Crimes Do Not Affect Calculation of P(distance|unlinked) 

 

 

Locations of Crimes Affect Calculation of P(distance|unlinked) 

 

Location 1 

Location 2 

Distance 

Area of circle with radius equal to distance 

Total area of analysis space 

Analysis space 

Location 1 

Location 2 

Distance 

Area of circle with radius equal to distance 

Total area of analysis space 

Analysis space 
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Both figures present possible observed distances within the same area. In the first 

figure, all of the possible points contained within the circle inscribed by the observed 

distance fall within the greater area. In this case, the calculation presented in Chapter 4 

yields the correct probability. However, in the second figure, the calculation is incorrect. 

This is due to the fact that some of the points inscribed by the circle lie outside the area of 

analysis. This is an edge effect where the location of the crime site within the analysis 

space affects the probability of distances related to that site. In this case, the probability 

would be correctly calculated by dividing the area of the circle that falls within the 

analysis area by the total area. This may be an issue that affects the performance of 

LRdistance as distances becomes much longer. 

The issue is particularly problematic when the distance becomes so long that the 

area of the circle that it inscribes becomes greater that the area being analyzed. When this 

occurs, the calculation of P(distance|unlinked) using this method results in a value over 

one. The following figure demonstrates the issue. 
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Area of Circle is Greater than Area Analyzed 

 

The second potential issue results from both this approach to calculating 

P(distance|unlinked) and the use of cumulative densities to calculate P(distance|linked). 

Both of these methods utilize probabilities that represent the chance of observing a 

distance equal to or less than the distance observed. Estimating the probability of 

observing a specific distance may result in better performance of the linkage method. The 

alternate technique presented herein addresses both of these issues. 

The empirical serial murder distances were found to correspond to a 

Beta(0.34,0.84) distribution, and cumulative density function for this distribution was 

used to estimate the probability of observing a distance equal to or less than the observed 

distance. Beta(0.34, 0.84) is a probability density function and is given by: 
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Location 1 
Location 2 

Distance 

Area of circle with radius equal to distance 

Total area of analysis space 

Analysis space 



 

 

193 

 

Estimating probabilities for specific observations (x) from a probability density 

function is accomplished by calculating the definite integral of the function. Because 

definite integrals must range over some values of x, some small quantity (δ) is added and 

subtracted from x to create the range. This value can be infinitesimally small and can be 

thought of as measurement error. Using the Beta(0.34, 0.84) probability density function, 

the calculation for the numerator of the likelihood ratio is: 

 

 (        |      )  ∫  (         )( )  
    

     

 

 

To generate the denominator of the likelihood ratio, a probability density function 

representing the distribution of all possible distances within an analysis area must be 

derived. This distribution can be derived for any area using a Monte Carlo approach. 

Generating this distribution involves the following steps: 

 

(1) Randomly sample two points within the analysis area. 

(2) Calculate the distance between these points. 

(3) Add this distance to the distribution for the area. 

(4) Repeat steps 1 to 3 until the moments of the distribution converge. 

(5) Fit a probability density function that corresponds to the derived distribution. 

 

The fit probability density function summarizes the possible distances within the 

analysis area assuming that they are random. For example, assume that the analysis area 

is one square mile. Sampling 10,000 pairs of points and recording 10,000 distances 
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renders a distribution with a mean of 0.518 miles and a variance of 0.062. Standardizing 

these values renders a mean proportional distance of 0.408 and a variance of 0.196. The 

derived distribution of random distances within the area is presented in the following 

figure. 

 

 

Distribution of Randomly Occurring Distances in One Square Mile 

 

Moment matching indicates that a Beta(2.37, 3.87) distribution is a close 

approximation to this distribution. The Beta(2.37, 3.87) probability density is presented 

in the following figure: 
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Beta(2.37, 3.87) Probability Density Function 

 

Using the Beta(2.37, 3.87) as the probability density function, the probability for 

the denominator, P(distance|unlinked), can be estimated as: 

 

 (        |        )  ∫  (         )( )  
    

     

 

 

 The distance likelihood ratio can now be calculated based on the probabilities for 

the observed distance rather than the cumulative probabilities, and this estimate now 

controls for edge effects. The distance likelihood ratio is ultimately given by: 
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 The extent to which calculating the distance likelihood ratio in this way affects 

the ability of the linkage method to accurately classify linked crimes is undetermined. 

However, estimating the probabilities in this way would allow for specific distributions to 

be generated for any area analyzed regardless of shape or size. Empirical data on serial 

offending within that area alone could be used to generate a distinct distribution of serial 

crime distances specifically related to the area as well. This would result in direct 

correspondence between the two distributions that might prove superior to using general 

distributions that incorporate data from multiple areas. 
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APPENDIX B 

 

Analysis of the performance of the Bayesian hypothesis test for serial murder linkage for 

models with incomplete information (i.e., models with less than distance, time, and 12 

M.O. factors) is presented in this Appendix. The complete information models (i.e., those 

using distance, time, and all 12 M.O. factors) are presented in Chapter 5. 

 

Serial Murder Linkage Performance for Distance Only Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with 
predictions 

194,992 171,488 138,293 46,817 

Percent of samples with 
predictions 

77.96 68.56 55.28 81.72 

     

Percent of series identified     

     Mean 7.11 3.94 2.97  10.06 

     Median 0.00 0.00 0.00 9.09 

     

Number of hits     

     Mean 1.12 0.62 0.48 1.51 

     Median 0.00 0.00 0.00 1.00 

     

Percent of true positives     

     Mean 17.64 42.33 73.67 94.88 

     Median 11.11 40.00 100.00 100.00  
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Serial Murder Distance Only Model Performance at the Substantial Level of Evidence 
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Serial Murder Distance Only Model Performance at the Strong Level of Evidence 
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Serial Murder Distance Only Model Performance at the Very Strong Level of Evidence 
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Serial Murder Distance Only Model Performance at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance and Time Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 166,765 148,224 132,149 239,245 

Percent of samples with predictions 66.68 59.25 52.82 95.67 

     

Percent of series identified     

     Mean 21.07 17.14 14.46 24.43 

     Median 16.67 14.29 12.50 23.08 

     

Number of hits     

     Mean 3.35 2.74 2.30 3.67 

     Median 2.00 2.00 2.00 3.00 

     

Percent of true positives     

     Mean 12.74 27.83 49.88 85.17 

     Median 7.69 22.22 50.00 100.00  
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Serial Murder Distance and Time Model Performance at the Substantial Level of Evidence 
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Serial Murder Distance and Time Model Performance at the Strong Level of Evidence 
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Serial Murder Distance and Time Model Performance at the Very Strong Level of Evidence 
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Serial Murder Distance and Time Model Performance at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and One-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 169,812 155,283 140,807 239,172 

Percent of samples with predictions 67.90 62.08 56.29 95.65 

     

Percent of series identified     

     Mean 19.84 17.36 15.11 27.49 

     Median 15.00 14.29 12.50 25.00 

     

Number of hits     

     Mean 3.18 2.75 2.38 4.09 

     Median 2.00 2.00 2.00 3.00 

     

Percent of true positives     

     Mean 12.66 26.33 46.20 81.84 

     Median 6.90 19.05 50.00 100.00 
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Serial Murder Distance, Time, and One-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and One-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and One-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and One-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Two-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 173,188 164,841 151,199 239,746 

Percent of samples with predictions 69.26 65.93 60.44 95.86 

     

Percent of series identified     

     Mean 19.31 17.43 15.84 30.71 

     Median 14.29 14.29 12.50 27.27 

     

Number of hits     

     Mean 3.08 2.76 2.48 4.51 

     Median 2.00 2.00 2.00 4.00 

     

Percent of true positives     

     Mean 12.66 25.01 43.65 78.69 

     Median 6.47 16.67 40.00 88.89 
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Serial Murder Distance, Time, and Two-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and Two-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Two-M.O.-Factor Model Performance  

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and Two-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Three-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 175,726 171,015 161,149 240,116 

Percent of samples with predictions 70.29 68.37 64.42 96.02 

     

Percent of series identified     

     Mean 18.40 17.18 16.02 33.78 

     Median 14.29 13.79 13.04 29.17 

     

Number of hits     

     Mean 2.93 2.70 2.50 4.93 

     Median 2.00 2.00 2.00 4.00 

     

Percent of true positives     

     Mean 12.64 24.23 40.84 75.44 

     Median 6.06 14.29 33.33 83.33 
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Serial Murder Distance, Time, and Three-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and Three-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Three-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and Three-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Four-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 179,099 177,893 171,597 240,316 

Percent of samples with predictions 71.60 71.14 68.63 96.11 

     

Percent of series identified     

     Mean 17.81 17.19 16.54 36.56 

     Median 13.64 14.29 13.64 31.25 

     

Number of hits     

     Mean 2.84 2.69 2.56 5.27 

     Median 2.00 2.00 2.00 4.00 

     

Percent of true positives     

     Mean 12.65 23.60 39.08 72.53 

     Median 5.88 12.73 33.33 80.00  
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Serial Murder Distance, Time, and Four-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and Four-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Four-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and Four-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Five-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 185,155 188,798 184,815 240,622 

Percent of samples with predictions 74.05 75.49 73.91 96.23 

     

Percent of series identified     

     Mean 17.28 16.94 16.72 39.61 

     Median 13.33 14.29 14.29 33.33 

     

Number of hits     

     Mean 2.75 2.65 2.57 5.73 

     Median 2.00 2.00 2.00 5.00 

     

Percent of true positives     

     Mean 12.83 22.98 37.63 70.09 

     Median 5.71 12.00 28.13 77.78  
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Serial Murder Distance, Time, and Five-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and Five-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Five-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 



 

 

231 

 

 

Serial Murder Distance, Time, and Five-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Six-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 189,645 197,608 197,389 241,171 

Percent of samples with predictions 75.83 79.03 78.92 96.44 

     

Percent of series identified     

     Mean 16.68 16.57 16.92 42.37 

     Median 13.33 14.29 14.29 36.00 

     

Number of hits     

     Mean 2.65 2.61 2.61 6.08 

     Median 2.00 2.00 2.00 5.00 

     

Percent of true positives     

     Mean 12.92 22.45 36.18 67.38 

     Median 5.77 11.11 25.00 75.00 
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Serial Murder Distance, Time, and Six-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and Six-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Six-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and Six-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Seven-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 195,454 208,831 211,084 241,382 

Percent of samples with predictions 78.17 83.50 84.83 96.52 

     

Percent of series identified     

     Mean 16.11 16.39 17.14 44.86 

     Median 14.29 14.29 15.00 38.46 

     

Number of hits     

     Mean 2.57 2.57 2.63 6.48 

     Median 2.00 2.00 2.00 5.00 

     

Percent of true positives     

     Mean 12.99 22.46 35.46 65.14 

     Median 5.68 11.11 25.00 71.43  
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Serial Murder Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Eight-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 204,965 226,073 231,239 241,708 

Percent of samples with predictions 81.97 90.39 92.47 96.67 

     

Percent of series identified     

     Mean 15.50 15.88 17.15 47.57 

     Median 14.29 15.00 15.79 40.91 

     

Number of hits     

     Mean 2.48 2.49 2.63 6.85 

     Median 2.00 2.00 2.00 5.00 

     

Percent of true positives     

     Mean 13.34 22.48 34.88 62.89 

     Median 5.88 11.11 23.08 66.67  
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Serial Murder Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and Nine-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 204,947 224,987 229,297 242,099 

Percent of samples with predictions 81.94 89.97 91.71 96.81 

     

Percent of series identified     

     Mean 16.10 17.40 19.48 50.11 

     Median 13.04 14.29 16.67 44.44 

     

Number of hits     

     Mean 2.54 2.69 2.95 7.13 

     Median 2.00 2.00 2.00 6.00 

     

Percent of true positives     

     Mean 12.97 21.35 32.98 60.48 

     Median 5.41 9.74 20.00 66.67  
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Serial Murder Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 



 

 

249 

 

 

Serial Murder Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 



 

 

251 

 

 

Serial Murder Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and 10-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 203,505 221,925 226,444 242,464 

Percent of samples with predictions 81.37 88.77 90.56 96.96 

     

Percent of series identified     

     Mean 16.70 19.18 21.91 52.59 

     Median 12.50 15.00 17.65 48.28 

     

Number of hits     

     Mean 2.63 2.95 3.29 7.47 

     Median 2.00 2.00 2.00 6.00 

     

Percent of true positives     

     Mean 12.45 19.97 30.76 58.01 

     Median 4.88 8.33 16.67 60.00  
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Serial Murder Distance, Time, and 10-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and 10-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and 10-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and 10-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Serial Murder Linkage Performance for Distance, Time, and 11-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 201,575 217,510 223,520 242,569 

Percent of samples with predictions 80.63 87.00 89.39 97.01 

     

Percent of series identified     

     Mean 17.61 20.90 24.29 54.53 

     Median 12.5 16.67 20.00 50.00 

     

Number of hits     

     Mean 2.76 3.21 3.65 7.82 

     Median 2.00 2.00 3.00 6.00 

     

Percent of true positives     

     Mean 12.38 19.39 30.26 56.73 

     Median 4.76 7.89 16.22 58.06  
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Serial Murder Distance, Time, and 11-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Serial Murder Distance, Time, and 11-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Serial Murder Distance, Time, and 11-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Serial Murder Distance, Time, and 11-M.O.-Factor Model Performance 

at the Extreme Level of Evidence  



 

 

262 

 

APPENDIX C 

 

Analysis of the performance of the Bayesian hypothesis test for serial commercial 

robbery linkage for models with incomplete information (i.e., models with less than 

distance, time, and 12 M.O. factors) is presented in this appendix. The complete 

information models (i.e., those using distance, time, and all 12 M.O. factors) are 

presented in Chapter 5. 

 

Commercial Robbery Linkage Performance for Distance Only Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 10,091 n/a n/a n/a 

Percent of samples with predictions 4.04 n/a n/a n/a 

     

Percent of series identified     

     Mean 1.84 n/a n/a n/a 

     Median 0.00 n/a n/a n/a 

     

Number of hits     

     Mean 0.51 n/a n/a n/a 

     Median 0.00 n/a n/a n/a 

     

Percent of true positives     

     Mean 49.23 n/a n/a n/a 

     Median 0.00 n/a n/a n/a  

 

 Distance alone failed to yield any Bayes’ factors at the strong, very strong, or 

extreme level of evidence. 
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Commercial Robbery Distance Only Model Performance 

at the Substantial Level of Evidence 

 

Commercial Robbery Linkage Performance for Distance and Time Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 233,695 4,500 n/a n/a 

Percent of samples with predictions 93.48 1.80 n/a n/a 

     

Percent of series identified     

     Mean 32.26 2.84 n/a n/a 

     Median 36.36 2.63 n/a n/a 

     

Number of hits     

     Mean 8.74 0.77 n/a n/a 

     Median 7.00 1.00 n/a n/a 

     

Percent of true positives     

     Mean 38.08 75.47 n/a n/a 

     Median 40.00 100.00 n/a n/a  

 

 Distance and time together failed to yield any predictions at the very strong or 

extreme levels of evidence. 
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Commercial Robbery Distance and Time Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance and Time Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and One-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 231,459 54,289 5,406 874 

Percent of samples with predictions 92.58 21.72 2.16 0.35 

     

Percent of series identified     

     Mean 30.30 13.71 14.76 39.73 

     Median 23.08 5.55 5.65 16.67 

     

Number of hits     

     Mean 8.15 3.11 3.41 8.31 

     Median 5.00 1.00 1.00 3.00 

     

Percent of true positives     

     Mean 38.16 56.52 53.31 51.81 

     Median 35.71 62.07 50.00 50.00  
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Commercial Robbery Distance, Time, and One-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and One-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and One-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and One-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and Two-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 227,975 88,994 16,953 3,383 

Percent of samples with predictions 91.19 35.60 6.78 1.35 

     

Percent of series identified     

     Mean 30.18 17.15 16.74 37.78 

     Median 21.74 7.69 7.14 37.25 

     

Number of hits     

     Mean 8.08 3.99 3.51 6.81 

     Median 5.00 2.00 1.00 3.00 

     

Percent of true positives     

     Mean 38.16 53.82 57.49 61.73 

     Median 33.33 54.55 66.67 62.50  
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Commercial Robbery Distance, Time, and Two-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Two-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Two-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Two-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and Three-M.O.-Factor 

Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 226,058 112,466 31,351 8,206 

Percent of samples with predictions 90.42 44.99 12.54 3.28 

     

Percent of series identified     

     Mean 30.06 19.29 18.12 34.66 

     Median 22.22 9.52 8.57 28.18 

     

Number of hits     

     Mean 8.02 4.56 3.8 6.25 

     Median 5.00 2.00 2.00 3.00 

     

Percent of true positives     

     Mean 38.55 52.85 59.40 67.21 

     Median 33.33 40.06 66.67 81.82  
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Commercial Robbery Distance, Time, and Three-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Three-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Three-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Three-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and Four-M.O.-Factor 

Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 225,019 131,515 47,313 14,880 

Percent of samples with predictions 90.00 52.61 18.93 5.95 

     

Percent of series identified     

     Mean 29.93 20.70 19.29 35.24 

     Median 22.22 11.11 10.00 20.00 

     

Number of hits     

     Mean 7.95 4.92 4.02 6.08 

     Median 5.00 2.00 2.00 3.00 

     

Percent of true positives     

     Mean 38.96 52.39 59.93 69.07 

     Median 33.33 50.00 70.00 87.50  
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Commercial Robbery Distance, Time, and Four-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Four-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Four-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Four-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 



 

 

287 

 

 

Commercial Robbery Linkage Performance for Distance, Time, and Five-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 225,680 146,636 63,358 22,869 

Percent of samples with predictions 90.26 58.65 25.46 9.15 

     

Percent of series identified     

     Mean 29.71 21.96 20.46 35.74 

     Median 23.08 12.82 11.11 20.00 

     

Number of hits     

     Mean 7.88 5.24 4.32 6.09 

     Median 5.00 3.00 2.00 3.00 

     

Percent of true positives     

     Mean 39.60 52.65 60.67 69.87 

     Median 33.33 50.00 71.43 88.89  
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Commercial Robbery Distance, Time, and Five-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Five-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Five-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Five-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and Six-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 226,876 159,328 79,506 32,248 

Percent of samples with predictions 90.75 63.73 31.80 12.90 

     

Percent of series identified     

     Mean 29.58 22.93 21.80 36.59 

     Median 23.14 14.63 13.04 20.00 

     

Number of hits     

     Mean 7.85 5.53 4.64 6.32 

     Median 5.00 3.00 2.00 3.00 

     

Percent of true positives     

     Mean 40.50 53.21 61.83 70.89 

     Median 34.21 53.15 75.00 91.67  
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Commercial Robbery Distance, Time, and Six-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Six-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Six-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Six-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and Seven-M.O.-Factor 

Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 229,361 172,349 95,751 41,955 

Percent of samples with predictions 91.74 68.94 38.80 16.78 

     

Percent of series identified     

     Mean 29.59 23.95 23.00 37.52 

     Median 25.71 16.67 15.00 22.22 

     

Number of hits     

     Mean 7.80 5.75 4.92 6.54 

     Median 6.00 4.00 3.00 4.00 

     

Percent of true positives     

     Mean 41.37 54.11 62.84 71.11 

     Median 35.71 55.10 75.00 91.67  
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Commercial Robbery Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Seven-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and Eight-M.O.-Factor 

Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 235,078 185,817 111,843 51,671 

Percent of samples with predictions 94.03 74.33 44.74 20.67 

     

Percent of series identified     

     Mean 29.63 25.04 24.57 38.72 

     Median 28.57 20.93 18.18 23.53 

     

Number of hits     

     Mean 7.76 6.02 5.25 6.84 

     Median 6.00 4.00 3.00 4.00 

     

Percent of true positives     

     Mean 42.14 54.90 63.67 71.44 

     Median 36.84 57.14 75.00 91.67  
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Commercial Robbery Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Eight-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and Nine-M.O.-Factor 

Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 234,900 198,861 122,316 61,594 

Percent of samples with predictions 93.36 76.34 48.93 34.64 

     

Percent of series identified     

     Mean 30.59 27.70 27.84 39.68 

     Median 27.27 21.43 20.00 25.00 

     

Number of hits     

     Mean 7.96 6.60 5.93 7.04 

     Median 6.00 4.00 4.00 4.00 

     

Percent of true positives     

     Mean 42.45 55.07 63.90 71.57 

     Median 37.21 57.14 75.00 91.67  
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Commercial Robbery Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and Nine-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and 10-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 234,620 194,769 131,497 70,608 

Percent of samples with predictions 93.85 77.91 52.60 28.24 

     

Percent of series identified     

     Mean 31.78 30.23 30.60 41.12 

     Median 26.67 22.50 21.05 27.28 

     

Number of hits     

     Mean 8.21 7.16 6.50 7.34 

     Median 6.00 5.00 4.00 5.00 

     

Percent of true positives     

     Mean 42.94 55.12 63.94 71.60 

     Median 37.50 57.14 75.00 90.47  
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Commercial Robbery Distance, Time, and 10-M.O.-Factor Model Performance 

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and 10-M.O.-Factor Model Performance 

at the Strong Level of Evidence 



 

 

315 

 

 

Commercial Robbery Distance, Time, and 10-M.O.-Factor Model Performance 

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and 10-M.O.-Factor Model Performance 

at the Extreme Level of Evidence 
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Commercial Robbery Linkage Performance for Distance, Time, and 11-M.O.-Factor Model 

 

 Level of Evidence 

 Substantial Strong Very Strong Extreme 

Number of samples with predictions 234,088 197,831 139,242 79,816 

Percent of samples with predictions 93.64 79.13 55.70 31.93 

     

Percent of series identified     

     Mean 32.78 32.44 33.20 41.87 

     Median 26.67 24.44 23.08 28.89 

     

Number of hits     

     Mean 8.43 8.05 7.06 7.55 

     Median 6.00 5.00 4.00 5.00 

     

Percent of true positives     

     Mean 43.28 55.37 64.21 71.7 

     Median 38.08 57.89 75.00 90.00  
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Commercial Robbery Distance, Time, and 11-M.O.-Factor Model Performance  

at the Substantial Level of Evidence 
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Commercial Robbery Distance, Time, and 11-M.O.-Factor Model Performance  

at the Strong Level of Evidence 
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Commercial Robbery Distance, Time, and 11-M.O.-Factor Model Performance  

at the Very Strong Level of Evidence 
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Commercial Robbery Distance, Time, and 11-M.O.-Factor Model Performance 

at the Extreme Level of Evidence  
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APPENDIX D 

 

An example of R code to generate simulated data and to calculate the likelihood ratios is 

presented in this Appendix. 

 

# --------------------------------------------------------------------- 
# Simulation data generation (distance, time, and 12 M.O. factors) and 
LR Calculation 
# --------------------------------------------------------------------- 
 
# Load required R package 
 
require(car) 
 
# Generate an object to store the entire set of summary data 
(analysis.data is a list of 14 objects with each object being a matrix 
of 250,000 performance measure summaries from 250,000 simulated cases)  
 
analysis.data <- list() 
 
for(j in 1:14){ 
   
  # Set the number of cases for each run of the simulation 
 
  n <- 250000  
   
  # Generate an object to store the distance, time, and M.O. 
observations (runs is a list of 3,500,000 objects with each object 
being a matrix of observations and calculated likelihood ratios for an 
individual case) 
 
  runs <- list() 
   
  # Generate an object to store the performance measure summaries for 
250,000 cases (this object is posted to analysis.data each iteration of 
the outer j loop)  
   
  summaries <- matrix(NA, ncol = 53, nrow = n) 
   
  colnames(summaries) <- c("per.hit.substantial", "per.hit.strong",    
"per.hit.verystrong", "per.hit.extreme", "per.series.substantial", 
"per.series.strong", "per.series.verystrong", "per.series.extreme", 
"count.hit.substantial", "count.hit.strong","count.hit.verystrong", 
"count.hit.extreme", "n.ser", "n.non", "n.case", "count.hit.total",  
"per.hit.total", "count.fp.substantial", "count.fp.strong",  
"count.fp.verystrong", "count.fp.extreme", "per.fp.substantial",  
"per.fp.strong", "per.fp.verystrong", "per.fp.extreme", 
"mean.dist.ser", "median.dist.ser", "sd.dist.ser", "mean.dist.non", 
"median.dist.non", "sd.dist.non", "mean.time.ser", "median.time.ser", 
"sd.time.ser", "mean.time.non", "median.time.non", "sd.time.non", 
"mean.mo.ser", "median.mo.ser", "sd.mo.ser", "mean.mo.non", 
"median.mo.non", "sd.mo.non", "mean.uniq", "median.uniq", "sd.uniq", 
"min.ser.MO", "max.ser.MO", "min.non.MO", "max.non.MO", "min.uniq", 
"max.uniq", "case #") 
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  for(i in 1:n){ 
     
    # Sample number of serial crimes within the case 
 
    # Alter this code to change the number of serial crimes 
     
    ser.n <- round(rgamma(1, 3.24, 0.21)) 
    while(ser.n > 40 | ser.n < 1){ 
      ser.n <- round(rgamma(1, 3.24, 0.21)) 
    } 
     
    # Sample the number of non-serial crimes within the case  
 
    # Alter this code to change the number of non-serial  
      crimes 
     
    non.n <- sample(100:2000, 1) 
 
 
    # Generate serial observations 
     
    alpha.dist <- 0.34 
    beta.dist <- 0.84 
     
    # Sample serial distance observations 
 
    ser.dist <- matrix(rbeta(ser.n, alpha.dist, beta.dist), nrow = 
ser.n, ncol = 1)  
     
    alpha.time <- 0.39 
    beta.time <- 0.96 
     
    # Sample serial time observations 
 
    ser.time <- matrix(rbeta(ser.n, alpha.time, beta.time), nrow = 
ser.n, ncol = 1) 
     
    ser.p1 <- rbeta(1, .79, .55) 
    ser.p2 <- rbeta(1, .79, .55) 
    ser.p3 <- rbeta(1, .79, .55) 
    ser.p4 <- rbeta(1, .79, .55) 
    ser.p5 <- rbeta(1, .79, .55) 
    ser.p6 <- rbeta(1, .79, .55) 
    ser.p7 <- rbeta(1, .79, .55) 
    ser.p8 <- rbeta(1, .79, .55) 
    ser.p9 <- rbeta(1, .79, .55) 
    ser.p10 <- rbeta(1, .79, .55) 
    ser.p11 <- rbeta(1, .79, .55) 
    ser.p12 <- rbeta(1, .79, .55) 
     
    # Sample for each M.O. factor using the sampled M.O. probabilities 
to generate M.O. observations. 
 
    ser.mo1 <- matrix(rbinom(ser.n, 1, ser.p1)) 
    ser.mo2 <- matrix(rbinom(ser.n, 1, ser.p2)) 
    ser.mo3 <- matrix(rbinom(ser.n, 1, ser.p3))  
    ser.mo4 <- matrix(rbinom(ser.n, 1, ser.p4)) 
    ser.mo5 <- matrix(rbinom(ser.n, 1, ser.p5))  
    ser.mo6 <- matrix(rbinom(ser.n, 1, ser.p6))  
    ser.mo7 <- matrix(rbinom(ser.n, 1, ser.p7)) 
    ser.mo8 <- matrix(rbinom(ser.n, 1, ser.p8))  
    ser.mo9 <- matrix(rbinom(ser.n, 1, ser.p9))  
    ser.mo10 <- matrix(rbinom(ser.n, 1, ser.p10))  
    ser.mo11 <- matrix(rbinom(ser.n, 1, ser.p11))  
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    ser.mo12 <- matrix(rbinom(ser.n, 1, ser.p12)) 
     
    # Bind all serial M.O. data together 
 
    ser.mo.data <- cbind(ser.mo1, ser.mo2, ser.mo3, ser.mo4, ser.mo5,  
      ser.mo6, ser.mo7, ser.mo8, ser.mo9, ser.mo10, ser.mo11, ser.mo12)     
 
    # Generate a serial code 
 
    ser.dich <- matrix(1, nrow = ser.n, ncol = 1) 
     
    # Bind all serial data together (i.e, distance, time, and M.O. 
observations with serial code) 
 
    ser.data <- cbind(ser.dist, ser.time, ser.mo.data, ser.dich)     
     
     
    # Generate non-serial observations 
         
    # Sample non-serial distance observations 
     
    non.dist <- matrix(runif(non.n, 0, 1), nrow = non.n, ncol = 1)     
 
    # Sample non-serial time observations 
 
    non.time <- matrix(runif(non.n, 0, 1), nrow = non.n, ncol = 1)  
     
    non.p1 <- runif(1, 0, 1) 
    non.p2 <- runif(1, 0, 1) 
    non.p3 <- runif(1, 0, 1) 
    non.p4 <- runif(1, 0, 1) 
    non.p5 <- runif(1, 0, 1) 
    non.p6 <- runif(1, 0, 1) 
    non.p7 <- runif(1, 0, 1) 
    non.p8 <- runif(1, 0, 1) 
    non.p9 <- runif(1, 0, 1) 
    non.p10 <- runif(1, 0, 1) 
    non.p11 <- runif(1, 0, 1) 
    non.p12 <- runif(1, 0, 1) 
     
    # Sample for each M.O. factor using the sampled M.O. probabilities 
to generate M.O. observations 
 
    non.mo1 <- matrix(rbinom(non.n, 1, non.p1)) 
    non.mo2 <- matrix(rbinom(non.n, 1, non.p2)) 
    non.mo3 <- matrix(rbinom(non.n, 1, non.p3))  
    non.mo4 <- matrix(rbinom(non.n, 1, non.p4)) 
    non.mo5 <- matrix(rbinom(non.n, 1, non.p5))  
    non.mo6 <- matrix(rbinom(non.n, 1, non.p6))  
    non.mo7 <- matrix(rbinom(non.n, 1, non.p7))  
    non.mo8 <- matrix(rbinom(non.n, 1, non.p8)) 
    non.mo9 <- matrix(rbinom(non.n, 1, non.p9))  
    non.mo10 <- matrix(rbinom(non.n, 1,non.p10)) 
    non.mo11 <- matrix(rbinom(non.n, 1,non.p11)) 
    non.mo12 <- matrix(rbinom(non.n, 1,non.p12)) 
 
    # Bind all non-serial M.O. data together     
 
    non.mo.data <- cbind(non.mo1, non.mo2, non.mo3, non.mo4, non.mo5, 
non.mo6, non.mo7, non.mo8, non.mo9, non.mo10, non.mo11, non.mo12) 
 
    # Generate a non-serial code 
     
    non.dich <- matrix(0, nrow = non.n, ncol = 1) 
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    # Bind all non-serial data together (i.e., distance, time, and M.O.  
      observations with non-serial code) 
 
    non.data <- cbind(non.dist, non.time, non.mo.data, non.dich) 
 
    # Bind both the serial and non-serial data together to generate the 
total set of data for the case 
 
    data <- rbind(ser.data, non.data) 
     
     
 
 
 
    # Write the probabilities for each observation 
     
    const.dist <- pbeta(data[,1], alpha.dist, beta.dist) 
    unique.dist <- data[,1] 
    lr.dist <- const.dist / unique.dist 
     
    const.time <- pbeta(data[,2], alpha.time, beta.time) 
    unique.time <- data[,2] 
    lr.time <- const.time / unique.time 
     
    holder <- data[,3] 
    const.mo.1 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.1 <- sum(data[,3]) / nrow(data) 
    lr.mo.1 <- const.mo.1 / unique.mo.1 
     
    holder <- data[,4] 
    const.mo.2 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.2 <- sum(data[,4]) / nrow(data) 
    lr.mo.2 <- const.mo.2 / unique.mo.2 
     
    holder <- data[,5] 
    const.mo.3 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.3 <- sum(data[,5]) / nrow(data) 
    lr.mo.3 <- const.mo.3 / unique.mo.3 
     
    holder <- data[,6] 
    const.mo.4 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.4 <- sum(data[,6]) / nrow(data) 
    lr.mo.4 <- const.mo.4 / unique.mo.4 
     
    holder <- data[,7] 
    const.mo.5 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.5 <- sum(data[,7]) / nrow(data) 
    lr.mo.5 <- const.mo.5 / unique.mo.5 
     
    holder <- data[,8] 
    const.mo.6 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.6 <- sum(data[,8]) / nrow(data) 
    lr.mo.6 <- const.mo.6 / unique.mo.6 
     
    holder <- data[,9] 
    const.mo.7 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.7 <- sum(data[,9]) / nrow(data) 
    lr.mo.7 <- const.mo.7 / unique.mo.7 
     
    holder <- data[,10] 
    const.mo.8 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.8 <- sum(data[,10]) / nrow(data) 
    lr.mo.8 <- const.mo.8 / unique.mo.8 
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    holder <- data[,11] 
    const.mo.9 <- recode(holder, "1 = .59; else = .41") 
    unique.mo.9 <- sum(data[,11]) / nrow(data) 
    lr.mo.9 <- const.mo.9 / unique.mo.9 
     
    holder <- data[,12] 
    const.mo.10 <- recode(holder, "1 =.59; else = .41") 
    unique.mo.10 <- sum(data[,12]) / nrow(data) 
    lr.mo.10 <- const.mo.10 / unique.mo.10 
     
    holder <- data[,13] 
    const.mo.11 <- recode(holder, "1 =.59; else = .41") 
    unique.mo.11 <- sum(data[,13]) / nrow(data) 
    lr.mo.11 <- const.mo.11 / unique.mo.11 
     
    holder <- data[,14] 
    const.mo.12 <- recode(holder, "1 =.59; else = .41") 
    unique.mo.12 <- sum(data[,14]) / nrow(data) 
    lr.mo.12 <- const.mo.12 / unique.mo.12 
     
 
 
 
 
    # Generate the likelihood ratios 
     
    lr.dist.time <- lr.dist * lr.time 
    lr.mo1 <- lr.dist * lr.time * lr.mo.1 
    lr.mo2 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2  
    lr.mo3 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3  
    lr.mo4 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * lr.mo.4  
    lr.mo5 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * lr.mo.4 
 * lr.mo.5  
    lr.mo6 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * lr.mo.4 
 * lr.mo.5 * lr.mo.6  
    lr.mo7 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * lr.mo.4 
 * lr.mo.5 * lr.mo.6 * lr.mo.7  
    lr.mo8 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * lr.mo.4 
 * lr.mo.5 * lr.mo.6 * lr.mo.7 * lr.mo.8  
    lr.mo9 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * lr.mo.4  
 * lr.mo.5 * lr.mo.6 * lr.mo.7 * lr.mo.8 * lr.mo.9  
    lr.mo10 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * 
 lr.mo.4 * lr.mo.5 * lr.mo.6 * lr.mo.7 * lr.mo.8 * lr.mo.9 * 
 lr.mo.10  
    lr.mo11 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * 
 lr.mo.4 * lr.mo.5 * lr.mo.6 * lr.mo.7 * lr.mo.8 * lr.mo.9 * 
 lr.mo.10 * lr.mo.11 
    lr.mo12 <- lr.dist * lr.time * lr.mo.1 * lr.mo.2 * lr.mo.3 * 
 lr.mo.4 * lr.mo.5 * lr.mo.6 * lr.mo.7 * lr.mo.8 * lr.mo.9 * 
 lr.mo.10 * lr.mo.11 * lr.mo.12 
     
       
 
    # Bind the observed data and the likelihood ratios together 
 
    data.lr <- cbind(data, lr.dist, lr.dist.time, lr.mo1, lr.mo2, 
lr.mo3, lr.mo4, lr.mo5, lr.mo6, lr.mo7, lr.mo8, lr.mo9, lr.mo10, 
lr.mo11, lr.mo12) 
     
# Name the columns for the observed data and likelihood ratio object 
 
    colnames(data.lr) <- c("Dist", "Time", "MO.1", "MO.2", "MO.3", 
"MO.4", "MO.5", "MO.6", "MO.7", "MO.8", "MO.9", "MO10", "MO11", "MO12", 
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"Serial", "lr.dist", "lr.dist-time", "lr.mo1", "lr.mo2", "lr.mo3",  
"lr.mo4", "lr.mo5", "lr.mo6", "lr.mo7", "lr.mo8", "lr.mo9", "lr.mo10", 
"lr.mo11", "lr.mo12" ) 
     
 
 
 
     
    # Post the observed data and likelihood ratio object to the runs 
object 
 
    runs[[i]] <- data.lr 
     
 
 
 
 
    # Generate performance summaries 
  
    # Isolate the data where predictions were made at each level of 
evidence 
 
    test.substantial <- subset(data.lr, data.lr[,15+j] >= 3 & 
data.lr[,25] < 10) 
    test.strong <- subset(data.lr, data.lr[,15+j] >= 10 & data.lr[,25] 
< 30) 
    test.verystrong <- subset(data.lr, data.lr[,15+j] > 30 & 
data.lr[,25] > 100) 
    test.extreme <- subset(data.lr, data.lr[,15+j] > 100) 
     
    # Generate performance measures for each level of evidence 
 
    hit.test1 <- sum(test.substantial[,15]) / nrow(test.substantial) 
    hit.test2 <- sum(test.strong[,15]) / nrow(test.strong) 
    hit.test3 <- sum(test.verystrong[,15]) / nrow(test.verystrong) 
    hit.test4 <- sum(test.extreme[,15]) / nrow(test.extreme) 
     
    per.test1 <- sum(test.substantial[,15]) / ser.n 
    per.test2 <- sum(test.strong[,15]) / ser.n 
    per.test3 <- sum(test.verystrong[,15]) / ser.n 
    per.test4 <- sum(test.extreme[,15]) / ser.n 
     
    count.test1 <- sum(test.substantial[,15]) 
    count.test2 <- sum(test.strong[,15]) 
    count.test3 <- sum(test.verystrong[,15]) 
    count.test4 <- sum(test.extreme[,15]) 
     
     
 
 
 
    # Post the performance measures to the summaries object 
 
    summaries[i,1] <- hit.test1 
    summaries[i,2] <- hit.test2 
    summaries[i,3] <- hit.test3 
    summaries[i,4] <- hit.test4 
     
    summaries[i,5] <- per.test1 
    summaries[i,6] <- per.test2 
    summaries[i,7] <- per.test3 
    summaries[i,8] <- per.test4 
     
    summaries[i,9] <- count.test1 
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    summaries[i,10] <- count.test2 
    summaries[i,11] <- count.test3 
    summaries[i,12] <- count.test4 
     
    summaries[i,13] <- ser.n 
    summaries[i,14] <- non.n 
     
    summaries[i,15] <- ser.n + non.n 
    summaries[i,16] <- count.test1 + count.test2 + count.test3 + 
count.test4 
    summaries[i,17] <- summaries[i,16] / ser.n 
     
    summaries[i,18] <- nrow(test.substantial) - count.test1 
    summaries[i,19] <- nrow(test.strong) - count.test2 
    summaries[i,20] <- nrow(test.verystrong) - count.test3 
    summaries[i,21] <- nrow(test.extreme) - count.test4 
     
    summaries[i,22] <- summaries[i,18] / nrow(test.substantial) 
    summaries[i,23] <- summaries[i,19] / nrow(test.strong) 
    summaries[i,24] <- summaries[i,20] / nrow(test.verystrong) 
    summaries[i,25] <- summaries[i,21] / nrow(test.extreme) 
     
    summaries[i,26] <- mean(ser.dist) 
    summaries[i,27] <- median(ser.dist) 
    summaries[i,28] <- sd(as.numeric(ser.dist)) 
     
    summaries[i,29] <- mean(non.dist) 
    summaries[i,30] <- median(non.dist) 
    summaries[i,31] <- sd(as.numeric(non.dist)) 
     
    summaries[i,32] <- mean(ser.time) 
    summaries[i,33] <- median(ser.time) 
    summaries[i,34] <- sd(as.numeric(ser.time)) 
     
    summaries[i,35] <- mean(non.time) 
    summaries[i,36] <- median(non.time) 
    summaries[i,37] <- sd(as.numeric(non.time)) 
     
    summaries[i,38] <- mean(c(ser.p1, ser.p2, ser.p3, ser.p4, ser.p5, 
 ser.p6, ser.p7, ser.p8, ser.p9, ser.p10, ser.p11, ser.p12)) 
    summaries[i,39] <- median(c(ser.p1, ser.p2, ser.p3, ser.p4, ser.p5,  
      ser.p6, ser.p7, ser.p8, ser.p9, ser.p10, ser.p11, ser.p12)) 
    summaries[i,40] <- sd(c(ser.p1, ser.p2, ser.p3, ser.p4, ser.p5, 
 ser.p6, ser.p7, ser.p8, ser.p9, ser.p10, ser.p11, ser.p12)) 
    summaries[i,41] <- mean(c(non.p1, non.p2, non.p3, non.p4, non.p5,  
 non.p6, non.p7, non.p8, non.p9, non.p10, non.p11, non.p12)) 
    summaries[i,42] <- median(c(non.p1, non.p2, non.p3, non.p4, non.p5,  
      non.p6, non.p7, non.p8, non.p9, non.p10, non.p11, non.p12)) 
    summaries[i,43] <- sd(c(non.p1, non.p2, non.p3, non.p4, non.p5,  
 non.p6, non.p7, non.p8, non.p9, non.p10, non.p11, non.p12)) 
    summaries[i,44] <- mean(c(unique.mo.1, unique.mo.2, unique.mo.3,  
      unique.mo.4, unique.mo.5, unique.mo.6, unique.mo.7, unique.mo.8,  
      unique.mo.9, unique.mo.10, unique.mo.11, unique.mo.12)) 
    summaries[i,45] <- median(c(unique.mo.1, unique.mo.2, unique.mo.3,  
      unique.mo.4, unique.mo.5, unique.mo.6, unique.mo.7, unique.mo.8,  
      unique.mo.9, unique.mo.10, unique.mo.11, unique.mo.12)) 
    summaries[i,46] <- sd(c(unique.mo.1, unique.mo.2, unique.mo.3,  
      unique.mo.4, unique.mo.5, unique.mo.6, unique.mo.7, unique.mo.8,  
      unique.mo.9, unique.mo.10, unique.mo.11, unique.mo.12)) 
    summaries[i,47] <- min(c(ser.p1, ser.p2, ser.p3, ser.p4, ser.p5, 
 ser.p6, ser.p7, ser.p8, ser.p9, ser.p10, ser.p11, ser.p12)) 
    summaries[i,48] <- max(c(ser.p1, ser.p2, ser.p3, ser.p4, ser.p5, 
 ser.p6, ser.p7, ser.p8, ser.p9, ser.p10, ser.p11, ser.p12)) 
    summaries[i,49] <- min(c(non.p1, non.p2, non.p3, non.p4, non.p5, 



 

 

329 

 

 non.p6, non.p7, non.p8, non.p9, non.p10, non.p11, non.p12)) 
    summaries[i,50] <- max(c(non.p1, non.p2, non.p3, non.p4, non.p5, 
 non.p6, non.p7, non.p8, non.p9, non.p10, non.p11, non.p12)) 
    summaries[i,51] <- min(c(unique.mo.1, unique.mo.2, unique.mo.3,  
      unique.mo.4, unique.mo.5, unique.mo.6, unique.mo.7, unique.mo.8,  
      unique.mo.9, unique.mo.10, unique.mo.11, unique.mo.12)) 
    summaries[i,52] <- max(c(unique.mo.1, unique.mo.2, unique.mo.3,  
      unique.mo.4, unique.mo.5, unique.mo.6, unique.mo.7, unique.mo.8,  
      unique.mo.9, unique.mo.10, unique.mo.11, unique.mo.12)) 
    summaries[i,53] <- i 
        
 
 
 
    # Print counter to screen to monitor progress  
 
    print(j) 
    print(i) 
 
 
 
  # Repeat inner (i) loop 
 
  } 
   
 
 
 
  # Drop unnecessary objects from RAM 
 
  rm(list = ls()[!(ls() %in% c('data.lr', 'summaries', 'runs',  
    'analysis.data', 'j'))]) 
 
 
 
 
   
  # Post summaries object to the analysis.data object 
 
  analysis.data[[j]] <- summaries 
   
 
 
# Repeat outer (j) loop 
 
} 
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