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ABSTRACT 

 

Ancestry estimation is an important component in the discipline of forensic 

anthropology.  Forensic anthropologists either visually assess skeletal remains through 

cranial macromorphoscopic traits or via craniometric analyses.   Typically these two 

approaches are assessed separately as standalone methods.  In this study, a variety of 

machine learning methods (decision tree analysis, random forest modeling, artificial 

neural networks, support vector machines, and linear discriminant functions) were 

applied to macromorphoscopic, craniometric, and combined (macro and metric) datasets 

to evaluate the classification accuracies of each and to explore how their individual and 

combined contributions may affect the estimation of ancestry.   

Overall, the random forest model performed the best out of the methods in two of 

the datasets with a classification accuracy of 95% for the metric data and 90% for the 

macromorphoscopic data.  For the combined dataset, the support vector machines 

performed the best at 90%.  The present study demonstrates the utility of these new 

methods contributing a greater wealth of information to group classification and also 

improving knowledge that these two data types can be combined into a single statistical 

analysis with classification accuracies of 90% and above for specific machine learning 

methods.
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I. INTRODUCTION AND LITERATURE REVIEW 

 

Within the field of forensic anthropology, the biological profile is created to 

provide estimations of age, ancestry, sex, and stature for unidentified human skeletal 

remains (Christensen et al. 2014; Gill 1998; Ousley et al. 2009).  Estimating ancestry is a 

key component to informing additional aspects of the biological profile by relating a 

group of biological traits to a socially constructed race category as a means of providing 

further evidence in the identification of an individual (Anderson 1998; DiGangi and 

Hefner 2013; Klepinger 2006; Sauer 1992; SWGANTH 2013).  Methodologies using 

visual assessments and established measurements of cranial and postcranial elements 

provide insight into the degree of varied phenotypic trait expression among diverse 

population groups (Brues 1990; DiGangi and Hefner 2013; Hefner et al. 2012; Gilbert 

and Gill 1990).  

Forensic anthropologists traditionally utilize non-metric traits (qualitative) 

through visual assessments or standardized measurements and statistical analyses 

(quantitative) to guide their estimation of ancestry (Birkby et al. 2008; Hinkes 1993; 

Hefner 2009; Hurst 2012; Jantz and Ousley 2005; Rhine 1993; Rhine 1990; Ousley et al. 

2009; Sauer and Wankmiller 2009; Spradley et al. 2008; Wescott 2005).  Information 

gleaned from both non-metric and metric assessments contributes a wider range of 

understanding when assessing skeletal remains of an unknown individual (Birkby et al. 

2008; Hefner et al. 2014).  Oftentimes, visual assessments for estimating ancestry are 

problematic because of their typological, classificatory nature.  The most commonly used 

practice in the assessment of ancestry using non-metric traits in the United States 
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typically requires individuals to be classified into three discrete groups: White, Black, or 

Native American/Hispanic/Asian.   In most instances, the visual assessment of ancestry 

places an unknown individual within a neat box while disregarding the nuances of 

variation.  Metric analyses utilize standard cranial measurements and are used within a 

statistical framework to estimate ancestry providing an estimate expressed as a posterior 

probability (Christensen et al. 2014; DiGangi and Hefner 2013; Hefner 2007).   Because 

of their historical roots in typology, forensic anthropologists must be careful with their 

visual assessments of ancestry.  

This current research seeks to provide a better understanding of the two methods 

used to estimate ancestry and quantify their individual and collaborative contributions in 

their applications in medico-legal contexts.  This research aims to present a historical and 

temporal survey of both of these methods, an undertaking that has not been fully explored 

within the preexisting literature to fill in the gaps charting the development of the two 

common methodologies for ancestry estimation: non-metric and metric.  Although both 

methodologies are available for use by a forensic anthropologist, the craniometric method 

is further developed than the macromorphoscopic method through the inclusion of 

multiple reference samples attributed to the Forensic Anthropology Data Bank (FDB) 

(Jantz and Moore-Jansen 1984).  This discussion will provide new insights into the 

current state of ancestry estimation and develop an understanding surrounding previously 

established methodologies.  The outcome of this research not only informs how forensic 

anthropologists currently apply and understand the contributions of these two methods 

based on cranial morphology and overall size but also expands upon the preexisting 

literature that is currently available.  This will guide current practitioners to understand 
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how and why the contribution of both non-metric and metric methods impacts ancestry 

estimation.  Lastly, the research will be significant because all samples are derived from a 

matched data set.  Otherwise known as a paired data set, the non-metric and metric data 

have a one-to-one relationship meaning that each data source contains the same 

individuals in the sample who have corresponding non-metric and metric information 

between the two data sets (D'Orazio 2014).  The advantage to having statistical matching 

is the ability to investigate the relationship of the two variables within each data source at 

a micro or macro level.  Therefore, each individual that is compared in this research has 

both corresponding non-metric and metric data whose relationship will be analyzed. 

 

Application of Non-Metric Analyses for Ancestry Estimation in Forensic Anthropology 

 Forensic anthropologists utilize skeletal morphology as part of the biological 

profile to provide further information correlating a predicted social race from visual 

assessments and/or measurements. (Klepinger 2006; Sauer 1992). These broad groupings 

may be useful in the forensic context; however, the true nature of biological variation 

may be concealed (Relethford 2009).  Certain non-metric traits in the mid-face have been 

isolated by practitioners based on their perceived contribution to the overall estimation of 

ancestry (Brues 1990; Hefner et al. 2014).  To effectively apply these traits to ancestry 

estimation, the “trait list method” was introduced to provide a comprehensive collection 

of individualized traits that corresponded to, and were representative of, distinct 

population groups (Hughes et al. 2011; DiGangi and Hefner 2013).  A particular trait 

expression would more likely be expected in one population than the other based on 

calculated trait frequencies of each individual trait (Gill 1998; Hughes et al. 2011; Rhine 
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1990).   For example, in White, Black, and Native American groups, a suite of traits 

specific to each group is provided.  However, there is still a great deal of overlap in non-

metric trait expression among the groups and one individual does not fit neatly into one 

group (Hefner 2009; Rhine 1990). 

Earnest A. Hooton, a professor of Anthropology at Harvard University, created an 

early, standardized form of the trait list called the “Harvard List,” which was used as an 

exemplar for practicing forensic anthropologists for many years.  Hooton established the 

“Harvard List” to synthesize the gamut of non-metric and metric traits that were 

especially helpful during skeletal analysis (Ferguson et al. 2011; Hefner et al. 2012).  As 

a professor at Harvard University, Hooton collected both non-metric and metric data 

from a variety of sources, including his work at the Pecos Pueblo archaeological site and 

from criminals in the US (Hefner 2007; Rafter 2004).  Hooton preferred using non-metric 

traits due to their relative ease of use and the ability to evaluate crania based on the 

qualitative nature of the trait manifestations (Hefner et al. 2012; Hooton 1926).  Each trait 

was scored based on the expression of various character states for each trait or based on 

its presence or absence (Hefner et al. 2012). The entirety of the analysis was based on the 

overall experience of the observer in observing the morphologies of the crania and the 

qualitative nature of the descriptors used (Hefner et al. 2102; Hooton 1926; Wheat 2009).  

The apparent subjectivity in this type of non-metric assessment led Hooton to emphasize 

the need for standardization of non-metric traits.  Many times, the Gestalt technique was 

employed by physical anthropologists.  The Gestalt refers to the ability of an experienced 

practitioner who is conditioned by years of training and experience to quickly formulate 

an assessment of sex or ancestry for an unidentified set of remains (Hefner 2009; Hefner 
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and Ousley 2006).  In ancestry estimation, the Gestalt is noted when a forensic 

anthropologist immediately classifies a set of unidentified remains through a basic visual 

assessment but can not verbalize exactly what led them to their conclusions.  Therefore, 

factors such as education, experience and training must play a role in influencing and 

shaping an individualized assessment of the cranial Gestalt (Wheat 2009). 

Furthermore, the expansion of later research to understand just how well these 

non-metric traits performed for estimating ancestry generally focused on detailing non-

metric traits that were representative of the different population groups at hand with their 

accompanying trait frequencies.  However, misclassification rates were not assessed and 

there was a lack of concrete research evaluating these traits in a more robust, statistical 

framework to echo Hooton’s need for proper standardization.  Instead research involving 

the publication of trait lists including those from Rhine (1990) and Gill and Rhine (1990) 

were disseminated and widely used for consultation during forensic casework 

(Christensen et al. 2014; Hefner et al. 2012; Hughes et al. 2011).    

Currently, to visually assess ancestry, the observer evaluates the skull noting 

various features.  Typically a reference guide displaying the non-metric traits for each 

population group is consulted during the analysis.  The observer then attempts to 

associate the skull to a particular population group based on the recorded traits.  At times, 

the feature would fall into the intermediate category of trait expression leaving the 

forensic anthropologist with the task of choosing between two population groups.  

Although standardized trait lists are still consulted, there is no universal manner of 

collecting non-metric information for ancestry in forensic anthropology.  However, 

several approaches towards a systematic form of non-metric trait collection have been 
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developed and thus, are beginning to be implemented into practice (Hefner 2009; 

Osteoware 2012).       

The future of qualitative analysis for the estimation of ancestry has been 

reinvigorated by research involving macromorphoscopic traits of the cranium in forensic 

anthropology (Digangi and Hefner 2013; Hefner 2009; Hefner and Ousley 2014; L’Abbé 

et al. 2009; Ousley and Hefner 2005).  These traits are “quasi-continuous” traits of the 

cranium that reflect the soft tissue variations in the skin (Ousley and Hefner 2005; Hefner 

et al. 2012:295).  For example, anterior nasal spine is not characterized by presence or 

absence but on an ordinal scale with varying degrees of trait expression based on three 

character states (1: Slight; 2: Intermediate; 3: Marked). Individuals from various 

populations are scored on this continuum of trait expression instead of assigning a 

dichotomous score of present versus absent for a particular trait. A trait may be present; 

however, the degree of trait expression will vary from individual to individual contrary to 

previous approaches of relegating a suite of traits whose extreme manifestations are 

immediately associated with a particular group.  Hefner examined the correlation 

between macromorphoscopic traits that captured a wide pattern of variation amongst the 

samples (2009).  Coupled with statistical analysis and examination of trait frequency 

distributions, these traits prove useful to studies examining biological variation amongst 

populations from this approach (Hefner 2009; Hefner et al. 2014; Hefner and Ousley 

2014). 

The inclusion of the Macromorphoscopic module in the Osteoware data collection 

program systematically incorporates widely used traits found in the Hefner (2009) study 

with the addition of other macromorphoscopic traits.  The Osteoware data collection 
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program was created in partnership with the Smithsonian Institute as a means for 

standardization of data collection procedures (Osteoware 2011).  Free and available to 

interested researchers, this software program incorporates standardized traits and 

measurements found in Standards (Buikstra and Ubelaker 1990) and acts as a 

standardized data entry tool for the collection of qualitative and quantitative observations 

of skeletal remains (Osteoware 2011).  The Macromorphoscopic module includes both 

comprehensive descriptions and illustrations of each trait to guide observers during their 

analyses (Hefner 2012).  An additional study by Klales and Kenyhercz investigated the 

reliability of ancestry estimation using these macromorphoscopic traits to determine the 

trait frequencies within their sample and the degree of their variation and also assessed 

interobserver error using the Macromorphoscopic module of Osteoware (Hefner 2012).  

Their results reinforced the notion that certain macromorphoscopic traits do not 

characterize certain population groups and that macromorphoscopic traits can be 

analyzed statistically to estimate ancestry - a method that is both scientific and repeatable 

(Klales and Kenyhercz 2014).  Current research contributed to rectifying issues regarding 

subjectivity and lack of standardization of non-metric techniques to assure that these 

methodologies be constantly reevaluated (Christensen and Crowder 2009; DiGangi and 

Hefner 2013; Hefner et al. 2012; Vitek 2012).  Future studies utilizing these types of 

approaches should be conducted and expanded to all available skeletal populations.   

 

Application of Craniometric Analyses for Ancestry Estimation in Forensic Anthropology 

Craniometric traits used for ancestry estimation rely on standardized 

measurements of the skull and are coupled with detailed definitions, precise 
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instrumentation, and multivariate statistical analysis (Hefner et al. 2012).  Much of the 

research related to ancestry estimation has been geared more towards craniometric data 

because of its methodical nature and ability to perform under statistical analyses.  Several 

key studies and resources have shaped the nature of research for craniometric analysis in 

ancestry estimation throughout the course of forensic anthropology.  A study by Giles 

and Elliot (1962) utilizing nine craniometric traits to evaluate ancestry using discriminant 

function analysis was performed to classify crania based on the three group model 

(White, Black, and Native American).  Additionally Giles and Elliot provided 

classification rates to inform just how well the discriminant functions performed in their 

assessment.  

Reference group samples used in craniometric analyses generally have much 

more variety than their non-metric counterparts (Jantz and Moore-Jansen 1984; Howells 

1973; Howells 1989.  Additional forensic craniometric and demographic data of 

identified or soon to be identified individuals were curated and housed in a database 

entitled the Forensic Anthropology Data Bank (FDB) providing reference material for a 

variety of individuals from various backgrounds (Jantz and Moore-Jansen 1984).  The 

introduction of FORDISC (Jantz and Ousley 2005) a discriminant function computer 

program created by and Richard Jantz and Stephen Ousley elevated the previous methods 

that utilized craniometric analysis by classifying an unknown individual based on the 

similarity of their overall measurements compared with an expanding reference database 

sample of known individuals (Christensen et al. 2014; Ousley and Jantz 2005).  Including 

the FDB, FORDISC also utilizes the craniometric data from William W. Howells that 

includes measurements from 28 populations (Christensen et al. 2014; Howells 1973; 
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Howells 1989).  Therefore, craniometric analyses have more reference groups for 

assessing the ancestry of an unknown individual compared to the traditional three-group 

model used in qualitative analysis.       

Impactful strides related to craniometric analyses and ancestry estimation has 

been made throughout the course of forensic anthropology’s history.  The addition of 

reference groups into the FDB create a better, more diverse picture of the various, 

existing population groups that are used for comparison when trying to attain the identity 

of an unknown individual.  

 

Exploring the Interaction of Cranial Non-Metric and Metric Traits in the Literature 

Both cranial non-metric and metric data individually contribute information with 

regards to ancestry estimation, however the relationship between these two data types has 

not been extensively explored within the literature.  Much of the early literature exploring 

the relationship of cranial non-metric traits and metric variables utilized both primate and 

human crania (Cheverud et al. 1979; Carpenter 1976; Corruccini 1974; Corruccini 1976; 

Richtmeier et al. 1984; Wilson 2010) to explore the sources of non-metric trait 

manifestation and metric variables and their relationship with one another.  Although 

these studies did not directly address issues in forensic anthropology, their findings 

contributed to the development of ancestry estimation.  The majority of the authors 

focused on the epigenetic basis for the etiology of the non-metric traits by examining 

their concordance with facial dimensions.  Richtsmeier et al (1984) examined the effects 

of both metric and non-metric traits in a sample of rhesus macaques.  Fifty-six 

craniometric variables and nine non-metric traits were used (Richtsmeier et al. 1984).  
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Specific non-metric traits were chosen to show the corresponding relationship with non-

metric traits and their localized measurements.  

In an additional study, the findings suggested a positive correlation between 

cranial non-metric traits and metric variables.  Specifically, there were individual 

correlations between specific non-metric traits and metric variables, including minimum 

frontal breadth and metopism and nasal breadth with nasal spine sharpness (Carpenter 

1976:340).  Corruccini (1976) found a significant correlation between non-metric traits 

and metric variables; however, the author did not specifically look at non-metric traits 

and their corresponding metric measurements that contributed to overall cranio-facial 

variation.  He proposed another explanation that variation in both non-metric traits and 

metric variables could be dependent upon another factor, not yet explored (Corruccini 

1976).   

Cranial non-metric traits and metric variables originate from a common point of 

development (Cheverud et al. 1979).  The overall size and shape of crania is correlated 

with the presence and absence of certain non-metric traits (Cheverud et al. 1979).  Wilson 

(2010) examined the correlation between cranial non-metric traits and metric variables 

using a sample of 20 crania from South East Asia and did not find a correlation between 

these two.  However, she found 14 inter-trait correlations and three associations between 

single measurements of metric variables and non-metric traits (Wilson 2010).  

The major questions in this research were two-fold:  if the non-metric traits of the 

skull were actually an expression of size and if they were correlated to other non-metric 

traits that were assessed (Wilson 2010). Multiple traits that are expressed from the same 

gene will not be genetically distinct.  Every metric and non-metric trait utilized was taken 
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from Buikstra and Ubelaker (1994).  Results showed no correlation between non-metric 

traits and metric calculations for each part of the skull.  There were significant 

correlations associated with certain non-metric traits and single cranial measurements.  

Fourteen inter-trait correlations and three correlations between single measurements and 

non-metric measurements were found (Wilson 2010).  Further research within the same 

population was recommended. 

In a recent study, Hefner and colleagues (2014) examined the relationship 

between cranial macromorphoscopic and craniometric data in White, Black, and Hispanic 

population groups using random forest modeling.  The Hefner et al. (2014) study is 

methodological, emphasizing the use of random forest modeling to evaluate qualitative 

and quantitative data to avoid violation of certain statistical assumptions that one may 

encounter using linear discriminant function analysis for ancestry estimation.   The goal 

was to provide an alternative method combining metric variables and nonmetric traits 

into a single, stable model for analysis in lieu of the more traditional linear discriminant 

function analysis.  Random forest modeling successfully integrated both trait types within 

a single analysis and opened up a discussion for future research regarding the utility and 

comparability of using both macromorphoscopic and craniometric data for the assessment 

of ancestry bringing together these two trait types within a single analysis.  Although 

research has been conducted by evaluating the contributions of both non-metric and 

metric analyses, the contributions of both methodologies should be reevaluated to gauge 

their relevance and helpfulness for ancestry estimation in forensic contexts.  Specifically, 

current methods using the macromorphoscopic traits outlined in the Osteoware program 

(2011) and standard craniometric analysis were evaluated in their study.   
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For the purposes of this research, the term macromorphoscopic will be used 

throughout the remainder of the text, specifically in the results and discussion section, to 

discuss the traits used in the present research.  The term macromorphoscopic was selected 

because it encompassed the “quasi-continuous” nature of the traits that were used in this 

study (Ousley and Hefner 2005; Hefner et al. 2012).  Because the non-metric variables 

are selected from Hefner (2009) and the Macromorphoscopic module of Osteoware 

(Hefner 2012; Osteoware 2011), it is important to maintain parallel vocabulary to avoid 

confusion between the various terminologies used for cranial non-metric traits or discrete 

traits.  To capture the entire picture of the continuum of trait expression amongst the 

sample populations, macromorphoscopic traits that could be expressed as various 

character states illustrating the range of variation were selected as well as those that were 

binary such as nasal overgrowth.  Therefore, qualitative traits such as the 

macromophoscopic traits are the focus due to their contribution to ancestry estimation 

and forensic anthropology. 

The field of forensic anthropology is constantly expanding and traditional 

methods such as the visual assessment of non-metric traits require strong statistical 

backing to address the standards set by the Daubert ruling (Daubert 1993). Forensic 

anthropologists look to other disciplines for innovative ways of data analysis that may 

strengthen current methods.  Dating mining techniques uncover and interpret patterns 

within the data provided by building models to make predictions (Williams 2011).  

Therefore, the models that are created become another way that the data’s meaning is 

physically expressed.  These techniques are applied to a variety of disciplines including 

business, politics, medicine, engineering, and biology, to name a few (Williams 2011).  It 
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is not surprising that these innovative techniques have been applied to forensic 

anthropology.           

Within the preexisting literature there are a handful of studies that incorporate 

machine-learning techniques to answer questions relating to forensic anthropology 

(Corsini et al. 2005; Du Jardin et al. 2014; Hefner and Ousley 2014; Hefner et al. 2014; 

Mahfouz et al. 2007; McBride et al. 2001; Navega et al. 2014; Navega et al. 2013). 

Navega and colleagues (2014) used a variety of machine-learning methods (decision 

trees, artificial neural networks, statistical learning, instance based learning, and 

probabilistic learning) using tarsal bones for sex estimation.  In this study, the “tree based 

algorithms and variants of the naïve Bayes algorithm” were the best at estimating sex 

with classification accuracies of 0.883.  An additional study by Navega et al. (2013) 

introduced a program called AncesTrees to evaluate metric variables for ancestry 

estimation.  Navega and colleagues applied random forest algorithms to create multiple 

randomized decision trees to accurately assign class membership for ancestry estimation. 

The purpose of this study was to bring together non-metric and metric data within 

a single analysis using various machine-learning techniques (decision trees, random 

forest modeling, artificial neural network, support vector machines, discriminant function 

analysis) to estimate ancestry.  Unlike previous studies, this study looks at the 

classification accuracies for the estimation of ancestry and how well these machine-

learning methods perform with individual datasets (non-metric and metric data) and with 

a combined data set.  The utility of combining traditionally separate statistical analyses 

using both non-metric and metric data in a single analysis was assessed.  The combined 

analysis contributes a new way of evaluating ancestry.   
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  Furthermore, the present research contributes to the field of forensic 

anthropology in three ways.  First, this research contributes to the preexisting literature 

that explored the utility of both macromorphoscopic and metric data within the context of 

biological and forensic anthropology.  The present study builds upon and further dissects 

the relationship between macromorphoscopic and metric traits and their relative 

interaction to ancestry estimation and with one another. The Wilson (2010) and Hefner et 

al. (2014) studies establish a foundation for new inquiry surrounding the relationship 

between the two trait types and the associated methodologies for combining them within 

a single analysis, respectively.  However, within the context of forensic anthropology it 

will be important to investigate how the methodologies from these two trait types 

perform in collaboration or provide a better estimation of ancestry individually rather 

than combined in a single analysis.  Second, the current research also provides new data, 

building upon data for trait frequencies of Hispanic crania leading to a contribution to the 

preexisting collection of macromorphoscopic data in order to identify patterns of 

variation between individuals.  Skeletal collections in the United States are 

predominantly composed of White and Black individuals (Hunt and Albanese 2005; Hunt 

and Spatola 2008).  Therefore, much of the preexisting literature is limited due to the 

availability of sample populations used in research.  The addition of macromorphoscopic 

data on Hispanic populations will be key.  Third, the inclusion of macromorphoscopic 

data of a Hispanic cranial sample is significant due to the recent influx of Mexico-United 

States border related deaths and the investigations geared towards that cause (Anderson 

2008; Spradley 2008; Spradley 2013).  The inclusion of population specific data will help 

to inform other aspects of the biological profile and existing methodologies associated 
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with the biological profile to expand and inform current best practices.  By utilizing a 

broad-based approach to investigating the relationship between these trait types, the 

current research not only focuses on the broader association between macromorphoscopic 

and metric traits but looks at how the two trait types in conjunction, not individually 

inform current practices in forensic anthropology and understanding variation. 
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II. MATERIALS AND METHODS 

 

Materials 

Cranial non-metric and metric data was collected from modern skeletal 

populations from the following research collections throughout July 2013: the Maxwell 

Museum at the University of New Mexico, the Pima County Office of the Medical 

Examiner (PCOME) in Tucson, Arizona, the William M. Bass Donated Skeletal 

Collection at the University of Tennessee-Knoxville, and the Texas State University 

Donated Skeletal Collection.  Crania from three population groups were sampled for this 

study:  American White, American Black, and Hispanic.   Macromorphoscopic data from 

a total of 360 crania was evaluated by the author.  The craniometric data was obtained 

from previously collected records through correspondence with the respective 

institutions.  To complete a matched data set of the same individuals for both 

macromorphoscopic  and craniometric analysis, 180 crania were ultimately used for this 

research.   

Maxwell Museum Documented Skeletal Collection -University of New Mexico   

As of 2013, the Maxwell Museum’s Documented Skeletal Collection consisted of 

278 indviduals of varying sex, age, and ancestry (UNM 2013).  The sample was mainly 

comprised of self-donated or next of kin donated individuals (Komar and Grivas 2008; 

UNM 2013).  Alternatively, unclaimed individuals have been obtained through the Office 

of the Medical Investigator or the Department of Anatomy at the University of New 

Mexico with known documentation (Komar and Grivas 2008).  Most residents were 
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residents of New Mexico and ranged from fetal remains to decedents older than 65 years 

of age (Komar and Grivas 2008; UNM 2013).  Sex and ancestry were self-reported in 

self-donation cases and reported by the family and/or death certificate in known cases 

(Komar and Grivas 2008).  For unknown individuals, information regarding age, sex, and 

ancestry were gathered from the autopsy report and only age and sex were assessed for 

anatomical donations.   

Macromorphoscopic data was collected from American White, American Black, 

and Hispanic crania. A total of 124 crania were examined.  Two male crania had no 

associated population group, and were deemed as having “no data.”  One crania was 

excluded due to the highly fragmented nature of the remains and could not be visually 

scored.  Because a matched dataset was used, only four crania were used in the analysis. 

(see Table 1).  

Table 1. Crania sampled from the Maxwell Museum-University of New Mexico   

  

American 

Black American White Hispanic Total 

Male 0 0 0 0 

Female 0 0 4 4 

Total 0 0 4 4 

 

 

Pima County Office of the Medical Examiner (PCOME) - Tucson, Arizona 

From 2001 to 2007, over 1000 individuals died trying to cross the United States-

Mexico border (Anderson and Parks 2008).  The remains associated with these deaths 

were brought to the PCOME for post-mortem analysis.  Individuals that cross the United 

States-Mexico border without proper documentation and of non-United States nationality 



 

 18 

are designated “undocumented border crossers” or “UBC’s” (Anderson and Parks 2008; 

Tise et al. 2013) by PCOME.  A high percentage of the individuals associated with 

border related deaths have been identified as Mexican nationals (Anderson 2008; Tise et 

al. 2013).  Due to the unknown nature of the remains, the sex, age, and ancestry of these 

individuals vary.  Multiple lines of evidence are used to identify these undocumented 

border crossers including cultural artifacts that provide contextual clues to the identity of 

these remains including personal effects such as foreign documentation,  foreign 

currency, and articles of clothing and/or mementos (Birkby et al. 2008).  Thirty-six crania 

were evaluated based on availability of the remains at PCOME, with 35 being included as 

part of the matched dataset  (see Table 2).   

Table 2. Crania sampled from the Pima County Office of the Medical Examiner's Office (PCOME)  

  

American 

Black 

American 

White Hispanic Total 

Male 0 0 32 32 

Female 0 0 2 2 

Indeterminate  0 0 1 1 

Total 0 0 35 35 

 

 

William M. Bass Donated Skeletal Collection - University of Tennessee-Knoxville  

 As of 2011, the William M. Bass Donated Skeletal Collection consisted of a little 

under 1000 individuals of known sex, age, and ancestry.  This collection consists of 

mostly American White males, however,  American Black, Hispanic, and Asian 

individuals were also represented within the collection (Shirley et al. 2011). The majority 

of these individuals were residents of Tennesseee and reflected a varying age range from 

fetal to the majority of the individuals being between 50-101 years of age (Shirley et al. 
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2011).  Therefore, the individuals in this collection tended to be associated with a 

population group of American White. 

American White,  American Black, and Hispanic crania were evaluated.  A total 

of 139 crania were evaluated.  To satisfy the conditions of the matched dataset, only 129 

crania were included in the analysis (see Table 3).    Additionally there were 11 newer 

donations whose crania did not have an associated sex and ancestry.  The 

macromorphoscopic  observations for those individuals were omitted from the sample.   

Table 3. Crania sampled from the William M. Bass Donated Skeletal Collection  

  Black White/EA Hispanic Total 

Male 32 54 6 92 

Female 4 32 1 37 

Total 36 86 7 129 

 

Texas State Donated Skeletal Collection - Texas State University  

The Texas State Donated Skeletal Collection at the Grady Early Forensic 

Anthropology Research Laboratory (GEFARL) consisted of approximately 65 available 

skeletons and was comprised of self-donated individuals or next of kin donations of 

varying sex, age, and ancestry with the majority of the collection represesenting an older 

population of Texas residents (FACTS 2014; Mavroudas et al. 2012).  Additionally, the 

collection contained a few cremated donations that were ommited from the sample.  

Crania of all available American White, American Black and Hispanic groups were 

visually assessed.  A total of 41 crania were examined with 12 being included as part of 

the matched dataset.  (see Table 4) Most crania were identified as American White due to 

the demographic background of the individuals that participated  in the willed body 
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donation program.  

Table 4. Crania sampled from the Texas State Donated Skeletal Collection  

  Black White Hispanic Total 

Male 0 7 1 8 

Female 0 4 0 4 

Total 0 11 1 12 

 

Cranial Non-Metric (Macromorphoscopic) Traits  

A total of 11 non-metric, macromorphoscopic  traits were evaluated for this study.  

The first ten macromorphoscopic  traits were selected from Osteoware 2.4.037 within the 

Macromorphoscopic 1.28 module (Hefner 2012; Hefner 2009; Osteoware 2011).  

Emphasis was placed on traits that were located in the mid-facial region as that area has 

been consistently used in the evaluation of ancestry (Brues 1990; Gill 1998; Rhine 1990; 

Ousley and Hefner 2005) and palate shape was included as the final trait.   The 11 

macromorphoscopic traits and scoring ranges are listed below (see Table 5).  These 

character states and trait descriptions originate from the definitions in Hefner (2009) and 

are also taken from the Macromorphoscopic chapter of the Osteoware Software Manual 

(Hefner 2012).  Complete, detailed explanations of these traits and their corresponding 

degrees of character state manifestation are provided (see Appendix A).   
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Table 5. Eleven macromorphoscopic traits that were evaluated through visual 

assessment 

Trait Cat Key Trait Scoring Range 

ANS Anterior Nasal Spine 1-3 

INA Inferior Nasal Aperture 1-5 

IOB Inteorbital Breadth 1-3 

MT Malar Tubercle 0-3 

NAW Nasal Aperture Width 1-3 

NBC Nasal Bone Contour 0-4 

NBS Nasal Bone Shape 1-4 

Novg Nasal Overgrowth 0-1 

OS Orbital Shape 1-3 

TPS Transverse Palatine Suture 1-4 

PS Palate Shape 1-3 

 

 

Palate shape was included as the eleventh trait to be evaluated because of the 

absence of recent research in associating morphological attributes of the palate with 

ancestry.  Instead, the focus of research has been directed towards using palate shape for 

sex estimation in recent years (Williams and Rogers 2006; Galdames et al. 2008). More 

importantly, palate shape is included on most non-metric trait lists for ancestry estimation 

associating particular shapes to correspond with particular population groups (Rhine 

1990; Krogman and Işcan 1986). In most instances, palate shape is described as 

parabolic, hyperbolic, elliptical, small U or big U (Hooton cranial observations and 

indices; Hefner et al. 2012).  In light of these subjective terms for describing palate shape,  
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there are difficulties for standardizing that information as most observations are based on 

the judgement of the observer.  In response to this predicament, recent studies have 

addressed this issue by applying methods of digitization and metric analysis to assess this 

trait within a statistical framework (Burris and Harris 1998; Byers et al. 1997; Maier 

2013).  

To supplement the other macromorphoscopic  traits in Osteoware (2011), palate 

shape and each of its three character states were formulated with detailed definitions (see 

APPENDIX B-C).  The trait definition and its three character states were developed in 

collaboration with Dr. Joseph Hefner and Dr. Laurel Freas at the Joint POW/MIA 

Accounting Command’s Central Identification Laboratory (JPAC-CIL).  To collect palate 

shape, three character states are evaluated and scored from 1-3: elliptic (1), parabolic (2a 

and 2b), and hyperbolic (3).  For the purposes of statistical analysis, the parabolic 2a and 

2b scoring was collapsed to a general score of 2.      

Although not integrated into Osteoware (2011), in time, this trait will eventually 

make its way into the Macromorphoscopic module for the continued collection of palate 

morphology.  Palate shape is useful as a macromorphoscopic trait to be incorporated into 

Osteoware.  Additionally, the collection of macromorphoscopic data is necessary for 

populations that are underrepresented within the preexisting literature.  The difficulties of 

identifying specific morphologies representative of any Hispanic population will be 

further aided by the data collected from the Hispanic individuals from the Maxwell 

Museum, PCOME, University of Tennessee, and Texas State University.   
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Craniometric Data 

 A complete list of the measurements originating from Howells (1973) and 

additional craniometric measurements found in FORDISC (Jantz and Ousley 2005) with 

accompanying definitions is provided when available (see APPENDIX D).   The author 

did not perform any craniometric measurements during the data collection process, 

therefore, the craniometric data originated from previously recorded measurements on 

file, either through instrument determination and/or digitization and assess was granted 

through correspondence with the respective institutions.  The craniometric data for each 

individual were compared with the scores for the macromorphoscopic  traits as a matched 

data set to evaluate the relationship between the macromorphoscopic traits and related 

areas for craniometric data to assess their respective contributions to the overall 

estimation of ancestry.   

Methodology  

 Prior to data collection, the author spent time at the Joint POW/MIA Accounting 

Command's Central Identification Laboratory (JPAC-CIL) reviewing the 

Macromorphoscopic module of the Osteoware (2011) program with Dr. Joseph Hefner on 

sample crania that were part of a skeletal collection housed in the facility.  

Approximately 30 crania were evaluated during this time.  None of these individuals 

were included as part of the overall sample.  The purpose was for the author to review the 

traits and practice upon available crania.  By doing so, the author had a period of time set 

aside to review and understand the different character states and visual manifestations of 

each trait.  All 16 macromorphoscopic traits within the Osteoware module were evaluated 
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during this time.  During the actual data collection period, the focus shifted to the ten 

selected traits with the inclusion of palate shape.   

 A catkey was assigned to each institution for easy organization of data.  A catkey 

or catalogue number is a unique designation or label that corresponds to a selected 

grouping within the sample.  Catalogue numbers may consist of either letters or numbers.  

For this research, the catkeys reflect the name of the particular skeletal collection from 

which the sample crania were derived from.  The catkeys established for samples from 

each institution include 

* UNM – Maxwell Museum Donated Skeletal Collection - University of New Mexico 

* PCOME- Pima County Office of the Medical Examiner - Tucson, Arizona 

* UTK – William M. Bass Donated Skeletal Collection - University of Tennessee-

Knoxville 

* TSU- Texas State Donated Skeletal Collection - Texas State University  

For example, an individual cranium from the Texas State Donated Skeletal Collection 

would be labled with a catkey and donated number: TSU D15-2010.  A catkey and 

documented number were recorded along with the scores from Osteoware.  Additionally, 

any notes were taken down to explain any types of anomalies and/or pathologies, traits 

that were unable to be scored, and anything else that was significant.    

For each crania within the sample, each of the 11 macromorphoscopic traits were 

evaluated and scored according to the interval provided in Osteoware (2011).  Palate 

shape was evaluated and recorded separately because it had not been incorporated within 
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the macromorphoscopic trait module in Osteoware (2011) during time of data collection.  

For each trait, a score was selected in the Macromorphoscopic module of Osteoware (see 

Figure 1). 

 

Figure 1. Screen capture of the Macromorphoscopic module in Osteoware 2.4.037 

(2011) 

 

Each score was manually recorded in a notebook and an additional spreadsheet 

was created as an additional resource as a record of data collection for each individual.  

For each trait, the definition was read twice and then the trait was examined for each 

individual while consulting the illustrations in the Osteoware (2011) module during the 

scoring process.  After both definitions and illustrations were consulted, a score was 

assigned for the trait for the ten traits in Osteoware (2011) for each individual.  After the 
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scoring process commenced for each individual, the scores were saved into an Advantage 

Data Architect database where the identification number and catkey for each crania was 

entered.  This process was repeated for every individual that was sampled.  For traits that 

were located in areas of severe damage, the score was left blank.  Traits that garnered a 

score of zero, based on the trait definition were manually added. 

 Due to time restraint, each sample was evaluated once.  Multiple trials would 

have been helpful to assess intraobserver error, however given the time restraints, this 

could not be accomplished.  Interobserver error was accomplished through the 

comparison of the same individuals from the William M. Bass Donated Skeletal 

Collection that had previously been examined during Hefner's study (2009) with the 

present one.  The author obtained a copy of the macromorphoscopic data for each 

individual scored by Hefner from the Bass Collection and both scores from the author 

and Hefner were subsequently used to assess interobserver error.  

The macromorphoscopic samples were pooled by population group and given the 

following catkey designations:  

* WH – American White Individiual  

* BLK – American Black Individual  

* HSPN – Hispanic Individual  
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Statistical Analysis of Macromorphoscopic Data  

Frequency distributions of all 11 macromorphoscopic traits were generated using 

the SPSS Statistics Package 22.0.0 for the three established population groups: American 

White, American Black, and Hispanic.  These frequencies were compared to the trait 

frequencies found in Hefner (2009), Hurst (2012), and Rhine (1990) for further 

evaluation to explore possible differences between periods of data collection and from 

individuals derived from different population groups.  

 Interobserver error was conducted solely on the University of Tennessee sample 

with macromorphoscopic data previously collected and scored by Dr. Joseph Hefner.  

Subsequent scoring from the author and Hefner was compared to evaluate what traits 

were easiest to score and replicate and which traits were difficult to evaluate.  An inter-

rater reliability analysis using the Fleiss’ kappa statistic was performed to determine 

consistency among raters.  The Fleiss’ kappa statistic is used for any number of observers 

using categorical data for a specific fixed number of items (Fleiss 1971). 

Application of Data Mining Techniques 

Data mining techniques can be applied to gain insight and knowledge from data.  

These techniques are expressed through model building used to interpret patterns and 

relationships in the data (Williams 2011).  Data mining techniques may be used for 

classification problems or regression, but usually they consist of three steps: 1) “initial 

exploration;” 2) “model building or pattern identification with validation/verification;” 

and 3) “deployment” (StatSoft 2014).  The first step includes data preparation such as 

data cleaning and any exploratory research.  Second, the appropriate model for assessing 
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the data is selected with a particular eye to which model has the best predictive power.  

Third, the chosen model is applied to new data to assess how well it predicts outcomes. 

In this study, dating mining techniques for classification were applied to the 

macromorphoscopic and craniometric data.  These analyses included decision tree 

analysis, random forest modeling (RFM), artificial neural networks (aNNs), support 

vector machines (SVM), and linear discriminant function analysis (LDF).  Each 

technique was applied three times: once to each of the macromorphoscopic and 

craniometric data separately and finally to a combination of the two datasets. 

 

Decision Tree Analysis 

 
Decision tree analysis, or classification or regression trees (CARTs), is used to 

predict the membership of individuals into one population group based on predictor 

variables (i.e., macromorphoscopic traits/craniometric variables).  The tree-like diagrams 

are generated from the root node (the top of the tree) to form accompanying branches and 

leaves (Williams 2011). Based on decisions or answers to conditional questions or tests, 

the direction the node goes and the direction the branches split is determined (see Figure 

2*).  These branches may continue to branch into other nodes based on additional 

questions or tests that will determine if another split will be made or if it will end in a leaf 

node that is unable to be split further (i.e. terminal node).  These leaf nodes contain the 

decisions to these questions/tests.   

 For example, in Figure 2, the decision tree begins with the macromorphoscopic 

trait, inferior nasal aperture (INA).  If the INA score is 1, then the individual is classified 

as Black.  If the INA score is 2 or greater, the next trait to be evaluated is nasal aperture 
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width (NAW).  After nasal aperture width (NAW) is evaluated, subsequent traits such as 

inferior nasal aperture (INA), anterior nasal spine (ANS), inter-orbital breadth (IOB), and 

nasal bone shape (NBS) are assessed until the leaf nodes are terminated and cannot be 

further split. Once a terminal node is reached, the individual is classified into a group.  

    

 
 

Figure 2.  Graphic of decision tree using macromorphoscopic traits for ancestry 

estimation (Hefner and Ousley 2014) 

 
 

Random Forest Modeling 
 

Random forest modeling is a dating mining technique for classification and/or 

regression.  Random forest modeling is a classification algorithm composed of a series of 

individual classification trees (Breiman 2004).  To implement random forest modeling, a 

series of decision trees are generated (normally between 100-500 trees) and each tree is 
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based on a random selection of observations and predictor variables (Williams 2011). 

Each tree on its own makes a prediction based on class membership and those predictions 

contribute to the overall random forest prediction (StatSoft 2014).  For classification 

purposes, majority voting is used to assign the unknown. In other words, if the majority 

of the trees classify an individual into a particular group, then the overall random forest 

classification follows suit according to that majority vote (Williams 2011).  For 

regression purposes, the decisions made across all trees in the forest are averaged 

(StatSoft 2014).   

Each classification tree within the total forest is grown through the introduction of 

random vectors influencing the growth of the tree (Breiman 2001).  The random forest 

algorithm randomly selects the individuals and the variables to be considered (Williams 

2011).  In this way, the randomness alleviates any potential outliers or potential issues of 

overfitting the data to the model.  To begin building a random forest model, bagging or 

bootstrap aggregation is used to create multiple decision trees by creating separate bags 

of randomized observations from the original data into a training data set (a percentage of 

the original data “set aside” to serve as training data for the model construction).  Single 

observations may be used in multiple bags, and normally the training set represents 

approximately 2/3 of the original sample.  The observations left over may be used for as a 

“test” sample to further validate the model. 

There is an additional level of randomness when building a random forest model 

by the selection of variables at each stage of a split within the decision tree.  For every 

node in the model, a select number of variables are sampled between those observations a 

decision, or split, is assessed. If the model using that split performs better than other 
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random splits, the model is included in the final forest. If not, another set of random 

variables are assessed.         

 

Artificial Neural Networks 
 

Artificial neural networks (aNNs) are non-parametric techniques that explore the 

relationship of data using a model analogous to “biological neural networks,” which also 

stem from Artificial Intelligence research (Williams 2011).  The neural networks 

generated by the user take the gathered data using training algorithms to understand the 

framework of the data (StatSoft 2014).  Complex relationships between the data inputs 

and outputs are assessed.  The data input is represented by the original data while the 

outputs represent the predicted outcomes of that model. 

To begin, the data must be gathered to create a training set from a series of 

variables that are influential (StatSoft 2014).  The model receives inputs from data or 

from other neurons within the network with their own magnitude, which passes through 

an “activation function” resulting in outputs.  Artificial neural networks are used to 

establish the probability of group membership to a particular class.  The relationship 

between the input and output data is explored throughout its application. The complexity 

of aNNs make them intuitively difficult to explain (hence the term “Black Box” 

methods). Rigorous cross-validation and appropriate sample sizes are generally necessary 

to avoid overfitting issues.        

 
Support Vector Machines 

 
Support vector analysis (also a Black Box method) creates a model using support 

vectors to identify a hyperplane which best separates groups. These models use a priori 
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membership in the algorithm (Williams 2011) to identify the individuals along the outer 

edges of multivariate space that divide into various group membership (StatSoft 2014). 

This is quite different from other classification methods that utilize distance measures to 

the centroid (DFA) or grand mean structures (GM methods).  Normally, a maximum 

margin or space dividing the groups is desirable (StatSoft 2014), however, SVM fits the 

hyperplane to minimize the distances between the line and the outlaying individuals (i.e., 

the support vectors).  Typically with the introduction of more than two input variables, 

the dividing hyperplane may never be a straight line, however, by instituting a “kernel 

trick” to fit a curvilinear line through the data points, the data can be transformed to a 

linear feature space (Williams 2011).  The data may be separated by curves and 

additional techniques will be employed to create linear lines of separation known as 

hyperplane classifiers that are commonly executed by support vector machines (StatSoft 

2014) (see Figure 3). 

     

 

Figure 3.  Mapped data with hyperplane using support vector machines (taken from 

Statistica textbook chapter - Support Vector Machines Overview 2014:1) 
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III. RESULTS 

 

 

Trait Frequency Distributions 

Trait frequency distributions were calculated by applying cross-tabulations using 

the SPSS Statistics Package 22.0.0.  The frequency distributions for each of the eleven 

traits are shown below for each of the three population groups (see Table 6).



 

 

 

Table 6.  Frequency distribution of macromorphoscopic traits in three populations 

Anterior Nasal Spine Total 

n % n % n % n %

Black 1 2.8 26 72.2 8 22.2 1 2.8 36

White 4 4.1 13 13.4 57 58.8 23 23.7 97

Hispanic 4 8.5 19 40.4 18 38.3 6 12.8 47

Inferior Nasal Aperture Total

n % n % n % n % n % n %

Black 0 0.0 0 0.0 1 2.8 17 47.2 16 44.4 1 2.8 36

White 0 0.0 1 1.0 4 4.1 81 83.5 11 11.3 4 4.1 97

Hispanic 1 2.1 0 0.0 9 19.1 34 72.3 2 4.3 4 8.5 47

Interorbital Breadth Total

n % n % n % n %

Black 0 0.0 14 38.9 17 47.2 5 13.9 36

White 0 0.0 62 63.9 31 32.0 4 4.1 97

Hispanic 0 0.0 22 46.8 23 48.9 2 4.3 47

Malar Tubercle Total

n % n % n % n %

Black 0 0.0 15 41.7 21 58.3 0 0.0 36

White 0 0.0 72 74.2 23 23.7 2 2.1 97

Hispanic 1 2.1 22 46.8 21 36.1 3 6.4 47

Nasal Aperture Width Total

n % n % n % n %

Black 0 0.0 1 2.8 29 80.6 6 16.7 36

White 1 1.0 49 50.5 46 47.4 1 1.0 97

Hispanic 2 4.3 13 27.7 23 48.9 9 19.1 47

Blank 1 2 3

Character State

Blank 1 2 3 4 5

Blank 1 2 3

Blank 1 2 3

Blank 1 2 3

 

 

 

 

 

3
4
 



 

 

 

Table 6 -Continued Frequency distributions of macromorphoscopic traits in three populations  

Nasal Bone Contour Total

n % n % n % n % n % n % n %

Black 1 2.8 13 36.1 10 27.8 0 0 9 25.0 1 2.8 1 2.8 36

White 1 2.8 11 11.3 65 67.0 0 0 16 16.5 4 4.1 4 4.1 97

Hispanic 1 2.8 12 25.5 22 46.8 1 2.1 8 17.0 4 8.5 4 8.5 47

Nasal Bone Shape Total

n % n % n % n % n %

Black 1 2.8 8 22.2 18 50.0 5 13.9 4 11.1 36

White 1 1.0 8 8.2 67 69.1 19 19.6 2 2.1 97

Hispanic 6 12.8 6 12.8 24 51.1 11 23.4 0 0.0 47

Nasal Overgrowth Total

n % n % n %

Black 0 0.0 21 58.3 15 41.7 36

White 1 1.0 64 66.0 32 33.0 97

Hispanic 6 12.8 16 34.0 25 53.2 47

Orbital Shape Total

n % n % n % n %

Black 0 0.0 17 47.2 18 50.0 1 2.8 36

White 0 0.0 40 41.2 48 49.5 9 9.3 97

Hispanic 1 2.1 10 21.3 32 68.1 4 8.5 47

Transverse Palatine Suture Total

n % n % n % n % n %

Black 6 16.7 0 0.0 1 2.8 19 52.8 10 27.8 36

White 12 12.4 6 6.2 16 16.5 44 45.4 19 19.6 97

Hispanic 9 19.1 3 6.4 14 29.8 18 38.3 3 6.4 47

Palate Shape Total 

n % n % n % n % n %

Black 0 0.0 10 27.8 6 16.7 9 25.0 11 30.6 36

White 6 6.2 36 37.1 24 24.7 16 16.5 15 15.5 97

Hispanic 2 4.3 7 14.9 18 38.3 13 27.7 7 14.9 47

Blank 0 1 2 3

Blank 1 2 3 4

Blank 1 2 3

1 2

Blank 0 1

3 4 5

Blank 1 2 3 4

Blank 0

3
5
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Interobserver Error    

Twenty-four crania from the University of Tennessee – William M. Bass Donated 

Skeletal Collection were evaluated for interobserver reliability using Fleiss’ kappa (see 

Table 7).   These crania were the only individuals sampled by both the author and Hefner 

(2009).  Only macromophoscopic data was used.  

Table 7.  Results of the Fleiss’ kappa interobserver reliability analysis for 

macromorphoscopic traits 

 

Trait 

 

Interobserver Error, Fleiss’ 

Kappa k 

 

Interpretation of Fleiss’ Kappa 

ANS 0.193 Slight agreement 

INA 0.279 Fair agreement 

IOB 0.202 Slight agreement 

MT 0.262 Fair agreement 

NAW 0.509 Moderate agreement 

NBS -0.043 Poor agreement 

Novg 0.583 Moderate agreement 

 

 

Decision Tree Analysis for Macromorphoscopic Dataset  

 For the decision tree analysis, the classification begin at the top of the tree with  

ANS (anterior nasal spine) (see Figure 4).  If the score for ANS is l then the individual is 
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classfied as Black.  Next, INA (inferior nasal aperture) is evaluated.  If INA is greater 

than 4, then the individual is classified as Black.  If the INA is 3 or less, then the 

individual is classified as Hispanic.  OS, orbital shape is also evaluated.  If OS is 2 or 

greater, the individual is Hispanic.  If orbital shape is 1, then the individual is White.        

If ANS is greater than 1 then the individual is classified as White and then NAW 

(nasal aperture width) is evaluated.  If NAW is 2 or more, then the individual is classified 

as White and MT (malar tubercle) is consulted until they end into terminal nodes of 

White or Hispanic.  If NAW has a score of 1, then the individual is classified as White. 

 

 

Figure 4.  Graphic of the decision tree analysis for the macromorphoscopic dataset 

(decision tree graphic generated from application of analysis) 
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Random Forest Model for the Macromorphoscopic Dataset  

 The random forest model for the macromorphoscopic dataset identified the 

importance of all 11 variables for the overall classification based on two random forest 

model measures of variable importance (see Figure 5).  The macromorphoscopic traits of 

the greatest importance were anterior nasal spine (ANS).  Inferior nasal aperture (INA), 

nasal aperture width (NAW), orbital shape (OS), and nasal bone contour (NBC).  The  

macromorphoscopic traits of lesser importance were nasal bone shape (NBS) and nasal 

overgrowth (Novg). 
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Figure 5.  Variable importance of the macromorphoscopic traits in the random 

forest model 

 

 
Combined Dataset for the Random Forest Model 

 

  The random forest model for the combined dataset of both macromorphoscopic 

traits and craniometric variables identified variables based on their importance to the 

overall classification based on two random forest model measures of variable importance 

(see Figures 6-7).  Mostly craniometric variables were identified as having the most 

importance.  The craniometric variable of the greatest importance was palate breadth, 
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external (MAB).  Craniometric variables such as NDA, PRA, bimaxillary breadth 

(ZMB), and subspinale radius (SSR) were also important contributing variables.  The 

macromorphoscopic trait that was identified as most important was anterior nasal spine 

(ANS).  The traits of lesser importance were the macromorphoscopic trait, IOB 

(interorbital breadth) and the craniometric variable, nasion subtense fraction (FRF). 
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Figure 6.  Variable importance of the combined dataset in the random forest model 

(plot) 
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Figure 7.  Variable importance of the combined dataset in the random forest model 

(bar) 
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Summarization of the Classification Accuracies of the Five Methods for the 

Macromorphoscopic, Metric , and Combined Datasets 

 

  A cross comparison of the classification accuracies of the five methods for the 

macromorphoscopic, metric, and combined datasets is summarized (see Table 8).  The 

highest overall classification accuracies for each dataset are highlighted in the 

accompanying table.  The random forest model provided the highest overall classification 

accuracies for both the metric and macromorphoscopic datasets at 95% and 90% 

respectively.  For the combined dataset, the support vector machine had the highest 

classification accuracy of 90%.  Overall, the classification accuracies for each method 

were fairly high with the lowest overall being the decision tree method for the 

macromorphoscopic dataset (69.2%).  The highest overall classification accuracy was the 

random forest model for the metric dataset (95%).             

Table 8.  Overall classification accuracies in three-group analyses using metric, 

macromorphoscopic, and combined datasets 

Method Metric Macromorphoscopic Combined 

Decision Tree  77.09 69.2 77.09 

Random Forest  95* 90* 87.75 

Support Vector Machine 92.5 70 90* 

Artificial Neural Network  93.75 78.62 85.18 

Linear Discriminant Function  88 - - 

* Denotes highest percentages of classification for each dataset.  

  

Analysis of the Macromorphoscopic Dataset  

  
The classification accuracies for the macromorphoscopic dataset using a three-

group analysis for the four machine learning methods are summarized (see Table 9).  The 
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artificial neural network (aNN) had a high probability of correctly classifying the 

individuals in the Black group at 73.9%.  For the Hispanic group, the random forest 

model (RFM) had the highest classification accuracy of 87%.  Two methods (random 

forest model and support vector machine) classified the White group with the highest 

classification accuracies of 100%.  Of the four methods, the decision tree analysis had the 

lowest classification accuracy for both the Black and Hispanic groups.  The artificial 

neural network had the lowest classification accuracy for the White group.     

Table 9.  Classification accuracies for macromorphoscopic analysis of machine 

learning methods 

 

 

Decision 

Tree 

Random Forest 

Model 

Support Vector 

Machine 

Artificial Neural 

Network 

Black 38.9 83.3 50 73.9* 

Hispanic 55.3 87* 60.9 78.2 

White 87.5 100* 100* 85.7 

*Denote highest percentages of classification for each population group.  

 

 

Analysis of the Craniometric Dataset 

 

 The classification accuracies for the craniometric dataset using a three-group 

analysis for the different methods are summarized (see Table 10).  Specific methods 

(random forest model, support vector machine, artificial neural network, and linear 

discriminant function) all have high classification accuracies for the different population 

groups. The artificial neural network (aNN) and the linear discriminant function analysis 

work best at classifying the Black group correctly (100%).  For the Hispanic group, the 

support vector machine provides high classification accuracies of 100%.  Similarly, the 

random forest model provides high classification accuracies of 100% for the White 

group.  Of the methods applied, the decision tree analysis had low classification 

accuracies for the Black and Hispanic groups at 77.8% and 57.4% respectively.  The 
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linear discriminant function analysis had a lower classification accuracy for the White 

group at 84.6%.      

 

Table 10.  Classification accuracies for craniometric analysis of machine learning 

methods 

 

 

Decision 

Tree 

Random 

Forest 

Model 

Support 

Vector 

Machine 

Artificial 

Neural 

Network 

Linear 

Discriminant 

Function 

Black 77.8 83.3 83.3 100* 100* 

Hispanic 57.4 95.7 100* 83.3 85.7 

White 86.5 100* 81.8 96.3 84.6 

*Denotes highest percentages of classification for each population group. 

 

 

Analysis of the Combined Dataset 

 

The classification accuracies for the combined dataset using a three-group analysis for the 

different methods are summarized (see Table 11).  Specific methods (random forest 

model, support vector machine, artificial neural network) all have high classification 

accuracies for the different population groups. The artificial neural network (aNN) work 

best at classifying the Black group correctly (85.7%).  For the Hispanic group, the 

support vector machine provides high classification accuracies of 100%.  Similarly, the 

random forest model provides high classification accuracies of 97.9% for the White 

group.  Of the methods applied, the support vector machine had low classification 

accuracies for the Black and the White groups at 66.7% and 81.8% respectively.  The 

decision tree analysis had low classification accuracies for the Hispanic group at 57.4%.  

Table 11.  Classification accuracies for combined analysis of machine learning 

methods 

 

 

Decision 

Tree 

Random Forest 

Model 

Support Vector 

Machine 

Artificial Neural 

Network 

Black 77.8 72.2 66.7 85.7* 

Hispanic 57.4 81.8 100* 86.7 

White 86.5 97.9* 81.8* 82.4 

*Denotes highest percentages of classification for each population group. 
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IV. DISCUSSION 

 

To assess ancestry, macromorphoscopic or metric analysis is conducted.  

Generally, research involving macromorphoscopic trait expression can be effective for 

ancestry estimation when it is accompanied by robust statistical analyses and known 

classification accuracies (Hefner 2009; Hefner and Ousley 2014; Hefner et al. 2014; 

Klales and Kenyhercz 2014).  In previous literature, qualitative analysis has been geared 

more towards the typological approach as these macromorphoscopic traits are assessed 

visually.  However, current literature is constantly evolving by incorporating both non-

metric traits strengthened with statistical analyses (Hurst 2012; Hefner 2009; Hefner and 

Ousley 2014; Hefner et al 2014).  Metric analysis for ancestry estimation normally 

involves standardized measurements of the crania and is subjected to statistical analysis 

to classify an individual.  With the addition of a variety of reference groups for 

comparison, craniometric analysis has less opportunity for subjectivity when rigorous 

statistical analysis may be applied.  The analysis of macromorphoscopic data needs to be 

strengthened to that same level of analysis.  The addition of machine learning techniques 

provides another dimension for interpreting the data in an unconventional manner 

(Hefner and Ousley 2014; Hefner et al. 2014).  Uncovering and interpreting the patterns 

that emerge through machine learning methods is another aspect of ancestry estimation 

that needs to be further developed.  Exploring the significance of how and to what degree 

the variety of macromorphoscopic and craniometric methods contribute to ancestry 

estimation and which traits specifically are most important for ancestry estimation was 

one of the most important questions posited within this research. 
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Trait Frequency Comparison with Hefner (2009) 

Frequencies of corresponding non-metric traits in both Hefner (2009) and this 

study were compared further.  The non-metric traits from this study were taken from the 

Hefner (2009) study.  It is important to note that the American White and American 

Black samples in the Hefner study are considerably larger than those in the present study.  

Therefore, this variable may be a contributing factor to the differences in reported 

frequencies.   Only groups that were evaluated in both studies were used for the 

comparison.  Therefore, trait frequencies of the White and Black population groups were 

utilized.  Anterior nasal spine, inferior nasal aperture, interorbital breadth, malar tubercle, 

nasal aperture width, nasal bone contour, nasal bone shape, nasal overgrowth, and 

transverse palatine suture were evaluated.  

Anterior nasal spine (Hefner 2009 vs. Wun 2014) 

  

For the Black population groups, the slight projecting anterior nasal spine had the 

most prevalent trait frequencies in both studies.   The frequencies were comparable to one 

another in the sense that both were greater in over 50% of the samples (see Table 12).   

This character state of anterior nasal spine was probably the easiest to observe.  However, 

at times, the anterior nasal spine may be subject to poor preservation because that area of 

the face is delicate and the thin spine may break.  There was some discrepancy with the 

trait frequencies of the White population group between the two studies.   In the Hefner 

(2009) sample, the trait frequencies were somewhat close between a score of 1 (slight 

projection) and 3 (marked projection) with frequencies of 36.3% and 37.7% respectively.  

The present study found that the character state of intermediate projection was most 

prevalent with a frequency of 58.8%.  The subjective nature of evaluating anterior nasal 



 

 48 

spine comes into play when evaluating scoring between two observers.  There is not 

quantitative manner of measuring the transition from intermediate to marked projection.    

 

Table 12.  Comparison of the frequency distributions for anterior nasal spine (ANS) 

Hefner 2009 vs. Wun 2014  

 

ANS n % n % n % n %

Blank 0 0.00 0 0.00 1 2.80 4 4.10

1 152 69.7 53 36.3 26 72.2 13 13.4

2 44 20.2 38 26.0 8 22.2 57 58.8

3 22 10.1 55 37.7 1 2.8 23 23.7

Hefner 2009 Wun 2014

Black White Black White

 

Inferior nasal aperture (Hefner 2009 vs. Wun 2014) 

The trait frequencies for inferior nasal aperture were considerably different 

between the Hefner (2009) study and this present study (see Table 13). Within the Black 

sample in Hefner’s study, a score of 2 appeared in about 28.9% of the sample while a 

score of 4 was most prevalent in the White sample (2009).  In the present study, a score 

of 3 appeared in approximately 47.2% of the Black sample and in approximately 83.5% 

of the White sample.  The significant differences in trait frequencies could be explained 

by two factors.  First, the large sample size in Hefner’s study could alter the various trait 

frequencies.  Second, in Hefner’s interobserver reliability analysis, inferior nasal aperture 

was a trait only moderately agreed upon (2009).  However, the trait frequencies for a 

score of 1-2 were the two character states that were closest between the two studies.  

Therefore, this could explain the differences in scoring and trait frequencies.    
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Table 13.  Comparison of frequency distributions for inferior nasal aperture (INA) 

Hefner 2009 vs. Wun 2014 

INA n % n % n % n %

Blank 0 0.00 0 0.00 0 0.00 0 0.00

1 64 29.4 1 0.7 0 0.0 1 1.0

2 63 28.9 5 3.4 1 2.8 4 4.1

3 47 21.6 35 24.0 17 47.2 81 83.5

4 29 13.3 60 41.1 16 44.4 11 11.3

5 15 6.9 45 30.8 1 2.8 4 4.1

Hefner 2009 Wun 2014

Black White Black White

 

Interorbital breadth (Hefner 2009 vs. Wun 2014) 

 The next trait that was evaluated between the two studies was interorbital breadth 

(see Table 14).  The scores differed between the two studies.  A score of 3 (broad) was 

present in 56% of the Black sample and a score of 2 (intermediate) was present in 63% of 

the White sample in the Hefner study (2009).  In the present study, a score of 2 

(intermediate) was present in 47.2% of the Black sample, and a score of 1 (narrow) was 

present in 63.9% of the White Sample. In his study, Hefner used crania from the Robert J. 

Terry collection for the White sample.  Most of the individuals in this sample were 

collected from 1917-1966 and most represented cadavers that were used for anatomical 

study at the Washington University at St. Louis medical school (Hunt and Albanese 

2005).   For the present study, the White sample consisted of individuals from the 

William M. Bass Donated Skeletal Collection.  The population demographics each 

collection differed by geography and also the type of individuals that made up each 

collection.   
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Table 14.  Comparison of frequency distributions for interorbital breadth (IOB) 

Hefner 2009 vs. Wun 2014 

IOB n % n % n % n %

Blank 0 0.00 0 0.00 0 0.00 0 0.00

1 21 9.6 45 30.8 14 38.9 62 63.9

2 75 34.4 92 63.0 17 47.2 31 32.0

3 122 56.0 9 6.2 5 13.9 4 4.1

Hefner 2009 Wun 2014

Black White Black White

 

     

 

Malar tubercle (Hefner 2009 vs. Wun 2014) 

The frequency distributions for the variable, malar tubercle differed between the White 

and the Black groups between the two studies (see Table 15).  In the Hefner study, the 

score of 0 was more frequent in the Black sample (50.5%) and a score of 0 was more 

frequent in the White sample (51.40).  In the present study, the score of 2 was more 

frequent in the Black sample (58.3%) and a score of 1 was more frequent in the White 

sample (74.2%). 

 

Table 15.  Comparison of frequency distributions for malar tubercle (MT) Hefner 

2009 vs. Wun 2014 

MT n % n % n % n %

Blank 0 0.00 0 0.00 0 0.00 0 0.00

0 110 50.50 75 51.40 0 0 0 0

1 60 27.5 47 32.2 15 41.70 72 74.20

2 32 14.7 18 12.3 21 58.3 23 23.7

3 16 7.3 6 41.1 0 0.0 2 2.1

Hefner 2009 Wun 2014

Black White Black White

 

Nasal aperture width (Hefner 2009 vs. Wun 2014) 

The frequency distributions of the nasal aperture width between the Hefner (2009) study 

and the present study were evaluated (see Table 16).  In the Hefner study, a score of 3 

was most frequently expressed in the Black sample (55.5%), and a score of 1 was most 
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frequently expressed in the White sample (54.1%).  To contrast, in the present study, a 

score of 2 was most frequently expressed in the Black sample (80.6%), and a score of 1 

was most frequently expressed in the White sample (50.5%).  Although the score of 1 

was the highest frequency expressed, the score of 2 (47.4%) was a close second.  

Therefore, a single character state did not encompass the expression of nasal aperture 

width within the White sample.  The three character states within this trait can be highly 

variable because of their subjective nature.   

Table 16.  Comparison of frequency distributions for nasal aperture width (NAW) 

Hefner 2009 vs. Wun 2014 

NAW n % n % n % n %

Blank 0 0.00 0 0.00 0 0.00 1 1.00

1 8 3.7 79 54.1 1 2.8 49 50.5

2 89 40.8 48 32.9 29 80.6 46 47.4

3 121 55.5 19 13.1 6 16.7 1 1.0

Hefner 2009 Wun 2014

Black White Black White

     

 

 

Nasal bone shape (Hefner 2009 vs. Wun 2014) 

 

 The trait frequencies of the Hefner (2009) sample was greatly distributed amongst 

the five character states, while in the present study, the high frequencies were relegated to 

specific character states (see Table 17).  In the Hefner study, a score of 0 was expressed 

with the highest frequency in the Black sample (52.3%), while a score of 3 was expressed 

with the highest frequency in the White sample (25.3%).   In the present study, a score of 

2 was expressed with the highest frequency in the Black sample (50%) and the White 

sample (69.1%).  A score of 0 was mostly recorded in the Hefner sample, however not in 

the present study at all.  Perhaps, there may have been a misunderstanding about the trait 

definitions that could have affected the observations.   
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Table 17.  Comparison of frequency distributions for nasal bone shape (NBS) 

Hefner 2009 vs. Wun 2014 

NBS n % n % n % n %

Blank 0 0.00 0 0.00 1 2.80 1 1.00

0 114 52.30 11 7.5 0 0 0 0

1 50 22.9 23 15.8 8 22.2 8 8.2

2 22 10.1 27 18.5 18 50.0 67 69.1

3 23 10.6 37 25.3 5 13.9 19 19.6

4 9 4.1 48 32.9 4 11.1 2 2.1

Hefner 2009 Wun 2014

Black White Black White

 

Nasal overgrowth (Hefner 2009 vs. Wun 2014) 

The presence and absence of nasal overgrowth between the Hefner (2009) study 

and the present study was evaluated (see Table 18).  Since nasal overgrowth was an 

important feature highlighted in both Rhine (1990) and Hurst (2012) typically expressed 

in Hispanics, the trait frequencies of the White and Black samples were evaluated 

carefully to see if nasal overgrowth was expressed in other population groups.  In both 

studies, the absence of nasal overgrowth was apparent for both the White and the Black 

samples.  In the Hefner (2009) study, the absence of nasal overgrowth was expressed in 

68.1% of the Black sample and 52.7% of the White sample.  In the present study, the 

absence of nasal overgrowth was expressed in 58.3% of the Black sample and 66% of the 

White sample.  This is not to say that these population do not exhibit nasal overgrowth, 

however a higher percentage of the samples did not. 
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Table 18.  Comparison of frequency distributions for nasal overgrowth (Novg) 

Hefner 2009 vs. Wun 2014 

Novg n % n % n % n %

Blank 0 0.00 0 0.00 0 0.00 1 1.00

0 141 68.1 77 52.7 21 58.3 64 66.0

1 66 31.9 69 49.2 15 41.7 32 33.0

Hefner 2009 Wun 2014

Black White Black White

  

 

Transverse palatine suture (Hefner 2009 vs. Wun 2014) 

 

 Scoring for transverse palatine suture was evaluated between the Hefner (2009) 

and the present study to examine the expression of trait frequencies between the White 

and the Black samples (see Table 19).  In the Hefner (2009) study, a score of 1 was 

expressed 47.2% for the Black sample and a score of 2 was expressed 33.8% of the White 

sample.  In the present study, a score of 2 was expressed in 52.8% of the Black sample 

and 45.4% of the White sample.  There was similarity in the two studies in that the last 

character state (score of 4) was minimally expressed in both samples.  The differences in 

population sizes could possibly contribute to the differing trait frequencies. 

 

Table 19.  Comparison of frequency distributions for transverse palatine suture 

(TPS) Hefner 2009 vs. Wun 2014 

TPS n % n % n % n %

Blank 0 0.00 0 0.00 6 16.70 12 12.40

0 33 18.30 42 29.0 0 0.0 6 6.2

1 85 47.2 40 27.6 1 2.8 16 16.5

2 45 25.0 49 33.8 19 52.8 44 45.4

3 17 9.4 14 9.7 10 27.8 19 19.6

4 0 0.0 0 0.0 0 0.0 0 0.0

Hefner 2009 Wun 2014

Black White Black White
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Trait Frequency Comparison with Hurst (2012)  

In the Hurst (2012) study, the author evaluated 26 macromorphoscopic traits 

adopted from various trait lists (Birkby et al. 2008; Hefner 2009; Gill 1998; Napoli and 

Birkby 1990; Rhine 1990).  Hurst derived the final two traits that possibly contributed to 

the estimation of ancestry (2012).  After applying forward stepwise discriminant function 

analysis, eight of the 26 traits were found to best differentiate between the three samples 

including incisor shoveling, anterior malar projection nasal sill, oval window 

visualization, enamel extensions, anterior nasal spine, nasal aperture width and 

prognathism (Hurst 2012).  Two of these traits were derived from Hefner (2009): anterior 

nasal spine and nasal aperture width.  Contrary to the findings of Hurst (2012), in the 

present study, nasal overgrowth appeared in approximately 53% of the Hispanic sample, 

and of the three groups, nasal overgrowth was most prevalent in Hispanics.  However, 

nasal overgrowth was consistently present in both the White (32.7%) and Black (41.7%) 

groups as well.  Overall, the majority of individuals displaying nasal overgrowth were of 

Hispanic descent. 

Based on the macromorphoscopic traits that were evaluated in the present study, 

they were cross-referenced with the findings of Hurst (2012), describing the trait 

expressions that were characteristic of Southwest Hispanics.  Of the eight traits that were 

identified as being characteristic of this population group, three were evaluated in the 

present study.  Hurst concluded that individuals of Southwest Hispanic origin expressed a 

moderate anterior malar projection, intermediate anterior nasal spine, and medium nasal 

aperture width (2012).  In the present study, the Hispanic sample exhibited a frequency of 

moderate anterior malar projection of 36.1% while a score of 1 (minimal projection) was 
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expressed in a greater frequency of 46.8% (see Table 20).  However, the score of 

moderate anterior mal projection was a close second in this study.  The frequencies 

expressed in Hurst’s study concluded that there was a moderate projection in 88.5% of 

the Hispanic sample (2012).   There may be a fair amount of variation in trait expression 

of the malar tubercle, since this trait can be measured. Discrepancies in recording could 

also play a role in affecting the differences in trait frequencies. 

Table 20.  Comparison of frequency distributions for malar tubercle (MT) Hurst 

2012 vs. Wun 2014 

MT

Blank

1

2

3 8.2 6.4

0 2.1

3.3 46.8

88.5 36.1

Hurst 2012 Wun 2014

Hispanic Hispanic

% %

 

Hurst identified moderate anterior nasal spine as another characteristic trait of individuals 

of Southwest Hispanic descent (2012).  A moderate anterior nasal spine was expressed in 

39.6% of the Hispanic sample and a marked anterior nasal spine with a frequency of 

37.7% (Hurst 2012) (see Table 21).  In the present study, slight anterior nasal spine was 

expressed in 40.4% of the Hispanic sample with a moderate anterior nasal spine with a 

frequency of 38.3%.  The subjectivity of this particular trait could explain the differences 

in trait frequencies. 
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Table 21.  Comparison of frequency distributions for anterior nasal spine (ANS) 

Hurst 2012 vs. Wun 2014   

ANS

Blank

1

2

3 37.7 12.8

0 8.5

22.6 40.4

39.6 38.3

Hurst 2012 Wun 2014

Hispanic Hispanic

% %

 
 

Lastly, the trait frequencies of nasal aperture width were evaluated between the 

two studies (see Table 22).  The highest frequencies that were expressed in both Hispanic 

samples in both studies were a moderate nasal aperture width.  The Hurst sample had a 

trait frequency of 57.4, while the present study had a trait frequency of 48.9 for a score of 

2 (moderate nasal aperture width).  For the most part, the trait frequencies overall were 

similar between the Hurst (2012) study and the present study.  Agreement of this trait 

designation in the Hispanic samples may corroborate that this particular character state is 

consistent with individuals of Hispanic origin.  Furthermore, the amount of agreement 

and close trait frequencies between two observers may suggest that nasal aperture width 

is a trait that is more easily distinguishable based on its three character states.   
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Table 22.  Comparison of frequency distributions for nasal aperture width (NAW) 

Hurst 2012 vs. Wun 2014 

NAW

Blank

1

2

3 14.8 19.1

0 4.3

27.9 27.7

57.4 48.9

Hurst 2012 Wun 2014

Hispanic Hispanic

% %

 
 

Trait Frequency Comparison with Rhine (1990) 

 Frequencies of corresponding non-metric traits in both Rhine (1990) and this 

study were compared further.  The traits compiled in Rhine (1990) are situated in the 

mid-face and many originate from Hooton’s Harvard list and have been consistently used 

by forensic anthropologists for ancestry estimation.  Non-metric traits evaluated in both 

Rhine (1990) and the present study was cross-referenced and the trait frequencies were 

compared.  Orbital shape, nasal opening, nasal overgrowth, nasal spine, malar tubercle, 

dental arcade shape, and palatine suture were evaluated.  

 

Orbital shape (Rhine 1990 vs. Wun 2014) 

 

Frequencies for orbital shape Reference samples for the Hispanic population were 

less than five, which would affect the frequencies since the sample sizes were smaller.  

According to Rhine’s evaluation of orbital shape, rounded orbits were most common in 

the Hispanic group, while sloping orbits were most common in the White population 

(1990).  This was not the case in the present study.  The circular (rounded) eye orbit 

shape was most common amongst all groups evaluated:  Black (50%), White (49%), and 

Hispanic (68.1%).  It is important to note that the angled orbit shape was not even close 
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in frequency to either the rectangular or circular shape.  Rhine commented that the angled 

orbit shape was most common in the Hispanic crania, however due to sample size and the 

geographic area of the data, this could account for such a difference in frequency 

distribution.   

 

Nasal opening (Rhine 1990 vs. Wun 2014) 

 

Another trait looked at was nasal opening, which corresponds with nasal aperture 

width in the present study.  Generally, the White group would display a greater frequency 

of a narrow nasal opening, while the Hispanic group displayed the intermediate size, and 

the Black group, a wider opening (Rhine 1990).  In the present study, the Hispanic and 

Black groups had an intermediate nasal aperture width.  The trait expression for 

Hispanics coincides with Rhine, however the Black group did not.  The White group did 

display a narrow nasal opening, which corroborates the data from Rhine (1990).  

  

Nasal overgrowth (Rhine 1990 vs. Wun 2014) 

 

Nasal overgrowth is considered one of the important non-metric traits, especially 

for describing individuals of Hispanic descent (Birkby et al. 2008; Hurst 2012).  For the 

Hispanic samples, the majority of the individuals did not exhibit presence of nasal 

overgrowth, and in the other groups, the absence of nasal overgrowth was most common 

(Rhine 1990).  In the present study, overwhelmingly, the Hispanic individuals most 

commonly displayed nasal overgrowth, while the frequency of other groups (White and 

Black) tended towards the absence of it. 
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Anterior nasal spine (Rhine 1990 vs. Wun 2014) 

 

 In the Rhine study, anterior nasal spine was consolidated to either presence of a 

small or large spine (1990).  Overwhelmingly, each of the groups had a less pronounced, 

small nasal spine.  This could be due to the delicate nature of the region.  A broken 

anterior nasal spine may be smaller to the observer.  In the present study, nasal spines that 

looked to be broken were designated a blank score.  Anterior nasal spine was scored on a 

continuum as opposed to being either small or large.  This additional character state could 

have altered the frequencies as well.  Overall smaller sample sizes of the Hispanic and 

Black groups in the Rhine study may have contributed to the differing frequencies.   

 

Malar tubercle (Rhine 1990 vs. Wun 2014) 

 

Another trait that was compared between the two studies was malar tubercle.  The 

frequencies may not be entirely comparable because the present study characterized 

scoring by observing the amount of protrusion of the malar tubercle rather than noting the 

overall presence or absence of protrusion.  Malar tubercle was found in half of the 

individuals in the Hispanic and in all of the Black individuals (Rhine 1990).  The 

presence of the malar tubercle in the Black sample did not necessarily indicate that this 

trait was most common in this group.  The small sample sizes again that exhibited the 

trait in all three groups could definitely be a contributing factor.  The presence and/or 

absence of malar tubercle do not provide a complete picture of trait expression. In the 

present study, malar tubercle was found to be a significant discriminating factor between 

the three population groups studied.  The character state of pronounced tubercle did not 

have a high frequency rate in any of the three populations indicating that the trace and 
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medium character states were most prevalent rather than the two extreme states.  

Therefore, the presence and absence of a slightly pronounced and/or heavily pronounced 

malar tubercle does not provide sufficient information regarding variation between the 

three populations.   

 

Dental arcade shape (Rhine 1990 vs. Wun 2014) 

 

The elliptic palate shape was most prevalent in each of the three groups within the 

Rhine sample (1990).  Variability of this trait is not discussed in Rhine, however there is 

a general consensus that each group exhibits, to a degree, a high frequency of an elliptic 

palate shape. Gill (1998) asserts that each of the three population groups typically exhibit 

a specific, expected palate shape. Gill comments that Whites tend to show a parabolic 

palate and Black with a hyperbolic palate shape (1998).  He discusses palate shape 

frequencies based on various studies (Chapman 1991; Gill and Chapman nd; Gill 1998).  

Of the three common types of palate shapes: elliptic hyperbolic, and parabolic, White 

populations exhibit a high frequency of the parabolic shape (91%) and Black populations 

had high frequencies of both hyperbolic and parabolic palate shapes (46% and 54% 

respectively) (Chapman 1991; Gill and Chapman nd; Gill 1998).  This analysis goes 

against the palate shape trait frequencies of the Rhine (1990) study.  Gill asserts that 

American Indian populations (N.W. Plains and Peruvian samples) exhibit the elliptic 

palate shape in higher frequencies than White and Black populations.  In the present 

study, the type of plate shape with the highest frequency differed between the three 

groups that were evaluated.  The group that showed the highest frequency of the elliptic 

palate shape was the White population, followed by the Hispanic group with the highest 
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frequencies of both states of the parabolic shape, and lastly the Black population 

exhibited the highest frequencies of the hyperbolic palate shape.  The frequencies of the 

White group with elliptic palate shape corresponds with the findings of Rhine while the 

frequencies of the Black group with hyperbolic palate shape supports the frequencies 

reported by Gill (1998), however not as high.  The variable palate shape was not highly 

significant in discriminating between the three groups within the discriminant function 

analysis, however the quantification of palate shape expressions supports the need for 

further research in this area. 

Furthermore, the introduction of palate shape to the list of macromorphoscopic 

traits in this study was significant.  Trait frequency data of palate shape amongst the 

American White, American Black, and Hispanic sample groups in this study is useful for 

future comparison studies related to ancestry estimation.  The inclusion of palate shape to 

the Macromorphoscopic module would contribute to the further understanding of this 

trait from a morphological standpoint.  By exploring the macromorphoscopic  expression 

of palate shape compared to palate shape measurements, the understanding of how 

variations in shape and size of palate significantly differ between populations.   

Additional palate shape data may be collected for various population groups in the 

expansion of knowledge for this particular trait, especially in the case of the Hispanic 

sample included within this study.    

 

Assessing Interobserver Reliability 

Inter-observer reliability showed that the there was a slight-moderate agreement 

between the crania that were sampled by the author and in Hefner (2009).  Nasal aperture 
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width and nasal overgrowth were the two traits that had moderate agreement.  This could 

be due to the fact that nasal growth is based on presence and absence while nasal aperture 

width is scored based on three categories: narrow, medium, and broad.  Both of these 

traits had character states that of three or less.  Therefore it may be easier to score those 

traits compared to the others.  However at the same time, there may be difficulty due to 

the subjectivity of the trait.  Therefore, the incorporation of additional observers should 

be applied in future research.  Anterior nasal spine and interorbital breadth both had fair 

agreement.  In Hefner (2009), the traits that had the least amount of inter-observer 

reliability were nasal bone contour and postbregmatic depression.  In this study, 

postbregmatic depression was not included as one of the traits that were analyzed.  For 

future research, the remaining macromorphoscopic traits in Hefner (2009) that were not 

included in this study should be used to score the same Hispanic sample and other 

populations to generate current frequencies of traits expression. 

Additionally education and experience may also contribute to the slight to 

moderate agreement.  The author spent a short time reviewing the macromorphoscopic 

traits and assessing thirty crania prior to data collection.  In contrast, Hefner had more 

experience looking at these macromorphoscopic traits on a variety of crania and perhaps 

had a more complete experience and confidence that can be attained through constant 

assessment and opportunity of viewing these traits.      

 

Assessment of Machine Learning Analysis  

 The application of machine learning techniques (Hefner and Ousley 2014; 

Williams 2011) in the present study resulted in high classification accuracies for a variety 
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of those methods.  Therefore, the high classification accuracies support other studies that 

have applied these types of analyses to issues in forensic anthropology (Hefner and 

Ousley 2014; Hefner et al. 2014; Navega et al. 2013; Navega et al. 2014).   In the present 

study, overall, the classification accuracies performed well with most methods ranging 

from 80-100%.  Based on overall classification accuracies using all three datasets, the 

highest classification accuracy at 95% applied the random forest model to the metric 

dataset.  The second highest classification accuracy across all three datasets employed the 

artificial neural network for the metric dataset at 93.75%.  The third highest overall 

classification accuracy was at 92.5% using the support vector machine for the metric 

dataset.   

Generally, it seems that the machine learning methods produced the highest 

classification accuracies with metric data.  This type of data may be better suited for these 

types of method as opposed to the scoring of the macromorphoscopic data. This is not 

surprising because the craniometric data was composed of standardized measurements 

that were instrumentally determined rather than the macromorphoscopic traits that were 

visually assessed on an ordinal scale by the observer.  However, applying machine 

learning techniques to the macromorphoscopic data produced high classification 

accuracies of 90% for the random forest model.  These high classification accuracies 

suggested that the random forest model is the best overall machine learning method.  

 The random forest analysis is particularly helpful because it provided a ranking of 

variable importance of the predictor variables used for classification.  These individual 

variables that are isolated may be helpful to discover which traits are better at making 

distinctions between various population groups.  In the macromorphoscopic dataset, the 



 

 64 

three variables identified were anterior nasal spine (ANS), inferior nasal aperture (INA), 

and nasal aperture width (NAW).  Within the combined dataset (both macro and metric 

data) using the random forest model, the first few variables of greater importance were 

craniometric: MAB (palate breadth, external), NDA, and PRA followed by a few 

macromorphoscopic traits that were significant such as anterior nasal spine and nasal 

aperture width.   

Looking specifically at the classification accuracies of the methods used in the 

combined dataset, the support vector machine produced the highest classification 

accuracy of 90%.  The classification accuracies in the combined dataset were not as high 

as the individual datasets.  Therefore, combining macromorphoscopic and metric data in 

a single analysis may not be the most effective at obtaining high classification accuracies 

for all machine-learning methods.  However, the highest classification accuracy using the 

combined dataset applied support vector machine analysis had a correct classification 

percentage of 90%.   Further research applying support vector machine analysis may 

corroborate the utility of this method for using combined macromorphoscopic and metric 

datasets in future studies since most other machine learning techniques displayed lower 

classification accuracies. 

Looking at each dataset individually, the macromorphoscopic analysis using 

machine learning methods overall, were generally high.  The decision tree analysis had 

the lowest overall classification accuracy for the Black group with 38.9% being correctly 

classified.  However, the random forest model provided high classification accuracies 

across all three groups, which supports the idea that this machine learning method may be 

most useful for analyzing macromorphoscopic data.  The support vector machine also 
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provided 100% correct classification for the White group, as did the random forest 

model.  In this scenario, the very high classification accuracy meant that the White group 

was easier to parse out and separate from the Black and Hispanic groups and may have 

overlapping size and shape similarities.  It is clear that no one method can easily separate 

all three populations into distinct groups. 

The machine learning methods in the craniometric dataset performed extremely 

well with 100% correct classifications for each group for certain methods.  Within the 

Black group, the artificial neural network (aNN) and linear discriminant function analysis 

had classification accuracies of 100%.  For the Hispanic group, the support vector 

machine analysis garnered a 100% correct classification and for the White group, the 

random forest model successfully classified 100% of the individuals in the sample.  

Although a different machine-learning model worked the best for each group, the 

craniometric dataset had the best results across the board.  

For the combined dataset, the highest classification accuracy for the Black group 

was using the artificial neural network (aNN) at 85.7%.  This is significantly lower than 

the highest classification accuracies for the Hispanic and the White groups.  For the 

Hispanic group, the support vector machine method had the highest classification 

accuracy of 100%.  The White group had a classification accuracy of 97.9% for the 

random forest model.  Generally, the percentages for combined analysis were lower than 

the other datasets.  Therefore, the machine learning method can be better applied to 

individual datasets to obtain the highest classification accuracies.  However, many of the 

classification accuracies are not considerably low, but fall within the range of 50-86%.  

Further research should be conducted to examine the range of variation of the 
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classification accuracies between individual populations using individual macro and 

metric datasets for the different machine-learning methods.                   

Hefner and Ousley (2014) applied similar machine learning methods to estimate 

ancestry using macromorphoscopic data for White, Black, and Hispanic groups.  

Therefore, it would be helpful to compare the overall classification accuracies of this 

study with their own to evaluate any differences or similarities between percentages of 

correct classification of group membership. Of the machine learning methods, neural 

network analysis provided the highest overall classification accuracy between all the 

methods.  The top three methods that obtained the highest classification accuracies were 

neural network analysis (87.8%), support vector machine (86.4%), and random forest 

(85.5%) (Hefner and Ousley 2014).  These three methods were also the top performing 

techniques in the present study based on the macromorphoscopic dataset.  However, the 

top performing technique was the random forest model with a high classification 

accuracy of 90% compared to the Hefner and Ousley study with a classification accuracy 

of 85.5%.  However, both studies support the idea that the neural network analysis, 

support vector machine, and random forest modeling all positively contribute to 

analyzing macromorphoscopic data individually.   

Hefner and colleagues examined macromorphoscopic and craniometric data using 

both linear discriminant functions and random forest modeling (2014).  Discriminant 

function analyses were applied individually to the macromorphoscopic, craniometric, and 

combined (macro and metric) datasets while the random forest model was only applied to 

the combined (macro and metric) dataset (Hefner et al. 2014).  The random forest model 

had a classification accuracy of 89.6 % (Hefner et al. 2014) compared to the present 
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study that had an overall classification accuracy of 87.75%.  The slighter lower 

classification accuracy in the present study may be influenced by the differences in 

number of predictor values utilized compared to the study by Hefner and colleagues 

(2014).  Both used the same number of macromorphoscopic traits, but a greater number 

of craniometric variables were used in the present study.  However the classification 

accuracies for both are similar and support the application of random forest modeling for 

combined datasets of macromorphoscopic and craniometric data. 

              There were several limitations to this study.  Primarily, since this was a matched 

dataset, samples that did not have both the macromorphoscopic observations and 

corresponding craniometric data were excluded from the sample.  This depleted the 

overall sample size as all of the crania that was originally sampled had 

macromorphoscopic data, but did not have the craniometric data.  However, it is 

important to highlight the strength of a matched data set.  Because of this, there was no 

sampling bias, and individuals were not included to boost the number of samples for 

analysis of the macromorphoscopic data.  Additionally, a few of the crania received a 

blank score for some of the macromorphoscopic traits due to poor preservation of the 

observed area for the specific trait.  Although these individuals were included as one of 

the samples within the analysis, their incomplete nature was noted.  The sample sizes 

were considerably smaller due to the elimination of individuals to create a matched data 

set.  

The most difficult traits that may prove to have inconsistent scoring may include: 

inferior nasal aperture, nasal bone contour, and orbit shape.  Generally, because nasal 

bone contour is instrumentally derived, there may be differences in scores due to the 



 

 68 

placement of the contour gauge.  For future research, interobserver error using the 

macromacromorphoscopic data from Hefner (2009) and additional scoring from other 

research studies should be compared to isolate which traits may be more troublesome to 

assess and explore the reasoning behind these difficult traits. 

  



 

 69 

V. CONCLUSION 

Methods developed from cranial macromorphoscopic traits and craniometric 

variables inform forensic anthropologists how to proceed with building the biological 

profile for evaluating unidentified skeletal remains (Sauer and Wankmiller 2009; 

SWGANTH 2013).  Within the literature, the macromorphoscopic and metric methods 

are especially useful for the estimation of ancestry.  Most often qualitative analysis 

requires a complete visual assessment of the skeleton, normally the skull.   Previously, 

macromorphoscopic traits have been typological in nature and have been assessed by 

simply describing features that are commonly observed in each population group and 

running through a trait list with specific traits that are ascribed to a particular population 

group (Christensen et al. 2014; Hefner 2009).  These assessments can be deemed 

subjective and consensus between observers may be difficult.   However, new steps are 

being introduced to strengthen this method by boosting this process with statistical 

analyses, an understanding of trait frequencies, and classification accuracies and error 

rates may contribute to the preexisting knowledge of variation between individuals ( 

Hefner and Ousley 2014; Ousley and Hefner 2005).   Metric methods have expanded 

farther than their macromorphoscopic counterparts.  With the addition of reference 

groups for comparison, standardization of measurements, and ease of applying statistical 

analyses, this may be the preferred method for estimating ancestry.   

 New methods have been introduced to bring the macromorphoscopic methods to 

the level of their metric counterparts through powerful statistical analyses (Hefner and 

Ousley 2014; Hefner et al. 2014; Navega et al. 2013).   A variety of machine learning 

methods were used to evaluate macromorphoscopc and craniometric data to evaluate the 
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classification accuracies of each technique and their general contribution to effectively 

estimating ancestry.  In the present study, decision tree analysis, random forest modeling, 

artificial neural networks, support vector machines, and linear discriminant function 

analysis was applied to the macromorphoscopic, metric, and combined datasets.  The 

high classification accuracies from the random forest model and the support vector 

analysis suggested that these machine-learning techniques are applicable to problems in 

forensic anthropology.  The best machine learning methods for a combined analysis of 

qualitative and quantitative traits utilize support vector machines and random forest 

modeling.  Further research must be conducted to assess the continued use of these 

analyses on combined datasets.     

Macromorphoscopic traits can be analyzed with the statistical rigor that has been 

consistently seen in craniometric analysis (Hefner and Ousley 2014).  Now both data 

types can be combined and analyzed alongside one another (Hefner et al 2014).  Constant 

repetition and validation studies of these methods may be useful and can be applied to all 

aspects of the biological profile, which require classification and prediction methods 

(Christensen and Crowder 2009).  Through this study, useful machine learning methods 

were identified and can be incorporated into a new toolkit for current and future forensic 

anthropologists.  Much can be gleaned from discovering new statistical methodologies 

that arise through alternate sources, such as the origins of machine learning. 

In the future, research involving ancestry estimation should be expanded to 

include samples from additional populations to generate trait frequencies for reference 

data and also for cross comparison.  By compiling these new frequencies, a more 

comprehensive picture of the range of variation can be seen.  Continued research using 
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machine-learning methods should be applied in future studies to analyze the various 

classification accuracies and isolate particular machine-learning methods that work the 

best for a particular type of dataset.  Future studies may even incorporate postcranial data 

to see if there are differences in classification accuracies between cranial and postcranial 

measurements, especially for the purposes of ancestry estimation.  The application of 

machine learning techniques in forensic anthropology has made significant strides within 

the past few years and will continue to shape the discipline as it continues to progress. 
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APPENDIX A: DEFINITIONS OF MACROMORPHOSCOPIC TRAITS AND THEIR 

CORRESPONDING CHARACTER STATES  

Trait 

Cat 

Key 

Trait Name Character State Description  

ANS Anterior Nasal 

Spine 

1 : Slight - minimal-to-no projection of the anterior nasal 

spine beyond the inferior nasal aperture. 

2 : Intermediate – a moderate projection of the anterior nasal 

spine beyond the inferior nasal aperature 

3: Marked – a pronounced projection fo the anterior nasal 

spine beyond the inferior nasal aperture. 

INA Inferior Nasal 

Aperture 

1 : An inferior sloping of the nasal floor which begins within 

the nasal cavity and terminates on the vertical surface of the 

maxilla, producing a smooth transition.  The morphology is 

distinct from INA 2 regarding the more posterior origin and 

the greater slope of INA 1.  

2 : Sloping of the nasal aperture beginning more anteriorly 

than in INA 1, and with more angulation at the exit of the 

nasal opening. 

3 : The transition from nasal floor to the vertical maxilla is not 

sloping, nor is there an intervening projection, or sill.  

Generally, this morphology is a right angle, although a more 

blunted form may be observed. 

4 : Any superior incline of the anterior nasal floor, creating a 

weak (but present) vertical ridge of bone that traverses the 

inferior nasal border (partial nasal sill) 

5 : A pronounced ride (nasal sill) obstructing the nasal floor-

to-maxilla transition. 

IOB Interorbital 

Breadth 

1 : A narrow IOB. 

2 : A medium IOB. 

3 : A broad IOB. 
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MT Malar 

Tubercle 

0 : No projection of bone 

1 : A trace tubercle below the ruler’s edge (about 2 mm or 

less) 

2 : A medium protrusion below the ruler’s edge (roughly 2 to 

4 mm).  

3 : A pronounced tubercle below the ruler’s edge (roughly 4 

mm or more). 

NAW Nasal Aperture 

Width 

1 : A narrow NAW. 

2 : A medium NAW. 

3 : A broad NAW. 

NBC Nasal Bone 

Contour 

0 : Low and rounded nasal bone contour.  NBC 1 presents a 

circular shape and lacks steep walls.   

1 : An oval contour, with elongated, high, and rounded lateral 

walls. 

2 : Steep lateral walls and a broad (roughly 7 mm or more), 

flat superior surface “plateau,” noted on the contour gauge as 

a flat cluster of needles in the midline. 

3 : Steep-sided lateral walls and a narrow superior surface 

“plateau.” 

4 : Triangular cross section, lacking a superior surface 

“plateau.”  

NBS Nasal Bone 

Shape 

1 : Nasal bones with no nasal pinch.  The nasal bones may be 

wide or narrow. 

2 : Nasal bones with a superior pinch and minimal lateral 

bulging.   

3 : Nasal bones with superior pinch and pronounced lateral 

bulging of the inferior region.  

4 : Triangular-shaped nasal bones. 

**To differentiate between a score of 2 and 3, the amount of 
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lateral bulging in the inferior region. 

Novg Nasal 

Overgrowth 

0 : No overgrowth 

1 : Any projection of the lateral border of the nasal bones (at 

nasale inferious) beyond the maxillary border.  

OS Orbital Shape 1 : Rectangular – Orbits with horizonal margins longer than 

vertical margins, but otherwise parallel. 

2 : Circular – Orbital margin is approximately equidistant 

from center on all sides. 

3 : Rhombic – Medial border height is shorter than lateral 

border height. 

TPS Transverse 

Palatine Suture 

0 : If the right and left halves of the suture do not contact each 

other at midline, but the suture is otherwise straight, score the 

suture 0. 

1 : The suture crosses the palate perpendicular to the median 

palatine suture, with no significant anterior or posterior 

deviation.  

2 : The suture crosses the palate perpendicular to the medial 

palatine suture, but near this junction a significant anterior 

deviation, or bulging, is present.  

3 : The suture crosses the palate, but deviates anteriorly and 

posteriorly (e.g., M-shaped) in the region of the median 

palatine suture. 

4 : The suture crosses the palate perpendicular to the median 

palatine suture, but near this junction, a posterior deviation, or 

bulging, is present. 
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B:  DEFINITION OF PALATE SHAPE AND ITS THREE STATES 

Trait Cat 

Key 

Trait 

Name 

Character State Description 

PS Palate 

Shape 

1. Elliptic -  Smooth, round curvature of the anterior portion of the palate 

combined with a mid-arch  (ca. M1 and M2) widening relative to M3, 

contributing to the appearance of constricted (medially-positioned) 3rd 

molars.  The curvature of the dental arcade is even throughout, and the 

3rd molars have a “tucked-in” appearance.  If projected beyond the 

M3s, the left and right mesio-distal midlines would converge posterior 

to the palate.  This morphology closely resembles an incomplete 

ellipse. 

 

2. Parabolic – Smooth, rounded curvature of the anterior portion of the 

palate, combined with an even, gradual flaring of the posterior 

dentition.  The curvature of the dental arcade is most noticeable 

anteriorly, with a gradual, but not total, straightening of the dental arch 

curvature posteriorly.  If projected beyond the M3s, the left and right 

mesio-distal midlines would continue to diverge posteriorly.  This 

morphology closely resembles a true geometric parabola.  This form 

displays the greatest variation in width relative to palate length; 

however, the continued divergence of the posterior curvature is the 

critical feature in identifying this character state.  

 

3. Hyperbolic – Smooth, slightly flattened curvature of the anterior 

portion of the palate, combined with a straight, more-or-less parallel 

configuration of the posterior portions of the arch.  Curvature is most 

marked in the vicinity of the canines, and becomes nearly straight 

through the posterior dentition.  If projected beyond the M3s, the left 

and right mesio-distal midlines may diverge slightly, but to a lesser 

degree than in the “parabolic” form.  This morphology closely 

resembles an inverted U-shape. 
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APPENDIX C:  GRAPHIC OF PALATE SHAPE MORPHOLOGY 

 

 

 

**Image courtesy of Rachel Canfield 
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APPENDIX D: DEFINITIONS OF CRANIOMETRIC MEASUREMENTS USED 

 

 Craniometric 

Measurement 

Code 

Name Description of Measurement  

1 GOL Glabello-occipital 

length 

Greatest length from the glabellar region, 

in the median sagittal plane. 

2 NOL Nasio-occipital 

length 

Greatest cranial length in the median 

sagittal plane, measured from nasion. 

3 BNL Cranial based length Direct length between nasion and basion. 

4 BBH Basion-bregma 

height 

Distance from bregma to basion, as 

defined. 

5 XCB Maximum cranial 

breadth 

The maximum cranial breadth 

perpendicular to the median sagittal plane 

(above supramastoid crests). 

6 XFB Maximum frontal 

breadth 

The maximum breadth at the coronal 

suture, perpendicular to the median plane. 

7 WFB Minimum frontal 

breadth 

The direct distance between the two 

frontotemporale. 

8 ZYB Bizygomatic 

diameter 

The maximum breadth across the 

zygomatic arches, wherever found, 

perpendicular to the median plane. 

9 AUB Biauricular breadth The least exterior breadth across the roots 

of the zygomatic processes, wherever 

found. 

10 ASB Biasterionic breadth Direct measurement from one asterion to 

the other. 

11 BPL Basion-prosthion 

length 

The facial length from prosthion to 

basion, as defined. 

12 NPH Nasion-prosthion 

length 

Upper facial height from nasion to 

prosthion, as defined. 

13 NLH Nasal height The average height from nasion to the 

lowest point on the border of the nasal 

aperture on either side. 

14 JUB Bijugal breadth The external breadth across the malar at 

the juglia , i.e., at the deepest points in the 

curvature between the frontal and 

temporal process of the malars.  

15 NLB Nasal breadth The distance between the anterior edges 

of the nasal aperture at its widest extent. 

16 MAB Palate breadth The greatest breadth across the alveolar 

borders, wherever found, perpendicular to 

the median plane. 

17 MAL Maxillo-aleveolar 

length 

Direct distance from prosthion to alveolon 
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18 MDH Mastoid length The length of the mastoid process below, 

and perpendicular to the eye-ear plane in 

the vertical plane.   

19 OBH Orbital height The height between the upper and lower 

borders of the left orbit, perpendicular to 

the long axis of the orbit and bisecting it. 

20 OBB Orbital breadth Breadth from ectoconchion to dacryon, as 

defined, approximating the longitudinal 

axis, which bisects the orbit into equal 

upper and lower parts. 

21 DKB Interorbital breadth The breadth across the nasal space from 

dacryon to dacryon.   

22 NDS Naso-dacryal 

substense 

 

23 WNB Simiotic chord 

(least nasal breadth) 

 

24 SIS Simiotic subtense  

25 ZMB Bimaxillary breadth  

26 SSS Zygomaxillary 

subtense 

 

27 FMB Bifrontal breadth  

28 NAS Nasio-frontal 

subtense  

 

29 EKB Biorbital breadth The breadth across the orbits from 

ectoconchion to ectoconchion. 

30 DKS Dacryon subtense   

31 IML Malar length, 

inferior 

 

32 XML Malar length, 

maximum 

 

33 MLS Malar subtense  

34 WMH Cheek height  

35 GLS Glabella projection  

36 STB Bistephanic breadth  

37 STS   

38 FRC Frontal chord The frontal chord, or direct distance from 

nasion to bregma, taken in the midplane 

and at the external surface. 

39 FRS Nasion-bregma 

subtense (Frontal 

subtense) 

 

40 FRF Nasion-subtense 

fraction 

 

41 PAC Parietal chord The external chord, or direct distance 

from bregma to lambda taken in the 

midplane and at the external surface. 
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42 PAS Bregma-lambda 

subtense (Parietal 

subtense) 

 

43 PAF Bregma-subtense 

fraction 

 

44 OCC Occipital chord The external occipital chord, or direct 

distance from lambda to opisthion taken 

in the midplane and at the external 

surface. 

45 OCS   

46 OCF   

47 FOL Foramen magnum 

length 

The length from basion to opisthion, as 

defined. 

48 FOB Foramen magnum 

breadth 

The distance between the lateral margins 

of foramen magnum at the points of 

greatest lateral curvature. 

49 NAR Nasion radius  

50 SSR Subspinale radius  

51 PRR Prosthion radius  

52 DKR Dacryon radius  

53 ZOR Zygoorbitale radius  

54 FMR Frontomalare radius  

55 EKR Ectoconchion radius  

56 ZMR Zygomaxillare 

radius 

 

57 AVR Molar 1 Aleveolus 

radius  

 

58 BRR Bregma radius  

59 VRR Vertex radius  

60 LAR Lambda radius  

61 OSR Opisthion radius   

62 BAR Basion radius   

63 NAA   

64 PRA   

65 BAA   

66 NBA   

67 BBA   

68 BRA   

69 SSA   

70 NFA   

71 DKA   

72 NDA   

73 SIA   

74 FRA   

75 PAA   
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76 OCA   

77 RFA   

78 RPA   

79 ROA   

80 BSA   

81 SBA   

82 SLA   

83 TBA   

84 UFHT Upper facial height The direct distance from nasion to 

prosthion. 

85 UFBR Upper facial breadth  
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