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QUASI-GEOSTROPHIC EQUATIONS WITH INITIAL DATA IN
BANACH SPACES OF LOCAL MEASURES

SADEK GALA

Abstract. This paper studies the well posedness of the initial value problem
for the quasi-geostrophic type equations

∂tθ + u∇θ + (−∆)γθ = 0 on Rd×]0, +∞[

θ(x, 0) = θ0(x), x ∈ Rd

where 0 < γ ≤ 1 is a fixed parameter and the velocity field u = (u1, u2, . . . , ud)
is divergence free; i.e., ∇u = 0). The initial data θ0 is taken in Banach spaces

of local measures (see text for the definition), such as Multipliers, Lorentz and

Morrey-Campanato spaces. We will focus on the subcritical case 1/2 < γ ≤ 1

and we analyse the well-posedness of the system in three basic spaces: Ld/r,∞,

Ẋr and Ṁp,d/r, when the solution is global for sufficiently small initial data.

Furtheremore, we prove that the solution is actually smooth. Mild solutions
are obtained in several spaces with the right homogeneity to allow the existence

of self-similar solutions.

1. Introduction

We analyse the well-posedness of initial value problems for the quasi-geostrophic
equations in the subcritical case. Mild solutions are obtained in several spaces with
the right homogeneity to allow the existence of self-similar solutions. Singularities,
global existence and long time behavior for models in fluid mechanics have become
an important topics in the mathematical community in the last decades. Under-
standing these features in incompressible Navier-Stockes (NS) and Euler equations
in 3D in yet unsolved. Lower dimentional models have been deduced, not only for
the simplification that might bring up in the mathematical approaches, but also
because of the great resemblance that some of these models have with respect to
the original incompressible NS equations and the mathematical insight their study
may produce. The dissipative 2DQG equations are derived from general quasi-
geostrophic equations (see [14]) in the special case of constant potential vorticity
and constant buoyancy frequency (see [4]). Quasi-geostrophic equations are not
only important as a simplification of 3DNS but also since they appear as a natural
reduction for vertically stratified flows (see [14]). Well posedness in several spaces
and long time behavior of the solutions of the dissipative QG equations in different
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cases have been studied in ([3], [4], [5], [10], [17], [18]). The objective of this paper
is to study the well posedness of the initial value problem for 2-dimensional of the
quasi-geostrophic type equations

∂tθ + u∇θ + (−∆)γθ = 0 on Rd×]0,+∞[, (1.1)

θ(x, 0) = θ0(x), x ∈ Rd (1.2)

where 0 < γ ≤ 1 is a fixed parameter. The velocity field u = (u1, u2, . . . , ud) is
divergence free; i.e., ∇u = 0) and determined from the potential temperature θ by
linear combinations of Riesz transforms; i.e.,.

uk =
d∑

j=1

ajkRjθ, 1 ≤ k ≤ d

where Rj = ∂j(−∆)−
1
2 . Let us remark that suitable choices of ajk assures that the

velocity field is divergence free, that we will assume throughout this paper. The
Riesz potential operator (−∆)γ is defined as usual through the Fourier transform
as

̂(−∆)γf(ξ) = |ξ|2γ f̂(ξ)
It is well-know that QG equation is very similar to the three dimensional Navier-
Stokes equations (see [4]). Besides its similarity to the three dimensional fluid
equations, (see [14]). The case γ > 1

2 is called sub-critical, and the case γ = 1
2

is critical, while the case 0 ≤ γ < 1
2 is super-critical, respectively. Our aim is to

show existence and uniqueness and regularity of solutions for the quasi-geostrophic
equations in the sub-critical case (1.1)-(1.2) when the initial data is taken in Ba-
nach spaces of local measures, such as Multipliers, Lorentz and Morrey-Campanato
spaces.

2. Shift-invariant spaces of local measures

We consider in this paper a special class of shift-invariant spaces of distributions
was introduced by Lemarié-Rieusset in his work [12]. The spaces which are invariant
under pointwise multiplication with bounded continuous functions.

Definition 2.1. (A) A shift-invariant Banach spaces of test functions is a Ba-
nach space E such that we have the continuous embeddings D(Rd) ⊂ E ⊂
D′(Rd) and so that
(a) for all x0 ∈ Rd and for all f ∈ E, f(x− x0) ∈ E and

‖f‖E = ‖f(x− x0)‖E

(b) for all λ > 0, there exists Cλ > 0 so that for all f ∈ E, f(λx) ∈ E and

‖f(λx)‖E ≤ Cλ‖f‖E

(c) D(Rd) is dense in E.
(B) A shift-invariant Banach spaces of distributions is a Banach space E which

is the topological dual of a shift-invariant Banach of test functions space
E(0) of smooth elements of E is defined as the closure of D(Rd) in E.

(C) A shift-invariant Banach space of local measures is a shift-invariant Banach
space of distributions E so that for all f ∈ E and all g ∈ S(Rd), we have
fg ∈ E and

‖fg‖E ≤ CE‖f‖E‖g‖L∞
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where CE is a positive constant which depends neither on f nor on g.

Remark 2.2. An easy consequence of hypothesis (a) is that a shift-invariant Ba-
nach space of test functions E satisfies S(Rd) ⊂ E and a consequence of hypothesis
(b) is that E ↪→ S ′(Rd). Similarly, we have for a shift-invariant Banach space
of distributions E that S(Rd) ⊂ E(0) ⊂ E ↪→ S ′(Rd). In particular, E(0) is a
shift-invariant Banach space of test functions.

A shift-invariant Banach spaces of distributions are adapted to convolution with
integrable kernels.

Lemma 2.3 (Convolution in shift-invariant spaces of distributions). If E is a shift-
invariant Banach space of test functions or of distributions and ϕ ∈ S(Rd), then
for all f ∈ E, we have f ∗ ϕ ∈ E and

‖f ∗ ϕ‖E ≤ ‖f‖E‖ϕ‖L1 (2.1)

Moreover, the convolution may be extended into a bounded bilinear operator from
E × L1 to E and we have for all f ∈ E and for all g ∈ L1, the inequality

‖f ∗ g‖E ≤ ‖f‖E‖g‖L1

The proof of the above lemma can be found in [12]. Now, we introduce the
functional spaces relevant to our study of solutions of the Cauchy problem for
system (1.1)-(1.2), we list some facts about convolution and we discuss the notion
of solution in these spaces.

2.1. Pointwise multipliers Ẋr. In this section, we give a description of the mul-
tiplier space Ẋr introduced recently by Lemarié-Rieusset in his work [12]. The
space Ẋrof pointwise multipliers which map L2 into Ḣ−r is defined as follows:

Definition 2.4. For 0 ≤ r < d/2, we define the homogeneous space Ẋr by

Ẋr = {f ∈ L2
loc : ∀g ∈ Ḣr fg ∈ L2}

where we denote by Ḣr(Rd) the completion of the space D(Rd) with respect to the
norm ‖u‖Ḣr = ‖(−∆)r/2u‖L2 .

The norm in Ẋr is given by the operator norm of pointwise multiplication

‖f‖Ẋr = sup
‖g‖Ḣr≤1

‖fg‖L2

Similarly, we define the nonhomogeneous space Xr for 0 ≤ r < d/2 equipped with
the norm

‖f‖Xr = sup
‖g‖Hr≤1

‖fg‖L2

We have the following homogeneity properties: For all x0 ∈ Rd,

‖f(x+ x0)‖Xr = ‖f‖Xr

‖f(x+ x0)‖Ẋr = ‖f‖Ẋr

‖f(λx)‖Xr ≤ 1
λr
‖f‖Xr , 0 < λ ≤ 1

‖f(λx)‖Ẋr ≤
1
λr
‖f‖Ẋr , λ > 0.
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The following imbeddings hold

L
d
t ⊂ Xr, 0 ≤ r <

d

2
, 0 ≤ t ≤ r.

L
d
r ⊂ Ẋr, 0 ≤ r <

d

2
.

We now turn to another way of introducing capacity.

Capacitary measures and capacitary potentials. In this section, we give the notion
of capacity which will develop in term of Riesz and Bessel potentials.

Definition 2.5. Let d ≥ 2 and x ∈ Rd. The Riesz kernel is defined by

kα(x) = C(d, α)|x|α−d, 0 < α < d,

where the constant C(d, α) is chosen so that kα ∗ kβ = kα+β.

The natural question arises: When is kα∗kβ defined? There are obvious problems
at infinity. Assume |x| � R, where R is a constant and x 6= 0. We have then∫

|y|>R

dy

|y|d−α|x− y|d−β
≈

∫
|y|>R

dy

|y|2d−α−β

≈
∫ ∞

R

td−1−2d+α+βdt =
∫ ∞

R

tα+β−d−1dt,

which is convergent if and only if α+ β < d.The Bessel kernel Gr, r > 0 is defined

as that function whose Fourier transform is

Ĝr(x) = (2π)−d/2(1 + |x|2)−r/2

It is known that Gr is a positive, integrable function which is analytic except at
x = 0. Similar to the Riesz kernel, we have

Gr ∗Gs = Gr+s, r, s ≥ 0 .

Remark 2.6. The Riesz potential leads to many important applications, but for
the purpose of investigating Sobolev functions, the Bessel potential is more suitable.
For an analysis of the Bessel kernel, we refer the reader to [15].

The Riesz capacity cap(e; Ḣr) of a compact set e ⊂ Rd is defined by (see [1])

cap(e; Ḣr) = inf{‖u‖2
Ḣr : u ∈ C∞0 (Rd), u ≥ 1 sur e}

The Bessel capacity cap(e;Hr) of a compact set e ⊂ Rd is defined in a similar
way, with the kernel kr replaced by Gr. Since Gr(x) ≤ kr(x) (x ∈ Rd), it follows
immediately from definitions that for 0 < r < d, there exists a constant C(d, r)
such that

cap(e; Ḣr) ≤ C(d, r) cap(e;Hr).

A brief outline of the theory of Ap weights is given in this section. A complete
expositions can be found in the monographs by Garcia-Cuerva and Rubio de Francia
[8].
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Ap weights. The class of Ap weights was introduced by Muckenhoupt in [13], where
he showed that the Ap weights are precisely those weights w for which the Hardy-
Littlewood maximal operator is bounded from Lp

w(Rd) to Lp
w(Rd), where 1 < p <∞

and from L1
w(Rd) to weak-L1

w(Rd), when p = 1. We begin by defining the class of
Ap weights. Let 1 ≤ p <∞. A weight w is said to be an Ap weight, if there exists
a positive constant Cp such that, for every ball B ⊂ Rd,( 1

|B|

∫
B

w(x)dx
)( 1
|B|

∫
B

w(x)−
1

p−1 dx
)p−1

≤ Cp, (2.2)

if p > 1, or
1
|B|

∫
B

w(x)dx ≤ K ess inf
x∈B

w(x)), (2.3)

if p = 1. The infinimum over all such constants C is called the Ap constant of w.
We denote by Ap, 1 ≤ p <∞, the set of all Ap weights. Below we list some simple,
but useful properties of Ap weights.

Proposition 2.7. (1) If w ∈ Ap, 1 ≤ p < ∞, then since w(x)−
1

p−1 is locally
integrable, when p > 1, and 1

w is locally bounded, when p = 1, we have
Lp(w(x)dx) ⊂ L1

loc(Rd).
(2) Note that if w is a weight, then, by writing 1 = w

1
pw−

1
p , Hölder’s inequality

implies that, for every ball B

1 ≤
( 1
|B|

∫
B

w(x)dx
)( 1
|B|

∫
B

w(x)
−1

p−1 dx
)p−1

when p > 1 and similarly for the expression that gives the A1condition.It
follows that if w ∈ Ap, then the constant of w is ≥ 1.

(3) If w ∈ Ap, where 1 < p <∞, then w−
1

p−1 ∈ Ap′ , and conversely.
(4) It is not so difficult to see that a weight w ∈ A1 if and only if Mw(x) ≤

A1w(x) a.e.
(5) It follows that if w ∈ A1, then there is a constant C such that

w(x) ≥ C

(1 + |x|)d

for a.e. x ∈ Rd. In fact, if x ∈ Rd and R = 2max(1, |x|), then

1
Rd

∫
B(R,x)

w(y)dy ≥ 2−d

(1 + |x|)d

∫
B(1,0)

w(y)dy

so Mw(x) ≥ C(1 + |x|)−d a.e.
(6) If w is a weight and there exist two positive constants C and D such that

C ≤ w(x) ≤ D, for a.e. x ∈ Rd, then obviously w ∈ Ap for 1 ≤ p <∞ .

We will need the following theorem, which shows that many operators of classical
analysis are bounded in the space of multipliers.

Theorem 2.8. Let 0 ≤ r < d/2. Suppose that a function h ∈ L2
loc satisfies∫

e

|h(x)|2dx ≤ C cap(e) (2.4)
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for all compact sets e with cap(e) = cap(e;Hr). Suppose that, for all weights
ρ ∈ A1, ∫

Rd

|g(x)|2ρdx ≤ K

∫
Rd

|h(x)|2ρdx (2.5)

with a constant K depending only on d and the constant A in the Muckenhoupt
condition. Then ∫

e

|g(x)|2dx ≤ C cap(e)

for all compact sets e with C = C(d, r,K).

Similar results are obtained for the homogeneous multipliers space Ẋr. To show
this theorem, we need some facts from the equilibrium potential of a compact set e
of positive capacity [1]. The equilibrium potential of a measure µ ∈M+ is defined
by

P = Pe = Gr(Grµ).

Lemma 2.9 ([1]). For any compact set e ⊂ Rd, there exists a measure µ = µe such
that

(i) suppµ ⊂ e
(ii) µ(e) = cap(e,Hr)
(iii) ‖Grµ‖2L2 = cap(e,Hr)
(iv) Pe(x) ≥ 1 quasi-everywhere on e
(v) Pe(x) ≤ K = K(d, r) on Rd

(vi) cap{Pe ≥ t} ≤ At−1 cap(e,Hr) for all t > 0 and the constant is independent
of e.

The measure µe associated with e is called the capacitary (equilibrium) measure
of e. We will also need the asymptotic (see [1])

Gr(x) ' |x|r−d, if d ≥ 3, |x| → 0;

Gr(x) ' |x|
r−d
2 e−|x|, if d ≥ 2, |x| → +∞ .

(2.6)

Sometimes, it will be more convenient to use a modified kernel
∼
Gr(x) = max(Gr(x), 1)

which does not have the exponential decay at ∞. Obviously, both Gr and
∼
Gr are

positive non-increasing radial kernels. Moreover,
∼
Gr has the doubling property

∼
Gr(2s) ≤

∼
Gr(s) ≤ c(d)

∼
Gr(2s)

The corresponding modified potential is
∼
P (x) =

∼
Gr ∗ µ(x)

The rest of the proof of theorem 2.8 is based on the following proposition.

Proposition 2.10. Let d ≥ 2 and let 0 < δ < d
d−2r . Then

∼
P lies in the Mucken-

houpt class A1 on Rd, i.e.,

M
(∼
P

δ

(x)
)
≤ C(δ, d)

∼
P

δ

(x), dx p.p

where M denotes the Hardy-Littlewood maximal operator on Rd, and the corre-
sponding A1−bound C(δ, d) depends only on d and δ.
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Proof. Let k : R+ → R+ be a non-increasing function which satisfies the doubling
condition

k(2s) ≤ ck(s), s > 0 .
It is easy to see that the radial weight k(|x|) ∈ A1 if and only if∫ R

0

kδ(t)td−1dt ≤ cRdk(R), R > 0 (2.7)

Moreover, the A1-bound of k is bounded by a constant which depends only on C
in the preceding estimate and the doubling constant c (see [16]). It follows that

∼
Gr(s) ' |s|r−d if d ≥ 3 for 0 < s < 1

and
∼
Gr(s) ' 1 for s ≥ 1 .

Hence, k(|s|) =
∼
G

δ

r(s) is a radial non-increasing kernel with the doubling property.
By Jensen’ inequality, we have

∼
G

δ1

r ∈ A1 implies
∼
G

δ2

r ∈ A1 if δ1 ≥ δ2

Clearly (2.7) holds if and only if 0 < δ < d
d−2r . Hence, without loss of generality,

we assume 1 ≤ δ < d
d−2r . Then by Minkowski’s inequality and the A1-estimate for

∼
G

δ

r established above, it follows

M(
∼
P

δ

(x)) ≤M
(
(
∼
G

δ

r

) 1
δ ∗ µ(x))δ ≤ C(δ, d)(

∼
Gr ∗ µ)δ(x) = C(δ, d)

∼
P

δ

(x).

�

We are now in a position to prove theorem 2.8.

Proof of Theorem 2.8. Suppose υe is the capacitary measure of e ⊂ Rd and let
ϕ = P is its potential. Then, by lemma 2.9, we have

(i) ϕ(x) ≥ 1 quasi-everywhere on e
(ii) ϕ(x) ≤ B = B(d, r) for all x ∈ Rd

(iii) cap{ϕ ≥ t} ≤ Ct−1 cap(e) for all t > 0 with the constant C is independent
of e.

Now, it follows from a proposition 2.10 that ϕδ ∈ A1. Hence, by (2.5),∫
Rd

|g(x)|2ϕδdx ≤ K

∫
Rd

|h(x)|2ϕδdx

Applying this inequality with (i) and (ii), we get∫
e

|g(x)|2dx ≤
∫

Rd

|g(x)|2ϕδdx ≤ C

∫
Rd

|h(x)|2ϕδdx = C

∫ B

0

∫
ϕ≥t

|h(x)|2dxtδ−1dt .

By (2.4) and (iii), ∫
ϕ≥t

|h(x)|2dx ≤ Ccap {ϕ ≥ t} ≤ C

t
cap(e) .

Hence, ∫
e

|g(x)|2dx ≤ C

∫ B

0

t−1 cap(e)tδ−1dt = C cap(e)
∫ B

0

tδ−2dt .
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Clearly, for all 0 ≤ r < d/2, we can choose δ > 1 so that 0 < δ < d
d−2r . Then∫ B

0

tδ−2dt =
Bδ−1

δ − 1
<∞

which concludes
∫

e
|g(x)|2dx ≤ C cap(e). �

We will need the boundedness of the Riesz transforms Rjf = f ∗ xj

|x|d+1 (j =
1, 2, . . . ) in the spaces of functions defined by the capacitary condition (2.4).

Corollary 2.11. Let 0 ≤ r < d/2. Then

sup
e

∫
e
|Rjf |2dx

cap(e, Ḣr)
≤ C sup

e

∫
e
|f |2dx

cap(e, Ḣr)
, (j = 1, 2, . . . ),

where the suprema are taken over all compact sets in Rd.

Proposition 2.12. If f ∈ Ẋr, then e−t(−∆)γ

f ∈ Ẋr.

Proof. Let g ∈ Ḣr. Then

‖e−t(−∆)γ

fg‖2L2 =
∫ ∣∣∣ ∫

f(x− y)g(x)kγ(y)dy
∣∣∣2dx

≤
∫ ∫

|f(x− y)g(x)|2kγ(y)dy dx

≤
∫
kγ(y)

∫
|f(u)g(u+ y)|2dydu ≤ C‖g‖Ḣr

since Ḣr is invariant under translation.

x→ ϕ
(x− x0√

t

)
∈ Ḣr

with a norm = t
d
4−

r
2 ‖ϕ‖Ḣr . �

2.2. Morrey-Campanato spaces. We first recall the definition [11]: For 1 < p ≤
q ≤ +∞, the Morrey-Campanato space is the set

Mp,q =
{
f ∈ Lp

loc : ‖f‖Mp,q
= sup

x∈IRd

sup
0<R≤1

Rd/q−d/p‖f(y)1B(x,R)(y)‖Lp(dy) <∞
}

(2.8)
Let us define the homogeneous Morrey-Campanato spaces Ṁp,q for 1 < p ≤ q ≤ +∞
by

‖f‖Ṁp,q
= sup

x∈Rd

sup
R>0

Rd/q−d/p(
∫

B(x,R)

|f(y)|pdy)1/p (2.9)

It is easy to check the following properties

‖f(λx)‖Mp,q =
1

λ
d
q

‖f‖Mp,q , 0 < λ ≤ 1.

‖f(λx)‖Ṁp,q
=

1

λ
d
q

‖f‖Ṁp,q
, λ > 0

We shall assume the following classical results [11].
(a) For 1 ≤ p ≤ p′, p ≤ q ≤ +∞ and for all functions f in Ṁp,q ∩ L∞,

‖f‖Ṁ
p′,q p′

p

≤ ‖f‖
1− p

p′

L∞ ‖f‖
p
p′

Ṁp,q
.
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(b) For p, q, p′, q′ so that 1
p + 1

p′ ≤ 1, 1
q + 1

q′ ≤ 1, f ∈ Ṁp,q, g ∈ Ṁp′,q′ . Then
fg ∈ Ṁp”,q” with 1

p + 1
p′ = 1

p” , 1
q + 1

q′ = 1
q” .

(c) For 1 ≤ p ≤ d and all λ > 0, we have λf(λx)‖Ṁp,d
= ‖f‖Ṁp,d

.

(d) If p′ < p, then Ṁp,q ⊂Mp,q and Ṁp,q ⊂Mp′,q

(e) If q2 < q1, then Mp,q1 ⊂Mp,q2 and Lq = Ṁq,q ⊂ Ṁp,q, p ≤ q

We have the following comparison between and Morrey-Campanato spaces multi-
plier spaces.

Proposition 2.13. For 0 ≤ r < d/2, we have

Xr ⊆M2, d
r

and Ẋr ⊆ Ṁ2, d
r
.

Proof. Let f ∈ Xr, 0 < R ≤ 1, x0 ∈ Rd and φ ∈ D, φ ≡ 1 on B(x0
R , 1). We have

Rr− d
2

( ∫
|x−x0|≤R

|f(x)|2dx
)1/2

= Rr
( ∫

|y− x0
R |≤1

|f(Ry)|2dy
)1/2

≤ Rr
( ∫

y∈Rd

|f(Ry)φ(y)|2dy
)1/2

≤ Rr‖f(Ry)‖Xr‖φ‖Hr

≤ ‖f(y)‖Xr‖φ‖Hr

≤ C‖f(y)‖Xr .

We observe that the same proof is valid for homogeneous spaces. �

We will need a result concerning the Calderon-Zygmund-type integral operators
on Morrey-Campanto spaces. The Riesz transform is a particular example of these
types of singular integral operators.

Lemma 2.14. The Riesz transform Rj = ∂j(−∆)−1/2, j = 1, 2, . . . , d is continuous
in Ṁp,q for 1 < p <∞ and 1 < q <∞.

A proof for this lemma can be found in [11].

2.3. Lorentz spaces: Lp,q. Associated with a function f , we define its distribution
function

λf (s) = |
{
x ∈ Rd : |f(x)| > s

}
|

where s > 0. Given a real function λf (s), we define its rearrangement f∗(t) as

f∗(t) = inf {s > 0 : λf (s) ≤ t} , t > 0

It is easy to check that f∗ and λf (s) are non-negative and non-increasing functions.
Moreover, if λf is strictly decreasing and continuous, then f∗ is the inverse function
of λf and both f∗ and f have the same distribution function. From this fact, we
deduce that∫

Rd

|f(x)|pdx =
∫

Rd

∫ |f(x)|

0

ptp−1dtdx =
∫ ∞

0

∫
Rd

κλf (t)pt
p−1dtdx

=
∫ ∞

0

ptp−1λf (t)dt =
∫ ∞

0

ptp−1λf∗(t)dt

=
∫ ∞

0

(t
1
p f∗(t))p dt

t

(2.10)

We may now introduce the Lorentz spaces.
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The Lorentz spaces Lp,q(Rd) is defined as the set of all functions f such that
‖f‖∗Lp,q < +∞, with

‖f‖∗Lp,q =


(

q
p

∫∞
0

[
t

1
p f∗(t)

]q dt
t

) 1
q

if 0 < p < +∞, 0 < q < +∞
supt>0

[
t

1
p f∗(t)

]
if 0 < p < +∞, q = +∞

We observe that Lp,p = Lp, Lp,∞ are called the Marcinkiewicz spaces or weak-Lp

spaces. Moreover, Lp,q1 ⊂ Lp,q2 for 0 < q1 ≤ q2 ≤ +∞. The quantity ‖f‖∗Lp,q

give a natural topology for Lp,q(Rd) such that Lp,q(Rd) is a topological vector
space. However, the triangle inequality is not true for ‖f‖∗Lp,q . As a natural way of
metrizing the space Lp,q(Rd) is to define

f∗∗(t) =
1
t

∫ ∞

0

f∗(s)ds for t > 0

which can be computed [H] as

f∗∗(t) = sup
m(E)≥t

[ 1
m(E)

∫
E

|f(x)|dx
]
.

Hence, we define the norm

‖f‖Lp,q =

{(
q
p

∫∞
0

[
t

1
p f∗∗(t)

]q dt
t )1/q, if 1 < p < +∞, 1 ≤ q < +∞

supt>0

[
t

1
p f∗∗(t)

]
, if 1 < p < +∞, q = +∞

The spaces Lp,q endowed with the norm ‖f‖Lp,q are Banach spaces and

‖f‖∗Lp,q ≤ ‖f‖Lp,q ≤ p

p− 1
‖f‖∗Lp,q .

An alternative definition of the norm ‖f‖Lp,∞ is

‖f‖Lp,∞ = sup
t>0

t|{x ∈ Rd : |f(x)| > t}|1/p

Lorentz spaces have the same scaling relation as Lp spaces, i.e., for all λ > 0, we
have

‖f(λx)‖Lp,q = λ−d/p‖f‖Lp,q

where 1 ≤ p < +∞, 1 ≤ q ≤ +∞. We first need an interpolation result in Lorentz
spaces [12].

Lemma 2.15 (Interpolation of linear operator). Let p0, p1 ∈ [1,+∞] with p0 6= p1.
Let θ ∈]0, 1[ and let 1

p = 1−θ
p0

+ θ
p1

. If T is a linear operator defined from Lp0 +Lp1

to Banach space E such that T ∈ L(Lp0 , E) (with the operator norm M0) and
T ∈ L(Lp1 , E) ( with the operator norm M1), then T is bounded from Lp,∞ to E
and the operator norm M is controlled by

M ≤ C(p0, p1, θ)M1−θ
0 Mθ

1 .

Proof. We just write f = g + h with(M0

M1

)θ‖g‖Lp0 +
(M0

M1

)θ−1‖h‖Lp1 ≤ C‖f‖Lp,∞
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Then, we have Tf = Tg + Th where

‖Tf‖E ≤ ‖Tg‖E + ‖Th‖E

≤ C‖f‖Lp,∞(M0(
M0

M1
)−θ +M1

(M0

M1

)1−θ)

= 2CM1−θ
0 Mθ

1 ‖f‖Lp,∞

which proves the lemma. �

Now, we deal with the continuity of operators in Lorentz spaces and in particular
continuity of the Riesz transform in Lp,∞, 1 < p < +∞.

Corollary 2.16. The Riesz transform Rj = ∂j(−∆)−
1
2 , j = 1, 2, . . . d is continuous

in Lp,∞ for p > 1.

Proof. We know that the Riesz transform is continuous in Lp, p > 1. Now, take
1 < p0, p1 < ∞ and using that Lp0 = Lp0,p0 , Lp1 = Lp1,p1 and lemma 2.15, we
deduce that

‖Rjf‖Lp,q ≤ C‖f‖Lp,q

where 1
p = 1−θ

p0
+ θ

p1
and 1 ≤ q ≤ +∞. Taking q = +∞, the proof is complete. �

Finally, let us prove a proposition which will be useful in the study of the QG
equations in lorentz spaces.

Proposition 2.17. Let ϕ ∈ L1(Rd) such that
∫

Rd ϕ(y)dy = 1. For each δ > 0, we
define ϕδ(x) = 1

δdϕ(x
δ ). If 1 < p <∞ , 1 ≤ q <∞ and f ∈ Lp,q, then

lim
δ→0

‖ϕδ ∗ f − f‖Lp,q = 0

Proof. Using the change of variable δt = y and the fact that
∫

Rd ϕδ(y)dy = 1, for
all δ > 0, we have

(ϕδ ∗ f − f)(x) =
∫

Rd

ϕδ(y)[f(x− y)− f(x)]dy

=
∫

Rd

ϕ(t)[f(x− tδ)− f(x)]dt .

Next, taking the norm ‖.‖Lp,q , we obtain

‖ϕδ ∗ f − f‖Lp,q ≤
∫

Rd

‖ϕ(t) [f(x− tδ)− f(x)] ‖Lp,qdt

≤ ‖f(x− tδ)− f(x)‖Lp,q .

Note that ‖f(x− tδ)− f(x)‖Lp,q ≤ 2‖f‖Lp,q . Since 1 ≤ q <∞ , then

lim
δ→0

‖f(x− tδ)− f(x)‖Lp,q = 0

and we can use the Lebesgue dominated convergence theorem to conclude the proof.
�
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3. The solution operator for the linear equation

Consider the solution operator for the linear equation

∂tθ + (−∆)γθ = 0, on Rd×]0,+∞[

where γ ∈ [0, 1]. For a given initial data θ0, the solution of this equation is given
by

θ(t) = Kγ(t)θ0 = e−t(−∆)γ

θ0,

where Kγ(t) = e−t(−∆)γ

is a convolution operator with its kernel kγ being defined
through the Fourier transform

k̂γ(x, t) = e−t|ξ|2γ

In particular, kγ is the heat kernel for γ = 1 and the Poisson kernel for γ = 1/2.
The kernel kγ possesses similar properties as the heat kernel does. For example,
for γ ∈ [0, 1] and t > 0, kγ(x, t) is a nonnegative and non-increasing radial function
and satisfies the following homogeneity properties

kγ(x, t) = t−
d
2γ kγ(t−

1
2γ x, 1)

(∇xkγ)(x, t) = t−
(d+1)

2γ (∇xkγ)(t−
1
2γ x, 1)

(3.1)

This remarks lead to the following result.

Lemma 3.1. For all t > 0 and γ ∈ [0, 1], Kγ(t) = e−t(−∆)γ

is a convolution
operator with its kernel kγ ∈ L1.

Proof. We have k̂γ(x, t) = e−t|ξ|2γ ∈ L1; thus kγ is a continuous bounded function.
Hence

‖kγ(., t)‖L1 = k̂γ(0, ξ) = 1

�

Furthermore, the operators Kγ and ∇Kγ are bounded on L∞. To prove this
fact, we need the following lemma.

Lemma 3.2. For any t > 0, the operators Kγ and ∇Kγ are bounded operators
from L∞ to L∞. Furthermore, we have for any u ∈ L∞,

‖Kγ(t)u‖L∞ ≤ ‖u‖L∞ , (3.2)

‖∇Kγ(t)u‖L∞ ≤ Ct−
1
2γ ‖u‖L∞ , (3.3)

where C is a constant depending on γ.

Proof. To prove (3.2), we have

‖Kγ(t)u‖L∞ ≤ ‖kγ(., t)‖L1‖u‖L∞ .

Estimate (3.3) can be proved similarly by using the identity

∂xkγ(x, t) = t−
1
2γ k̃γ(x, t)

where k̃γ is another radial function enjoying the same properties as kγ does. �

Now, we introduce a basic tool for this papier: The Besov spaces
.

B
−r,∞
∞ for

r > 0.
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3.1. Littlewood-Paley decomposition of tempered distribution. Defini-
tion of Dyadics blocks Let ϕ ∈ D(Rd) be a non negative function so that
|ξ| ≤ 1

2 ⇒ ϕ(ξ) = 1 and |ξ| ≥ 1 ⇒ ϕ(ξ) = 0. Let ψ(ξ) = ϕ( ξ
2 ) − ϕ(ξ). Let

∆j and Sj be defined as the Fourier multipliers

F(Sjf) = ϕ(
ξ

2j
)F(f) and F(∆jf) = ψ(

ξ

2j
)F(f)

The distribution ∆jf is called the j-th dyadic block of the Littlewood-Paley de-
composition of f .

For all k ∈ Z and for all f ∈ S ′(Rd), we have

f = Skf +
∑
j≥k

∆jf

in S’(Rd). This equality is called the Littlewood-Paley decomposition of the distri-
bution f . If, moreover, lim

k→−∞
Skf = 0 in S ′, then the equality

f =
∑
j∈Z

∆jf.

is called the homogeneous Littlewood-Paley decomposition of the distribution f .
Distributions vanishing at infinity. We define the space of tempered distribu-
tions vanishing at infinity as the space

S
′

0(Rd) = {f ∈ S ′(Rd) so that f =
∑
j∈Z

∆jf in S ′}

We may now define homogeneous Besov spaces in the following way:
For s ∈]−∞,+∞[, p, q ∈ [1,+∞], the homogeneous Besov spaces Ḃp

s,q
is defined

as
Ḃp

s,q
= {f ∈ S ′/C[X] : 2js‖∆jf‖Lp ∈ lq(Z)}.

equipped with the norm

‖f‖Ḃp
s,q =

( ∑
j∈Z

(2js‖∆jf‖Lp)q
)1/q

and C[X] denotes the set of all multinomials.
Similarly, the inhomogeneous Besov spaces Bs,q

p are defined by

Bs,q
p (Rd) = {f ∈ S ′ : ‖f‖Bs,q

p
<∞},

where for q 6= ∞,

‖f‖Bs,q
p

=
( ∑

j∈Z
(2js‖∆jf‖Lp)q

)1/q

;

and for q = ∞,
‖f‖Bs,∞

p
= sup j ≥ 02js‖∆jf‖Lp .

If s < 0 and if fj satisfies supp fj ⊂ {ξ : 2j

2 ≤ |ξ| ≤ 2.2j} and (2js‖fj‖Lp)j∈Z ∈
l∞(Z), then

∑
j∈Z fj converges in S ′. Indeed, we have

∑
j≤0 ‖fj‖Lp < +∞, but for

all g ∈ S and all k ∈ N:
∑

j≥0 2jk‖∆jg‖Lp < +∞. We write for some M ∈ N,

‖g‖Lp′ ≤
∑
|α|≤M

∑
|β|≤M

∥∥ξα.
∂β

∂ξβ

∧
g
∥∥

L∞
.
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We use the semi-group e−t(−∆)γ

operating on shift-invariant Banach spaces of dis-
tributions, it will be very useful to characterize the action of the kernel kγ(t) on
Besov spaces associated with such spaces [12, Theorem 5.3, p.44-45].

Proposition 3.3. Let s < 0 and T > 0. There exists a constant CT > 0 such that

Ḃp
s,q

=
{
f ∈ S ′ : e−t(−∆)γ

f ∈ Lp,
(∫ T

0

(t−
s
2 ‖e−t(−∆)γ

f‖Lp)q dt

t

)1/q

≤ CT

}
(3.4)

for p, q ∈ [1,+∞]. Moreover, the norm

‖e−t(−∆)γ

f‖Lp + ‖t− s
2 (e−t(−∆)γ

f)‖Lq(]0,∞[, dt
t ,Lp)

and the norm ‖f‖s,q

Ḃp
are equivalent.

Let us return to the condition E ↪→ Ḃ−r,∞
∞ . One of the purposes of this section

is, if possible, to show under a characterization (3.4) that

f ∈ Ḃ−r,∞
∞ ⇔ t

r
2γ e−t(−∆)γ

f ∈ L∞(]0, T [, L∞), for all T > 0

That is, we want to know whether

‖f‖Ḃ−r,∞
∞

∼ ‖e−t(−∆)γ

f‖L∞ + ‖t− s
2 (e−t(−∆)γ

f)‖L∞(]0,∞[,L∞)

for every function f ∈ Ḃ−r,∞
∞ and all t > 0. The proof uses exactly the same ideas

as in [12, of theorem 5.4 in] and we omit the details here.

Lemma 3.4. Let E a Banach space satisfying S ↪→ E ↪→ S ′, for all x0 ∈ Rd;
‖f‖E = ‖f(x− x0)‖E and so that

sup
0<λ≤1

λr‖f(λx)‖E ≤ C‖f‖E with r ∈ R .

Then
E ↪→ B−r,∞

∞ .

Similarly, if
sup
0<λ

λr‖f(λx)‖E ≤ C‖f‖E with r ∈ R,

then
E ↪→ Ḃ−r,∞

∞ .

Proof. We shall prove only the first statement; the proof of the second is similar.
We may assume that

sup
0<λ≤1

λr‖f(λx)‖E ≤ C‖f‖E with r ∈ R

Using the Littlewood-Paley decomposition, we have by noting S0f = ϕ ∗ f

‖S0f‖L∞ = sup
x∈Rd

|
∫

Rd

ϕ(y)f(x− y)dy| ≤ sup
x∈Rd

‖ϕ‖L1‖f‖E

Moreover, for all j ≥ 0, we have

2−jr‖∆jf‖L∞ = 2−jr‖∆0f(
.

2j
)(2jx)‖L∞

= 2−jr‖∆0f(
.

2j
)‖L∞

≤ C2−jr‖f(
.

2j
)‖E ≤ C‖f‖E

�
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We now establish estimates for the operator Kγ(t) in Banach spaces of local
measures.

Proposition 3.5. For any t > 0, the operators Kγ(t) and ∇Kγ(t) are bounded
operators in Banach spaces of local measures and depend on t continuously, where
∇ denotes the space derivative. Furthermore, we have for u ∈ E,

‖Kγ(t)u‖E ≤ ‖u‖E ,

‖∇Kγ(t)u‖E ≤ Ct−
1
2γ ‖u‖E

The statement of the above proposition is easy to check.

4. Well Posedness in Banach spaces of local measures

The result of Wu’s theorem may be generalized in a direct way to the setting
of spaces of local measures, such as Lorentz spaces, Multipliers spaces or Morrey-
Campanato spaces. Let us introduce suitable functional spaces to analyse the
Cauchy problem for system (1.1)-(1.2) based on the spaces of measures local.
Definition Let EE be the space of all function f(x, t), with t > 0 and x ∈ R2, such
that

f(x, t) ∈ L∞((0,∞), E)
and therefore the norm in EE is defined by

‖f‖EE
= sup

t>0
‖f(., t)‖E

Let us also define by E∞ the space of all functions f(x, t), with t > 0 and x ∈ R2,
such that

f(x, t) ∈ L∞((0,∞), E),

t
r
2γ f(x, t) ∈ L∞((0,∞), L∞),

where r = 2γ − 1 < 1. The norm in E∞ is

‖f‖E∞ = sup
t>0

‖f(., t)‖E + sup
t>0

t
r
2γ ‖f(., t)‖L∞ .

Set
B∞ = {θ/ t

r
2γ θ ∈ L∞((0,∞), L∞)}.

Let us make precise the notion of mild solution.

Definition 4.1. A global mild solution of the system (1.1)-(1.2) in EE and E∞ is
a function θ(t) in the corresponding space satisfying

θ(t) = Kγ(t)θ0(t)−B(θ, θ)(t) = Kγ(t)θ0(t)−
∫ t

0

Kγ(t− s)∇(θu)(s)ds (4.1)

and θ(t) → θ0 as t→ 0+, where the limit is taken in the weak-∗ topology of E.

We prove the following well-posedness results for mild solutions.

Theorem 4.2 ( well-posedness). Let θ0 ∈ E and γ < 1 for d = 2. There exists
δ > 0 such that if ‖θ0‖E < δ, then the initial value problem for (1.1)-(1.2) has a
global mild solution θ(x, t) ∈ EE. Moreover, if ‖θ‖EE

< 2δ, then the solution is
unique in EE.

Well posedness theorem will be a consequence of the following lemma for generic
Banach spaces [12]:
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Lemma 4.3. Let F be a Banach space with norm ‖.‖F and B : F × F → F be a
continuous bilinear operator, i.e., there exists K > 0 such that for all x, y ∈ F , we
have

‖B(x, y)‖F ≤ K‖x‖F ‖y‖F

Given 0 < δ < 1
4K and y ∈ F , y 6= 0, such that ‖y‖F < δ, there exists a solution

x ∈ F for the equation x = y + B(x, x) such that ‖x‖F < 2δ. The solution is
unique in the ball B(0, 2δ). Moreover, the solution depends continuously on y in
the following sense : if ‖ỹ‖F < δ, x̃ = ỹ +B(x̃, x̃), and ‖x̃‖F < 2δ, then

‖x− x̃‖F ≤
1

1− 4Kδ
‖y − ỹ‖F

As a consequence of the previous lemma, one needs to verify the continuity of the
bilinear terms in the integral form of the QG equation to obtain the well-posedness
theorem for the solutions of the integral equation. The weak-∗ continuity at 0+ will
finally end the proof of well-posedness of mild solutions.

Proof of theorem 4.2. To proceed, we write the QG equation into the integral
form

θ(t) = Kγ(t)θ0 −
∫ t

0

Kγ(t− s)(u∇θ)(s)ds (4.2)

We observe that (u∇θ) = ∇.(uθ) because ∇.u = 0. The nonlinear term can then
alternatively written as

B(u, θ)(t) =
∫ t

0

∇Kγ(t− s)(uθ)(s)ds (4.3)

We start by a series of lemmas in order to prove the continuity of the bilinear term
B(θ, u) defined by (4.3). We will solve (4.3) in E∞ and the following estimates for
the operator B acting on this type of spaces will be used. The three properties of
Kγ(t) that we shall use are the following obvious remarks.

Lemma 4.4. Given h ∈ E. We have

‖Kγ(t− s)h‖E ≤ ‖h‖E ,

‖Kγ(t− s)h‖L∞ ≤ C(t− s)−
r
2γ ‖h‖Ḃ−r,∞

∞
,

‖Kγ(t− s)∇.‖L1 ≤ C(t− s)−
1
2γ

The proof of the above lemma is obvious.

Proposition 4.5. Let 1
2 < γ ≤ 1 and t > 0. Assume that u and θ are in E∞.

Then the operator B is bounded in E∞ with

‖B(u, θ)‖E∞ ≤ Cγ‖u‖E∞‖θ‖E∞
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Proof. Applying (3.3) from proposition 3.2, we estimate

‖B(u, θ)‖L∞ ≤
∫ t

0

‖Kγ(t− s)∇(θu)(s)‖L∞ds

≤ C

∫ t

0

(t− s)−
1
2γ ‖(θu)(s)‖L∞ds

≤ C

∫ t

0

(t− s)−
1
2γ s−

r
γ (s

r
2γ ‖θ(s)‖L∞)(s

r
2γ ‖u(s)‖L∞)ds

≤ C‖θ‖B∞‖u‖B∞
∫ t

0

(t− s)−
1
2γ s−

r
γ ds

where in the last line we used the continuity of the Riesz transform. Therefore,

‖B(u, θ)‖L∞ ≤ CI(t)‖θ‖B∞‖u‖B∞
where the integral I(t) in the right-hand side can be computed as

I(t) =
∫ t

0

(t− s)−
1
2γ s−

r
γ ds = t−

1
2γ +1− r

γ

∫ 1

0

(1− z)−
1
2γ z−

r
γ dz

= t−
r
2γ Γ(

r

2γ
)Γ(

1− r

2γ
) with 0 < r = 2γ − 1 ≤ 1.

�

Remark 4.6. A sufficient condition for E to be continuously embedded in the
Besov space Ḃ−r,∞

∞ for some r > 0 is the existence of constant C ≥ 0 so that for
all f ∈ E, we have

sup
λ>0

λ‖f(λx)‖E ≤ C‖f‖E .

Proposition 4.7. If θ and u belongs to E∞, then there exists C = C(d, γ) such
that

‖B(θ, u)‖E ≤ Csup
t>0
‖θ(t)‖E(t

r
2γ sup

t>0
‖u(t)‖L∞).

Proof. The boundedness of B from EE × B∞ to EE and from B∞ × EE to EE is
obvious, since

‖Kγ(t− s)∇.‖L(E×E,E) ≤ C(t− s)−
1
2γ

and the invariance of E under convolution with L1 kernels. Thus, we get

‖B(θ, u)‖E ≤ C

∫ t

0

‖Kγ(t− s)∇(θu)(s)‖Eds

≤ C

∫ t

0

‖∇kγ(t− s)‖L1‖(θu)(s)‖Eds

≤ C

∫ t

0

(t− s)−
1
2γ ‖u(s)‖E‖θ(s)‖L∞ds

≤ C

∫ t

0

(t− s)−
1
2γ s−

r
2γ ‖u(s)‖E(s

r
2γ ‖θ(s)‖L∞)ds

≤ C‖u‖EE
‖θ‖B∞ ,
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where the continuity of the Riesz transform in E has been used, which gives the
result, since ∫ t

0

(t− s)−
1
2γ s−

r
2γ ds = Γ(

r

2γ
)Γ(

1
2γ

)

where Γ being Euler’s Gamma function. �

A direct application of Lemma 4.3 in E completes the proof of the well-posedness
of the integral equation. To finish the proof of the well-posedness of mild solutions
in E by applying Lemma 4.3, it remains to check that the linear part of the integral
equation can be bounded in terms of the initial data and that solutions of the inte-
gral equation are indeed mild solutions by definition 4.1. Following the arguments
in [2, lemma 6], it can be proved in a completely analogous way that B(u, θ)(t) → 0
when t→ 0+ weakly-star in the topology of E. Now, it remains to verify that the
linear part takes the initial data and is bounded in the corresponding space.

Proposition 4.8. If θ0 ∈ E, then Kγ(t)θ0 ∈ EE,

‖Kγ(t)θ0‖EE
≤ C‖θ0‖E ,

Kγ(t)θ0 → θ0 when t→ 0+,

where the limit is taken in the weak-star topology of E. Moreover, if θ0 ∈ E ∩ L∞,
then

‖Kγ(t)θ0‖ eE ≤ C(‖θ0‖E + ‖θ0‖L∞)

where Ẽ = L∞((0,∞), E ∩ L∞).

Proof. Using (2.1), we deduce

‖Kγ(t)θ0‖E ≤ C‖kγ(t)‖L1‖θ0‖E = C‖θ0‖E ,

‖Kγ(t)θ0‖L∞ ≤ C‖kγ(t)‖L1‖θ0‖L∞ = C‖θ0‖L∞ .

To prove the weak-star continuity, note that for all ϕ ∈ S(Rd), we have

|〈Kγ(t)θ0 − θ0, ϕ〉| =
∣∣ ∫

(e−t|ξ|2γ

− 1)θ̂0ϕ̂dξ
∣∣

≤ t sup
ξ∈Rd

(1− e−t|ξ|2γ

)
t|ξ|2γ

‖θ0‖E‖|ξ|2γϕ̂‖L1(Rd)

which converges to 0 as t→ 0+, because

sup
ξ∈Rd

(1− e−t|ξ|2γ

)
t|ξ|2γ

≤ sup
z>0

e−z = 1, .

Since ϕ̂ ∈ S(Rd) and R > 0,

‖|ξ|2γϕ̂‖L1(B(0,R)) <∞, when γ > 0.

�

A direct application of lemma 4.3 in EE completes the proof of the well-posedness
of mild solution in spaces of local measures. We generalize Wu’s [17] theorem to
shift-invariant Banach spaces of local measures by using the regularizing of the
kernel Kγ(t).

Theorem 4.9. Let E be a shift-invariant Banach space of local measures.
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(a) Let EE = L∞((0,∞), E) and B∞ = {θ/t
r
2γ θ ∈ L∞((0,∞), L∞)}. The

bilinear operator B defined by

B(θ, u)(t) =
∫ t

0

Kγ(t− s)∇(θu)(s)ds

is bounded from EE × B∞ to EE and from B∞ × EE to EE. Moreover,
B(θ, u) ∈ C((0,∞), E) and converges∗ -weakly to 0 as t goes to 0. If
limt→0 t

r
2γ ‖θ‖L∞ = 0, if θ ∈ B∞ and u ∈ EE, then the convergence is

strong.
(b) If E is continuously embedded in the Besov space Ḃ−r,∞

∞ for some r ≤ 1,
then the bilinear operator B is bounded as well from (EE ∩B∞)×B∞ to B∞
and from B∞ × (EE ∩ B∞) to B∞. Hence, there exists a constant δE > 0
so that for all θ0 ∈ E (with ∇.θ0 = 0) with ‖θ0‖E < δE, then the initial
value problem for (1.1)-(1.2) with initial data θ0 has a global mild solution
θ(x, t) ∈ EE ∩ B∞.

For the proof of the above theorem, we use the same ideas as in [12, Theorem
17.2]. Then we can get the desired result, but we omit the details here.

Theorem 4.10 (Regularization). Under the assumptions of previous theorem,
there exists 0 < ε < δ such that if ‖θ0‖E < ε, then the solution of theorem 4.2,
θ(x, t) ∈ E∞. Moreover, if ‖θ‖E∞ < 2ε, then the solution is unique in this class.

Proof. We just need to show the continuity of the bilinear form in the regularizing
norm sup

t>0
t

r
2γ ‖.‖∞. For this, we have by proposition 4.5,

‖B(u, θ)‖L∞ ≤ Ct−
r
2γ ‖θ‖B∞‖u‖B∞ ;

therefore,
sup
t>0

t
r
2γ ‖B(u, θ)‖L∞ ≤ C‖θ‖B∞‖u‖B∞ .

This completest the proof of continuity of the bilinear form. �

A direct application of lemma 4.3 in E∞ completes the proof of the well-posedness
of the integral equation. Initial data are taken in the same sense as in theorem 4.2
and therefore, we have completed the proof of regularization in the solutions of
theorem 4.2. We now show that the solution obtained in the previous theorem is
actually smooth. We adapt the arguments of Kato in [11] for proving that the
constructed solutions are C∞-smooth instantly.

Proposition 4.11. Let θ(x, t) ∈ E∞ be the unique global mild-solution in theorem
4.10. Then

∂k
t ∂

m
x θ(x, t) ∈ C((0,∞), Ẽ) (4.4)

As a consequence, the solution θ(x, t) is infinitely smooth in space and time.

Proof. We will just give the main steps of the proof since this is a small variation
of arguments found in [11]. The proof is done by induction. We will focus in the
case k = 0 since the same induction argument one can derive the estimates for the
temporal derivatives (see [11] for details). Let θ be the solution of theorem 4.10.
Denote β = θ(τ) for any τ > 0. Let us remark that we have local existence, T − τ
small enough, for the mild formulation

θ(t) = Kγ(t− τ)β −
∫ t

τ

∇Kγ(t− s)(θR[θ])(s)ds (4.5)
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in the space L∞
(
(τ, T ), Ẽ

)
. Denote

Bτ (θ, θ) =
∫ t

τ

∇Kγ(t− s)(θR[θ])(s)ds .

Let us perform an induction argument on m. The assertion (4.4) for k = m = 0 is
true by theorem 4.10. Let us assume that (4.4) is true for all m ≤ N − 1, k = 0.
Our aim is to show that the mild formulation (4.5) has a solution in the space XN

defined by

∂j
xθ(x, t) ∈ L∞([τ, T [, Ẽ), j = 0, 1, 2, . . . N − 1,

(t− τ)
1
2γ ∂N

x θ(x, t) ∈ L∞([τ, T [, Ẽ)

endowed with the norm

‖θ‖XN
= sup

t∈(τ,T )

[
(t− τ)

1
2γ (‖∂N

x θ‖L∞ + ‖∂N
x θ‖E) +

d∑
j=0

(‖∂j
xθ‖L∞ + ‖∂j

xθ‖E)
]

Note that Kγ(t− τ)β ∈ XN since by induction hypothesis, we have ∂j
xθ(τ) ∈ Ẽ for

j = 0, 1, 2, . . . N − 1 and by convolution

‖∂N
x Kγ(t− τ)β‖L∞ = ‖(∂xkγ(t− τ)) ∗ ∂N−1

x β‖L∞

≤ C‖(∂xkγ(t− τ))‖L1‖∂N−1
x β‖L∞

≤ C(t− τ)
1
2γ ‖∂N−1

x β‖L∞

and

‖∂N
x Kγ(t− τ)β‖E = ‖(∂xkγ(t− τ)) ∗ ∂N−1

x β‖E

≤ C‖(∂xkγ(t− τ))‖L1‖∂N−1
x β‖E

≤ C(t− τ)
1
2γ ‖∂N−1

x β‖L∞

Now, given t ∈ (τ, T ) and θ, u ∈ XN , we have

‖Bτ (θ, u)(t)‖L∞ ≤ C(T − τ)
r
2γ sup

t∈[τ,T [

‖θ(t)‖L∞ sup
t∈[τ,T [

‖u(t)‖L∞ ,

‖Bτ (θ, u)(t)‖E ≤ C(T − τ)
r
2γ sup

t∈[τ,T [

‖θ(t)‖L∞ sup
t∈[τ,T [

‖u(t)‖E

Therefore, given θ, u ∈ XN , we conclude that

‖∂j
xBτ (θ, u)(t)‖L∞ ≤ C(T − τ)

r
2γ sup

t∈[τ,T [

‖θ(t)‖L∞ sup
t∈[τ,T [

‖∂j
xu(t)‖L∞ ,

‖∂j
xBτ (θ, u)(t)‖E ≤ C(T − τ)

r
2γ sup

t∈[τ,T [

‖θ(t)‖L∞ sup
t∈[τ,T [

‖∂j
xu(t)‖E

for all j = 0, 1, 2, . . . N−1. Now, we observe that ∂N
x Bτ (θ, u) is a linear combination

of terms of the form

∂N
j,i,xBτ (θ, u)(t) = C

∫ t

τ

∂x∇Kγ(t− s)(∂jθR[∂iθ])(s)ds
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with j + i = N − 1. Thus, we can get the estimate

‖∂N
x Bτ (θ, u)(t)‖L∞ ≤ C(T − τ)

r
2γ−

1
2γ sup

t∈[τ,T [

‖∂j
xθ(t)‖L∞ sup

t∈[τ,T [

‖∂j
xu(t)‖L∞ ,

‖∂N
x Bτ (θ, u)(t)‖E ≤ C(T − τ)

r
2γ−

1
2γ sup

t∈[τ,T [

‖∂j
xθ(t)‖L∞ sup

t∈[τ,T [

‖∂j
xu(t)‖E .

Finally we conclude that

‖Bτ (θ, u)(t)‖XN
≤ C(T − τ)

r
2γ ‖θ‖XN

‖u‖XN
.

By choosing T−τ small enough, we are allowed to use lemma 4.3 to obtain a solution
θ̃(x, t) in XN of the mild formulation (4.5). Owing to the uniqueness of the mild
formulation (4.5) in L∞([τ, T [, Ẽ), we have finally shown that θ̃(x, t) = θ(x, t) in
(τ, T ). Now, it is easy to perform all these arguments in a recursive finite collection
of equal-length time intervals Ai such that (0,∞) = ∪iAi where Ai = (τi, Ti)
concluding that

∂j
xθ ∈ C((0,∞), Ẽ) for all j = 0, 1, 2, . . . N.

As said above, the induction on temporal derivatives is done analogously and thus
θ(x, t) has derivatives of all orders in Ẽ. �

5. Self-Similar solutions in E.

Assuming that θ(x, t) is a smooth solution of the QG equation (1.1)-(1.2), it is
straightforward to check that

θλ(x, t) = λ2γ−1θ(λ2γx, λt)

is also a solution of (1.1)-(1.2). In fact, we can look for particular solutions of the
system (1.1)-(1.2) satisfying

θλ(x, t) = θ(x, t) (5.1)

for any t > 0, x ∈ R2 and λ > 0. These particular solutions are called self-
similar solutions of the system and it is clear that taking t→ 0+ formally in (5.1),
θ(x, 0) should be a homogeneous function of degree (1 − 2γ). This remark gives
the hint that a suitable space to find self-similar solutions should be one containing
homogeneous functions with that exponent. Moreover, in case such a self-similar
solution exists, its norm is invariant by scaling transformation, i.e.,

θ(x, t) → θλ(x, t) = λ2γ−1θ(λ2γx, λt)

Now we show the existence and uniqueness of global in time non trivial self-similar
solutions in Banach spaces of local measures with the right homogeneity.

Theorem 5.1. Let θ0 ∈ E. Assume that θ0 is a homogeneous function of degree
(1 − 2γ). Then, if ‖θ0‖E < δ, the solution θ(x, t) provided by theorem 4.2 is self-
similar. The solution is unique if ‖θ‖EE

< 2δ. Moreover, if the initial data is small,
‖θ0‖E < ε, the previous unique self-similar solution becomes regularized.

Proof. All well-posedness theorem has been proved by ultimately using Lemma 4.3.
One can check (see [12]) that the solution is obtained by a successive approximation
method. In fact, defining the recursive sequence

θ1(x, t) = Kγ(t)θ0(x)

θk+1(x, t) = θ1(x, t)−B(θk, θk)
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when k = 1, 2, . . . . It is easy to verify that θ1(x, t) satisfies the self-similarity
property

θ1(x, t) = λ2γ−1θ1(λ2γx, λt) .

A simple induction argument proves that θk has this property for all k. Therefore,
as the mild solution θ(x, t) is obtained as the limit of the sequence {θk}, we have
that θ(x, t) must verify

θ(x, t) = λ2γ−1θ(λ2γx, λt)

for all λ > 0, all t > 0 and x ∈ R2. The assertion of uniqueness results from
well-posedness theorem. �
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