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Existence results for quasilinear elliptic systems

in RN ∗

N. M. Stavrakakis & N. B. Zographopoulos

Abstract

We prove existence results for the quasilinear elliptic system

−∆pu = λa(x)|u|γ−2u + λb(x)|u|α−1|v|β+1u,

−∆qv = λd(x)|v|δ−2v + λb(x)|u|α+1|v|β−1v ,

where γ and δ may reach the critical Sobolev exponents, and the coefficient
functions a, b, and d may change sign.

For the unperturbed system (a = 0, b = 0), we establish the existence
and simplicity of a positive principal eigenvalue, under the assumption
that u(x) > 0, v(x) > 0, and lim|x|→∞ u(x) = lim|x|→∞ u(x) = 0.

1 Introduction

In this paper we study the existence of nontrivial solutions of the quasilinear
elliptic system containing the p-Laplacian operator, ∆pu = div(|∇u|p−2∇u),

−∆pu = λa(x)|u|γ−2u + λb(x)|u|α−1|v|β+1u, (1.1)
−∆qv = λd(x)|v|δ−2v + λb(x)|u|α+1|v|β−1v,

for all x in RN , where 1 < p < N , 1 < q < N , α ≥ 0 and β ≥ 0. For α, β, p, q,
and N we distinguish the following cases:

i) α+1
p + β+1

q < 1,

ii) α+1
p∗ + β+1

q∗ < 1 and α+1
p + β+1

q > 1,

iii) α+1
p + β+1

q = 1,

iv) α+1
p∗ +β+1

q∗ = 1, where p∗ and q∗ are the critical Sobolev exponents p∗ = Np
N−p

and q∗ = Nq
N−q .
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Throughout this paper we assume the following hypothesis

(H) 2 ≤ γ ≤ p∗, 2 ≤ δ ≤ q∗, and a ∈ Lp∗/(p∗−γ)(RN ), d ∈ Lq∗/(q∗−δ)(RN ),
and b ∈ Lω(RN ), where ω = p∗q∗/[p∗q∗ − (α + 1)p∗ − (β + 1)q∗]. Also
we assume that a, d and b are smooth functions of at least C0,η

loc (RN ) with
η ∈ (0, 1).

In certain cases the coefficients a, d, and b will be assumed to lie in certain
function spaces:
H∞ which consists of functions h : RN → R in L∞(RN ), and h(x) tends uni-
formly to zero as |x| → ∞, in the sense

lim
R→∞

‖h‖L∞(RN−BR) = 0 .

H+ which consists of functions h : RN → R such that there exists Ω ⊆ RN ,
with |Ω| > 0, and h(x) > 0, for all x ∈ Ω.

The operator −∆p turns up in many mathematical settings; e.g., Non-
Newtonian fluids, reaction-diffusion problems, porous media, astronomy, etc.
(see for example [3]). Problems including this operator for bounded domains
have been studied in [1, 5, 8, 14], and for unbounded domains in [2, 6, 9, 11].

This paper is organized as follows. In Section 2, we define the homogeneous
space D1,p(RN ) and establish the characteristics of the basic operators to be
used later. The cases i), ii), iii), and iv) stated above are studied in the Sections
3, 4, 5, and 6, respectively, where we prove the existence of at least one solution
for the system (1.1). In Section 5, we study the eigenvalue problem

−∆pu = λb(x)|u|α−1|v|β+1u,

−∆qv = λb(x)|u|α+1|v|β−1v, (1.2)
u(x) > 0, v(x) > 0, lim|x|→∞ u(x) = lim|x|→∞ u(x) = 0,

for all x in RN , where p, q, and b satisfy the Hypothesis (H). Moreover, when
b satisfies the extra hypothesis

(B) b(x) ≥ 0, for every x ∈ RN and b(x) 6≡ 0,

we prove the existence of a positive principal eigenvalue for (1.2) and establish
the simplicity of this eigenvalue.

This work extends to unbounded domains the results in [5, 14]. Since the
coefficients a, d, and b may change sign and γ, δ may approach the critical
Sobolev exponents, we therefore are studying problems that extend the results
obtained in [9]. For a discussion on the critical Sobolev exponent, we refer the
reader to [10].

Notation. For simplicity we use the symbol ‖.‖p for the norm ‖.‖Lp(RN ), and
D1,p for the space D1,p(RN ). BR will denote the ball in RN of center zero and
radius R. Also the Lebesgue measure of a set Ω ⊂ RN will be denoted by |Ω|.
Equalities introducing definitions are denoted by =:. The integral symbol

∫
without any indication will be used for integration over the whole space RN .
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2 Space and Operator Settings

It is going to be proved that the natural space setting for our problem is the
space Z = D1,p(RN )×D1,q(RN ), with the norm ‖z̃‖Z = ‖u‖1,p + ‖v‖1,q, where
z̃ = (u, v). The space D1,p(RN ) is the closure of C∞

0 (RN ) with respect to the
norm

‖u‖D1,p(RN ) =:
(∫

RN

|∇u|p dx

)1/p

.

It is known that

D1,p(RN ) =
{

u ∈ L
Np

N−p (RN ) : ∇u ∈
(
Lp(RN )

)N
}

and that there exists K0 > 0 such that, for all u ∈ D1,p(RN )

‖u‖
L

Np
N−p

≤ K0‖u‖D1,p . (2.1)

The space D1,p is a reflexive Banach space. For more details, see [9]. Our
approach is based on the following generalized Poincare’s inequality.

Lemma 2.1 Suppose g ∈ LN/p(RN ). Then there exists α > 0 such that∫
RN

|∇u|pdx ≥ α

∫
RN

|g||u|pdx, (2.2)

for all u ∈ D1,p.

We introduce the operators J1, J2, D1, D2, B1, B2 : Z → Z∗ in the following
way

(J1(u, v), (w, z))Z =:
α + 1

p

∫
RN

|∇u|p−2∇u∇w,

(J2(u, v), (w, z))Z =:
β + 1

q

∫
RN

|∇v|q−2∇v∇z,

(D1(u, v), (w, z))Z =:
γ + 1

p

∫
RN

a(x)|u|γ−2uw,

(D2(u, v), (w, z))Z =:
δ + 1

p

∫
RN

d(x)|v|δ−2vz,

(B1(u, v), (w, z))Z =:
∫

RN

b(x)|u|α−1|v|β+1uw,

(B2(u, v), (w, z))Z =:
∫

RN

b(x)|u|α+1|v|β−1vz.

Lemma 2.2 The operators Ji, Di, Bi,i = 1, 2, are well defined. Also Ji,i = 1, 2,
are continuous and the operators Di, Bi, i = 1, 2, are compact.
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Proof. The fact that Ji, Di, Bi, i = 1, 2, are well defined is proved in [11].
The continuity of Ji, i = 1, 2, and the proof of compactness for Bi, i = 1, 2,
follows the same lines as in [6] and [9]. We prove the compactness of D1. The
analogous holds for the operator D2.

Let (un, vn) be a bounded sequence in Z. Hence (un, vn) converges weakly
(up to a subsequence) to (u0, v0) in Z, i.e., un ⇀ u0 in D1,p and vn ⇀ v0 in
D1,q, as n →∞. For (w, z) ∈ Z it follows that

|(D1(un, vn), (w, z))− (D1(u0, v0), (w, z))| ≤ I + J,

where
I =:

∫
|a(x)|

∣∣|un|γ−2 − |u0|γ−2
∣∣ |un||w|

and
J =:

∫
|a(x)||un − u0||u0|γ−2|w|.

For R > 0 we write I = I1 + I2 where

I1 =:
∫

BR

|a(x)|
∣∣|un|γ−2 − |u0|γ−2

∣∣ |un||w|

and
I2 =:

∫
RN−BR

|a(x)|
∣∣|un|γ−2 − |u0|γ−2

∣∣ |un||w|.

Applying Hölder inequality to I1, we obtain

I1 ≤ ‖a(x)‖
L

p∗
p∗−γ (BR)

‖|un|γ−2 − |u0|γ−2‖
L

p∗
γ−2 (BR)

‖un‖Lp∗ (BR)‖w‖Lp∗ (BR).

Since {un} is a bounded sequence in D1,p(RN ) it is also bounded in Lp∗(BR). So,
passing to a subsequence if necessary, we have un ⇀ u0 in Lp′(BR), as n →∞,

for any 1 ≤ p′ ≤ p∗. Then, we have that |un|γ−2 → |u0|γ−2 in L
p∗

γ−2 (BR). So
that, for n large enough, we obtain I1 < ε. Applying Hölder inequality to I2 we
obtain

I2 ≤ ‖a(x)‖
L

p∗
p∗−γ (RN−BR)

‖|un| − |u0|‖Lp∗ (RN−BR) ×

×‖un‖γ−2

Lp∗ (RN−BR)
‖w‖Lp∗ (RN−BR) < ε,

for R sufficiently large. Therefore, I < 2ε. Similarly we prove that J < 2ε.
All the above arguments may be extended to the critical case of γ = p∗ and

δ = q∗, as long as a and d belong to H∞ and the lemma is proved. ♦

We say that (u, v) is a weak solution of the system (1.1) if (u, v) is a critical
point of the functional A : Z → R, defined by

A(u, v) =: λ
α + 1

p

∫
|∇u|p + λ

β + 1
q

∫
|∇v|q − λ

α + 1
γ

∫
a(x)|u|γ

−λ
β + 1

δ

∫
d(x)|v|δ − λ

∫
b(x)|u|α+1|v|β+1.
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Since A(|u|, |v|) = A(u, v), if (u, v) is a critical point of A, then the same happens
for (|u|, |v|). Hence we may consider that u(x) ≥ 0 and v(x) ≥ 0.

Lemma 2.3 Let (un, vn) be a bounded sequence in Z such that A(un, vn) is
bounded and A′(un, vn) → 0, as n →∞. Then (un, vn) has a convergent subse-
quence.

Proof. Since the sequence (un, vn) is bounded in Z we may consider that there
is a subsequence (denoted again by (un, vn)), which is weakly convergent in Z.
Moreover, we have that

(A′(un, vn)−A′(um, vm), (un − um, vn − vm))

= (α + 1)
∫

(|∇un|p−2∇un − |∇um|p−2∇um)(∇un −∇um) dx

+(β + 1)
∫

(|∇vn|q−2∇vn − |∇vm|q−2∇vm)(∇vn −∇vm) dx

−(α + 1)
∫

a(x)(|un|γ−2un − |um|γ−2um)(un − um) dx

−(β + 1)
∫

d(x)(|vn|δ−2vn − |vm|δ−2vm)(vn − vm) dx

−(α + 1)
∫

b(x)(|un|α−1|vn|β+1un − |um|α−1|vm|β+1um)(un − um) dx

−(β + 1)
∫

b(x)(|un|α+1|vn|β−1vn − |um|α+1|vm|β−1vm)(vn − vm) dx .

From the compactness of the operators Bi, Di, i = 1, 2, we obtain (passing to a
subsequence, if necessary) that

(α + 1)
∫

(|∇un|p−2∇un − |∇um|p−2∇um)(∇un −∇um)+

(β + 1)
∫

(|∇vn|q−2∇vn − |∇vm|q−2∇vm)(∇vn −∇vm) → 0 ,

which implies (see [6]) that (un, vn) converges strongly in Z. ♦
In what follows the Palais-Smale (PS) condition will be proved to be a crucial

tool for our study, so we describe it.

Definition 2.4 We say that a functional A : Z → R satisfies the (PS) con-
dition, if every sequence {(un, vn)} ⊂ Z such that A(un, vn) is bounded and
A′(un, vn) → 0 in Z, as n →∞, is relatively compact in Z.

3 The Case α+1
p + β+1

q < 1

Throughout this section we consider that there exist real numbers p1 and q1

such that p1 ∈ (1, p), q1 ∈ (1, q) and α+1
p1

+ β+1
q1

= 1.
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Lemma 3.1 Assume that any one of the following cases is satisfied

i) γ < p, δ < q and a(x), d(x), b(x) have the same sign at every x ∈ RN

ii) γ < p, δ < q so that α+1
γ + β+1

δ < 1, and λb(x) > 0

iii) γ < p, δ < q so that α+1
γ + β+1

δ > 1, and λb(x) < 0

iv) γ > p, δ > q, and λb(x) < 0,

v) γ < p, δ < q so that α+1
γ + β+1

δ = 1

vi) γ < p1, λa(x) > 0, δ < q1andλd(x) > 0

vii) γ < p1, λa(x) > 0, δ > q1 and λd(x) < 0

viii) γ > p1, λa(x) < 0, δ < q1 and λd(x) > 0

ix) γ > p1,λa(x) < 0, δ > q1 and λd(x) < 0.

Then the functional A(u, v) satisfies the (PS) condition.

Proof. According to Lemma 2.3 it suffices to prove that the sequence (un, vn)
is bounded in Z. For case i) we have

A(un, vn)− (A′(un, vn), (
un

p
,
vn

q
))

= λ

[
−(α + 1)(

1
γ
− 1

p
)
∫

a(x)|un|γ − (β + 1)(
1
δ
− 1

q
)
∫

d(x)|un|δ

−(1− α + 1
p

− β + 1
q

)
∫

b(x)|un|α+1|vn|β+1

]
.

Since A(un, vn) is bounded and A′(un, vn) → 0, as n →∞, we obtain that all the
quantities (Di(un, vn), (un, vn)) and (Bi(un, vn), (un, vn)), i = 1, 2, are bounded.
So (Ji(un, vn), (un, vn)), i = 1, 2, are bounded too. Then the conclusion follows
from the definition of the space Z. For the cases ii)-v) we have that

A(un, vn)− (A′(un, vn), (
un

γ
,
vn

δ
))

= (α + 1)(
1
p
− 1

γ
)
∫
|∇un|p + (β + 1)(

1
q
− 1

δ
)
∫
|∇vn|q (3.1)

−λ (1− α + 1
γ

− β + 1
δ

)
∫

b(x)|un|α+1|vn|β+1.

So as in the case i) we have that the sequence (un, vn) is bounded in Z. Finally,
for the cases vi)-ix) we have that

A(un, vn)− (A′(un, vn), (
un

p1
,
vn

q1
))

= (α + 1)(
1
p
− 1

p1
)
∫
|∇un|p + (β + 1)(

1
q
− 1

q1
)
∫
|∇vn|q

−λ(α + 1)(
1
γ
− 1

p1
)
∫

a(x)|un|γ − λ(β + 1)(
1
δ
− 1

q1
)
∫

d(x)|un|δ.
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Hence the sequence (un, vn) is again bounded in the space Z and the lemma is
proved. ♦

Remark 3.2 We have to notice that the results of Lemma 3.1 are independent
of λ in the case i), of the signs of a(x) and d(x) in the cases ii)-iv), of the sign
of b(x) in the cases vi)-ix) and of λ and the signs of a(x), d(x) and b(x) in the
case v).

We prove the existence of a solution for the system (1.1) by a global mini-
mization method or by the mountain pass theorem, depending on the hypothesis.

Theorem 3.3 a) Let one of the hypotheses i), iii), v)-viii) be satisfied, and in
addition λa(x) or λd(x) be in H+, or let the hypothesis ix) be satisfied and in
addition λb(x) be in H+, or hypothesis ii) be satisfied, then (1.1) has at least
one nonnegative (componentwise) solution.

b) If the hypothesis iv) is satisfied, and in addition λa(x) or λd(x) are in
H+, then (1.1) has at least one nonnegative (componentwise) solution.

Proof. a) Let hypothesis i) be satisfied. Applying Hölder, Young inequalities
and the relation (2.1) to A(u, v) we derive

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKγ

0

α + 1
γ

‖a(x)‖ p∗
p∗−γ

‖u‖γ
1,p

−λKδ
0

β + 1
δ

‖d(x)‖ q∗
q∗−δ

‖v‖δ
1,q − λKp1

0

p1

α + 1
‖b(x)‖ω‖u‖p1

1,p

−λKq1
0

q1

β + 1
‖b(x)‖ω‖v‖q1

1,q.

From this inequality we may observe that A(u, v) is bounded from below. Sup-
pose that (u1, v1) ∈ Z and φ ∈ C∞

0 (Ω). Then

A(t1/pu1, t
1/qv1) = λt

α + 1
p

∫
|∇u1|p + λt

β + 1
q

∫
|∇v1|q

−λt
γ
p

α + 1
γ

∫
a(x)|u1|γ − λt

δ
q
β + 1

δ

∫
d(x)|v1|δ

−λt
α+1

p + β+1
q

∫
b(x)|u1|α+1|v1|β+1. (3.2)

Setting (u1, v1) = (φ, 0), if λa(x) > 0 or (u1, v1) = (0, φ), if λd(x) > 0, and
getting t to be sufficiently small, we have that A(u0, v0) < 0, where (u0, v0) =
(t

1
p φ, 0) or (u0, v0) = (0, t

1
q φ). This means that M = inf{A(u, v) : (u, v) ∈

Z} < 0. Therefore, Ekeland’s variational principle [7] and Lemma 3.1 imply the
existence of a solution of (1.1), such that A(u, v) < 0. Similarly, we obtain the
same result for all other hypotheses of the case a).

b) Let hypothesis vi) be satisfied. As in part a) we derive

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKγ

0

α + 1
γ

‖a(x)‖ p∗
p∗−γ

‖u‖γ
1,p

−λKδ
0

β + 1
δ

‖d(x)‖ q∗
q∗−δ

‖v‖δ
1,q.
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This inequality implies that for a given r > 0 sufficiently small, there exists a
constant k = k(α, β, γ, δ, p, q, a(x), d(x),K0), such that A(u, v) > k > 0, for all
(u, v) ∈ Z with ‖(u, v)‖Z = r.

Suppose that (u1, v1) ∈ Z and φ ∈ C∞
0 (Ω). Then from relation (3.2) setting

(u1, v1) = (φ, 0) or (u1, v1) = (0, φ), whether λa(x) > 0 or λd(x) > 0, respec-
tively, and getting t to be sufficiently large we have that A(u0, v0) < 0, where
(u0, v0) = (t

1
p φ, 0) or (u0, v0) = (0, t

1
q φ), respectively and (u0, v0) /∈ Br(0).

Since the functional A satisfies the (PS) condition, we deduce from the Moun-
tain Pass Theorem [15, Theorem 44.D] the existence of a critical point (u, v) ∈ Z
for A such that A(u, v) ≥ k. ♦

4 The Case α+1
p∗ + β+1

q∗ < 1 and α+1
p + β+1

q > 1

Throughout this section we assume that there exist real numbers p1 and q1 such
that p1 > p, q1 > q and α+1

p1
+ β+1

q1
= 1.

Lemma 4.1 Assume that one of the following conditions is satisfied

i) p ≤ γ, q ≤ δ and a(x), d(x), b(x) have the same sign at every x ∈ RN

ii) γ > p, δ > q so that α+1
γ + β+1

δ < 1 and λb(x) < 0

iii) γ > p, δ > q so that α+1
γ + β+1

δ > 1 and λb(x) > 0

iv) γ < p, δ < q and λb(x) > 0

v) γ > p, δ > q so that α+1
γ + β+1

δ = 1

vi) γ < p1, λa(x) < 0, δ < q1 and λd(x) < 0

vii) γ < p1, λa(x) < 0, δ > q1 and λd(x) > 0

viii) γ > p1, λa(x) > 0, δ < q1 and λd(x) < 0

ix) γ > p1, λa(x) > 0, δ > q1 and λd(x) > 0.

Then the functional A(u, v) satisfies the (PS) condition.

The proof follows the same lines as in Lemma 3.1.

Remark 4.2 We have to notice that the result is independent of λ in case i),
of the signs of a(x) and d(x) in cases ii)-iv), of the sign of b(x) in cases vi)-ix)
and of λ and the signs of a(x), d(x) and b(x) in case v).

Now we prove the existence of a solution to (1.1), using the mountain pass
theorem.
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Theorem 4.3 a) Let one of the hypothesis i), ii), v), ix) be satisfied, and in
addition λa(x) or λd(x) be in H+, or let one of the hypotheses iii), vii)-ix) be
satisfied, then the problem (1.1) has at least one nonnegative (componentwise)
solution.

b) If the hypothesis vi) is satisfied and in addition λb(x) is in H+, then the
problem (1.1) has at least one nonnegative (componentwise) solution.

Proof. a) Let hypothesis i) be satisfied. Applying Hölder, Young inequalities
and relation (2.1) to A(u, v) we derive

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKγ

0

α + 1
γ

‖a(x)‖ p∗
p∗−γ

‖u‖γ
1,p

−λKδ
0

β + 1
δ

‖d(x)‖ q∗
q∗−δ

‖v‖δ
1,q − λKp1

0

p1

α + 1
‖b(x)‖ω‖u‖p1

1,p

−λKq1
0

q1

β + 1
‖b(x)‖ω‖v‖q1

1,q.

Then for a given r > 0 sufficiently small, there exists a constant k depending
on α, β, γ, δ, p, q, a(x), b(x), d(x), and K0 such that A(u, v) > k > 0, for
‖(u, v)‖Z = r.

Suppose that (u1, v1) ∈ Z and φ ∈ C∞
0 (Ω). Then from relation (3.2) setting

(u1, v1) = (φ, 0) or (u1, v1) = (0, φ), whether λa(x) > 0 or λd(x) > 0, respec-
tively, and getting t to be sufficiently large we have that A(u0, v0) < 0, where
(u0, v0) = (t

1
p φ, 0) or (u0, v0) = (0, t

1
q φ), respectively and (u0, v0) /∈ Br(0).

Since the functional A satisfies the (PS) condition, we deduce from the Moun-
tain Pass Theorem the existence of a critical point (u, v) ∈ Z for A such that
A(u, v) ≥ k.

b) As in part a) we derive the inequality

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKp1

0

p1

α + 1
‖b(x)‖ω‖u‖p1

1,p

−λKq1
0

q1

β + 1
‖b(x)‖ω‖v‖q1

1,q.

Then for a given r > 0 sufficiently small, there exists a constant k depending
on α, β, p, q, b(x), and K0 such that A(u, v) > k > 0 for all (u, v) ∈ Z with
‖(u, v)‖Z = r.

Suppose that φ ∈ C∞
0 and (u1, v1) = (φ, φ). Then from relation (3.2), where

p, q are substituted by p1, q1, respectively, we get that A(t
1

p1 φ, t
1

q1 φ) < 0 and
(t

1
p1 φ, t

1
q1 φ) /∈ Br(0) for t sufficiently large. Since the functional A satisfies the

(PS) condition, we deduce from the Mountain Pass Theorem the existence of a
critical point (u, v) ∈ Z for A such that A(u, v) ≥ k. ♦

5 The Case α+1
p + β+1

q = 1

Throughout this section we assume that b(x) satisfies hypothesis (B) and γ < p,
δ < q or γ > p, δ > q, simultaneously. We introduce the functionals Ã and B̃
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by

Ã(u, v) = α+1
p

∫
RN |∇u|p + β+1

q

∫
RN |∇v|q,

B̃(u, v) =
∫

RN b(x)|u|α+1|v|β+1.

These two functionals are well defined and continuously F-differentiable. Also
Ã is weakly lower semicontinuous. Furthermore, if (un, vn) ⇀ (u0, v0) in Z then
B̃(un, vn) → B̃(u0, v0) and if B̃′(u, v) = 0 then B̃(u, v) = 0 (see [9, Lemma
5.1]). So all requirements of [4, Theorem 6.3.2] are satisfied.

Theorem 5.1 The system (1.2) admits a principal eigenvalue given by

λ1 = inf
B̃(u,v)=1

Ã(u, v). (5.1)

Moreover, there exists an eigenfunction which is nonnegative (componentwise)
everywhere in RN .

Next we state some properties for the solutions of system (1.2), and its
principal eigenvalue.

Remark 5.2 If we assume, in addition, that b ∈ L∞(RN ). Then, as in [9,
Theorem 5.2], we obtain that each component of the solutions of (1.2) is of
class C1,α(BR), for any R > 0, where α = α(R) ∈ (0, 1). Then Vasquez’ Maxi-
mum Principle [13] implies the existence of a strictly positive (componentwise)
eigenfunction corresponding to λ1.

Following the lines of [2, Theorem 2.7] we have the following result.

Theorem 5.3 The eigenspace corresponding to the principal eigenvalue λ1 is
of dimension 1 and λ1 is the only eigenvalue of the system (1.2), to which
corresponds a positive (componentwise) eigenfunction.

Remark 5.4 Notice that the system is homogeneous in the sense that if (u, v)
is substituted by (t1/pu, t1/qv) then in both sides of the equations we get t, which
then cancels. On the other hand, for this system it is proved in [2, Theorem 2.7]
and [9, Theorem 6.2] that if (u, v) is a solution, then any other solution may
be written as (c1u, c1

p/qv). So there is a unique arbitrary constant c1, which
produces the one dimensional eigenspace. This eigenspace is not a linear set
and it is even not homogeneous in the Cartesian product with components u
and v, as it is in the case of the linear Laplacian equation and even in the case
of the homogeneous p-Laplacian equation. We imagine this set as a parabola
with power p/q in the space of two dimensions.

Remark 5.5 An open question, which in our opinion is far from being trivial,
is under which hypothesis the positive principal eigenvalue λ1 of Theorem 5.3 is
isolated. This question applies also to the system in [9].

By the next lemma we establish the (PS) condition for the functional A.

Lemma 5.6 Assume that any one of the following conditions is satisfied: a)
λ < 0, b) λ < λ1 and a(x)d(x) ≥ 0 almost everywhere on RN . Then the
functional A(u, v) satisfies the (PS) condition.
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Proof. According to Lemma 2.3 it suffices to prove that the sequence (un, vn)
is bounded in the space Z.

Under assumption a), we have

A(un, vn)− (A′(un, vn), (
un

γ
,
vn

δ
))

= (α + 1)(
1
p
− 1

γ
)
∫
|∇un|p + (β + 1)(

1
q
− 1

δ
)
∫
|∇vn|q

−λ(1− α + 1
γ

− β + 1
δ

)
∫

b(x)|un|α+1|vn|β+1.

Then the boundedness of (un, vn) in Z is easily obtained.
Under assumption b), the following relation implies that (Di(un, vn), (un, vn)),

i = 1, 2, are bounded.

A(un, vn)− (A′(un, vn), (
un

p
,
vn

q
))

= λ

[
−(α + 1)(

1
γ
− 1

p
)
∫

a(x)|un|γ − (β + 1)(
1
δ
− 1

q
)
∫

d(x)|un|δ
]
.

We also notice that

A(un, vn) ≥ Ã(un, vn)− λ1B̃(un, vn)− λ
α + 1

γ

∫
a(x)|un|γ

−λ
β + 1

δ

∫
d(x)|vn|δ + (λ1 − λ)B̃(un, vn).

Using the variational characterization of λ1 and the above argument, we derive
that (Bi(un, vn), (un, vn)), i = 1, 2, are also bounded. Then the conclusion
follows. ♦

The next theorem shows that a solution to (1.1) can be obtained by global
minimization if γ < p and δ < q, and by the mountain pass theorem if γ > p
and δ > q.

Theorem 5.7 If one of the hypotheses a) or b) of Lemma 5.6 is satisfied and
λa(x) or λd(x) is in H+, then (1.1) has at least one nonnegative (component-
wise) solution.

Proof. Under assumption a), let λ < 0. Then from the definition of A(u, v)
we have

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKγ

0

α + 1
γ

‖a(x)‖ p∗
p∗−γ

‖u‖γ
1,p

−λKδ
0

β + 1
δ

‖d(x)‖ q∗
q∗−δ

‖v‖δ
1,q. (5.2)

If γ < p and δ < q, then from (5.2) we obtain that A(u, v) is bounded from
below. As in the proof of part a) of Theorem 3.3, we have that M = inf{A(u, v) :
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(u, v) ∈ Z} < 0. Then, Ekeland’s variational principle [7] and Lemma 5.6 imply
the existence of a solution of (1.1) such that A(u, v) < 0. If γ > p and δ > q,
then from (5.2), Lemma 5.6 and the Mountain Pass Theorem, as in the proof
of b) in Theorem 3.3, we obtain the existence of a critical point (u, v) ∈ Z for
A, such that A(u, v) ≥ k.

Under assumption b), suppose that 0 < λ < λ1 and a(x) d(x) ≥ 0, almost
everywhere on RN . Then from the definition of A(u, v) we have

A(u, v) ≥
(

1− λ

λ1

)(
α + 1

p
‖u‖p

1,p +
β + 1

q
‖v‖q

1,q

)
(5.3)

−λKγ
0

α + 1
γ

‖a(x)‖ p∗
p∗−γ

‖u‖γ
1,p − λKδ

0

β + 1
δ

‖d(x)‖ q∗
q∗−δ

‖v‖δ
1,q.

If γ < p and δ < q, then from (5.3) we obtain that A(u, v) is bounded from
below. As in the previous case we obtain the existence of a solution of (1.1)
such that A(u, v) < 0.
If γ > p and δ > q, then from (5.3), as in the previous case, we obtain the
existence of a critical point (u, v) ∈ Z for A, such that A(u, v) ≥ k > 0. ♦

6 The Case α+1
p∗ + β+1

q∗ = 1

Throughout this Section we assume that b belongs to H∞. Following the argu-
ments of Lemma 2.2 we prove that the operators Bi, i = 1, 2, are well defined
and compact.

Lemma 6.1 Assume that one of the following conditions is satisfied

i) γ < p, δ < q, and λb(x) < 0

ii) γ > p, δ > q and λb(x) > 0

iii) λa(x) < 0 and λd(x) < 0.

Then the functional A(u, v) satisfies the (PS) condition.

Proof. Since the operators Bi, i = 1, 2, are compact, the results of Lemma 2.3
hold. So it suffices to prove that the sequence (un, vn) is bounded in Z. Cases
i), ii) are done as in Lemma 3.1, by considering the relation corresponding to
(3.1) for the quantity

A(un, vn)− (A′(un, vn), (
un

γ
,
vn

δ
)).

The same lines are followed for case iii), using the quantity

A(un, vn)− (A′(un, vn), (
un

p∗
,
vn

q∗
)).
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Remark 6.2 We have to notice that the above results are independent of the
signs of a(x) and d(x) in cases i), ii) and of the sign of b(x) and the values of
γ and δ in case iii).

The next theorem states that a solution for the system (1.1) may be obtained
by global minimization under the hypothesis i), and by the Mountain Pass
Theorem under the hypotheses ii) and iii).

Theorem 6.3 Let one of the following two conditions be satisfied.
a) Hypotheses i), ii) of Lemma 6.1 are satisfied, and λa(x) or λd(x) belong

to H+

b) Hypothesis iii) is satisfied, and λb(x) belongs to H+, and γ < p∗, δ < q∗.
Then (1.1) has at least one nonnegative (componentwise) solution.

Proof. a) S ince i) is satisfied, from the definition of A(u, v) we have that

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKγ

0

α + 1
γ

‖a(x)‖ p∗
p∗−γ

‖u‖γ
1,p

−λKδ
0

β + 1
δ

‖d(x)‖ q∗
q∗−δ

‖v‖δ
1,q,

which implies that A(u, v) is bounded from below. Using the same argument as
in the proof of Theorem 3.3 for the case a), we obtain the existence of a solution
of (1.1) such that A(u, v) < 0.

If hypothesis ii) is satisfied we have

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKγ

0

α + 1
γ

‖a(x)‖ p∗
p∗−γ

‖u‖γ
1,p

−λKδ
0

β + 1
δ

‖d(x)‖ q∗
q∗−δ

‖v‖δ
1,q − λKp∗

0

p∗

α + 1
‖b(x)‖∞‖u‖p∗

1,p

−λKq∗

0

q∗

β + 1
‖b(x)‖∞‖v‖q∗

1,q.

Following the lines of the proof of Theorem 3.3 b), we obtain the existence of a
solution of (1.1) such that A(u, v) ≥ k > 0.

b) Since hypothesis iii) is satisfied,

A(u, v) ≥ α + 1
p

‖u‖p
1,p +

β + 1
q

‖v‖q
1,q − λKp∗

0

p∗

α + 1
‖b(x)‖∞‖u‖p∗

1,p

−λKq∗

0

q∗

β + 1
‖b(x)‖∞‖v‖q∗

1,q.

Replacing (u, v) = (t
1

p∗ u1, t
1

q∗ v1) in (3.2), we obtain the existence of a solution
to (1.1) such that A(u, v) ≥ k > 0. ♦
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7 Erratum: Submitted on November 4, 2003

The results concerning the critical Sobolev exponent are false;

• Case iv) in page 1 does not make sense.

• The exponents γ and δ in Hypothesis (H) (page 2) cannot reach p∗ and
q∗, respectively.

This happens because the proof of Lemma 2.2 is not correct for the critical case.
As a consequence the results of this work still hold unless they have to do with
the critical exponent case.

N. M. Stavrakakis (e-mail: nikolas@central.ntua.gr)
N. B. Zographopoulos (e-mail: nz@math.ntua.gr)
Department of Mathematics
National Technical University
Zografou Campus
157 80 Athens, Greece


