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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO
SEMILINEAR ELLIPTIC EQUATION WITH NONLINEAR TERM
OF SUPERLINEAR AND SUBCRITICAL GROWTH

XIAO-FENG KE, CHUN-LEI TANG

Commumnicated by Paul Rabinowitz

ABSTRACT. This article concerns the existence and multiplicity of solutions to
the superlinear elliptic problems. We introduce a new superlinear condition
which is proved to be weaker than the Ambrosetti-Rabinowitz condition, the
nonquadratic condition, the monotonicity conditions. As an application, posi-
tive solution and infinitely many solutions to semilinear elliptic equation with
general subcritical growth are obtained, which generalize some known results.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Consider the semilinear elliptic equation Dirichlet problem
—Au+a(x)u= f(z,u) inQ,

u=0 on 0f, (1.1)

where A is the Laplacian operator, Q is a bounded domain in RV (N > 3) with

smooth boundary 912, and a € L%(Q) The inner product and induced norm in
HZ () are respectively given by

1/2
(u,v) := / (Vu, Vo)dz, |ul := (/ |Vu\2dx) . Yu,v € Hy(Q),
Q Q

where (-, -) is the Euclidean inner product. The operator —A+a : H} (Q)NH?(Q) —
L?(Q) possesses a unbounded eigenvalues sequence

A <A <---< A\, — 400 as n — o0,
where ) is simple and characterized by

M= o Jo IVul* + a(az:)qugL‘7

uwEHE(Q),uz0 Jo uPdx

the infimum is achieved by a positive function ¢; which is exactly a eigenfunction
corresponding to A;, and w is a eigenfunction corresponding to A; if and only if
u e Hy(Q)\ {0} is such that [, |[Vu|?dz + [, a(z)u’de = \; [, u*dx. Besides this,
it is well known that the embedding mapping H}(Q) — L"(2) is continuous for

2010 Mathematics Subject Classification. 35J20, 35J61, 35D30.

Key words and phrases. Semilinear elliptic equation; new superlinear conditionl;
general subcritical condition.

(©2018 Texas State University.

Submitted February 4, 2018. Published April 10, 2018.

1



2 X.-F. KE, C.-L. TANG EJDE-2018/88

r € [1,2*] and is compact for 7 € [1,2*), where 2* := 2. We denote by |- |, the

norm in L" () and S, the best constant to the corresponding embedding mapping,
that is, S,|ul, < |Jul|, for all u € HJ ().

In the celebrated paper [1], Ambrosetti and Rabinowitz established the famous
mountain pass theorem and applied it to obtain nontrivial solution and multiple

solutions to problem (1.1]) by assuming

(A1) f is Holder continuous in 2 x R and f(z,0) = 0,
(A2) there exist positive constants a1, as and ¢ € (2,2*) such that

|f(x,8)] < a1+ as|s|*”!

for s € R and z € Q,
(A3) lim,_o f(x,s)/s = 0 uniformly in x € Q,
(A4) limy_eo f(2,5)/s = +00 uniformly in z € €,
(A5) there exist constants s > 0 and 6 > 2 such that

OF (z,s) < sf(x,s)

for |s| > s, and x € Q, where F(z,s) := [ f(z,t)dt,
(A6) fisodd in s,
where (A4) shows that f is essentially superlinear at oco. Moreover, (A4) together
with (A5) leads to

(A7) there exist constants s§ > 0 and 6 > 2 such that
0<0F(z,s) <sf(z,s)

for |s| > s} and z € Q,
which is hereafter called the Ambrosetti-Rabinowitz condition and plays a key role
in ensuring that the Euler-Lagrange functional associated to problem (1.1)) admits a
mountain pass geometry and the Palais-Smale sequences are bounded. Integrating,
from the continuity of f one deduces that

F(z,s) 2 €|s|’ (1.2)

for |s| > s} and = € Q, where

¢ = (i,)g min {migF(x, s}), min F(z, —5’1)} > 0.
S1 e e
Here we note two things. Firstly, in order to obtain 7 one should add the
assumption essinf,cq F(z,£s]) > 0 if (A7) is satisfied only on  rather than Q
or f(-,£s}) : @ — R is discontinuous, see [I1] for more details. Secondly, (1.2)
eliminates many interesting superlinear functions, such as F(z,s) = s2In(1 + |s|).
For this reason, this technique has been subsequently improved in order to include
more superlinear functions and extended to deal with more complicated variational
problems by a large number of researchers, see [3, 4 [7, [8 @] 10} 12} 13} [15] 17, 18]
19, 211 23], 24] 25|, 26] and references therein.
In [3], Costa and Magalhaes replaced (A7) by

(A8) (i) there exist constants ¢ € (2,2*) and ag > 0 such that

F(x,s)

||

lim sup < a3 uniformly in a.e. z € Q,

|s|—o0
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ii) there exist constants § > 0 and u > Na=2) quch that
H 2

lim inf sf(@,s) = 2F(x,5) >4

|s|—o0 Ells -

uniformly in a.e. z € €,
then a nontrivial solution was obtained provided

2F 2F
lim sup @ < A1 < liminf M

5 uniformly in a.e. z € Q.
5—0 S |s|—o0 S

Under these assumptions, they can deal with both superlinear situation and sub-
linear situation.

In [4], Ding and Luan investigated a class of Schrodinger equations with the
nonlinear term satisfying

(A9) (i) limys|— oo F(:z’s) = +oo uniformly in z € Q,
(ii) H(z,s) := sf(x,s) —2F(x,s) > 0 for s # 0,
(iii) there exist positive constants sb, a4 and o > N/2 such that (f(i’s) )7 <
asH(x,s) for |s| > s§ and = € Q,

where (A9)(iii) can be deduced from (A7) and a subcritical growth condition, see

[5, Lemma 2.2].

In [23], Willem and Zou studied a class of superlinear Schrodinger equation by
assuming

(A10) (i) there exist positive constants as,ag and v € (2,2*) such that as|s|” <
f(z,8)s < ag|s]” for s € R and z € Q,
(ii) sf(x,s) —2F(z,s) > 0 for s #0 and z € Q,

2"v(v—2)
2%y —2*—v

(iii) there exist constants 6 > 0 and pu > such that

i inf sf(x,s) — 2F (x,s)

|s]—o00 |S|”

> 0 uniformly in z € Q.

In [I0], Miyagaki and Souto studied a eigenvalue problem under (S3)(i) and
(A11) there exists constant s4 > 0 such that

f(z,s)

is increasing for s > sg and decreasing for s < —sg, Vx € Q,
which implies
A12) there exists constant s, > 0 such that
4
H(z,s) is increasing for s > s} and decreasing for s < —s), Vx € Q.

It is remarkable that (A12) also implies that (A1l) when f(z,s) is differentiable
with respect to s (see [8]). Furthermore, (A12) can be generalized in two directions.
One is the following generalized monotonic condition

(A13) there exists a constant D > 1 such that
H(z,t) < DH(z,s) fors)y<t<sors<t<—sy, Vo eQ,

which was first introduced in [6]. The other is the following “quasi-monotonic”
condition

(A14) there exists a nonnegative function Wy € L'(Q) such that
H(z,t) < H(z,s) + Wi(z) for0<t<sors<t<O0, Vel
A weaker condition than (A13) and (A14) is
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(A15) there exist a constant D > 1 and a nonnegative function Wy € L*(£2) such
that

H(xz,t) < DH(x,s)+Wi(x) forO0<t<sors<t<0,Vaze.

Using (A15) instead of (A11), Lan and Tang in [7] generalized the result in [I0].
In addition, Schechter and Zou in [I5] established the existence of nontrivial
solution for problem ([1.1]) provided

e H(z,s)is convex in s, V x € Q, or there are constants ay > 0, § > 2 and s{
such that
OF (x,8) — sf(x,s) < ar(s* +1)
for |s| > sk.
As remarked in [I0], the convexity of H in the above assumption is stronger than
(A11), while the second alternative is equivalent to (AT).

Under (A7), Wang in [21] proved that problem had at least three non-
trivial solutions via the mountain pass theorem and Morse theory. By assuming
(A12) holds, Liu and Wang in [9] also obtained at least three nontrivial solutions
via the Nehari manifold method, and infinitely many solutions via the Ljusternik-
Schnirelmann theory. Recently, Tang in [19] investigated a superlinear Schrédinger
equation with the nonlinear term satisfying

o there exists 6 € (0, 1) such that sf(z,s) > 0 and
1—06°

2
for s € R and a.e. z € Q.

Tang and Wu in [I8] also introduced a new superquadratic condition to guarantee
the existence of nontrivial solution to a second order Hamiltonian systems.

In this paper, we assume that f : 2 x R — R is a Carathéodory function, and
satisfies

(A16) for every M > 0, there exists a constant Ly; > 0 such that

sf(xz,s) > Sf(x,t)dt:F(ac,s)—F(x,@s), vV 60 € [0, 60]
Os

[f(z,8)] < L
for |s| < M and a.e. x € Q,
A17) limyy ., &2 = 0 uniformly in a.e. z € €,
[s] |s]| s
(A18) there exist a function m € L% (Q) and a subset ' C € with || > 0 such
that o
lim sup 2z, 5) <m(z) <M\
5—0 52
uniformly in a.e. # € Q, and m < Ay in €, where F(z,s) = [ f(x,t)dt
and | - | is the Lebesgue measure,
(A19) limjg o0 F(s“;’s) = +o00 uniformly in a.e. z € Q,

(A20) there exist constants so > 0, @ > 0, ¢ > & and a nonnegative function

2
W € LY(Q) such that

() <ater e

for |s| > so and a.e. x € Q, where H(x,s) = sf(z,s) — 2F (z, s).

Remark 1.1. Obviously, (A16) holds when f: Q x R — R is continuous. (A17) is
essentially weaker than
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(A21) there exist positive constants ag, ag and ¢ € (2,2*) such that
|f(, )] < ag + agls|T™"

for s € R and a.e. x € Q.

which is equivalent to (A8)(i) when (A16) holds. Besides, if A\ > 0, (A18) is
obviously weaker than

(A22) lim,_.0 % = 0 uniformly in a.e. z € Q.
Remark 1.2. There exist functions which satisfy our conditions and do not satisfy
(A7)-(A10), and (A15). For example, when a(z) = 0 and N = 4, let Qp C Q be

such that 2] > 0 and |2\ Q| > 0, xq, denotes the characteristic function of €y,
set h: [1,+00) — R as follows

h(s):{”?’(,}z—ls—nl)Jri, if|s—n| <L, n=234,..,

1 otherwise,
and
2s [ h(t)dt+sh(s s [ h(t)dt
fl(ln(szrl)l/z © - 2(1{115+(1))3/2 + 3XQO (LL')S2, s 2 17 HAS Qa
f(@,8) = §2(s — 1)1 + 3xa, (), se (1), zeq,
07 S S %, z €.
By simple calculation, we have 225 =4, & =2,
1 1 1
h(n):n+ﬁ7 h(”"‘nf):@, n:2,3,4,,
s? [2 h(t)dt
(lnfslnLl()l)/2 + Xao (I)SB + %(1 — XQo (l‘)), s>1, z€qQ,
F(z,s) = 4 (s — 1)2(1 + 3xa, (2)), se (1), zeQ,
07 s < %, x € Q,
and
s3h(s) s% [ h(t)dt

3 1
sf(@s) ~2F(@,5) = (Ins+1)1/2 B 2(Ins + 1)3/2 +xa (2)s” — 5(1 — X (),

for s > 1, z € Q. Besides this, for s > 1,

[ noa= [ - acs [ Gar= [0 - Gasms,

then for 3 <n < s <n+ 1, one has

s n+1 1 n+1
/ (h(t)—i)dt<2/k+l’? k3(%—|s—k|)ds: %
! k=2"/k— %z k=2
s n—1 n—1
/ (h(t)—i)dt>2/k+k2 (s s )ds = 30 1.
! k=2’k=5z =2

no 1
From the above two inequalities and lim,, % =1 it follows that
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which leads to .
i h(t)dt

lim =———*— =2
s—+o0 Ins
Thus, it is easy to verify that assumptions (A16)—(A19) hold. Furthermore, (A20)
holds for arbitrary o € (2,3). However, we can draw the following conclusions.

(i) Condition (A7) is not satisfied. Indeed, for § > 2, x € Q\Qp and s, := n+ -

n2»
(0 —2)s2 [ h(t)dt s3h(sp)
(Ins, +1)1/2 (Ins, +1)/2

— —00

snf(xasn) - 9F($,Sn) < -

as n — +o0.
(ii) Conditions (A8) and (A10) are not satisfied. Indeed, it needs ¢ > 3 to ensure
(A8)(i) holds. But for x € Q\ 9 and arbitrary p > @ > 2, one has

lim inf Sf(.I, S) — 2F(I‘, 5) < lim Snf(xv Sn) — QF(':E’ Sn)
|s|—o00 |5|M n— oo (Sn)ﬂ
3
< lim Suft(sn) =0

)

n— o0 (lnsn —+ 1)1/2(5n)#

which is in contradiction with (A8)(ii). Similarly, there are not constants v € (2,4)
and p > =2 guch that (A10) holds.

4dv—4—v
(iii) Condition (A9) is not satisfied. In fact, for z € Q\ Qg, we have
flx,n) n? 2n#
—2F <
n - (lnn+1)1/27 nf(x7n) (xan) — (1nn+1)1/2

for n large, so there does not exist constant ¢ > 2 such that (A9) holds.
(iv) Condition (A15) is not satisfied. In fact, for z € 2\ Qo and s/, :=n — 25,
it is not difficult to prove that

nf(xﬂn) - 2F($7n) - (Snf(xvsn) - 2F(x35n)) — +00,
nf(x,n) - 2F(x,n) - (s;f(x,s;) - QF(xvsln)) — +00

as n — oo. Then there do not exist constant D > 1 and nonnegative function
W1 € LY(9) such that (A15) holds.

Our main results are the following theorems.

Theorem 1.3. Assume that (A16)—(A20) hold, and that a € L>(Q) and sf(x,s) >
0 for s € R and a.e. x € Q. Then problem (1.1)) has at least a positive solution and
a negative solution.

Remark 1.4. In the next section, we will prove that (A20) indeed weaker than
(A7)-(A10), (A15) under the assumptions (A21) and (A19). In addition, if f
satisfies (A15)-(A17), (A19), and (A22),, so does the term Af for A > 0. Therefore,
Theorem generalizes [10, Theorem 1.1] and complements [9, Theorem 2.1}, [Tl
Theorem 1.2]. It is necessary to point out here that the integrability requirement
a € L>®() and sign condition sf(z,s) > 0 for s € R and a.e. = € ) are only
used to obtain a positive solution, especially in order to guarantee the validity of
the strong Maximum principle in [20]. In fact, a € L> (Q) is enough to ensure the
existence of nontrivial solution.

Theorem 1.5. Assume that (A6), (A16), (A17), (A19), (A20) hold, then problem
has infinitely many solutions.
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Remark 1.6. Theorem [L.5unifies and generalizes [22, Theorem 3.7], [L7, Theorem
3.2], [24}, Theorem 1.3], [25, Theorem 1.1}, [I3 Theorems 1.2 and 1.3]. Besides this,
Theorem [I.5| complements [9, Theorem 2.3], [26, Theorem 3.1], [I2, Theorem 1.4].

Remark 1.7. A condition similar to (A20) was introduced in [13]. However, com-
pared with the description in [I3], firstly, our description is more general and simple.
Secondly, we point out the relations between (A20) and several famous superlinear
conditions for the first time. Thirdly, we can deal with the superlinear problems
with nonlinear term satisfying the general subcritical condition (A17).

2. PRELIMINARIES

Let E := HZ (), the Euler-Lagrange functional associated to problem (1.1)) is

1 1
= 7/ |Vu|2d$+f/ a(x)uzdx—/F(x,u)dx, u€ k.
2 Ja 2 Ja Q
y (A16) and (A17), it is standard to verify that ® € C*(E,R) and

(@ (u),v) = /Q (Vu, Vo)da + /Q a(z)uw do — /Q F(a,u)vdz,

for all u,v € E. Moreover, the weak solutions of problem (1.1) are exactly the
critical points of @ in E. In order to obtain positive solution and negative solution,
we let f(x,s) := f(z,s) —m(x)s and truncate f above or below s =0, i.e., let

Filw,s) = {g(%s)’ ji(;’ fo(z,s) = {(J)‘"(a:,s), jig’

and F, (z, s) fo filz t)dt F_(z,5s) fo (z,t)dt. Under (A16) and (A17),
the functionals @+ and ®_ defined as follows

. 1
D (u) = /|Vu| dr + = / de—f/m de_/FJr (z,u)
. 1
O_(u) = 2/|Vu| dr + = / 2dﬂc—f/m stc—/F x,u)d

belong to C*'(E,R) and

(@', (u),v) = /Q (Vu, Vo)dz + /

Q

a(x)uvdm—/Qm(x)uvdx—/ﬂﬂ(x,u)vd;v,
(&)L(u)7v>:/Q(Vu,VU)dx—&-/Qa(x)uvdac—/Qm(gc)uvdx—/gf,(%u)vdx,

for all u,v € E. The following lemmas show that our superlinear situation, i.e.,
(A19) and (A20), indeed includes all the superlinear situations implied by (A7)-
(A10), (A15).

Lemma 2.1. Under assumption (A21), assumption (A7) implies (A19), (A20).
Proof. Clearly, (A19) naturally holds because of (1.2). Additionally, from ¢ €

(2,2%) we derive & < 755 Taking arbitrarily o € (3, ;43), one has ¢ < 2o
Then (A21) leads to
F
lim (xggs) =0 uniformly in a.e. x € Q.

|s|]—o0 |S|<7—1
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From this and (A19) it follows that there exists a constant s; > s} such that

F 1
0< F08) < (g gy
e
for |s| > s; and a.e. x € €2, from this and (A7) we obtain that
F(z,s)
( 52
for |s| > s; and a.e. x € Q. O

)” < (0—2)F(z,s) < sf(x,s) — 2F(, s)

Lemma 2.2. Under assumption (A19), assumption (A8) implies (A20).

Proof. From (A8) and (A19) it follows that there exists constant so > 1 such that

F(z,s)
]

for |s| > sy and a.e. z € Q. From p >

0< <as+1 and H(z,s)>d|s|*

w we deduce that & < qf#r Taking

arbitrarily o € (%, 755), one has 0(q — 2) < pi. Then
F(x,s)\° F(z,5)\%, 0(0—2 o (as +1)°
(F)" = () 1l < s #1715l < S A )
for |s| > so and a.e. x € . O

Lemma 2.3. Condition (A9) implies (A19) and (A20).

Proof. (A9)(i) implies (A19). From this and (A9)(ii) it follows that there exists a
constant sz > s5 such that

sf(x,s) > 2F(z,s) >0
for |s| > s3 and a.e. x € ), which together with (A9)(iii) leads to

(L(a@s))a < ! (M)U < a—iH(m,s)

52 =20 s
for |s| > s3 and a.e. x € Q. O

Lemma 2.4. Condition (A10) implies (A19) and (A20).

Proof. (A10)(i) implies (A19). Moreover, from this and (A10)(iii) we deduce that
there exists a constant s4 > 1 such that

F(x,s)
—2 >1 and f(z,s)s—2F(x,s) > d|s|*
for |s| > s4 and a.e. x € Q2. Additionally, from v € (2,2*) it follows that

2*v N

—2>0 d — > —.
14 > an >y — o — > 5
2" v(v—2)

N 2"y
5 D eIy E— and from

) 2*py—2*%—vp

Taking arbitrarily o € (
(A10)(ii) that

), one derives from p >

flx,8)s — 2F(x, s) > d|s|' > 5(\3\”*2)%
> E(M)g > E(M)a

o 2 a 2
ag S ag s

for |s| > s4 and a.e. x € Q. O
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Lemma 2.5. Under assumptions(A19) and (A21), condition (A15) implies (A20).
Proof. From (A21) and (A19) it follows that there exists constant s5 > 0 such that

F F
@.5) S0 ana F@:3) 99y (2.1)
52 |s]4 q

for |s| > s5 and € Q. The fact ¢ € (2, %) yields q% > % Then taking

arbitrarily o € (%, q%), we have 2 > (6—1)(¢g—2) > 0. Let ¢ :=2—(0—1)(¢—2) >
0, one gets

U(F(:L’, s) )0—1 sf(x,s) — 2F(x, s)

52 s3
(F(a:, s))f’*1 H(z,s)
=0
|s]7 |sl<s

for a.e. x € Q. From this, and (A15) it follows that
() - (552 = [ al(750) Ja
:/SU<F(x7t))0—1H(:r,t)dt
S5

e 1

o—1 * 1
SJ(%Jrl) (DH(x,s)+W1(l’))/ t<+1dt

—<
S5

< U(% T 1)071(DH(33, s) + Wi(z)) .

for s > s5 and a.e. z € ), where in the last inequality we use the fact that
DH(z,s) + Wi(x) > 0 for s # 0 and a.e. z € Q which can be deduced from
condition (A15) and H(z,0) =0 a.e. = € 2. Then we have

(F(x,s)

e )U < aH(z,s)+ W(x),

—< o—1 —< o—1
for s > s5and a.e. x € Q, where o = "D%qf,“f"ltq), Wi(x) = %Wl(x)—i—
(%;5)) . In a similar way, it is easy to verify that the above inequality holds for

s < —s5 and a.e. z € Q. O

3. PROOF OF MAIN RESULTS

To prove Theorems and we recall two abstract critical point theorems,
i.e., the mountain pass theorem and the symmetric mountain pass theorem under
the (C) condition, the readers can refer to [2] and [14].

Theorem 3.1. Let (X,| - ||x) be a Banach space, suppose that ¢ € C'(X,R)
satisfies p(0) =0 and

(i) there exist positive constants Ry and cq such that
o(u) > ag  for allu € X with ||u||x = R,

(i) there exists e € X with |e|]|x > Ro such that p(e) <0,
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(iii) ¢ satisfies the (C) condition, that is, for ¢ € R, every sequence {u,} C X
such that
olun) = ¢, [l (un)[(L+ [Junl) — 0
has a convergent subsequence.
Then c == infyer sup,epo 17 9(7(8)) is a critical value of ¢, where
[':={y € C([0,1], X);7(0) = 0,7(1) = e}.
Theorem 3.2. Let (X,| - ||x) be an infinite dimensional Banach space, and let
© € CHX, R) be even. Suppose that ¢ satisfies ©(0) = 0 and

(i) there exist a closed subspace X' of X with codim X' < +o00 and positive
constants Ry, ay such that

o(u) > oy forue X' with ||ul|x = Ry,
(i) for every finite dimensional subspace X? of X, there exists positive constant
Ry such that
o(u) <0 foru e X? with |ul|x = Ra,,
(iii) ¢ satisfies the (C) condition in Theorem|3.1}
Then ¢ possesses an unbounded sequence of critical values.

In addition, we need the following lemmas.

Lemma 3.3 (|22, Lemma 2.13]). Assume that N > 3 and 0 € L* (Q), then the
functional

Y(u) = / Iz)ude, v € HH(Q)
Q
is weakly continuous.

Lemma 3.4. Assume that m € L= (), and there exists a subset ¥ C Q with
|€2] > 0 such that
m< A imQ and m< A in €,
then
J " Jo IVul?de + [, a(x)u®de — [, m(z)u’dx
= in

> 0.
u€H(Q), u0 Jo [Vul?da

Proof. From the characteristic of A\; and the assumption m < A; in it follows
that d > 0. The reminder is to prove that d # 0. Let

J(u) == /Qa(x)u2dac, u € Hy(Q),
K(u) := /Qm(x)Ude, u € Hy(Q),

L(u) = [ul]* + J(u) = K(u), u € Hy(Q).

We argue by contradiction. If d = 0, there exists a sequence {u,} C H{(£2) such
that
lun|=1 and lim L(u,)=0.

By the boundedness of {u,}, up to subsequence we may assume that u, — w in
H (). From this, the weak continuity of J, K, and the weak lower continuity of L
it follows that

lim J(up) = J(uw), lim K(u,)= K(u) (3.1)

n—oo n— o0
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and
0 < L(u) < liminf L(u,) = lim L(u,) =0.
Then we have
L(u) = ||u||®> + J(u) — K(u) = lim L(u,) =0, (3.2)

which implies
ul|? + J(u) = K(u) < /\1/ w?dz,
Q

this together with the characteristic of A\; leads to
|l + J(u) = )\1/ u?dz. (3.3)
Q

If w = 0, from and it follows that ||u,| — 0 as n — oo, which is in
contradiction with |u,| = 1. So u # 0, then v is a eigenfunction corresponding to
A1, 80 u = lp¢y for some Iy € R\ {0} as Ay is simple. Thus, from ¢; > 0, m < Ay
in Q and m < Ay in ' with || > 0 it follows that

ull? + () /m Yutdz

:lg/ m(x)¢§dx<l(2))\1/¢%dx
Q Q

:Al/UQdac,
Q

which is in contradiction with (3.3]). Hence, d > 0. The proof is complete. O

Lemma 3.5. Assume that (A16)—(A18) hold. Then ®, satisfies (i) of Theorem
[Z1
Proof. By (A18), for € € (0, dTSS), there exists a positive constant M; < 1 such
that 1

Po(r.8) = Fle,s) < 5 (m(@) + )(s%)? (3.4

for [s] < M; and a.e. x € Q, where and in what follows we denote by s :=
max{s,0} and s~ := max{—s,0}. For above ¢, from (A16), (A17) and (3.4) it
follows that there exists a constant Ms > 1 such that

Fil )] = ()] < <(5)2 7 o+ Ly, (35)
and
Fi(r.s) < gm(a) + )61 + (g + 5) () (36)

for s € R and a.e. € Q. From (3.6) and Lemma [3.4] we obtain

~ 1 1 1
D (u) > 3 |Vu| dzr + 2/Q (z)u’dx — 3 Qm(a:)Ude

- % /Q (m() + £)(u™)2da
—/Q<L3f;i”2 o) g [ i

d, 9 9 Ly, Mo 5)( 1 )
2 Gl = gl - (MIQ* +5) (g) I

o*
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_ ||u||2[le . (LM"‘M2 n 3) (L)Q*Huuf—?}, Vu e E.

M¥ 2%/ \ So-
Let
o LM2M2 9 1 2" o d ﬁ _ d 2
Cl_( MZ +§>(S2*> ’ RO_(TQ) » a0 =gh
Then @ satisfies (i) of Theorem O

Lemma 3.6. Assume that (A16), (A19) hold. Then @, satisfies (ii) of Theorem
(21

: ll9111°+ [ a(x)pTde .
Proof. From (A16) and (A19) it follows that for A > EAE , there exists
2
a constant M3 > 0 such that

Fy(e,s) 2 A(s)? = Lugy My
for s € R and a.e. z € €). Then for t > 0, one obtains
~ 1 1
B 101) < 2 (51011 + 5 [ ale)otdn — Al6iE) + ML 2.
Let Cy = %(||¢1H2 + an(:z:)gbfdx) — A¢1]3 < 0, C3 = M3Lp,|Q] > 0, tg =

\/ 3%2 + Ry and e = ty¢1, then <T>+ satisfies (ii) of Theorem O

Lemma 3.7. Assume that (A16), (A17), (A19), (A20) hold. Then @, satisfies the
(C) condition in Theorem[3.d]

Proof. For ¢ € R and {u,,} C F such that
I8, ()| (1 + ) — 0 and & (un) — ¢ a1 — o0, (3.7)

we first prove that {u,} is bounded. Arguing by contradiction, if {u,} is un-
bounded, then |u,|| — 400 as n — oo after passing to a subsequence. Set
Wn = 27> then [wy || = 1. Hence, up to subsequence, we may assume that

w, — w weakly in E,

which results in
wy, — w strongly in L"(Q) for r € [1, 2%),

+ +
w, —w

+

n

weakly in F,

» (3.8)

wi(z) — wr(x) a.e. in Q,

wE — w*  strongly in L"(Q2) for r € [1, 2%).
From (A16) and (A19) it follows that there exists a constant My > max{Mj, so}
such that

|[Fi(@,8)] < Lo, (s7) < Lar, My (3.9)

for [s|] < My and a.e. x € Q, and Fy(z,s) > (s7)? for |s| > My and a.e. z € Q.
Then we have

Fy(x,8) > (sT)? — MyLyy, — M} > —My Ly, — M3 (3.10)

for s € R and a.e. z € Q.
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Now we claim that w = 0. In fact, if w® # 0, that is, |Q4] > 0, where Q, =
{z € Q:w(x) > 0}. Then, for a.e. z € Qy, one has u () = w}l (z)||u,| — +o0 as
n — oo, which implies that
F(z,u, (z))

nh_)rr;o (@) = +00. (3.11)

From (3.7) and (3.10) it follows that

%(1 —|—/Qa(1:)wfld:£ - /Qm(x)(w;)2dil?) - C|J;:|(|;)

Q

[lun
F + — M,y L M?2
> / 7(3:;1;; ) (w;h)?dx + / A M - A 5 4 dx
o, (un) 0, f|n |
+ 2
Z/ F(x;u;)( :)2d£€7 (M4LM4+£W4)|Q‘
o, (un) [Junl

Then by Lemma Fatou’s lemma and (3.11]), one obtains

%(1—1—/9@(:6)102(153—/m(x)(w_)zdx>

Zliminf( M\ W, dx) = +o00,
n—-+o0o Q (un)

a contradiction. Hence |Q+| =0, that is, w™ = 0.
In addition, from and Lemma [3.4]it follows that

dl|uy, ||? < /\V |2dx+/ dx—/m
/\V |2d33—|—/ d:c—/m

iy g
Q

= (P, (un),uy) — 0

N

as n — oo, that is, u,, — 0in E as n — oo. This together with (3.8)) shows w™ = 0.
To sum up, we have w = w™ — w™ = 0, so the claim is proved.

From (A16) it follows that the term |sf1 (x, s) —2F (z, s)| is bounded in [0, My] x
Q. Set

= i ,8) —2F (z,8)], Qp:={re€Q:u,(x) > My}.
wim i [sf () — 2 (o) [reQ:un(e) > My}

Then from (3.9) and (A20) we have

%(1 + /Q a(x)w?dr — /Qm(x)(w;fdx) — C|—;:(;)

F n Fy (2, up
o, uall o, lunll

n

< o e [ () ae] [y

n
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Lan Ma 2] + [/ oz(u:[f(x,uf{) - 2F(x,u,f)) + W(ac)d:n] UU\w \
Q

[[n |2
L, M9
[[n [
Since o > %, one has ¢ > 1 and 027 (1,2%). By (3.7) and ( . letting n — oo
in the above inequality gives the contradlctlon 1/2 § 0 Hence {u,} is bounded,

that is, ||u,| < Cy for all n, where Cy is a positive constant independent of n.
Hence, up to subsequence, there exists a u € E such that

n

+ (284 (wn) = & (un)u )+awm|+|W|} 07 P

Uy, — u  weakly in E,
o . (3.12)
up, — u  strongly in L"(Q) for r € [1, 2%),
Then by the weak lower semicontinuity of norm, we have ||u|| < liminf, o ||u,| <
C4, which implies that [Ju, — u|| < ||u| + ||u|]| < 2Cy4.

Additionally, for ¢ in (3.5]), from (3.12]) there exists a positive constant N (&) such
that

|un, —u|y <e forn> N(e),

from this and (3.5)) it follows that for n > N(¢),
/ fo (@, un) (un — u)de| §/ (5(u2)2*71 +LM2> |y, — u|dx
Q

< elun) 2 un

— ulax + Lag, |un — uly

Can2'
< 52(54) +eL,,

2*
that is, [, f4 (2, un)(un —u)dz — 0 as n — oo. From this, (3.7), (8.12), and Lemma
B3]t follows that

/Q(Vun, V(t, —u))dz — 0

as n — oo. Then one has ||u, —u|]| — 0 as n — oo. O

Proof of Theorem[I.3 By Lemmas and E)Jr has a nontrivial critical
point u via Theorem that is, for any v € E,

<<AIV>’+(u), v) = /(Vu, Vu)dx +/ a(x)uv dx — / m(z)uv de — / fi(z, u)vde = 0.
Q Q Q Q
Letting v = w~ in the above equation gives ||[u~|| = 0, so u = u™ > 0. Then u is
also a critical point of ®; that is,
(@ (u),v) = /(Vu, Vv)dz —|—/
Q Q

In addition, from (A16), (A17) and a € L™(1) it follows that there exists positive
constant C, such that
2*71)

| = a(@)u+ fla,u) < C. (1+]u
for s € R and a.e. € Q. Let b(z) := 7(1(@11(5\);(-];;?#@)), then b € L* () and

—Au = b(z)(1+ |ul]).

[16, Lemma B.3] shows u € LP(Q) for any p < oo, which implies that f(z,u) €
LP(Q) for any p < oo. By [16, Lemma B.2], we have u € H*P(Q) N H}(Q) for

a(x)uv dx — / f(z,u)vde =0, Vv € E.
Q
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any p < co. Therefore, u € C*#(Q) for some 3 € (0,1) by the Sobolev embedding
theorem. Moreover, from sf(x,s) > 0 it follows that
Au=a(z)u — f(z,u) < |alou := ((u),

where ¢ : [0,400) — R is continuous and nondecreasing, and satisfies ¢(0) = 0,

¢(s) >0forall s >0, and fo ~3ds = 400. Then we can conclude that u > 0
in Q by [20, Theorem 5]. In a smular way, we can obtain a negative solution for
problem (1.1f) by treating with ®_. O

Proof of Theorem[1.5. Without loss of generality, we assume that
AL <A< A3 <o Sy SO0 < A1 S < g

and ey, is eigenfunction corresponding to Ag. Set Ey = span{ey,ea,...,e;} and E,i-
be the orthogonal complement of Ej, in F. Then one has

/|Vu\ dx—i—/ a(z )u2dx§)\k/u2dx, Yu € Ey,
Q

/|Vu\ dx—i—/ a(x )quxz)\kH/qux, Vu € B
Q

Hence in Ejf with k > ko, |Jull« == { [, |Vul*dz + [, a(z)udz} /2 is also a norm
and is equivalent to ||u||. Hence for k > ko, there exists a p051tlve constant C5 such
that

lulls > /Cslull,  Vue B
Similar to (3.5), from (A16) and (A17) it follows that

|[f(a,9)] <els|® ™" + Lag,

for s € R and a.e. x € Q). Set g 1= supyept |y)=1/ul1- It was shown in [22, Lemma
3.8] that g — 0 as k — oo. Let X' = Ej- with k > ko such that g < gr=—,

= (ZE0) ™ s

for u € Ej- with |lu|| = Ry, we have

2 — L |uly

1 €
D) = S llull? -

Y

o (2l ~ szl — el

1
> -CsR;.
gLetu

then @ satisfies (i) of Theorem with a; = %C5R1 > 0.
For every Fy, there exists a positive constant Cg such that

lull < /Cslula, Y ue Ey,

because all the norms on the finite dimension space Ej, are equivalent. From (A19),
there exists a positive constant C7 such that

F(z,s) > (% + 1)52 - Cy
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for s € R and a.e. x € Q. Set Ry = \/CsC7|Q], for u € E}, with ||u|| = Rs,

A A 1
a(w < 2 juff - (B 1) jufg + ol < — 2 jul + el <o
2 2 Cs

then ® satisfies (ii) of Theorem

Lastly, in a way similar to treat with 5+ in Lemma we can prove that &
satisfies the (C) condition. Therefore Theorem shows that ® has a unbounded
sequence of critical values. O
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