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EXISTENCE AND MULTIPLICITY OF SOLUTIONS TO
SEMILINEAR ELLIPTIC EQUATION WITH NONLINEAR TERM

OF SUPERLINEAR AND SUBCRITICAL GROWTH

XIAO-FENG KE, CHUN-LEI TANG

Communicated by Paul Rabinowitz

Abstract. This article concerns the existence and multiplicity of solutions to
the superlinear elliptic problems. We introduce a new superlinear condition

which is proved to be weaker than the Ambrosetti-Rabinowitz condition, the

nonquadratic condition, the monotonicity conditions. As an application, posi-
tive solution and infinitely many solutions to semilinear elliptic equation with

general subcritical growth are obtained, which generalize some known results.

1. Introduction and statement of main results

Consider the semilinear elliptic equation Dirichlet problem
−4u+ a(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where 4 is the Laplacian operator, Ω is a bounded domain in RN (N ≥ 3) with
smooth boundary ∂Ω, and a ∈ LN

2 (Ω). The inner product and induced norm in
H1

0 (Ω) are respectively given by

〈u, v〉 :=
∫

Ω

(∇u,∇v)dx, ‖u‖ :=
(∫

Ω

|∇u|2dx
)1/2

, ∀u, v ∈ H1
0 (Ω),

where (·, ·) is the Euclidean inner product. The operator −4+a : H1
0 (Ω)∩H2(Ω)→

L2(Ω) possesses a unbounded eigenvalues sequence

λ1 < λ2 ≤ · · · ≤ λn → +∞ as n→∞,
where λ1 is simple and characterized by

λ1 = inf
u∈H1

0 (Ω),u 6=0

∫
Ω
|∇u|2 + a(x)u2dx∫

Ω
u2dx

,

the infimum is achieved by a positive function φ1 which is exactly a eigenfunction
corresponding to λ1, and u is a eigenfunction corresponding to λ1 if and only if
u ∈ H1

0 (Ω) \ {0} is such that
∫

Ω
|∇u|2dx+

∫
Ω
a(x)u2dx = λ1

∫
Ω
u2dx. Besides this,

it is well known that the embedding mapping H1
0 (Ω) ↪→ Lr(Ω) is continuous for
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r ∈ [1, 2∗] and is compact for r ∈ [1, 2∗), where 2∗ := 2N
N−2 . We denote by | · |r the

norm in Lr(Ω) and Sr the best constant to the corresponding embedding mapping,
that is, Sr|u|r ≤ ‖u‖, for all u ∈ H1

0 (Ω).
In the celebrated paper [1], Ambrosetti and Rabinowitz established the famous

mountain pass theorem and applied it to obtain nontrivial solution and multiple
solutions to problem (1.1) by assuming

(A1) f is Hölder continuous in Ω× R and f(x, 0) = 0,
(A2) there exist positive constants a1, a2 and q ∈ (2, 2∗) such that

|f(x, s)| ≤ a1 + a2|s|q−1

for s ∈ R and x ∈ Ω,
(A3) lims→0 f(x, s)/s = 0 uniformly in x ∈ Ω,
(A4) lim|s|→∞ f(x, s)/s = +∞ uniformly in x ∈ Ω,
(A5) there exist constants s′0 > 0 and θ > 2 such that

θF (x, s) ≤ sf(x, s)

for |s| ≥ s′0 and x ∈ Ω, where F (x, s) :=
∫ s

0
f(x, t)dt,

(A6) f is odd in s,

where (A4) shows that f is essentially superlinear at ∞. Moreover, (A4) together
with (A5) leads to

(A7) there exist constants s′1 > 0 and θ > 2 such that

0 < θF (x, s) ≤ sf(x, s)

for |s| ≥ s′1 and x ∈ Ω,

which is hereafter called the Ambrosetti-Rabinowitz condition and plays a key role
in ensuring that the Euler-Lagrange functional associated to problem (1.1) admits a
mountain pass geometry and the Palais-Smale sequences are bounded. Integrating,
from the continuity of f one deduces that

F (x, s) ≥ ξ|s|θ (1.2)

for |s| ≥ s′1 and x ∈ Ω, where

ξ :=
( 1
s′1

)θ min
{

min
x∈Ω

F (x, s′1),min
x∈Ω

F (x,−s′1)
}
> 0.

Here we note two things. Firstly, in order to obtain (1.2), one should add the
assumption ess infx∈Ω F (x,±s′1) > 0 if (A7) is satisfied only on Ω rather than Ω
or f(·,±s′1) : Ω → R is discontinuous, see [11] for more details. Secondly, (1.2)
eliminates many interesting superlinear functions, such as F (x, s) = s2 ln(1 + |s|).
For this reason, this technique has been subsequently improved in order to include
more superlinear functions and extended to deal with more complicated variational
problems by a large number of researchers, see [3, 4, 7, 8, 9, 10, 12, 13, 15, 17, 18,
19, 21, 23, 24, 25, 26] and references therein.

In [3], Costa and Magalhães replaced (A7) by

(A8) (i) there exist constants q ∈ (2, 2∗) and a3 > 0 such that

lim sup
|s|→∞

F (x, s)
|s|q

≤ a3 uniformly in a.e. x ∈ Ω,
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(ii) there exist constants δ > 0 and µ > N(q−2)
2 such that

lim inf
|s|→∞

sf(x, s)− 2F (x, s)
|s|µ

≥ δ

uniformly in a.e. x ∈ Ω,
then a nontrivial solution was obtained provided

lim sup
s→0

2F (x, s)
s2

< λ1 < lim inf
|s|→∞

2F (x, s)
s2

uniformly in a.e. x ∈ Ω.

Under these assumptions, they can deal with both superlinear situation and sub-
linear situation.

In [4], Ding and Luan investigated a class of Schrödinger equations with the
nonlinear term satisfying

(A9) (i) lim|s|→∞
F (x,s)
s2 = +∞ uniformly in x ∈ Ω,

(ii) H(x, s) := sf(x, s)− 2F (x, s) > 0 for s 6= 0,
(iii) there exist positive constants s′2, a4 and σ > N/2 such that

( f(x,s)
s

)σ ≤
a4H(x, s) for |s| ≥ s′2 and x ∈ Ω,

where (A9)(iii) can be deduced from (A7) and a subcritical growth condition, see
[5, Lemma 2.2].

In [23], Willem and Zou studied a class of superlinear Schrödinger equation by
assuming
(A10) (i) there exist positive constants a5, a6 and ν ∈ (2, 2∗) such that a5|s|ν ≤

f(x, s)s ≤ a6|s|ν for s ∈ R and x ∈ Ω,
(ii) sf(x, s)− 2F (x, s) > 0 for s 6= 0 and x ∈ Ω,
(iii) there exist constants δ > 0 and µ > 2∗ν(ν−2)

2∗ν−2∗−ν such that

lim inf
|s|→∞

sf(x, s)− 2F (x, s)
|s|µ

≥ δ uniformly in x ∈ Ω.

In [10], Miyagaki and Souto studied a eigenvalue problem under (S2)(i) and
(A11) there exists constant s′3 > 0 such that

f(x, s)
s

is increasing for s ≥ s′3 and decreasing for s ≤ −s′3, ∀x ∈ Ω,

which implies
(A12) there exists constant s′4 > 0 such that

H(x, s) is increasing for s ≥ s′4 and decreasing for s ≤ −s′4, ∀x ∈ Ω.

It is remarkable that (A12) also implies that (A11) when f(x, s) is differentiable
with respect to s (see [8]). Furthermore, (A12) can be generalized in two directions.
One is the following generalized monotonic condition
(A13) there exists a constant D ≥ 1 such that

H(x, t) ≤ DH(x, s) for s′4 < t < s or s < t < −s′4, ∀x ∈ Ω,

which was first introduced in [6]. The other is the following “quasi-monotonic”
condition
(A14) there exists a nonnegative function W1 ∈ L1(Ω) such that

H(x, t) ≤ H(x, s) +W1(x) for 0 < t < s or s < t < 0, ∀x ∈ Ω.

A weaker condition than (A13) and (A14) is
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(A15) there exist a constant D ≥ 1 and a nonnegative function W1 ∈ L1(Ω) such
that

H(x, t) ≤ DH(x, s) +W1(x) for 0 < t < s or s < t < 0, ∀ x ∈ Ω.

Using (A15) instead of (A11), Lan and Tang in [7] generalized the result in [10].
In addition, Schechter and Zou in [15] established the existence of nontrivial

solution for problem (1.1) provided
• H(x, s) is convex in s, ∀ x ∈ Ω, or there are constants a7 > 0, θ > 2 and s′5

such that
θF (x, s)− sf(x, s) ≤ a7(s2 + 1)

for |s| ≥ s′5.
As remarked in [10], the convexity of H in the above assumption is stronger than
(A11), while the second alternative is equivalent to (A7).

Under (A7), Wang in [21] proved that problem (1.1) had at least three non-
trivial solutions via the mountain pass theorem and Morse theory. By assuming
(A12) holds, Liu and Wang in [9] also obtained at least three nontrivial solutions
via the Nehari manifold method, and infinitely many solutions via the Ljusternik-
Schnirelmann theory. Recently, Tang in [19] investigated a superlinear Schrödinger
equation with the nonlinear term satisfying

• there exists θ0 ∈ (0, 1) such that sf(x, s) ≥ 0 and

1− θ2

2
sf(x, s) ≥

∫ s

θs

f(x, t)dt = F (x, s)− F (x, θs), ∀ θ ∈ [0, θ0]

for s ∈ R and a.e. x ∈ Ω.
Tang and Wu in [18] also introduced a new superquadratic condition to guarantee
the existence of nontrivial solution to a second order Hamiltonian systems.

In this paper, we assume that f : Ω × R → R is a Carathéodory function, and
satisfies
(A16) for every M > 0, there exists a constant LM > 0 such that

|f(x, s)| ≤ LM
for |s| ≤M and a.e. x ∈ Ω,

(A17) lim|s|→∞
f(x,s)
|s|2∗−2s

= 0 uniformly in a.e. x ∈ Ω,

(A18) there exist a function m ∈ LN
2 (Ω) and a subset Ω′ ⊂ Ω with |Ω′| > 0 such

that

lim sup
s→0

2F (x, s)
s2

≤ m(x) ≤ λ1

uniformly in a.e. x ∈ Ω, and m < λ1 in Ω′, where F (x, s) =
∫ s

0
f(x, t)dt

and | · | is the Lebesgue measure,
(A19) lim|s|→∞

F (x,s)
s2 = +∞ uniformly in a.e. x ∈ Ω,

(A20) there exist constants s0 > 0, α > 0, σ > N
2 and a nonnegative function

W ∈ L1(Ω) such that(F (x, s)
s2

)σ
≤ αH(x, s) +W (x)

for |s| ≥ s0 and a.e. x ∈ Ω, where H(x, s) = sf(x, s)− 2F (x, s).

Remark 1.1. Obviously, (A16) holds when f : Ω×R→ R is continuous. (A17) is
essentially weaker than
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(A21) there exist positive constants a8, a9 and q ∈ (2, 2∗) such that

|f(x, s)| ≤ a8 + a9|s|q−1

for s ∈ R and a.e. x ∈ Ω.
which is equivalent to (A8)(i) when (A16) holds. Besides, if λ1 > 0, (A18) is
obviously weaker than

(A22) lims→0
2F (x,s)
s2 = 0 uniformly in a.e. x ∈ Ω.

Remark 1.2. There exist functions which satisfy our conditions and do not satisfy
(A7)–(A10), and (A15). For example, when a(x) ≡ 0 and N = 4, let Ω0 ⊂ Ω be
such that |Ω0| > 0 and |Ω \Ω0| > 0, χΩ0 denotes the characteristic function of Ω0,
set h : [1,+∞)→ R as follows

h(s) =

{
n3( 1

n2 − |s− n|) + 1
s , if |s− n| ≤ 1

n2 , n = 2, 3, 4, . . . ,
1
s , otherwise,

and

f(x, s) =


2s

R s
1 h(t)dt+s2h(s)

(ln s+1)1/2 − s
R s
1 h(t)dt

2(ln s+1)3/2 + 3χΩ0(x)s2, s ≥ 1, x ∈ Ω,

2(s− 1
2 )(1 + 3χΩ0(x)), s ∈ ( 1

2 , 1), x ∈ Ω,
0, s ≤ 1

2 , x ∈ Ω.

By simple calculation, we have 2N
N−2 = 4, N2 = 2,

h(n) = n+
1
n
, h(n+

1
n2

) =
1

n+ 1
n2

, n = 2, 3, 4, . . . ,

F (x, s) =


s2

R s
1 h(t)dt

(ln s+1)1/2 + χΩ0(x)s3 + 1
4 (1− χΩ0(x)), s ≥ 1, x ∈ Ω,

(s− 1
2 )2(1 + 3χΩ0(x)), s ∈ ( 1

2 , 1), x ∈ Ω,
0, s ≤ 1

2 , x ∈ Ω,

and

sf(x, s)− 2F (x, s) =
s3h(s)

(ln s+ 1)1/2
−

s2
∫ s

1
h(t)dt

2(ln s+ 1)3/2
+ χΩ0(x)s3 − 1

2
(1− χΩ0(x)),

for s ≥ 1, x ∈ Ω. Besides this, for s ≥ 1,∫ s

1

h(t)dt =
∫ s

1

(
h(t)− 1

t

)
dt+

∫ s

1

1
t
dt =

∫ s

1

(
h(t)− 1

t

)
dt+ ln s,

then for 3 ≤ n ≤ s ≤ n+ 1, one has∫ s

1

(
h(t)− 1

t

)
dt ≤

n+1∑
k=2

∫ k+ 1
k2

k− 1
k2

k3
( 1
k2
− |s− k|

)
ds =

n+1∑
k=2

1
k
,

∫ s

1

(
h(t)− 1

t

)
dt ≥

n−1∑
k=2

∫ k+ 1
k2

k− 1
k2

k3
( 1
k2
− |s− k|

)
ds =

n−1∑
k=2

1
k
.

From the above two inequalities and limn→∞

Pn
k=1

1
k

lnn = 1 it follows that

lim
s→+∞

∫ s
1

(
h(t)− 1

t

)
dt

ln s
= 1,
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which leads to

lim
s→+∞

∫ s
1
h(t)dt
ln s

= 2.

Thus, it is easy to verify that assumptions (A16)–(A19) hold. Furthermore, (A20)
holds for arbitrary σ ∈ (2, 3). However, we can draw the following conclusions.

(i) Condition (A7) is not satisfied. Indeed, for θ > 2, x ∈ Ω\Ω0 and sn := n+ 1
n2 ,

snf(x, sn)− θF (x, sn) ≤ −
(θ − 2)s2

n

∫ sn
1
h(t)dt

(ln sn + 1)1/2
+

s3
nh(sn)

(ln sn + 1)1/2
→ −∞

as n→ +∞.
(ii) Conditions (A8) and (A10) are not satisfied. Indeed, it needs q ≥ 3 to ensure

(A8)(i) holds. But for x ∈ Ω \ Ω0 and arbitrary µ > 4(q−2)
2 ≥ 2, one has

lim inf
|s|→∞

sf(x, s)− 2F (x, s)
|s|µ

≤ lim
n→∞

snf(x, sn)− 2F (x, sn)
(sn)µ

≤ lim
n→∞

s3
nh(sn)

(ln sn + 1)1/2(sn)µ
= 0,

which is in contradiction with (A8)(ii). Similarly, there are not constants ν ∈ (2, 4)
and µ > 4ν(ν−2)

4ν−4−ν such that (A10) holds.
(iii) Condition (A9) is not satisfied. In fact, for x ∈ Ω \ Ω0, we have

f(x, n)
n

≥ n2

(lnn+ 1)1/2
, nf(x, n)− 2F (x, n) ≤ 2n4

(lnn+ 1)1/2

for n large, so there does not exist constant σ > 2 such that (A9) holds.
(iv) Condition (A15) is not satisfied. In fact, for x ∈ Ω \ Ω0 and s′n := n − 1

n2 ,
it is not difficult to prove that

nf(x, n)− 2F (x, n)− (snf(x, sn)− 2F (x, sn))→ +∞,
nf(x, n)− 2F (x, n)− (s′nf(x, s′n)− 2F (x, s′n))→ +∞

as n → ∞. Then there do not exist constant D ≥ 1 and nonnegative function
W1 ∈ L1(Ω) such that (A15) holds.

Our main results are the following theorems.

Theorem 1.3. Assume that (A16)–(A20) hold, and that a ∈ L∞(Ω) and sf(x, s) ≥
0 for s ∈ R and a.e. x ∈ Ω. Then problem (1.1) has at least a positive solution and
a negative solution.

Remark 1.4. In the next section, we will prove that (A20) indeed weaker than
(A7)–(A10), (A15) under the assumptions (A21) and (A19). In addition, if f
satisfies (A15)–(A17), (A19), and (A22),, so does the term λf for λ > 0. Therefore,
Theorem 1.3 generalizes [10, Theorem 1.1] and complements [9, Theorem 2.1], [7,
Theorem 1.2]. It is necessary to point out here that the integrability requirement
a ∈ L∞(Ω) and sign condition sf(x, s) ≥ 0 for s ∈ R and a.e. x ∈ Ω are only
used to obtain a positive solution, especially in order to guarantee the validity of
the strong Maximum principle in [20]. In fact, a ∈ LN

2 (Ω) is enough to ensure the
existence of nontrivial solution.

Theorem 1.5. Assume that (A6), (A16), (A17), (A19), (A20) hold, then problem
(1.1) has infinitely many solutions.
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Remark 1.6. Theorem 1.5 unifies and generalizes [22, Theorem 3.7], [17, Theorem
3.2], [24, Theorem 1.3], [25, Theorem 1.1], [13, Theorems 1.2 and 1.3]. Besides this,
Theorem 1.5 complements [9, Theorem 2.3], [26, Theorem 3.1], [12, Theorem 1.4].

Remark 1.7. A condition similar to (A20) was introduced in [13]. However, com-
pared with the description in [13], firstly, our description is more general and simple.
Secondly, we point out the relations between (A20) and several famous superlinear
conditions for the first time. Thirdly, we can deal with the superlinear problems
with nonlinear term satisfying the general subcritical condition (A17).

2. Preliminaries

Let E := H1
0 (Ω), the Euler-Lagrange functional associated to problem (1.1) is

Φ(u) =
1
2

∫
Ω

|∇u|2dx+
1
2

∫
Ω

a(x)u2dx−
∫

Ω

F (x, u)dx, u ∈ E.

By (A16) and (A17), it is standard to verify that Φ ∈ C1(E,R) and

〈Φ′(u), v〉 =
∫

Ω

(∇u,∇v)dx+
∫

Ω

a(x)uv dx−
∫

Ω

f(x, u)v dx,

for all u, v ∈ E. Moreover, the weak solutions of problem (1.1) are exactly the
critical points of Φ in E. In order to obtain positive solution and negative solution,
we let f̃(x, s) := f(x, s)−m(x)s and truncate f̃ above or below s = 0, i.e., let

f̃+(x, s) :=

{
f̃(x, s), s ≥ 0,
0, s < 0,

f̃−(x, s) :=

{
f̃(x, s), s ≤ 0,
0, s > 0,

and F̃+(x, s) =
∫ s

0
f̃+(x, t)dt, F̃−(x, s) =

∫ s
0
f̃−(x, t)dt. Under (A16) and (A17),

the functionals Φ̃+ and Φ̃− defined as follows

Φ̃+(u) =
1
2

∫
Ω

|∇u|2dx+
1
2

∫
Ω

a(x)u2dx− 1
2

∫
Ω

m(x)u2dx−
∫

Ω

F̃+(x, u)dx,

Φ̃−(u) =
1
2

∫
Ω

|∇u|2dx+
1
2

∫
Ω

a(x)u2dx− 1
2

∫
Ω

m(x)u2dx−
∫

Ω

F̃−(x, u)dx,

belong to C1(E,R) and

〈Φ̃′+(u), v〉 =
∫

Ω

(∇u,∇v)dx+
∫

Ω

a(x)uv dx−
∫

Ω

m(x)uv dx−
∫

Ω

f̃+(x, u)v dx,

〈Φ̃′−(u), v〉 =
∫

Ω

(∇u,∇v)dx+
∫

Ω

a(x)uv dx−
∫

Ω

m(x)uv dx−
∫

Ω

f̃−(x, u)v dx,

for all u, v ∈ E. The following lemmas show that our superlinear situation, i.e.,
(A19) and (A20), indeed includes all the superlinear situations implied by (A7)–
(A10), (A15).

Lemma 2.1. Under assumption (A21), assumption (A7) implies (A19), (A20).

Proof. Clearly, (A19) naturally holds because of (1.2). Additionally, from q ∈
(2, 2∗) we derive N

2 < q
q−2 . Taking arbitrarily σ ∈ (N2 ,

q
q−2 ), one has q < 2σ

σ−1 .
Then (A21) leads to

lim
|s|→∞

F (x, s)

|s|
2σ
σ−1

= 0 uniformly in a.e. x ∈ Ω.
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From this and (A19) it follows that there exists a constant s1 > s′1 such that

0 <
F (x, s)

|s|
2σ
σ−1

≤ (θ − 2)
1

σ−1

for |s| ≥ s1 and a.e. x ∈ Ω, from this and (A7) we obtain that(F (x, s)
s2

)σ
≤ (θ − 2)F (x, s) ≤ sf(x, s)− 2F (x, s)

for |s| ≥ s1 and a.e. x ∈ Ω. �

Lemma 2.2. Under assumption (A19), assumption (A8) implies (A20).

Proof. From (A8) and (A19) it follows that there exists constant s2 > 1 such that

0 <
F (x, s)
|s|q

≤ a3 + 1 and H(x, s) ≥ δ|s|µ

for |s| ≥ s2 and a.e. x ∈ Ω. From µ > N(q−2)
2 we deduce that N

2 < µ
q−2 . Taking

arbitrarily σ ∈ (N2 ,
µ
q−2 ), one has σ(q − 2) < µ. Then(F (x, s)

s2

)σ
=
(F (x, s)
|s|q

)σ
|s|σ(q−2) ≤ (a3 + 1)σ|s|µ ≤ (a3 + 1)σ

δ
H(x, s)

for |s| ≥ s2 and a.e. x ∈ Ω. �

Lemma 2.3. Condition (A9) implies (A19) and (A20).

Proof. (A9)(i) implies (A19). From this and (A9)(ii) it follows that there exists a
constant s3 > s′2 such that

sf(x, s) ≥ 2F (x, s) > 0

for |s| > s3 and a.e. x ∈ Ω, which together with (A9)(iii) leads to(F (x, s)
s2

)σ
≤ 1

2σ
(f(x, s)

s

)σ
≤ a4

2σ
H(x, s)

for |s| ≥ s3 and a.e. x ∈ Ω. �

Lemma 2.4. Condition (A10) implies (A19) and (A20).

Proof. (A10)(i) implies (A19). Moreover, from this and (A10)(iii) we deduce that
there exists a constant s4 > 1 such that

F (x, s)
s2

≥ 1 and f(x, s)s− 2F (x, s) ≥ δ|s|µ

for |s| ≥ s4 and a.e. x ∈ Ω. Additionally, from ν ∈ (2, 2∗) it follows that

ν − 2 > 0 and
2∗ν

2∗ν − 2∗ − ν
>
N

2
.

Taking arbitrarily σ ∈ (N2 ,
2∗ν

2∗ν−2∗−ν ), one derives from µ > 2∗ν(ν−2)
2∗ν−2∗−ν and from

(A10)(ii) that

f(x, s)s− 2F (x, s) ≥ δ|s|µ > δ
(
|s|ν−2

) 2∗ν
2∗ν−2∗−ν

≥ δ

aσ6

(sf(x, s)
s2

)σ
≥ 2δ
aσ6

(F (x, s)
s2

)σ
for |s| ≥ s4 and a.e. x ∈ Ω. �
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Lemma 2.5. Under assumptions(A19) and (A21), condition (A15) implies (A20).

Proof. From (A21) and (A19) it follows that there exists constant s5 > 0 such that

F (x, s)
s2

> 0 and
F (x, s)
|s|q

≤ a9

q
+ 1 (2.1)

for |s| ≥ s5 and x ∈ Ω. The fact q ∈
(

2, 2N
N−2

)
yields q

q−2 > N
2 . Then taking

arbitrarily σ ∈
(
N
2 ,

q
q−2

)
, we have 2 > (σ−1)(q−2) > 0. Let ς := 2−(σ−1)(q−2) >

0, one gets

d

ds

[(F (x, s)
s2

)σ]
= σ

(F (x, s)
s2

)σ−1 sf(x, s)− 2F (x, s)
s3

= σ
(F (x, s)
|s|q

)σ−1H(x, s)
|s|ςs

for a.e. x ∈ Ω. From this, (2.1) and (A15) it follows that(F (x, s)
s2

)σ
−
(F (x, s5)

s2
5

)σ
=
∫ s

s5

d

dt

[(F (x, t)
t2

)σ]
dt

=
∫ s

s5

σ
(F (x, t)
|t|q

)σ−1H(x, t)
tς+1

dt

≤ σ
(a9

q
+ 1
)σ−1(

DH(x, s) +W1(x)
) ∫ s

s5

1
tς+1

dt

≤ σ
(a9

q
+ 1
)σ−1(

DH(x, s) +W1(x)
)s−ς5

ς

for s ≥ s5 and a.e. x ∈ Ω, where in the last inequality we use the fact that
DH(x, s) + W1(x) ≥ 0 for s 6= 0 and a.e. x ∈ Ω which can be deduced from
condition (A15) and H(x, 0) = 0 a.e. x ∈ Ω. Then we have(F (x, s)

s2

)σ
≤ αH(x, s) +W (x),

for s ≥ s5 and a.e. x ∈ Ω, where α = σDs−ς5 (a9+q)σ−1

qσ−1ς , W (x) = σs−ς5 (a9+q)σ−1

qσ−1ς W1(x)+(
F (x,s5)
s25

)σ
. In a similar way, it is easy to verify that the above inequality holds for

s ≤ −s5 and a.e. x ∈ Ω. �

3. Proof of main results

To prove Theorems 1.3 and 1.5, we recall two abstract critical point theorems,
i.e., the mountain pass theorem and the symmetric mountain pass theorem under
the (C) condition, the readers can refer to [2] and [14].

Theorem 3.1. Let (X, ‖ · ‖X) be a Banach space, suppose that ϕ ∈ C1(X,R)
satisfies ϕ(0) = 0 and

(i) there exist positive constants R0 and α0 such that

ϕ(u) ≥ α0 for all u ∈ X with ‖u‖X = R0,

(ii) there exists e ∈ X with ‖e‖X > R0 such that ϕ(e) < 0,
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(iii) ϕ satisfies the (C) condition, that is, for c ∈ R, every sequence {un} ⊂ X
such that

ϕ(un)→ c, ‖ϕ′(un)‖(1 + ‖un‖)→ 0
has a convergent subsequence.

Then c := infγ∈Γ sups∈[0,1] ϕ(γ(s)) is a critical value of ϕ, where

Γ := {γ ∈ C([0, 1], X); γ(0) = 0, γ(1) = e}.

Theorem 3.2. Let (X, ‖ · ‖X) be an infinite dimensional Banach space, and let
ϕ ∈ C1(X, R) be even. Suppose that ϕ satisfies ϕ(0) = 0 and

(i) there exist a closed subspace X1 of X with codimX1 < +∞ and positive
constants R1, α1 such that

ϕ(u) ≥ α1 for u ∈ X1 with ‖u‖X = R1,

(ii) for every finite dimensional subspace X2 of X, there exists positive constant
R2 such that

ϕ(u) ≤ 0 for u ∈ X2 with ‖u‖X = R2, ,

(iii) ϕ satisfies the (C) condition in Theorem 3.1.
Then ϕ possesses an unbounded sequence of critical values.

In addition, we need the following lemmas.

Lemma 3.3 ([22, Lemma 2.13]). Assume that N ≥ 3 and ϑ ∈ LN
2 (Ω), then the

functional

ψ(u) :=
∫

Ω

ϑ(x)u2dx, u ∈ H1
0 (Ω)

is weakly continuous.

Lemma 3.4. Assume that m ∈ L
N
2 (Ω), and there exists a subset Ω′ ⊂ Ω with

|Ω′| > 0 such that
m ≤ λ1 in Ω and m < λ1 in Ω′,

then

d := inf
u∈H1

0 (Ω), u 6=0

∫
Ω
|∇u|2dx+

∫
Ω
a(x)u2dx−

∫
Ω
m(x)u2dx∫

Ω
|∇u|2dx

> 0.

Proof. From the characteristic of λ1 and the assumption m ≤ λ1 in Ω it follows
that d ≥ 0. The reminder is to prove that d 6= 0. Let

J(u) :=
∫

Ω

a(x)u2dx, u ∈ H1
0 (Ω),

K(u) :=
∫

Ω

m(x)u2dx, u ∈ H1
0 (Ω),

L(u) := ‖u‖2 + J(u)−K(u), u ∈ H1
0 (Ω).

We argue by contradiction. If d = 0, there exists a sequence {un} ⊂ H1
0 (Ω) such

that
‖un‖ = 1 and lim

n→∞
L(un) = 0.

By the boundedness of {un}, up to subsequence we may assume that un ⇀ u in
H1

0 (Ω). From this, the weak continuity of J,K, and the weak lower continuity of L
it follows that

lim
n→∞

J(un) = J(u), lim
n→∞

K(un) = K(u) (3.1)
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and
0 ≤ L(u) ≤ lim inf

n→∞
L(un) = lim

n→∞
L(un) = 0.

Then we have

L(u) = ‖u‖2 + J(u)−K(u) = lim
n→∞

L(un) = 0, (3.2)

which implies

‖u‖2 + J(u) = K(u) ≤ λ1

∫
Ω

u2dx,

this together with the characteristic of λ1 leads to

‖u‖2 + J(u) = λ1

∫
Ω

u2dx. (3.3)

If u = 0, from (3.1) and (3.2) it follows that ‖un‖ → 0 as n → ∞, which is in
contradiction with ‖un‖ = 1. So u 6= 0, then u is a eigenfunction corresponding to
λ1, so u = l0φ1 for some l0 ∈ R \ {0} as λ1 is simple. Thus, from φ1 > 0, m ≤ λ1

in Ω and m < λ1 in Ω′ with |Ω′| > 0 it follows that

‖u‖2 + J(u) = K(u) =
∫

Ω

m(x)u2dx

= l20

∫
Ω

m(x)φ2
1dx < l20λ1

∫
Ω

φ2
1dx

= λ1

∫
Ω

u2dx,

which is in contradiction with (3.3). Hence, d > 0. The proof is complete. �

Lemma 3.5. Assume that (A16)–(A18) hold. Then Φ̃+ satisfies (i) of Theorem
3.1.

Proof. By (A18), for ε ∈
(

0, dS2
2

2

)
, there exists a positive constant M1 < 1 such

that
F+(x, s) = F (x, s+) ≤ 1

2
(m(x) + ε)(s+)2 (3.4)

for |s| ≤ M1 and a.e. x ∈ Ω, where and in what follows we denote by s+ :=
max{s, 0} and s− := max{−s, 0}. For above ε, from (A16), (A17) and (3.4) it
follows that there exists a constant M2 > 1 such that

|f+(x, s)| = |f(x, s+)| ≤ ε(s+)2∗−1 + LM2 (3.5)

and
F+(x, s) ≤ 1

2
(m(x) + ε)(s+)2 +

(LM2M2

M2∗
1

+
ε

2∗
)

(s+)2∗ (3.6)

for s ∈ R and a.e. x ∈ Ω. From (3.6) and Lemma 3.4 we obtain

Φ̃+(u) ≥ 1
2

∫
Ω

|∇u|2dx+
1
2

∫
Ω

a(x)u2dx− 1
2

∫
Ω

m(x)u2dx

− 1
2

∫
Ω

(m(x) + ε)(u+)2dx

−
∫

Ω

(LM2M2

M2∗
1

+
ε

2∗
)

(u+)2∗dx+
1
2

∫
Ω

m(x)(u+)2dx

≥ d

2
‖u‖2 − ε

2S2
2

‖u‖2 −
(LM2M2

M2∗
1

+
ε

2∗
)( 1

S2∗

)2∗

‖u‖2
∗
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= ‖u‖2
[d

4
−
(LM2M2

M2∗
1

+
ε

2∗
)( 1

S2∗

)2∗

‖u‖2
∗−2
]
, ∀u ∈ E.

Let

C1 =
(LM2M2

M2∗
1

+
ε

2∗
)( 1

S2∗

)2∗

, R0 =
( d

8C1

) 1
2∗−2

, α0 =
d

8
R2

0 .

Then Φ̃+ satisfies (i) of Theorem 3.1. �

Lemma 3.6. Assume that (A16), (A19) hold. Then Φ̃+ satisfies (ii) of Theorem
3.1.

Proof. From (A16) and (A19) it follows that for Λ >
‖φ1‖2+

R
Ω a(x)φ2

1dx

2|φ1|22
, there exists

a constant M3 > 0 such that

F+(x, s) ≥ Λ(s+)2 − LM3M3

for s ∈ R and a.e. x ∈ Ω. Then for t > 0, one obtains

Φ̃+(tφ1) ≤ t2
(1

2
‖φ1‖2 +

1
2

∫
Ω

a(x)φ2
1dx− Λ|φ1|22

)
+M3LM3 |Ω|.

Let C2 = 1
2

(
‖φ1‖2 +

∫
Ω
a(x)φ2

1dx
)
− Λ|φ1|22 < 0, C3 = M3LM3 |Ω| > 0, t0 =√

2C3
−C2

+R0 and e = t0φ1, then Φ̃+ satisfies (ii) of Theorem 3.1. �

Lemma 3.7. Assume that (A16), (A17), (A19), (A20) hold. Then Φ̃+ satisfies the
(C) condition in Theorem 3.1.

Proof. For c ∈ R and {un} ⊂ E such that

‖Φ̃′+(un)‖(1 + ‖un‖)→ 0 and Φ̃+(un)→ c as n→∞, (3.7)

we first prove that {un} is bounded. Arguing by contradiction, if {un} is un-
bounded, then ‖un‖ → +∞ as n → ∞ after passing to a subsequence. Set
wn = un

‖un‖ , then ‖wn‖ = 1. Hence, up to subsequence, we may assume that

wn ⇀ w weakly in E,

which results in
wn → w strongly in Lr(Ω) for r ∈ [1, 2∗),

w±n ⇀ w± weakly in E,

w±n (x)→ w±(x) a.e. in Ω,

w±n → w± strongly in Lr(Ω) for r ∈ [1, 2∗).

(3.8)

From (A16) and (A19) it follows that there exists a constant M4 > max{M1, s0}
such that

|F+(x, s)| ≤ LM4(s+) ≤ LM4M4 (3.9)

for |s| ≤ M4 and a.e. x ∈ Ω, and F+(x, s) ≥ (s+)2 for |s| ≥ M4 and a.e. x ∈ Ω.
Then we have

F+(x, s) ≥ (s+)2 −M4LM4 −M2
4 ≥ −M4LM4 −M2

4 (3.10)

for s ∈ R and a.e. x ∈ Ω.
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Now we claim that w = 0. In fact, if w+ 6= 0, that is, |Ω+| > 0, where Ω+ :=
{x ∈ Ω : w(x) > 0}. Then, for a.e. x ∈ Ω+, one has u+

n (x) = w+
n (x)‖un‖ → +∞ as

n→∞, which implies that

lim
n→∞

F (x, u+
n (x))

(u+
n (x))2

= +∞. (3.11)

From (3.7) and (3.10) it follows that

1
2

(
1 +

∫
Ω

a(x)w2
ndx−

∫
Ω

m(x)(w−n )2dx
)
− c+ o(1)
‖un‖2

=
∫

Ω

F+(x, un)
‖un‖2

dx

≥
∫

Ω+

F (x, u+
n )

(u+
n )2

(w+
n )2dx+

∫
Ω\Ω+

−M4LM4 −M2
4

‖un‖2
dx

≥
∫

Ω+

F (x, u+
n )

(u+
n )2

(w+
n )2dx− (M4LM4 +M2

4 )|Ω|
‖un‖2

.

Then by Lemma 3.3, Fatou’s lemma and (3.11), one obtains

1
2

(
1 +

∫
Ω

a(x)w2dx−
∫

Ω

m(x)(w−)2dx
)

≥ lim inf
n→+∞

(∫
Ω+

F (x, u+
n )

(u+
n )2

|wn|2dx
)

= +∞,

a contradiction. Hence |Ω+| = 0, that is, w+ = 0.
In addition, from (3.7) and Lemma 3.4 it follows that

d‖u−n ‖2 ≤
∫

Ω

|∇(u−n )|2dx+
∫

Ω

a(x)(u−n )2dx−
∫

Ω

m(x)(u−n )2dx

=
∫

Ω

|∇(u−n )|2dx+
∫

Ω

a(x)(u−n )2dx−
∫

Ω

m(x)(u−n )2dx

−
∫

Ω

f̃+(x, un)u−n dx

= 〈Φ̃′+(un), u−n 〉 → 0

as n→∞, that is, u−n → 0 in E as n→∞. This together with (3.8) shows w− = 0.
To sum up, we have w = w+ − w− = 0, so the claim is proved.

From (A16) it follows that the term |sf+(x, s)−2F+(x, s)| is bounded in [0,M4]×
Ω. Set

$ := min
(x,s)∈Ω×[0,M4]

|sf+(x, s)− 2F+(x, s)|, Ωn := {x ∈ Ω : un(x) ≥M4}.

Then from (3.9) and (A20) we have

1
2

(
1 +

∫
Ω

a(x)w2
ndx−

∫
Ω

m(x)(w−n )2dx
)
− c+ o(1)
‖un‖2

=
∫

Ω\Ωn

F+(x, un)
‖un‖2

dx+
∫

Ωn

F+(x, un)
‖un‖2

dx

≤
∫

Ω\Ωn

LM4M4

‖un‖2
dx+

[ ∫
Ωn

(F (x, u+
n )

(u+
n )2

)σ
dx
]1/σ[ ∫

Ωn

(w+
n )

2σ
σ−1 dx

]σ−1
σ
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≤ LM4M4|Ω|
‖un‖2

+
[ ∫

Ωn

α
(
u+
n f(x, u+

n )− 2F (x, u+
n )
)

+W (x)dx
]1/σ
|w+
n |22σ

σ−1

≤ LM4M4|Ω|
‖un‖2

+
[
α
(

2Φ̃+(un)− Φ̃′+(un)un
)

+ α$|Ω|+ |W |1
] 1
σ |w+

n |22σ
σ−1

.

Since σ > N
2 , one has σ > 1 and 2σ

σ−1 ∈ (1, 2∗). By (3.7) and (3.8), letting n→∞
in the above inequality gives the contradiction 1/2 ≤ 0., Hence {un} is bounded,
that is, ‖un‖ ≤ C4 for all n, where C4 is a positive constant independent of n.
Hence, up to subsequence, there exists a u ∈ E such that

un ⇀ u weakly in E,

un → u strongly in Lr(Ω) for r ∈ [1, 2∗),
(3.12)

Then by the weak lower semicontinuity of norm, we have ‖u‖ ≤ lim infn→∞ ‖un‖ ≤
C4, which implies that ‖un − u‖ ≤ ‖un‖+ ‖u‖ ≤ 2C4.

Additionally, for ε in (3.5), from (3.12) there exists a positive constant N(ε) such
that

|un − u|1 < ε for n > N(ε),
from this and (3.5) it follows that for n > N(ε),∣∣ ∫

Ω

f+(x, un)(un − u)dx
∣∣ ≤ ∫

Ω

(
ε(u+

n )2∗−1 + LM2

)
|un − u|dx

≤ ε|un|2
∗−1

2∗ |un − u|2∗ + LM2 |un − u|1

≤ ε2
( C4

S2∗

)2∗

+ εLM2 ,

that is,
∫

Ω
f+(x, un)(un−u)dx→ 0 as n→∞. From this, (3.7), (3.12), and Lemma

3.3 it follows that ∫
Ω

(∇un,∇(un − u))dx→ 0

as n→∞. Then one has ‖un − u‖ → 0 as n→∞. �

Proof of Theorem 1.3. By Lemmas 3.5, 3.6 and 3.7, Φ̃+ has a nontrivial critical
point u via Theorem 3.1, that is, for any v ∈ E,

〈Φ̃′+(u), v〉 =
∫

Ω

(∇u,∇v)dx+
∫

Ω

a(x)uv dx−
∫

Ω

m(x)uv dx−
∫

Ω

f̃+(x, u)v dx = 0.

Letting v = u− in the above equation gives ‖u−‖ = 0, so u = u+ ≥ 0. Then u is
also a critical point of Φ+; that is,

〈Φ′+(u), v〉 =
∫

Ω

(∇u,∇v)dx+
∫

Ω

a(x)uv dx−
∫

Ω

f+(x, u)v dx = 0, ∀ v ∈ E.

In addition, from (A16), (A17) and a ∈ L∞(Ω) it follows that there exists positive
constant Cε such that

| − a(x)u+ f(x, u)| ≤ Cε
(

1 + |u|2
∗−1
)

for s ∈ R and a.e. x ∈ Ω. Let b(x) := −a(x)u(x)+f(x,u(x))
1+|u(x)| , then b ∈ LN

2 (Ω) and

−4u = b(x)(1 + |u|).
[16, Lemma B.3] shows u ∈ Lp(Ω) for any p < ∞, which implies that f(x, u) ∈
Lp(Ω) for any p < ∞. By [16, Lemma B.2], we have u ∈ H2,p(Ω) ∩ H1

0 (Ω) for
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any p <∞. Therefore, u ∈ C1,β(Ω) for some β ∈ (0, 1) by the Sobolev embedding
theorem. Moreover, from sf(x, s) ≥ 0 it follows that

4u = a(x)u− f(x, u) ≤ |a|∞u := ζ(u),

where ζ : [0,+∞) → R is continuous and nondecreasing, and satisfies ζ(0) = 0,
ζ(s) > 0 for all s > 0, and

∫ 1

0
(ζ(s)s)−

1
2 ds = +∞. Then we can conclude that u > 0

in Ω by [20, Theorem 5]. In a similar way, we can obtain a negative solution for
problem (1.1) by treating with Φ̃−. �

Proof of Theorem 1.5. Without loss of generality, we assume that

λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk0 ≤ 0 < λk0+1 ≤ · · · ≤ λk . . .

and ek is eigenfunction corresponding to λk. Set Ek = span{e1, e2, . . . , ek} and E⊥k
be the orthogonal complement of Ek in E. Then one has∫

Ω

|∇u|2dx+
∫

Ω

a(x)u2dx ≤ λk
∫

Ω

u2dx, ∀u ∈ Ek,∫
Ω

|∇u|2dx+
∫

Ω

a(x)u2dx ≥ λk+1

∫
Ω

u2dx, ∀u ∈ E⊥k .

Hence in E⊥k with k ≥ k0, ‖u‖? :=
{∫

Ω
|∇u|2dx+

∫
Ω
a(x)u2dx

}1/2 is also a norm
and is equivalent to ‖u‖. Hence for k ≥ k0, there exists a positive constant C5 such
that

‖u‖? ≥
√
C5‖u‖, ∀u ∈ E⊥k .

Similar to (3.5), from (A16) and (A17) it follows that

|f(x, s)| ≤ ε|s|2
∗−1 + LM2

for s ∈ R and a.e. x ∈ Ω. Set %k := supu∈E⊥k ,‖u‖=1|u|1. It was shown in [22, Lemma
3.8] that %k → 0 as k →∞. Let X1 = E⊥k with k ≥ k0 such that %k < C5

8LM2
,

R1 =
(2∗S2∗

2∗

4ε
C5

) 1
2∗−1

> 0,

for u ∈ E⊥k with ‖u‖ = R1, we have

Φ(u) ≥ 1
2
‖u‖2? −

ε

2∗
|u|2

∗

2∗ − LM2 |u|1

≥ ‖u‖
(C5

2
‖u‖ − ε

2∗S2∗
2∗
‖u‖2

∗−1 − %kLM2

)
≥ 1

8
C5R1.

then Φ satisfies (i) of Theorem 3.2 with α1 = 1
8C5R1 > 0.

For every Ek, there exists a positive constant C6 such that

‖u‖ ≤
√
C6|u|2, ∀ u ∈ Ek,

because all the norms on the finite dimension space Ek are equivalent. From (A19),
there exists a positive constant C7 such that

F (x, s) ≥
( |λk|

2
+ 1
)
s2 − C7
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for s ∈ R and a.e. x ∈ Ω. Set R2 =
√
C6C7|Ω|, for u ∈ Ek with ‖u‖ = R2,

Φ(u) ≤ λk
2
|u|22 −

( |λk|
2

+ 1
)
|u|22 + C7|Ω| ≤ −

1
C6
‖u‖2 + C7|Ω| ≤ 0,

then Φ satisfies (ii) of Theorem 3.2.
Lastly, in a way similar to treat with Φ̃+ in Lemma 3.7, we can prove that Φ

satisfies the (C) condition. Therefore Theorem 3.2 shows that Φ has a unbounded
sequence of critical values. �
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plications, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
[23] M. Willem, W. M. Zou; On a Schrödinger equation with periodic potential and spectrum

point zero. Indiana Univ. Math. J., 52 (2003) 109-132.
[24] Y. W. Ye, C. L. Tang; Multiplicity of solutions for elliptic boundary value problems. Electron.

J. Differential Equations 2014, No. 140, 13 pp.

[25] Q. Y. Zhang, C. G. Liu; Multiple solutions for a class of semilinear elliptic equations with
general potentials. Nonlinear Anal. 75 (2012), no. 14, 5473-5481.

[26] W. Zou; Variant fountain theorems and their applications, Manuscripta Math. 104 (2001),

343-358.

Xiao-Feng Ke
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

E-mail address: kexf@swu.edu.cn

Chun-Lei Tang (corresponding author)

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

E-mail address: tangcl@swu.edu.cn


	1. Introduction and statement of main results
	2. Preliminaries
	3. Proof of main results
	Acknowledgments

	References

