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LAYER POTENTIALS FOR GENERAL LINEAR
ELLIPTIC SYSTEMS

ARIEL BARTON

Abstract. In this article we construct layer potentials for elliptic differential

operators using the Babuška-Lax-Milgram theorem, without recourse to the

fundamental solution; this allows layer potentials to be constructed in very
general settings. We then generalize several well known properties of layer

potentials for harmonic and second order equations, in particular the Green’s

formula, jump relations, adjoint relations, and Verchota’s equivalence between
well-posedness of boundary value problems and invertibility of layer potentials.

1. Introduction

There is by now a very rich theory of boundary value problems for the Laplace
operator, and more generally for second order divergence form operators −div A∇.
The Dirichlet problem

−div A∇u = 0 in Ω, u = f on ∂Ω, ‖u‖X ≤ C‖f‖D
and the Neumann problem

− div A∇u = 0 in Ω, ν ·A∇u = g on ∂Ω, ‖u‖X ≤ C‖g‖N
are known to be well-posed for many classes of coefficients A and domains Ω, and
with solutions in many spaces X and boundary data in many boundary spaces D
and N.

A great deal of current research consists in extending these well posedness results
to more general situations, such as operators of order 2m ≥ 4 (for example, [19, 25,
45, 47, 53, 54]; see also the survey paper [22]), operators with lower order terms
(for example, [24, 30, 34, 55, 62]) and operators acting on functions defined on
manifolds (for example, [46, 50, 51]).

Two very useful tools in the second order theory are the double and single layer
potentials given by

DΩ
Af(x) =

∫
∂Ω

ν ·A∗(y)∇yEL∗(y, x)f(y) dσ(y), (1.1)

SΩ
L g(x) =

∫
∂Ω

EL∗(y, x)g(y) dσ(y) (1.2)
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where ν is the unit outward normal to Ω and where EL(y, x) is the fundamental
solution for the operator L = −div A∇, that is, the formal solution to LEL( · , x) =
δx. These operators are inspired by a formal integration by parts

u(x) =
∫

Ω

L∗EL∗( · , x)u

= −
∫
∂Ω

ν ·A∗∇EL∗(·, x)u dσ +
∫
∂Ω

EL∗(· , x)ν ·A∇u dσ +
∫

Ω

EL∗(· , x)Lu

which gives the Green’s formula

u(x) = −DΩ
A(u

∣∣
∂Ω

)(x) + SΩ
L (ν ·A∇u)(x) if x ∈ Ω and Lu = 0 in Ω

at least for relatively well-behaved solutions u.
Such potentials have many well known properties beyond the above Green’s

formula, including jump and adjoint relations. In particular, by a clever argument
of Verchota [63] and some extensions in [21, 23], given certain boundedness and
trace results, well posedness of the Dirichlet problem in both Ω and its complement
is equivalent to invertibility of the operator g 7→ SΩ

L g
∣∣
∂Ω

, and well posedness of
the Neumann problem in both domains is equivalent to invertibility of the operator
f 7→ ν ·A∇DΩ

Af .
This equivalence has been used to solve boundary value problems in many papers,

including [29, 32, 33, 63] in the case of harmonic functions (that is, the case A = I
and L = −∆) and [5, 14, 23, 35, 37, 38] in the case of more general second order
operators under various assumptions on the coefficients A. Layer potentials have
been used in other ways in [4, 9, 21, 44, 48, 49, 56, 59, 65]. Boundary value problems
were studied using a functional calculus approach in [6, 7, 8, 9, 10, 11, 12]; in [58]
it was shown that certain operators arising in this theory coincided with layer
potentials.

Thus, it is desirable to extend layer potentials to more general situations. It is
possible to proceed as in the homogeneous second order case, by constructing the
fundamental solution, formally integrating by parts, and showing that the resulting
integral operators have appropriate properties. In the case of higher order operators
with constant coefficients, this has been done in [2, 27, 28, 52, 53, 64]. All three
steps are somewhat involved in the case of variable coefficient operators (although
see [15, 30] for fundamental solutions, for higher order operators without lower
order terms, and for second order operators with lower order terms, respectively).

An alternative, more abstract construction is possible. The fundamental solution
for various operators was constructed in [15, 30, 36] as the kernel of the Newton
potential, which may itself be constructed very simply using the Lax-Milgram the-
orem. It is possible to rewrite the formulas (1.1) and (1.2) for second order layer
potentials directly in terms of the Newton potential, without mediating by the fun-
damental solution, and this construction generalizes very easily. It is this approach
that was taken in [18, 20].

In this paper we will provide the details of this construction in a very general
context. Roughly, this construction is valid for all differential operators L that may
be inverted via the Babuška-Lax-Milgram theorem, and all domains Ω for which
suitable boundary trace operators exist. We will also show that many properties of
traditional layer potentials are valid in the general case.

The organization of this paper is as follows. The goal of this paper is to construct
layer potentials associated to an operator L as bounded linear operators from a
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space D2 or N2 to a Hilbert space H2 given certain conditions on D2, N2 and H2.
In Section 2 we will list these conditions and define our terminology. Because these
properties are somewhat abstract, in Section 3 we will give an example of spaces
H2, D2 and N2 that satisfy these conditions in the case where L is a higher order
differential operator in divergence form without lower order terms.

This is the context of the paper [19]; we intend to apply the results of the present
paper therein to solve the Neumann problem with boundary data in L2 for operators
with transversally independent self-adjoint coefficients.

In Section 4 of this paper we will provide the details of the construction of
layer potentials. We will prove the higher order analogues for the Green’s formula,
adjoint relations, and jump relations in Section 5. Finally, in Section 6 we will
show that the equivalence between well posedness of boundary value problems and
invertibility of layer potentials of [21, 23, 63] extends to the general case.

2. Terminology

We will construct layer potentials DΩ
B and SΩ

L using the following objects.

• Two Hilbert spaces H1 and H2.
• Six (quasi)-normed vector spaces ĤΩ

1 , ĤC
1 , ĤΩ

2 , ĤC
2 , D̂1 and D̂2.

• Bounded sesquilinear forms B : H1 × H2 → C, BΩ : HΩ
1 × HΩ

2 → C, and
BC : HC

1 × HC
2 → C. (We will define the spaces HΩ

j , HC
j momentarily.)

• Bounded linear operators Ṫr1 : H1 → D̂1 and Ṫr2 : H2 → D̂2.
• Bounded linear operators (·)

∣∣1
Ω

: H1 → ĤΩ
1 and (·)

∣∣2
Ω

: H2 → ĤΩ
2 . When

no ambiguity will arise we will suppress the superscript and refer to both
operators as

∣∣
Ω

.

• Bounded linear operators (·)
∣∣j
C

: Hj → ĤC
j for j = 1, 2; we again often refer

to both operators as
∣∣
C
.

We will work not with the spaces ĤΩ
j , ĤC

j and D̂j , but with the (normed) vector
spaces HΩ

j , HC
j and Dj defined as follows.

HΩ
j = {F

∣∣
Ω

: F ∈ Hj}/ ∼ with norm ‖f‖HΩ
j

= inf{‖F‖Hj : F
∣∣
Ω

= f}, (2.1)

HC
j = {F

∣∣
C

: F ∈ Hj}/ ∼ with norm ‖f‖HC
j

= inf{‖F‖Hj : F
∣∣
C

= f}, (2.2)

Dj = {Ṫrj F : F ∈ Hj}/ ∼ with norm ‖ḟ‖Dj
= inf{‖F‖Hj

: Ṫrj F = ḟ} (2.3)

where ∼ denotes the equivalence relation f ∼ g if ‖f − g‖ = 0.
Throughout we will impose the following conditions on the given function spaces

and operators.

Condition 2.1. B is coercive; that is, there is some λ > 0 such that for every
u ∈ H1 and v ∈ H2 we have that

sup
w∈H1\{0}

|B(w, v)|
‖w‖H1

≥ λ‖v‖H2 , sup
w∈H2\{0}

|B(u,w)|
‖w‖H2

≥ λ‖u‖H1 .

Condition 2.2. If u ∈ H1 and v ∈ H2, then

B(u, v) = BΩ(u
∣∣
Ω
, v
∣∣
Ω

) + BC(u
∣∣
C
, v
∣∣
C
).
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Condition 2.3. If ϕ, ψ ∈ Hj for j = 1 or j = 2, and if Ṫrj ϕ = Ṫrj ψ, then there
is a w ∈ Hj such that

w
∣∣
Ω

= ϕ
∣∣
Ω
, w

∣∣
C

= ψ
∣∣
C
, and Ṫrj w = Ṫrj ϕ = Ṫrj ψ.

We now introduce some further terminology.
If X is a quasi-Banach space, we will let X∗ be the space of conjugate linear

functionals on X.
We define the conjugate linear operator L as follows. If u ∈ H2, let Lu be the

element of H∗1 given by
〈ϕ,Lu〉 = B(ϕ, u). (2.4)

Notice that L is bounded H2 → H∗1.
If u ∈ HΩ

2 , we let (Lu)
∣∣
Ω

be the element of {ϕ ∈ H1 : Ṫr1 ϕ = 0}∗ given by

〈ϕ, (Lu)
∣∣
Ω
〉 = BΩ(ϕ

∣∣
Ω
, u) for all ϕ ∈ H1 with Ṫr1 ϕ = 0. (2.5)

If u ∈ H2, we will often use (Lu)
∣∣
Ω

as shorthand for (L(u
∣∣
Ω

))
∣∣
Ω

. We will primarily
be concerned with the case (Lu)

∣∣
Ω

= 0.
We will let

N2 = D∗1, N1 = D∗2 (2.6)

denote the spaces of conjugate linear functionals on D1 and D2. We will now define
the Neumann boundary values of an element u of HΩ

2 that satisfies (Lu)
∣∣
Ω

= 0. If
Ṫr1 ϕ = Ṫr1 ψ and (Lu)

∣∣
Ω

= 0, then BΩ(ϕ
∣∣
Ω
−ψ

∣∣
Ω
, u) = 0 by definition of (Lu)

∣∣
Ω

.
Thus, BΩ(ϕ

∣∣
Ω
, u) depends only on Ṫr1 ϕ, not on ϕ. Thus, ṀBΩ u defined as follows

is a well defined element of N2.

〈Ṫr1 ϕ, ṀBΩ u〉 = BΩ(ϕ
∣∣
Ω
, u) for all ϕ ∈ H1. (2.7)

We can compute

|〈ḟ , ṀBΩ u〉| ≤ ‖BΩ‖ inf{‖ϕ‖H1 : Ṫr1 ϕ = ḟ}‖u‖HΩ
2

= ‖BΩ‖‖ḟ‖D1‖u‖HΩ
2

and so we have the bound ‖ ṀBΩ u‖N2 ≤ ‖BΩ‖ ‖u‖HΩ
2

.
If (Lu)

∣∣
Ω
6= 0, then the conjugate linear operator given by ϕ 7→ BΩ(ϕ

∣∣
Ω
, u)

is still of interest. We will denote this operator LBΩ u; that is, if u ∈ HΩ
2 , then

LBΩ u ∈ H∗1 is defined by

〈ϕ,LBΩ u〉 = BΩ(ϕ
∣∣
Ω
, u) for all ϕ ∈ H1. (2.8)

If u ∈ H2 then as before we will use LBΩ u as a shorthand for LBΩ(u
∣∣
Ω

).

Remark 2.4. We observe that, for a given sesquilinear form B defined on H1 ×
H2, there are often many choices of forms BΩ and BC that satisfy Condition 2.2.
Conversely, for a given form BΩ there may be many forms BC such that the operator
B given by Condition 2.2 satisfies Condition 2.1. See Remark 3.1 for an example.

The operator L depends only on B, and not on a particular choice of BΩ and
BC. By contrast, the quantities ṀBΩ u and LBΩ u depend on BΩ and not on B
(that is, not on BC).

We also comment on the quantity (Lu)
∣∣
Ω

. If u ∈ HΩ
2 , then by definition of HΩ

2

there is some U ∈ H2 with u = U
∣∣
Ω

. If Ṫr1 ϕ = 0 = Ṫr1 0, then by Condition 2.3
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there is some w ∈ H1 with w
∣∣
Ω

= ϕ
∣∣
Ω

and w
∣∣
C

= 0
∣∣
C

= 0. Thus, by the definition
(2.5) of (Lu)

∣∣
Ω

and Condition 2.2,

〈ϕ, (Lu)
∣∣
Ω
〉 = BΩ(ϕ

∣∣
Ω
, u) = B(w,U)−BC(w

∣∣
C
, U
∣∣
C
) = B(w,U)

and so (Lu)
∣∣
Ω

may be viewed as depending either on B or on BΩ.

3. An example: higher order differential equations

In this section, we provide an example of a situation in which the terminology
of Section 2 and the construction and properties of layer potentials of Sections 4
and 5 may be applied. We remark that this is the situation of [19], and that we
will therein apply the results of this paper.

Let m ≥ 1 be an integer, and let L be an elliptic differential operator of the form

Lu = (−1)m
∑

|α|=|β|=m

∂α(Aαβ∂βu) (3.1)

for some (possibly complex) bounded measurable coefficients A defined on Rd. Here
α and β are multiindices in Nd0, where N0 denotes the nonnegative integers. As is
standard in the theory, we say that Lu = 0 in an open set Ω in the weak sense if∫

Ω

∑
|α|=|β|=m

∂αϕAαβ∂
βu = 0 for all ϕ ∈ C∞0 (Ω). (3.2)

We impose the following ellipticity condition: we require that for some λ > 0,

<
∑

|α|=|β|=m

∫
Rd

∂αϕAαβ∂
βϕ ≥ λ‖∇mϕ‖2L2(Rd) for all ϕ ∈ Ẇ 2

m(Rd). (3.3)

Let Ω ⊂ Rd be a Lipschitz domain, and let C = Rd \Ω denote the interior of its
complement. Observe that ∂Ω = ∂C.

The following function spaces and linear operators satisfy the conditions of Sec-
tion 2.
• H1 = H2 = H is the homogeneous Sobolev space Ẇ 2

m(Rd) of locally integrable
functions ϕ (or rather, of equivalence classes of functions modulo polynomials of
degree m − 1) with weak derivatives of order m, and such that the H-norm given
by ‖ϕ‖H = ‖∇mϕ‖L2(Rd) is finite. This space is a Hilbert space with inner product
〈ϕ,ψ〉 =

∑
|α|=m

∫
Rd ∂αϕ∂

αψ.

• ĤΩ and ĤC are the Sobolev spaces ĤΩ = Ẇ 2
m(Ω) = {ϕ : ∇mϕ ∈ L2(Ω)} and

ĤC = Ẇ 2
m(C) = {ϕ : ∇mϕ ∈ L2(C)} with the expected norms.

• D̂ denotes the (vector-valued) Besov space Ḃ2,2
1/2(∂Ω) of locally integrable func-

tions modulo constants with norm

‖f‖Ḃ2,2
1/2(∂Ω) =

(∫
∂Ω

∫
∂Ω

|f(x)− f(y)|2

|x− y|d
dσ(x) dσ(y)

)1/2

.

• In [17, 18, 19], Ω is assumed to have connected boundary, and Ṫr is the linear
operator defined on H by

Ṫru = TrΩ∇m−1u
∣∣
Ω

= {TrΩ ∂γu}|γ|=m−1,

where TrΩ is the standard boundary trace operator of Sobolev spaces.
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Given a suitable modification of the trace space D̂, it is also possible to choose

Ṫru = {TrΩ ∂γu}|γ|≤m−1 or Ṫru = (TrΩ u, ∂νu, . . . , ∂
m−1
ν u),

where ν is the unit outward normal, so that the boundary derivatives of u of all
orders are recorded. See, for example, [3, 47, 53, 57, 60]. In this case, ∂Ω need not
be connected.
• B is the sesquilinear form on H× H given by

B(ψ,ϕ) =
∑

|α|=|β|=m

∫
Rd

∂αψAαβ∂
βϕ. (3.4)

The sesquilinear forms BΩ and BC are defined analogously to B, but with the
integral over Rd replaced by an integral over Ω or C.

We now discuss the conditions imposed in Section 2. The forms B, BΩ and BC

are clearly bounded and sesquilinear, and the restriction operators
∣∣
Ω

: H → ĤΩ,∣∣
C

: H→ ĤC are bounded and linear.
The trace operator Ṫr is linear. If Ω = Rd+ is the half-space, then boundedness

of Ṫr : H → D was established in [39, Section 5]; this extends to the case where
Ω is the domain above a Lipschitz graph via a change of variables. If Ω is a
bounded Lipschitz domain, then boundedness of Ṫr : W → D̂, where W is the
inhomogeneous Sobolev space with norm

∑m
k=0 ‖∇kϕ‖L2(Rd), was established in [42,

Chapter V]. Then boundedness of Ṫr : H→ D̂ follows by the Poincaré inequality.
By assumption, Condition 2.1 is valid. Because Ω is a Lipschitz domain, we have

that ∂Ω has Lebesgue measure zero, and so Condition 2.2 is valid. A straightforward
density argument shows that if Ṫr is bounded, then Condition 2.3 is valid.

Thus, the given spaces and operators satisfy the conditions imposed at the be-
ginning of Section 2.

We now comment on a few of the other quantities defined in Section 2. If
u ∈ H, and if Lu = 0 in Ω in the weak sense of formula (3.2), then by density
BΩ(ϕ

∣∣
Ω
, u) = 0 for all ϕ ∈ H with Ṫrϕ = 0; that is, (Lu)

∣∣
Ω

as defined in Section
2 satisfies (Lu)

∣∣
Ω

= 0.
If u ∈ HΩ, then formally

LBΩ u = (−1)m
∑

|α|=|β|=m

∂α(AαβEΩ(∂βu))

where EΩ denotes extension from Ω to Rd by zero.
If m = 1, then by an integration by parts argument we have that ṀBΩ u =

ν ·A∇u, where ν is the unit outward normal to Ω, whenever u is sufficiently smooth.
The weak formulation of Neumann boundary values of formula (2.7) coincides with
the formulation of higher order Neumann boundary data of [17, 18, 19] if Ṫr =
TrΩ∇m−1, with that of [3, 64] if Ṫru = (TrΩ u, ∂νu, . . . , ∂

m−1
ν u), and with [28, 52,

53] if Ṫru = {TrΩ ∂γu}|γ|≤m−1.

Remark 3.1. Each of the sesquilinear forms B and BΩ may be associated with
more than one choice of coefficients Aαβ .

For example, let Âαβ satisfy Âαβ(x) = Aαβ(x) for all x ∈ Ω. Then BΩ is
unchanged if Aαβ is replaced by Âαβ , but B is not.
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Conversely, let Ãαβ = Aαβ+Mαβ , where Mαβ is a constant that satisfies Mαβ =
−Mβα. A straightforward integration by parts argument shows that B (and thus
L) is unchanged if Aαβ is replaced by Ãαβ . However, the operators BΩ and BC do
take different values if Aαβ is replaced by Ãαβ .

Thus, as mentioned in Remark 2.4, B may be associated with more than one
form BΩ, and BΩ may be associated with more than one form B, that satisfy
Condition 2.2.

For many classes of domains there is a bounded extension operator from ĤΩ to
H, and so HΩ = ĤΩ = Ẇ 2

m(Ω) with equivalent norms. (If Ω is a Lipschitz domain
then this is a well known result of Calderón [26] and Stein [61, Theorem 5, p. 181];
the result is true for more general domains, see for example [41].)

As mentioned above, if Ω ⊂ Rd is a Lipschitz domain, then Ṫr is a bounded
operator H→ D̂.

If Ṫru = TrΩ∇m−1u, as in [17, 18, 19], then Ṫr has a bounded right inverse.
See [16]. If Ṫru = (TrΩ u, ∂νu, . . . , ∂

m−1
ν u) or Ṫru = {TrΩ ∂γu}|γ|≤m−1, as in

[3, 47, 53, 57, 60], and if Ω is bounded, then Ṫr has a bounded right inverse
even if ∂Ω is not connected; see [42] or [47, Proposition 7.3]. Thus, in either
of these cases, the norm in D is comparable to the Besov norm. Furthermore,
{∇m−1ϕ

∣∣
∂Ω

: ϕ ∈ C∞0 (Rd)} or {(TrΩ ϕ, ∂νϕ, . . . , ∂
m−1
ν ϕ) : ϕ ∈ C∞0 (Rd)} is dense

in D. Thus, if m = 1 then D = D̂ = Ḃ2,2
1/2(∂Ω). If m ≥ 2 then D is a closed proper

subspace of D̂, as the different partial derivatives of a common function must satisfy
certain compatibility conditions. In this case D is the Whitney-Sobolev space used
in many papers, including [1, 17, 25, 47, 52, 53, 54].

4. Construction of layer potentials

We will now use the Babuška-Lax-Milgram theorem to construct layer potentials.
This theorem may be stated as follows.

Theorem 4.1 ([13, Theorem 2.1]). Let H1 and H2 be two Hilbert spaces, and let
B be a bounded sesquilinear form on H1 × H2 that is coercive in the sense that
Condition 2.1 is valid.

Then for every linear functional T defined on H1 there is a unique uT ∈ H2

such that B(v, uT ) = T (v). Furthermore, ‖uT ‖H2 ≤ 1
λ‖T‖H1→C, where λ is as in

Condition 2.1.

We construct layer potentials as follows. Let ġ ∈ N2. Then the operator Tġϕ =
〈ġ, Ṫr1 ϕ〉 = 〈Ṫr1 ϕ, ġ〉 is a bounded linear operator on H1. By the Babuška-Lax-
Milgram theorem, there is a unique uT = SΩ

L ġ ∈ H2 such that

B(ϕ,SΩ
L ġ) = 〈Ṫr1 ϕ, ġ〉 for all ϕ ∈ H1. (4.1)

We will let SΩ
L ġ denote the single layer potential of ġ. Observe that the dependence

of SΩ
L on the parameter Ω consists entirely of the dependence of the trace operator

on Ω, and the connection between Ṫr1 and Ω is given by Condition 2.3. This
condition is symmetric about an interchange of Ω and C, and so

SΩ
L ġ = SC

Lġ. (4.2)

The double layer potential is somewhat more involved. We begin by defining the
Newton potential.
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Let H be an element of H∗1. By the Babuška-Lax-Milgram theorem, there is a
unique element NLH of H2 that satisfies

B(ϕ,NLH) = 〈ϕ,H〉 for all ϕ ∈ H1. (4.3)

We refer to NL as the Newton potential. In some applications, it is easier to work
with the Newton potential rather than the single layer potential directly; we remark
that

SΩ
L ġ = NL(Tġ) where 〈ϕ, Tġ〉 = 〈Ṫr1 ϕ, ġ〉. (4.4)

We now return to the double layer potential. Let ḟ ∈ D2. Then there is some
F ∈ H2 such that Ṫr2 F = ḟ . Let

DΩ
Bḟ = DΩ

L,BΩ ḟ = −F
∣∣
Ω

+ (NL(LBΩ F ))
∣∣
Ω

if Ṫr2 F = ḟ . (4.5)

Notice thatDΩ
Bḟ is an element of HΩ

2 , not of H2. Further observe that the single layer
potential SΩ

L depends only on Ṫr1 and B (equivalently on Ṫr1 and the operator L),
and not on the particular choice of BΩ. The double layer potential DΩ

B = DΩ
L,BΩ ,

by contrast, depends on both L (or B) and BΩ.
We conclude this section by showing that DΩ

Bḟ is well defined, that is, does not
depend on the choice of F in formula (4.5). We also establish that layer potentials
are bounded operators.

Lemma 4.2. The double layer potential is well defined. Furthermore, we have the
bounds

‖DΩ
Bḟ‖HΩ

2
≤ ‖B

C‖
λ
‖ḟ‖D2 , ‖DC

Bḟ‖HC
2
≤ ‖B

Ω‖
λ
‖ḟ‖D2 , ‖SΩ

L ġ‖H2 ≤
1
λ
‖ġ‖N2 .

Proof. By Theorem 4.1, we have

‖SΩ
L ġ‖H2 ≤

1
λ
‖Tġ‖H1→C ≤

1
λ
‖ Ṫr1 ‖H1→D1‖ġ‖D1→C.

By definition of D1 and N2, ‖ Ṫr1 ‖H1→D1 = 1 and ‖ġ‖D1→C = ‖ġ‖N2 , and so
SΩ
L : N2 → H2 is bounded with operator norm at most 1/λ.

We now turn to the double layer potential. We will begin with a few properties
of the Newton potential. By definition of L, if ϕ ∈ H1 then 〈ϕ,LF 〉 = B(ϕ, F ). By
definition of NL, B(ϕ,NL(LF )) = 〈ϕ,LF 〉. Thus, by coercivity of B,

F = NL(LF ) for all F ∈ H2. (4.6)

By definition of BΩ, BC and LBΩ F ,

〈ϕ,LF 〉 = B(ϕ, F ) = BΩ(ϕ
∣∣
Ω
, F
∣∣
Ω

) + BC(ϕ
∣∣
C
, F
∣∣
C
) = 〈ϕ,LBΩ F 〉+ 〈ϕ,LBCF 〉

for all ϕ ∈ H1. Thus, LF = LBΩ F + LBCF and so

− F +NL(LBΩ F ) = −F +NL(LF )−NL(LBCF ) = −NL(LBCF ). (4.7)

In particular, suppose that ḟ = Ṫr2 F = Ṫr2 F
′. By Condition 2.3, there is some

w ∈ H2 such that w
∣∣
Ω

= F
∣∣
Ω

and w
∣∣
C

= F ′
∣∣
C
. Then

−F
∣∣
Ω

+ (NL(LBΩ F ))
∣∣
Ω

= −w
∣∣
Ω

+ (NL(LBΩ w))
∣∣
Ω

= −(NL(LBCw))
∣∣
Ω

= −(NL(LBCF ′))
∣∣
Ω

= −F ′
∣∣
Ω

+ (NL(LBΩ F ′))
∣∣
Ω

and so DΩ
Bḟ is well-defined, that is, depends only on ḟ and not the choice of function

F with Ṫr2 F = ḟ .
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Furthermore, we have the alternative formula

DΩ
Bḟ = −(NL(LBCF ))

∣∣
Ω

if Ṫr2 F = ḟ . (4.8)

Thus,

‖DΩ
Bḟ‖HΩ

2
≤ inf

Ṫr2 F=ḟ
‖(NL(LBCF ))

∣∣
Ω
‖HΩ

2
≤ inf

Ṫr2 F=ḟ
‖NL(LBCF )‖H2

by definition of the HΩ
2 -norm.

By Theorem 4.1 and the definition of NL, we have that

‖NL(LBCF )‖H2 ≤
1
λ
‖LBCF‖H1→C.

Since LBCF (ϕ) = BC(ϕ
∣∣
C
, F
∣∣
C
), we have that

‖LBCF‖H1→C ≤ ‖BC‖‖F
∣∣
C
‖HC

2
≤ ‖BC‖‖F‖H2

and so
‖DΩ

Bḟ‖HΩ
2
≤ inf

Ṫr2 F=ḟ

1
λ
‖BC‖‖F‖H2 =

1
λ
‖BC‖‖ḟ‖D2

as desired. �

5. Properties of layer potentials

We will begin this section by showing that layer potentials are solutions to
the equation (Lu)

∣∣
Ω

= 0 (Lemma 5.1). We will then prove the Green’s formula
(Lemma 5.2), the adjoint formulas for layer potentials (Lemma 5.3), and conclude
this section by proving the jump relations for layer potentials (Lemma 5.4).

Lemma 5.1. Let ḟ ∈ D2, ġ ∈ N2, and let u = DΩ
Bḟ or u = SΩ

L ġ
∣∣
Ω

. Then
(Lu)

∣∣
Ω

= 0.

Proof. Recall that (Lu)
∣∣
Ω

= 0 if BΩ(ϕ+

∣∣
Ω
, u) = 0 for all ϕ+ ∈ H1 with Ṫr1 ϕ+ = 0.

If Ṫr1 ϕ+ = 0 = Ṫr1 0, then by Condition 2.3 there is some ϕ ∈ H1 with ϕ
∣∣
Ω

= ϕ+,
ϕ
∣∣
C

= 0 and Ṫr1 ϕ = 0.
By definition (4.1) of the single layer potential,

0 = B(ϕ,SLġ) = BΩ(ϕ
∣∣
Ω
,SΩ
L ġ
∣∣
Ω

) + BC(ϕ
∣∣
C
,SΩ
L ġ
∣∣
C
) = BΩ(ϕ+

∣∣
Ω
,SΩ
L ġ
∣∣
Ω

)

as desired.
Turning to the double layer potential, if ϕ ∈ H1, then by definition (4.5) of DΩ

B,
formula (4.8) for DC

B and linearity of BΩ,

BΩ(ϕ
∣∣
Ω
,DΩ

Bḟ) = −BΩ
(
ϕ
∣∣
Ω
, F
∣∣
Ω

)
+ BΩ

(
ϕ
∣∣
Ω
, (NL(LBΩ F ))

∣∣
Ω

)
,

BC(ϕ
∣∣
C
,DC

Bḟ) = −BC
(
ϕ
∣∣
C
, (NL(LBΩ F ))

∣∣
C

)
.

Subtracting and applying Condition 2.2,

BΩ(ϕ
∣∣
Ω
,DΩ

Bḟ)−BC(ϕ
∣∣
C
,DC

Bḟ
∣∣
C
) = −BΩ

(
ϕ
∣∣
Ω
, F
∣∣
Ω

)
+ B

(
ϕ,NL(LBΩ F )

)
.

By definition (4.3) of NL,

B
(
ϕ,NL(LBΩ F )

)
= 〈ϕ,LBΩ F 〉

and by the definition (2.8) of LBΩ F ,

B
(
ϕ,NL(LBΩ F )

)
= BΩ(ϕ

∣∣
Ω
, F
∣∣
Ω

).
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Thus,
BΩ(ϕ

∣∣
Ω
,DΩ

Bḟ)−BC(ϕ
∣∣
C
,DC

Bḟ) = 0 for all ϕ ∈ H1. (5.1)

In particular, as before if Ṫr1 ϕ+ = 0 then there is some ϕ with ϕ
∣∣
Ω

= ϕ+

∣∣
Ω

,
ϕ
∣∣
C

= 0 and so BΩ(ϕ
∣∣
Ω
,DΩ

Bḟ) = 0. This completes the proof. �

Lemma 5.2. If u ∈ HΩ
2 and (Lu)

∣∣
Ω

= 0, then

u = −DΩ
B(Ṫr2 U) + SΩ

L (ṀBΩ u)
∣∣
Ω
, 0 = DC

B(Ṫr2 U) + SC
L(ṀBΩ u)

∣∣
C

for any U ∈ H2 with U
∣∣
Ω

= u.

Proof. By definition (4.5) of the double layer potential,

−DΩ
B(Ṫr2 U) = U

∣∣
Ω
− (NL(LBΩ U))

∣∣
Ω

= u− (NL(LBΩ u))
∣∣
Ω

and by formula (4.8)

DC
B(Ṫr2 U) = −(NL(LBΩ u))

∣∣
C
.

It suffices to show that NL(LBΩ u) = SΩ
L (ṀBΩ u).

Let ϕ ∈ H1. By formulas (4.1) and (2.7),

B(ϕ,SΩ
L (ṀBΩ u)) = 〈Ṫr1 ϕ, ṀBΩ u〉 = BΩ(ϕ

∣∣
Ω
, u).

By formula (4.3) for the Newton potential and by the definition (2.8) of LBΩ u,

B(ϕ,NL(LBΩ u)) = 〈ϕ,LBΩ u〉 = BΩ(ϕ
∣∣
Ω
, u).

Thus, B(ϕ,NL(LBΩ u)) = B(ϕ,SΩ
L (ṀBΩ u)) for all ϕ ∈ H1; by coercivity of B,

we must have that NL(LBΩ u) = SΩ
L (ṀBΩ u). This completes the proof. �

Let B∗(ϕ,ψ) = B(ψ,ϕ) and define BΩ
∗ , BC

∗ analogously. Then B∗ is a bounded
and coercive operator H2 × H1 → C, and so we can define the double and single
layer potentials DΩ

B∗ : D1 → HΩ
1 , SΩ

L∗ : N1 → H1.
We then have the following adjoint relations.

Lemma 5.3. We have the adjoint relations

〈ϕ̇, ṀBΩ DΩ
Bḟ〉 = 〈ṀBΩ

∗
DΩ

B∗ϕ̇, ḟ〉, (5.2)

〈γ̇, Ṫr2 SΩ
L ġ〉 = 〈Ṫr1 SΩ

L∗ γ̇, ġ〉 (5.3)

for all ḟ ∈ D2, ϕ̇ ∈ D1, ġ ∈ N2 and γ̇ ∈ N1.
If we let ṪrΩ

2 DΩ
Bḟ = − Ṫr2 F+Ṫr2NL(LBΩ F )) for any F ∈ H2 with Ṫr2 F = ḟ ,

then ṪrΩ
2 DΩ

Bḟ does not depend on the choice of F , and we have the duality relations

〈γ̇, ṪrΩ
2 DΩ

Bḟ〉 = 〈−γ̇ + ṀBΩ
∗
SΩ
L∗ γ̇, ḟ〉. (5.4)

Proof. By formula (4.1),

〈Ṫr1 SΩ
L∗ γ̇, ġ〉 = B(SΩ

L∗ γ̇,SΩ
L ġ〉,

〈Ṫr2 SΩ
L ġ, γ̇〉 = B∗(SΩ

L ġ,SΩ
L∗ γ̇〉

and so formula (5.3) follows by definition of B∗.
Let Φ ∈ H1 and F ∈ H2 with Ṫr1 Φ = ϕ̇, Ṫr2 F = ḟ . Then by formulas (2.7)

and (4.5),

〈ϕ̇, ṀBΩ DΩ
Bḟ〉 = BΩ(Φ

∣∣
Ω
,DΩ

Bḟ) = −BΩ(Φ
∣∣
Ω
, F
∣∣
Ω

) + BΩ(Φ
∣∣
Ω
, (NL(LBΩ F ))

∣∣
Ω

)
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and so

〈ϕ̇, ṀBΩ DΩ
Bḟ〉 = −BΩ

∗ (F
∣∣
Ω
,Φ
∣∣
Ω

) + BΩ
∗ ((NL(LBΩ F ))

∣∣
Ω
,Φ
∣∣
Ω

).

By formula (2.8),

BΩ
∗ ((NL(LBΩ F ))

∣∣
Ω
,Φ
∣∣
Ω

) = 〈NL(LBΩ F ), LBΩ
∗

Φ〉.

By formula (4.3), if H ∈ H∗1 and ϕ ∈ H2 then B∗(ϕ,NL∗H) = 〈ϕ,H〉. Letting
ϕ = NL(LBΩ F ) and H = LBΩ

∗
Φ, we see that

BΩ
∗ ((NL(LBΩ F ))

∣∣
Ω
,Φ
∣∣
Ω

) = B∗
(
NL(LBΩ F ),NL∗(LBΩ

∗
Φ)
)
.

Therefore,

〈ϕ̇, ṀBΩ DΩ
Bḟ〉 = −BΩ

∗ (F
∣∣
Ω
,Φ
∣∣
Ω

) + B∗(NL(LBΩ F ),NL∗(LBΩ
∗

Φ)).

By the same argument

〈ḟ , ṀBΩ
∗
DΩ

B∗ϕ̇〉 = −BΩ(Φ
∣∣
Ω
, F
∣∣
Ω

) + B(NL∗(LBΩ
∗

Φ),NL(LBΩ F ))

and by definition of B∗ and BΩ
∗ formula (5.2) is proven.

Finally, by definition of ṪrΩ
2 DΩ

B,

〈γ̇, ṪrΩ
2 DΩ

Bḟ〉 = −〈γ̇, Ṫr2 F 〉+ 〈γ̇, Ṫr2NL(LBΩ F ))〉.

By the definition (4.1) of the single layer potential,

〈γ̇, Ṫr2NL(LBΩ F )〉 = B∗(NL(LBΩ F ),SΩ
L∗ γ̇).

By definition of B∗ and the definition (4.3) of the Newton potential,

B∗(NL(LBΩ F ),SΩ
L∗ γ̇) = 〈SΩ

L∗ γ̇, LBΩ F 〉

and by the definition (2.8) of LBΩ F ,

〈SΩ
L∗ γ̇, LBΩ F 〉 = BΩ(SΩ

L∗ γ̇
∣∣
Ω
, F
∣∣
Ω

).

By the definition (2.7) of Neumann boundary values,

BΩ
∗ (F

∣∣
Ω
,SΩ
L∗ γ̇

∣∣
Ω

) = 〈Ṫr2 F, ṀBΩ
∗

(SΩ
L∗ γ̇

∣∣
Ω

)〉

and so
〈γ̇, ṪrΩ

2 DΩ
Bḟ〉 = −〈γ̇, ḟ〉+ 〈ṀBΩ

∗
(SΩ
L∗ γ̇

∣∣
Ω

), ḟ〉

for any choice of F . Thus ṪrΩ
2 DΩ

B is well-defined and formula (5.4) is valid. �

We conclude this section with the jump relations for layer potentials.

Lemma 5.4. Let ṪrΩ
2 DΩ

B be as in Lemma 5.3. If ḟ ∈ D2 and ġ ∈ N2, then we
have the jump and continuity relations

ṪrΩ
2 DΩ

Bḟ + ṪrC
2 DC

Bḟ = −ḟ , (5.5)

ṀBΩ(SΩ
L ġ
∣∣
Ω

) + ṀBC(SC
Lġ
∣∣
C
) = ġ, (5.6)

ṀBΩ(DΩ
Bḟ)− ṀBC(DC

Bḟ) = 0. (5.7)

If there are bounded operators ṪrΩ
2 : HΩ

2 → D2 and ṪrC
2 : HC

2 → D2 such that
Ṫr2 F = ṪrΩ

2 (F
∣∣
Ω

) = ṪrC
2 (F

∣∣
C
) for all F ∈ H2, then in addition

ṪrΩ
2 (SΩ

L ġ
∣∣
Ω

)− ṪrC
2 (SC

Lġ
∣∣
C
) = 0. (5.8)
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In the absence of an operator ṪrΩ
2 , the continuity relation

Ṫr2 SΩ
L ġ − Ṫr2 SC

Lġ = 0 (5.9)

is valid (and follows immediately from formula (4.2)). Existence of the operator
ṪrΩ

2 is equivalent to the condition that Ṫr2 u = 0 whenever u
∣∣
Ω

= 0. This condition
is natural if Ω ⊂ Rd is an open set, C = Rd \ Ω and Ṫr2 denotes a trace operator
restricting functions to the boundary ∂Ω. Observe that if such operators ṪrΩ

2 and
ṪrC

2 exist, then by the definition (4.5) of the double layer potential and by the
definition of ṪrΩ

2 DΩ
B in Lemma 5.3, ṪrΩ

2 (DΩ
Bḟ) = (ṪrΩ

2 DΩ
B)ḟ and so there is no

ambiguity of notation.

Proof of Lemma 5.4. The continuity relation (5.8) follows from formula (4.2) be-
cause SΩ

L ġ ∈ H2 and by the definition of ṪrΩ
2 , ṪrC

2 .
The jump relation (5.5) follows from the definition of ṪrΩ

2 DΩ
B and by using

formula (4.7) to rewrite ṪrC
2 DC

B.
We observe that by the definition (2.7) of Neumann boundary values and the

definitions (2.3) and (2.6) of D1 and N2, if u ∈ HΩ
2 and v ∈ HC

2 with (Lu)
∣∣
Ω

= 0
and (Lv)

∣∣
C

= 0, then

ṀBΩ u+ ṀBC v = ψ̇ if and only if 〈Ṫr1 ϕ, ψ̇〉 = BΩ(ϕ
∣∣
Ω
, u) + BC(ϕ

∣∣
C
, v)

for all ϕ ∈ H1.
Therefore, the continuity relation (5.7) follows from formula (5.1), and the jump

relation (5.6) follows from formula (4.2) and from the definition (4.1) of the single
layer potential. �

6. Layer potentials and boundary value problems

We now discuss boundary value problems. We routinely wish to establish exis-
tence and uniqueness of solutions to the Dirichlet problem

(L̂u)
∣∣
Ω

= 0, T̂rΩ
X u = ḟ , ‖u‖XΩ ≤ C‖ḟ‖DX

,

and the Neumann problem

(L̂u)
∣∣
Ω

= 0, M̂Ω
X u = ġ, ‖u‖XΩ ≤ C‖ġ‖NX

for some constant C and some solution space X and spaces of Dirichlet and Neu-
mann boundary data DX and NX. For example, if L̂ is a second-order differential
operator, then as in [31, 40, 43, 44] we might wish to establish well-posedness with
DX = Ẇ p

1 (∂Ω), NX = Lp(∂Ω) and XΩ = {u : Ñ(∇u) ∈ Lp(∂Ω)}, where Ñ is the
modified nontangential maximal function introduced in [43].

If XΩ = HΩ
2 , DX = D2 and NX = N2, then under some modest additional

assumptions, a brief and fairly standard argument involving the Babuška-Lax-
Milgram theorem yields well posedness. We will provide these arguments in Section
6.1.

In more general spaces, the method of layer potentials states that if layer poten-
tials, originally defined as bounded operators DΩ

B : D2 → H2 and SΩ
L : N2 → H2,

may be extended to operators D̂Ω : DX → X and ŜΩ : NX → X, and if certain of
the properties of layer potentials of Section 5 are preserved by that extension, then
well posedness of boundary value problems are equivalent to certain invertibility
properties of layer potentials.
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In Sections 6.2 and 6.3 we will make this notion precise.
As in Sections 2, 4 and 5, we will work with layer potentials and function spaces

in a very abstract setting.

6.1. Boundary value problems via the Babuška-Lax-Milgram theorem.
Consider the Dirichlet problem of finding a u ∈ H2 that satisfies

(Lu)
∣∣
Ω

= 0, Ṫr2 u = ḟ , ‖u‖H2 ≤ C‖ḟ‖D2 (6.1)

or the Neumann problem of finding a u ∈ HΩ
2 that satisfies

(Lu)
∣∣
Ω

= 0, ṀBΩ u = ġ, ‖u‖HΩ
2
≤ C‖ġ‖N2 . (6.2)

Under some modest additional assumptions on the operators L and BΩ, a stan-
dard argument involving Theorem 4.1 yields unique solvability of these problems.

Lemma 6.1. Let H̊j = {ϕ ∈ Hj : Ṫrj ϕ = 0}. Suppose that there is a λ′ > 0 such
that

sup
w∈H̊1\{0}

|B(w, v)|
‖w‖H1

≥ λ′‖v‖H2 , sup
w∈H̊2\{0}

|B(u,w)|
‖w‖H2

≥ λ′‖u‖H1 (6.3)

for all u ∈ H̊1 and v ∈ H̊2. Then there is a C such that, for each ḟ ∈ D2, there is
a function u ∈ H2 such that the problem (6.1) is valid.

Furthermore, if u1 and u2 are two solutions to this problem then u1

∣∣
Ω

= u2

∣∣
Ω

.
Thus, there is a unique u ∈ HΩ

2 such that

(Lu)
∣∣
Ω

= 0, Ṫr2 U = ḟ for some U ∈ H2 with U
∣∣
Ω

= u, ‖u‖H2 ≤ C‖ḟ‖D2 .

In particular, if operators ṪrΩ
2 as in Lemma 5.4 exist, then there exists a unique

solution u ∈ HΩ
2 to the problem

(Lu)
∣∣
Ω

= 0, ṪrΩ
2 u = ḟ , ‖u‖HΩ

2
≤ C‖ḟ‖D2 .

If the condition (3.3) is valid, or more generally if H1 = H2 and Condition 2.1 is
strengthened to the condition |B(u, u)| ≥ λ‖u‖2, then the condition (6.3) is valid.

Proof of Lemma 6.1. We will in fact produce a u ∈ H2 that is a joint solution both
to the problem (6.1) and to the problem

(Lu)
∣∣
C

= 0, Ṫr2 u = ḟ , ‖u‖H2 ≤ C‖ḟ‖D2 .

Because ḟ ∈ D2, there is some F ∈ H2 such that Ṫr2 F = ḟ . Observe that H̊j
is a Hilbert space and that the operator T given by Tϕ = B(ϕ, F ) is bounded.
By Theorem 4.1, there is a unique w ∈ H̊2 such that B(ϕ,w) = B(ϕ, F ) for each
ϕ ∈ H̊1. Let u = F − w. Then u is the unique element of H2 that satisfies
Ṫr2 u = Ṫr2 F − Ṫr2 w = ḟ and B(ϕ, u) = 0 for all ϕ ∈ H̊1. By Conditions 2.2 and
2.3 and the definition (2.5) of (Lu)

∣∣
Ω

, (Lu)
∣∣
Ω

= 0 and (Lu)
∣∣
C

= 0 if and only if
B(ϕ, u) = 0 for all ϕ ∈ H̊1. Thus, u is the the unique element of H2 that satisfies
Ṫr2 u = ḟ and (Lu)

∣∣
Ω

= 0 = (Lu)
∣∣
C
.

We now turn to uniqueness. Let u be as before. Suppose that (Lu1)
∣∣
Ω

= 0 and
Ṫr2 u1 = ḟ . Then by Condition 2.3, there is some w ∈ H2 such that w

∣∣
Ω

= u1

∣∣
Ω

and w
∣∣
C

= u
∣∣
C
. But then (Lw)

∣∣
Ω

= (Lu1)
∣∣
Ω

= 0 and (Lw)
∣∣
C

= (Lu)
∣∣
C

= 0, and
Ṫr2 w = Ṫr2 u1 = Ṫr2 u = ḟ , and so w = u. In particular u1

∣∣
Ω

= w
∣∣
Ω

= u
∣∣
Ω

, as
desired. �
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Lemma 6.2. Suppose that there is a λ′ > 0 such that

sup
w∈HΩ

1 \{0}

|BΩ(w, v)|
‖w‖HΩ

1

≥ λ′‖v‖HΩ
2
, sup

w∈HΩ
2 \{0}

|BΩ(u,w)|
‖w‖HΩ

2

≥ λ′‖u‖HΩ
1

(6.4)

for all u ∈ HΩ
1 and v ∈ HΩ

2 .
Let D̊1 = {Ṫr1 ϕ : ϕ ∈ H1, ϕ

∣∣
Ω

= 0}. Suppose that ġ ∈ N2 and that 〈ḟ , ġ〉 = 0
for all ḟ ∈ D̊1. Then there is a C independent of ġ such that there is exactly one
function u ∈ HΩ

2 such that the problem (6.2) is valid.

Recall that 〈Ṫr1 ϕ, ṀBΩ u〉 = BΩ(ϕ
∣∣
Ω
, u) for all ϕ ∈ H1; thus, the given con-

dition on ġ is necessary. If operators ṪrΩ
1 parallel to those in Lemma 5.4 exist,

then D̊1 = {0} and so solutions to the Neumann problem exist for all ġ ∈ N2. In
the case of the operators of Section 3, the condition (6.4) does not follow from the
condition (3.3); this condition must be replaced by the condition

<
∑

|α|=|β|=m

∫
Ω

∂αϕAαβ ∂
βϕ ≥ λ‖∇mϕ‖2L2(Ω) for all ϕ ∈ Ẇ 2

m(Rd).

Proof of Lemma 6.2. Let ġ ∈ N2 with 〈ḟ , ġ〉 = 0 for all ḟ ∈ D̊1. Let Tġ be the
operator on HΩ

1 given by Tġϕ = 〈Ṫr1 Φ, ġ〉 for any Φ ∈ H1 with Φ
∣∣
Ω

= ϕ. Then Tġ

is bounded and well defined.
By Theorem 4.1, there is a unique u ∈ HΩ

2 such that BΩ(ϕ, u) = Tġϕ for all
ϕ ∈ HΩ

1 . By definition of Tġ, we have that BΩ(Φ
∣∣
Ω
, u) = 〈Ṫr1 Φ, ġ〉 for any Φ ∈ H1.

By the definitions (2.5) and (2.7), we have that (Lu)
∣∣
Ω

= 0 and ṀBΩ u = ġ.
Conversely, if (Lu1)

∣∣
Ω

= 0 and ṀBΩ u1 = ġ, then BΩ(ϕ, u1) = Tġϕ for all ϕ ∈ HΩ
1 ,

and so u1 = u and the solution is unique. �

6.2. From invertibility to well posedness. In this section we will need the
following objects.

• Quasi-Banach spaces YΩ, DX and NX.
• Linear operators T̂rΩ

X : YΩ → DX and M̂Ω
X : YΩ → NX.

• Linear operators D̂Ω : DX → YΩ and ŜΩ : NX → YΩ.
For the sake of the applications, we will introduce the following notation.

Definition 6.3. We will let XΩ be any superspace of YΩ, that is, any quasi-Banach
space with XΩ ⊇ YΩ and with ‖u‖XΩ = ‖u‖YΩ for any u ∈ YΩ.

We will let (L̂ · )
∣∣
Ω

be any operator defined on XΩ such that (L̂u)
∣∣
Ω

= 0 if and
only if u ∈ YΩ. Thus, YΩ = {u ∈ XΩ : (L̂u)

∣∣
Ω

= 0}; we will routinely use this
expression for YΩ.

Such a superspace and operator must exist. For example, we could take XΩ =
YΩ, and given an XΩ ⊇ YΩ we could let (L̂ · )

∣∣
Ω

be the (nonlinear) indicator
function of XΩ \YΩ.

Remark 6.4. In the situation of Section 6.1, YΩ = {u ∈ HΩ
2 : (Lu)

∣∣
Ω

= 0},
and so the use of the space XΩ = HΩ

2 and operator (L̂ · )
∣∣
Ω

= (L · )
∣∣
Ω

is very
natural. As discussed above, in the situation of [31, 40, 43, 44], the use of the space
XΩ = {u : Ñ(∇u) ∈ Lp(Ω)} and the operator L given by formula (3.2) is equally
natural.
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This section could be written strictly in terms of the space YΩ; however, we have
chosen to use the auxiliary space XΩ and operator (L̂ · )

∣∣
Ω

because of their natural
roles in the applications.

Remark 6.5. Inherent in the requirements that D̂Ω : DX → YΩ and ŜΩ : NX →
YΩ is the requirement that if ġ ∈ NX then (L̂(ŜΩġ))

∣∣
Ω

= 0, and if ḟ ∈ DX then
(L̂(D̂Ωḟ))

∣∣
Ω

= 0.

Remark 6.6. Recall that SΩ
L = SC

L is defined in terms of a “global” Hilbert space
H2. If XΩ = HΩ

2 , then we have in mind the example ŜΩġ = SΩ
L ġ
∣∣
Ω

. In the general
case, we do not assume the existence of a global quasi-Banach space X whose
restrictions to Ω lie in XΩ, and thus we will let ŜΩġ be an element of XΩ without
assuming a global extension.

In applications it is often useful to define ṪrΩ
2 , ṀBΩ , L, DΩ

B and SΩ
L in terms

of some Hilbert spaces Hj , HΩ
j and to extend these operators to operators with

domain or range XΩ by density or some other means. See, for example, [19]. We
will not assume that the operators T̂rΩ

X, M̂Ω
X, L̂, D̂Ω and ŜΩ arise by density; we

will merely require that they satisfy certain properties similar to those established
in Section 5.

Specifically, we will often use the following conditions; observe that if XΩ = HΩ
2

for some HΩ
2 as in Section 2, and if T̂rΩ

X is the operator ṪrΩ
2 of Lemma 5.4, then

these properties are valid.

Condition 6.7. T̂rΩ
X is bounded YΩ → DX; that is, T̂rΩ

X is a bounded operator
from {u ∈ XΩ : (L̂u)

∣∣
Ω

= 0} to DX.

Condition 6.8. M̂Ω
X is a bounded operator {u ∈ XΩ : (L̂u)

∣∣
Ω

= 0} → NX.

Condition 6.9. The single layer potential ŜΩ is bounded NX → YΩ; equivalently,
ŜΩ is bounded NX → XΩ.

Condition 6.10. The double layer potential D̂Ω is bounded DX → XΩ.

Condition 6.11. If u ∈ YΩ, that is, if u ∈ XΩ and (L̂u)
∣∣
Ω

= 0, then we have the
Green’s formula

u = −D̂Ω(T̂rΩ
X u) + ŜΩ(M̂Ω

X u).

The following theorem is straightforward to prove and is the core of the classic
method of layer potentials.

Theorem 6.12. Let XΩ, (L̂ · )
∣∣
Ω

, DX, NX, T̂rΩ
X, M̂Ω

X, D̂Ω, and ŜΩ be as given at
the beginning of this section.

Suppose that T̂rΩ
X ŜΩ : NX → DX is surjective. Then for every ḟ ∈ DX, there is

some u such that
(L̂u)

∣∣
Ω

= 0, T̂rΩ
X u = ḟ , u ∈ XΩ. (6.5)

Suppose in addition that Condition 6.9 is valid, and that T̂rΩ
X ŜΩ : NX → DX has a

bounded right inverse, that is, there is a constant C0 such that if ḟ ∈ DX, then there
is some pre-image ġ of ḟ with ‖ġ‖NX

≤ C0‖ḟ‖DX
. Then there is some constant C1

depending on C0 and the implicit constant in Condition 6.9 such that if ḟ ∈ DX,
then there is some u ∈ XΩ such that

(L̂u)
∣∣
Ω

= 0, T̂rΩ
X u = ḟ , ‖u‖XΩ ≤ C1‖ḟ‖DX

. (6.6)
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Suppose that M̂Ω
X D̂Ω : DX → NX is surjective. Then for every ġ ∈ NX, there is

some u such that
(L̂u)

∣∣
Ω

= 0, M̂Ω
X u = ġ, u ∈ XΩ. (6.7)

If Condition 6.10 is valid and M̂Ω
X D̂Ω : DX → NX has a bounded right inverse, then

there is some constant C1 depending on the bound on that inverse and the implicit
constant in Condition 6.10 such that if ġ ∈ NX, then there is some u ∈ XΩ such
that

(L̂u)
∣∣
Ω

= 0, M̂Ω
X u = ġ, ‖u‖XΩ ≤ C1‖ġ‖NX

. (6.8)

Thus, surjectivity of layer potentials implies existence of solutions to boundary
value problems.

We may also show that injectivity of layer potentials implies uniqueness of solu-
tions to boundary value problems. This argument appeared first in [23] and is the
converse to an argument of [63].

Theorem 6.13. Let XΩ, (L̂ ·)
∣∣
Ω

, DX, NX, T̂rΩ
X, M̂Ω

X, D̂Ω, and ŜΩ be as given at
the beginning of this section.

Suppose that Condition 6.11 is valid. Suppose furthermore that the operator
T̂rΩ

X ŜΩ : NX → DX is one-to-one. Then for each ḟ ∈ DX, there is at most one
solution u to the Dirichlet problem

(L̂u)
∣∣
Ω

= 0, T̂rΩ
X u = ḟ , u ∈ XΩ.

If Conditions 6.7, 6.9, 6.10 and 6.11 are all valid, and if T̂rΩ
X ŜΩ : NX → DX

has a bounded left inverse, that is, there is a constant C0 such that the estimate
‖ġ‖NX

≤ C0‖ T̂rΩ
X ŜΩġ‖DX

is valid for all ġ ∈ NX, then there is some constant
C1 such that every u ∈ XΩ with (L̂u)

∣∣
Ω

= 0 satisfies ‖u‖XΩ ≤ C1‖ T̂rΩ
X u‖DX

(that is, if u satisfies the Dirichlet problem (6.5) then u must satisfy the Dirichlet
problem (6.6)).

Similarly, if Condition 6.11 is valid and the operator M̂Ω
X D̂Ω : DX → NX is

one-to-one, then for each ġ ∈ NX, there is at most one solution u to the Neumann
problem

(L̂u)
∣∣
Ω

= 0, M̂Ω
X u = ġ, u ∈ XΩ.

If Conditions 6.8, 6.9, 6.10 and 6.11 are all valid, and if M̂Ω
X D̂Ω : DX → NX has

a bounded left inverse, then there is some constant C1 such that every u ∈ XΩ with
(L̂u)

∣∣
Ω

= 0 satisfies ‖u‖XΩ ≤ C1‖ M̂Ω
X u‖DX

.

Proof. We present the proof only for the Neumann problem; the argument for the
Dirichlet problem is similar.

Throughout the proof we will let C denote a constant whose value may change
from line to line.

Suppose that u, v ∈ XΩ with (L̂u)
∣∣
Ω

= (L̂v)
∣∣
Ω

= 0 in Ω and M̂Ω
X u = ġ = M̂Ω

X v.
By Condition 6.11,

u = −D̂Ω(T̂rΩ
X u) + ŜΩ(M̂Ω

X u) = −D̂Ω(T̂rΩ
X u) + ŜΩġ,

v = −D̂Ω(T̂rΩ
X v) + ŜΩ(M̂Ω

X v) = −D̂Ω(T̂rΩ
X v) + ŜΩġ.

In particular, M̂Ω
X D̂Ω(T̂rΩ

X u) = M̂Ω
X D̂Ω(T̂rΩ

X v). If M̂Ω
X D̂Ω is one-to-one, then

T̂rΩ
X u = T̂rΩ

X v. Another application of Condition 6.11 yields that u = v.
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Now, suppose that M̂Ω
X D̂Ω has a bounded left inverse; this implies that for

any ḟ ∈ DX we have the estimate ‖ḟ‖DX
≤ C0‖ M̂Ω

X D̂Ωḟ‖NX
. Let u ∈ XΩ with

(L̂u)
∣∣
Ω

= 0; we want to show that ‖u‖XΩ ≤ C‖ M̂Ω
X u‖DX

.
By Condition 6.11, and because XΩ is a quasi-Banach space,

‖u‖XΩ ≤ C‖D̂Ω(T̂rΩ
X u)‖XΩ + C‖ŜΩ(M̂Ω

X u)‖XΩ .

By Conditions 6.9 and 6.10,

‖u‖X ≤ C‖ T̂rΩ
X u‖DX

+ C‖ M̂Ω
X u‖NX

.

Applying our estimate on M̂Ω
X D̂Ω, we see that

‖u‖X ≤ C‖ M̂Ω
X D̂Ω T̂rΩ

X u‖NX
+ C‖ M̂Ω

X u‖NX
.

By Condition 6.11, D̂Ω(T̂rΩ
X u) = ŜΩ(M̂Ω

X u)− u, and so

‖u‖X ≤ C‖ M̂Ω
X ŜΩ M̂Ω

X u‖NX
+ C‖ M̂Ω

X u‖NX
.

An application of Conditions 6.8 and 6.9 completes the proof. �

6.3. From well posedness to invertibility. We are now interested in the con-
verse results. That is, we have shown that results for layer potentials imply results
for boundary value problems; we would like to show that results for boundary value
problems imply results for layer potentials.

Notice that the above results were built on the Green’s formula (that is, Condi-
tion 6.11). The converse results will be built on jump relations, as in Lemma 5.4.
Recall that jump relations treat the interplay between layer potentials in a domain
and in its complement; thus we will need to impose conditions in both domains.

In this section we will need the following spaces and operators.
• Quasi-Banach spaces YU, YW, DX and NX. As in Section 6.2, we will let

YU = {u ∈ XU : (L̂u)
∣∣
U

= 0} and YW = {v ∈ XW : (L̂v)
∣∣
W

= 0} for some
superspaces XU, XW and operators (L̂ ·)

∣∣
U

, (L̂ · )
∣∣
W

.
• Linear operators T̂rU

X : YU → DX, M̂U
X : YU → NX, T̂rW

X : YW → DX, and
M̂W

X : YW → NX.
• Linear operators D̂U : DX → YU, D̂W : DX → YW, ŜU : NX → YU and
ŜW : NX → YW.

In the applications U is an open set in Rd or in a smooth manifold, and W = Rd \U
is the interior of its complement. The space XW is then a space of functions defined
in W and is thus a different space from XU. However, we emphasize that we
have defined only one space DX of Dirichlet boundary values and one space NX

of Neumann boundary values; that is, the traces from both sides of the boundary
must lie in the same spaces.

We will often use the following conditions. Note the similarity between Con-
ditions 6.7–6.11 and Conditions 6.14–6.18; Conditions 6.14–6.18 state that Condi-
tions 6.7–6.11 hold for both Ω = U and Ω = W.

Condition 6.14. T̂rU
X is bounded {u ∈ XU : (L̂u)

∣∣
U

= 0} → DX, and T̂rW
X is

bounded {v ∈ XW : (L̂v)
∣∣
W

= 0} → DX.

Condition 6.15. M̂U
X is bounded {u ∈ XU : (L̂u)

∣∣
U

= 0} → NX, and M̂W
X is

bounded {v ∈ XW : (L̂v)
∣∣
W

= 0} → NX.
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Condition 6.16. ŜU is bounded NX → XU, and ŜW is bounded NX → XW.

Condition 6.17. D̂U is bounded DX → XU, and D̂W is bounded DX → XW.

Condition 6.18. If u ∈ XU and (L̂u)
∣∣
U

= 0, and if v ∈ XW and (L̂v)
∣∣
W

= 0, then

u = −D̂U(T̂rU
X u) + ŜU(M̂U

X u) and v = −D̂W(T̂rW
X v) + ŜW(M̂W

X v).

Condition 6.19. If ġ ∈ NX, then we have the continuity relation

T̂rU
X(ŜUġ)− T̂rW

X (ŜWġ) = 0.

Condition 6.20. If ḟ ∈ DX, then we have the continuity relation

M̂U
X(D̂Uḟ)− M̂W

X (D̂Wḟ) = 0.

Condition 6.21. If ġ ∈ NX, then we have the jump relation

M̂U
X(ŜUġ) + M̂W

X (ŜWġ) = ġ.

Condition 6.22. If ḟ ∈ DX, then we have the jump relation

T̂rU
X(D̂Uḟ) + T̂rW

X (D̂Wḟ) = −ḟ .

We now move from well posedness of boundary value problems to invertibility
of layer potentials. The following theorem uses an argument of Verchota from [63].

Theorem 6.23. Assume that Conditions 6.19 and 6.21 are valid. Suppose that,
for any ḟ ∈ DX, there is at most one solution u or v to each of the two Dirichlet
problems

(L̂u)
∣∣
U

= 0, T̂rU
X u = ḟ , u ∈ XU,

(L̂v)
∣∣
W

= 0, T̂rW
X v = ḟ , v ∈ XW.

Then T̂rU
X ŜU : NX → DX is one-to-one.

If in addition Condition 6.15 is valid and there is a constant C0 such that every
u ∈ XU and v ∈ XW with (L̂u)

∣∣
U

= 0 and (L̂v)
∣∣
W

= 0 satisfies

‖u‖XU ≤ C0‖ T̂rU
X u‖DX

, ‖v‖XW ≤ C0‖ T̂rW
X v‖DX

,

then there is a constant C1 such that the bound ‖ġ‖NX
≤ C1‖ T̂rU

X ŜUġ‖DX
is valid

for all ġ ∈ NX.
Similarly, assume that Conditions 6.20 and 6.22 are valid. Suppose that for any

ġ ∈ NX, there is at most one solution u or v to each of the two Neumann problems

(L̂u)
∣∣
U

= 0, M̂U
X u = ġ, u ∈ XU,

(L̂v)
∣∣
W

= 0, M̂W
X v = ġ, v ∈ XW.

Then M̂U
X D̂U : DX → NX is one-to-one.

If Condition 6.14 is valid and there is a constant C0 such that every u ∈ XU and
v ∈ XW with (L̂u)

∣∣
U

= 0 and (L̂v)
∣∣
W

= 0 satisfies

‖u‖XU ≤ C0‖ M̂U
X u‖DX

, ‖v‖XW ≤ C0‖ M̂W
X v‖DX

,

then there is a constant C1 such that the bound ‖ḟ‖DX
≤ C1‖ M̂U

X D̂Uḟ‖NX
is valid

for all ḟ ∈ DX.
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Proof. As in the proof of Theorem 6.13, we will consider only the relationship
between the Neumann problem and the double layer potential.

Let ḟ , ḣ ∈ DX and let u = D̂Uḟ , w = D̂Uḣ. Then u ∈ XU and w ∈ XU. If
M̂U

X D̂Uḟ = M̂U
X D̂Uḣ, then M̂U

X u = M̂U
X w. Because there is at most one solution

to the U-Neumann problem, we must have that u = w, and in particular T̂rU
X D̂Uḟ =

T̂rU
X D̂Uḣ.
By Condition 6.20, we have that M̂W

X D̂Wḟ = M̂W
X D̂Wḣ. By uniqueness of

solutions to the W-Neumann problem,

T̂rW
X D̂Wḟ = T̂rW

X D̂Wḣ.

By Condition 6.22, we have that

ḟ = − T̂rU
X D̂Uḟ − T̂rW

X D̂Wḟ = − T̂rU
X D̂Uḣ− T̂rW

X D̂Wḣ = ḣ

and so M̂U
X D̂U is one-to-one.

Now assume the stronger condition, that is, that C0 < ∞. Because DX is a
quasi-Banach space, if ḟ ∈ DX then by Condition 6.22,

‖ḟ‖DX
≤ C‖ T̂rU

X D̂Uḟ‖DX
+ C‖ T̂rW

X D̂Wḟ‖DX
.

By definition of D̂U, D̂Uḟ ∈ XU with (L̂(D̂Uḟ))
∣∣
U

= 0. By Condition 6.14,

‖ T̂rU
X D̂Uḟ‖DX

≤ C2‖D̂Uḟ‖XU

for some C2. Thus,

‖ḟ‖DX
≤ CC2‖D̂Uḟ‖XU + CC2‖D̂Wḟ‖XW .

By definition of C0,

‖D̂Uḟ‖XU ≤ C0‖ M̂U
X D̂Uḟ‖NX

and ‖D̂Wḟ‖XW ≤ C0‖ M̂W
X D̂Wḟ‖NX

.

By Condition 6.20, M̂W
X D̂Wḟ = M̂U

X D̂Uḟ and so

‖ḟ‖DX
≤ 2CC2C0‖ M̂U

X D̂Uḟ‖NX

as desired. �

Finally, we consider the relationship between existence and surjectivity. The
following argument appeared first in [21].

Theorem 6.24. Assume that Conditions 6.18, 6.19, and 6.22 are valid. Suppose
that, for any ḟ ∈ DX, there is at least one pair of solutions u and v to the pair of
Dirichlet problems

(L̂u)
∣∣
U

= (L̂v)
∣∣
W

= 0, T̂rU
X u = T̂rW

X v = ḟ , u ∈ XU, v ∈ XW. (6.9)

Then T̂rU
X ŜU : NX → DX is onto.

Suppose in addition that Condition 6.15 is valid, and that there is some C0 <∞
such that, if ḟ ∈ DX, then there is some pair of solutions u and v to the problem
(6.9) with

‖u‖XU ≤ C0‖ḟ‖DX
, ‖v‖XW ≤ C0‖ḟ‖DX

.

Then there is a constant C1 such that for any ḟ ∈ DX, there is a ġ ∈ NX such that
T̂rU

X ŜUġ = ḟ and ‖ġ‖NX
≤ C1‖ḟ‖DX

.
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Similarly, assume that Conditions 6.18, 6.20, and 6.21 are valid. Suppose that
for any ġ ∈ NX, there is at least one pair of solutions u and v to the pair of
Neumann problems

(L̂u)
∣∣
U

= (L̂v)
∣∣
W

= 0, M̂U
X u = M̂W

X v = ġ, u ∈ XU, v ∈ XW. (6.10)

Then M̂U
X D̂U : DX → NX is onto.

If in addition Condition 6.14 is valid, and if there is some C0 <∞ such that, if
ġ ∈ NX, then there is some pair of solutions u and v to the problem (6.10) with

‖u‖XU ≤ C0‖ġ‖NX
, ‖v‖XW ≤ C0‖ġ‖NX

, (6.11)

then there is a constant C1 such that for any ġ ∈ NX, there is an ḟ ∈ DX such that
M̂U

X D̂Uḟ = ġ and ‖ḟ‖DX
≤ C1‖ġ‖NX

.

Proof. As usual we present the proof for the Neumann problem. Choose some
ġ ∈ NX and let u and v be the solutions to the problem (6.10) assumed to exist.
(If C0 <∞ we further require that the bound (6.11) be valid.)

By definition of T̂rX, ḟ = T̂rU
X u and ḣ = T̂rW

X v exist and lie in DX. By
Condition 6.18,

2ġ = M̂U
X u+ M̂W

X v

= M̂U
X(−D̂Uḟ + ŜUġ) + M̂W

X (−D̂Wḣ + ŜWġ).

By Conditions 6.20 and 6.21 and linearity of the operators M̂U
X, M̂W

X , we have that

2ġ = − M̂U
X D̂Uḟ + M̂U

X ŜUġ − M̂U
X D̂Uḣ + ġ − M̂U

X ŜUġ

= ġ − M̂U
X D̂U(ḟ + ḣ).

Thus, M̂U
X D̂U is surjective. If C0 < ∞, then because DX is a quasi-Banach space

and by Condition 6.14,
‖ḟ + ḣ‖DX

≤ CC0‖ġ‖NX

for some constant C, as desired. �
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