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Local and global estimates for solutions of
systems involving the p-Laplacian
in unbounded domains *

A. Bechah

Abstract

In this paper, we study the local and global behavior of solutions of
systems involving the p-Laplacian operator in unbounded domains. We
extend some Serrin-type estimates which are known for simple equations
to systems of equations.

1 Introduction

We consider the system

-Apu = f(z,u,v) = €Q, (1.1)
—Agv =g(z,u,v) x€Q, (1.2)
u=v=0 ze€d (1.3)

where Q C RY is an exterior domain, f, g are a given functions depending of
the variables x,u,v and A, is the p-Laplacian operator; for 1 < p < 400 A,
is defined by Apu = div (|Vu\p’2Vu). Here, we study the local and global
behavior of solutions of System (1.1)—(1.3). we follow the work of Serrin [4]
concerning the quasilinear equation

div A(z, u, uy) = Bz, u, ug), (1.4)
where A and B are a given functions depending of the variables x,u,u, and
Uy = ((%‘1, cey %) In particular, (1.4) generalizes the equation

-Apu = flz,u) e (1.5)

In [4], Serrin proves that if the function f is bounded by the term alu[P~1 + g,
where p > 1 is a fixed exponent, a is a positive constant and g is a measurable
function, then for each y € 2 and R > 0 we have the estimate

_N N 1
sup (o) < e (ullor ooy + R (Rlal ., 977) (10)
Br(y) LP=<(Bz2r(y))
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forall0 <e<1.

In many cases, especially for unbounded domain, when we wish to show
that the solution decay at infinity, the estimate (1.6) requires that the function
f belongs to L*(Q) with o« > N/p, which is not trivial to prove in some cases. To
avoid this difficulty Yu [5], Egnell [1] and others have proved that the solution
of (1.5) have a regularity L9(f2) for each ¢ > p*, and this for all function f
bounded by a sublinear, superlinear or an homogeneous terms. We note that in
the case of a mixed terms this last technique cannot be adapted. For the case of
an homogeneous system see the paper of Fleckinger, Manasevich, Stavrakakis
and de Thélin [2].

The first part of this paper is devoted to the local behavior of solutions of
System (1.1)—(1.3). We obtain an estimate of Serrin type in the following cases:
1) f and g are bounded by a sum of homogeneous and critical terms.

2) f and g are bounded by a sum of homogeneous and constant terms.
Thus, we extend the results of [5], [1] concerning Equation and those of [2]
concerning System.

In the second part, we obtain a global estimates of solutions of System (1.1)—
(1.3) in the particular case f = AJu|* tufv|?*! and g = Blu|**!|v|?~1v under
some conditions on «, 3, p and q. Also we obtain another global estimate when
f and g satisfy 2).

We recall that D1P(Q) is the closure of C§°(€2) with respect to the norm

lullpree) = VullLr(o)-
p = p%l is the conjugate of p, px = NN—f;j is the Sobolev exponent and we define
Sp by

Sp p

1 Vul?
— =inf IVulizr oy u € WHP(Q)\{0} ¢ .
||u||Lp(Q)

2 Local estimates for solutions of (1.1)—(1.3)

Theorem 2.1 Let (u,v) € DVP(RYN) x DL4(RY) be a solution of (1.1) — (1.3)

and T = Ni_p, 7= N]Xq. Assume that max{p,q} < N, ¢ > p and

(@, 0)] < C (JufP ™ + ful?” =+ ol + o] 7 ) (2.1)
and .

gty u, )] < C (o]0 + ol 4 [ul/7 -+ [u] o7 ) (2.2)

where m' is the conjugate of m and C is a constant. Then
1) For any R > 0 and x € RN satisfying

C max {2175';)7'1)_1, 2%07P 5, | By | %Rq_qu_l}
. - (2.3)

p(T— q(7—
x (||u||Lp*(B2R(x)) + IIUIIW(BQW») <1
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where S, and S, are the Sobolev constants, we have

||U||Loo(3§ (z))

qa—N

qa/p
' H””Lq*(BR(x»}'

N(N—
3

N(N—p) p—N
< 0(1+Rq) P maX{R P HUHLP*(BR(JU))’R
and

||U||L<><>(B%(m))

N(N-p)

4=N p=N 2
< c(1+RT) @ max{R 7 vl o (Bry), B 7 HUHEP*(BR(I))}'

witch ¢ independent of u,v,x and R.
2) Moreover,

lim wu(z)= lim wov(x)=0.
|| —+00 @) || =00 (@)

Remark 2.2 There exists an Ry such that for all R < Ry, (2.3) is satisfied
uniformly for all x € Q. This follows from the absolute continuity of the func-
tionals A — [, [u[P"dz and A — [, |v|97dz. To be more specific, for each ¢ > 0

there exists 7 > 0 such that for all R > 0 and z € RY satisfying |Bgr(z)| < 1,
we have fBR(z) |u[P” dx < € and fBR(z) [v|77dz < e.

Proof Let x € RY be fixed. For y € Byr(x) and any function h defined on
Bog(z) we define

Since (u,v) is a solution for (1.1)—(1.3), then (@, ¥) satisfies
_Apa = R;Df(:% 11, 17)7 (24)

—Aq0 = Rig(y, u,v). (2.5)

In this proof ¢ denotes a positive constant independent of u,v,z and R. For
any ball B C B3(0), we have

Vw € Wé’p(B) ||w||1£pr(3) < SPHVU’Hip(B)a

Vo € WEI(B) ([0l ) < 2P| BUO) S S I VelL, . (26)

Sp and S, are the Sobelev constants. Let (m,), be a sequence of positive
numbers satisfying o < oo where o is defined below and (r,), a decreasing
sequence defined by

n—1

—-1/p’
1 i
T =2, T,= —;Z<—m +p> )

=0 p
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m; +p
p

o0
where R is positive and o = Z (
i=0

EJDE-2001/19

-1/p’
> . We denote by B,, = B(0,r,)

and we define n € C°(RY) so that 0 < 7 < 1, n = 1 in B,41, supp(n) C B,

and
V| < ¢ (M)Up
i p .

(2.7)

We multiply (2.4) by |a|™"un?, and integrate over B,. Using (2.1), we obtain

I+ 1, < Rp([3+14+15+16),
where

I - (1—|—mn)/ || | Vil da,

n

I = q/ N1tV Va|ValP 2 a| ™ adz,

n

I;=C / [P+t d,
B*Vl

I = c/ [P M ndde,
Bn

Is=C [ |a™a|o|? nide,
Bn

Is = C/ |ﬂ‘m"’l~t
By

749
| nlde.

(2.8)

Since 14+m,, = (p=Ymn | m"Ter, we deduce from Young inequality and the facts

p < g, |n| <1, that for any s > 0

p/
Ll < £ (—m””)/ 09|Vl |a ™ de
p

p B

Choosing s such that q;j < 1, and using (2.7), we have

1
|IQ| <=L+ C/ |’l]‘m"+pd$.
2 B

n

We deduce from (2.8) and (2.9)

6
I <2RP> I +c/ ||t Pdg.

i=3 Bn

+i (mn—l—p) p/ |V77|p|ﬂ|m"+pdx
Bn

(2.9)

(2.10)
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Using Sobolev inequality and observing that for any a > 0 and b > 0 (a4 b)? <
2P=1(aP + bP), we have

mn+p ||P

an/pu : < ¥ 18, (I + Iy), (2.11)

Lr7(Bn)

where

p—1
I; = (g)p/ 0P |VlP || ™ Pdr < ¢ <mn—+p) / i Py,
p p B,

n

and
1

p p—
Ig = <w> / @™ |VaPds < (M) I,
p B, p

thus we deduce from (2.10) that

p My + P p-l X 6
< == u|™Pd 2P S, RP I; ].
‘77 LPT(B,) ( p > C/“ g v b Z

i=3
First step. We construct the sequences (p,), and (g, ), by

N
a/pg ™t

(2.12)

n

Pn=pT",  Qn=qT",

and we set
my, =p(t" = 1),and 1, = q(v" —1).

We show that if the condition
Cmax{?pS Rpr(P—1) 924— p|Bl| =t S,RiT" (g— 1)}
~ T—1 ~ T—1
x (s g, + 115 ,) < L

is satisfied, the solution (@, o) belongs to LP»+1(B,,11) X LI+ (B41).
First, we start by estimating the integrals (I;),7i = 3,...,6. We have

I = c/ [P gtde < cllalbs, g, ). (2.13)

n

»Q |.u\‘ Q

Remarking that m;—:'l + £ =1, we deduce from Holder inequality that

Is = c/ @™ alo|o ide < clalgath IIYE . (214)
B,

We write m,, +p* = p(r — 1)+ m, +p ,q = Tq(?":rlp). Observing that

mn+p_|_P(T 1) _

— =1, we deduce from Holder inequality

u=C/IWWWwwsC/ e Dty o
Bn (2.15)

T—1 T
<Clal g I 1 e s,
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Remark that

a
q(T—1)+mn—|—1+ 7

q
__:q'y'_l7 :1, (216)
(tp) ¥ ( ) Tq DPn+1 An+1
and .
nt1 P
7 + +r-2— =1,
Pn+1 dn+1
then from Holder inequality, we have
Ig C/ \u|m”u|v|(m) nidx
i/
<C/ ‘Ulq(T 1) 7q( ps+1)|u|mn+1n (q:+1)|,6|q/p/dm (2.17)
T—1) ~T™ p( P T q(%)
<C||U||%m rg Lr7(Bn) ‘ LB,
Substituting m,, by p(r" — 1) in (2.12), we obtain
||rf1/pu ||LW(B )= Tn(P—l)Q;DSpRP(]4 +Is)
(2.18)
< =1 (c/ |a|Pr dx + 2P S, RP (I3 + 15)) .
By,
It follows from (2.13) - (2.17) and the fact p < ¢ that
||nq/puT HLm — C2PS, RPT" (p—1) (HUHP("' D ||nq/p T HLW
r—1) Jpr (+m7) o i)
N e a | e I (2.19)
oL+ BT ([l g, + 5T, 1018 5, )
Similarly, we have
an e (5 _022q Pg |Bl| P parn(a— 1)(|| ||‘£q, LqT(B”)

T—1) " (n) T 2.20
IR ™ [t /2™ 250, ) (220)
< oL+ RO [5|8, 4RI gt e

Next, we define 6,1 = max{|[n?/Pa"" HLW (Bn)’ o™ ||, Bl)}’ and
E, = max{||ﬂ||’£',;n(3n), ||v|\an(Bn)}1/p". Simple computations using Holder
inequality and the definition of F,, and 6,,, show that
Ot — Cmax{ZpS RPrne=1) 92a—p| g, |*F" g, Ra7n(a- 1>}
(2.21)

~ T—1 T—1) n(qg— n
x (Il g + 1918 5 ) s < (14 RO7" 0D B
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We know that there exists Ry > 0 such that for any R < Ry
Cmax{?”S R 920-p| B, |7 §, R 1>}
(r-1) (r-1) (2.22)
x (Il g + 1155 ) < 1
Also, remark that
Ont1 = maX{Ha”ZEIL’wA( Bni1)? ”f)HqLT:JnH (Bn+1)}

ORTRIIN o (2.23)

Pn+1
LPn+1(Byq1)? ||

> max{||a

Pn
En+1

Therefore, from (2.21) - (2.23), and the fact p < ¢

EPn < (14 RT)rma=l gen,

So

n(g—1)

Ent1 < (¢(1+ R)YP 755 E,.
This implies that

oo i(g—1)

il zons1 (5,10) < Enp1 < (c(14 RT)=50 5 7250 5 py.

= p2 and Y ;7 z(zﬂl) < oo, we deduce that @ € LPn+1 (B 1).

Since Y7, p'r1
Similarly, we have

dn+1

oo i(g—1)

||U||L‘11L+1(Bn+1) < ”szerLril(BnH) < En+1 < (C(l + Rq)) =0 ”Tl Zl o prt Fy,

therefore v € LI+ (By,11).
Second step We remark that hypothesis (2.3) is equivalent to

C’max{2pS RP7P=1 2%-7| By | %" S, Rr9~ 1} (||a\|§§’;‘(;)2) + ||ﬁ||§<;‘(;>2)) <1

We assume that R,u and v satisfy (2.3), which by the first step implies that
(i,8) € LP™"(By) x LT (By). We let § = =57 and x = §. It is clear that
1< 0 <7,and so x > 1. We construct a sequences (s, ), and (t,), by

n

sp=pxX", tn=qx".

In this step m,, and r,, are defined by
X"
= _ 1
My =P ( 5 > ,

n—1 —-1/p’
1 i
T'O:l; rn:]._zo_ g (m +p> ’

and

p
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which implies m,, + p = s, /0. Now, we estimate the integrals (I;);=s,. 6. We
have

sn/d ~11Sn /0
I3 < c|al)® L4 (B <cu Lon(B,)" (2.24)

Remarking that Zatl S L f v 5 = 1, it follows from Hoélder inequality that

Is < clalyst Io1VE <l s, 1o s, (225)

We have 2 (T p(r=1) 4 my +p = 1, thus from Holder inequality we have

an/0 (2.26)

n/0
FATNEE 7] AT

~ T—1
14§c||u||p< > lalllg,

Lr™2(B,,)

Observing that % + m;—:l + %{’/ = 1, it follows from Hélder inequality that

Is < c/ |1~)|q(771)|ﬁ|m"+1|ﬁ|q/”/d:r

n

7 T—1 S~ brd ! .
< ol ia ) |L5n+(gn>|\v||iéi<3n> (2.27)
<cllalyat IB1YE 5,

We deduce from (2.12), (2.24)—(2.27) and the fact p < ¢ that

~x" P n(qg— ~115n/0 ~ || Mn ~ !
‘nq/pux /5’ g, S R (A e O o Py
(2.28)
Similarly, we have
n(qg— tn /8 ~nln ~ 4
[ 21 o < X @ B (I8l ) + B 1 )
(2.29)

~ tn / "
Eon 5 100 5, )
T, = maX{an/pUX”/ﬂler(B ) ||7717><n/6||%q7(3n)} and

1
" Simple computations show that

As in the first step, we let A,, = max {||ﬂ| o

T = mas {832, (5,191 5, |

lallgn L o9 5, < min {Asn/a Tt /a} (2.30)
and 1
11155 s NI ) < min {A;n/q T;ln/s} . (2.31)
Also, remark that
~11tn /8 in /8 N
P 2 masc {150 g 0150 = A0 =T (232)
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Thus, we deduce from (2.28)—(2.32) that

A < ex™ D (14 RO A,

and so
n(g—1)8

An+1 S Cé/snx Sn (1 + Rq)é/sn An

Which implies that

oo i(g—1)8

o5y i= AP Ipan
LS"(BR) S An S c=i=0 SiX i=0 i (1 + R ) 1=0 s; AO.

]

Since > o2 s% = ﬁ, and Y0, @ < 00, then

Il o= (myy < Nim sup [|a]lzen (s,

_6r - -
< ¢ (14 RY)7 max { [l o o), 15195, | -

Similarly, we have

n(qg—1)5

Thi1 < C%X mo (1 +Rq)% T,

As n tends to infinity, we obtain
||’5||L°°(B%) < nklfoo sup [|0]| Len (B,,)
< (1 + RN max { [ill s,y 13 s } -
By the imbeddings
L’ (By) C LP(B;) and LY (B;) c L(By),
and the fact

oT T N(N —p)
775_(771)2_ p? ’

we have

N(N-—p)

lillzesy) < e(L+R7) maX{”aHLP*(B”’Hﬁqu/ﬁ(Bl)}7

and
N(N—p

MY ' "
1olsy) < e+ B0 max {50 ), [l e g, -
Coming back to (u,v) by a simple change of variables, we find
||U||L°°(B%(m))

< e+ R max (R |lul e R o]
S ¢ X LP"(Br(z))> L9 (Br(x)) [~
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and

||'U||L°°(B%<I))

N (N —

=N p=N 2
< e+ RN max (B oll e (5o B Tl e o}
The proof of 2) follows from 1) and Remark 2.2 &

Proposition 2.3 Let (u,v) € DVP(RY) x DV4(RY) a solution of (1.1)-(1.3).
We assume q¢ > p,

@) < C (™ + ol +1), (2.33)

and )
lg(z,u,0)| < C (|v|q—1 + P+ 1) , (2.34)

where m’ is the conjugate of m. Then

N p=N =N
el iy < €1+ B max {1, R ull o (), BT 082 5} (235)
and

g—N

N p=N L
lollioe oy < e+ BN max {1 R [ul e o BT ol (5 - (236)

Proof We use the same change of variables as in the proof of Theorem 2.1.
Thus, we obtain that (a@,?) satisfies (2.4) and (2.5). Also we keep the same
sequences (Mp)n, (Tn)n, (Bn)n and the same function 1. We multiply Equation
(2.4) by |a|™an?, and integrate over B,,. Using (2.33), we have

I, +1, <RP (13+I4+I5), (237)

where

I :(1—|—mn)/ o™ |V alPdz,

n

I = q/ L. V| VP2 i) ade,

I3 = C/ |’0,‘p+mn’l7qu,
Bn

Iy = C/ |a|™n @) 5|97 nde,
Bn

Is = C/ || antda.
By,

The integrals I, I3, Is and I are the same to those obtained in Theorem 2.1.
Simple computations used before show that

p m +p p—1 N 5
< (MnTP | P + 2P S,RPS I |
‘ Lr™(Bn) ( p ) C/n [ v P Z

=3
(2.38)

mn+p

WQ/pﬁ 5
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Now, we define (py,), and (g,), by

Pn=DpT"  Gn=qT",
and let m,, = p(v™ — 1),and , l,, = ¢(7"™ — 1). Then we estimate the integrals
I;;i=3,...,5. It is clear from (2.13) and (2 14) that
I < cllil3 5,y and Ls < clllfth 0150 s, - (2.39)

On the other hand

7 n — ntl --L nt+1) 1~ ntl
B2 € [ tde = g, ) < Bl Oz,

n

< | Bl

< a7t ).
(2.40)

We deduce from (2.38)—(2.40) that

a/py™"

flB5s gy < 0P W

< CTn(p_l)OW”%;n(B, )

o+ B (Nl 5, + VRN, NSNS ) + Nt ) )-
(2.41)

Similarly, we have

~ n o~ "
150 %i1 5,1y < 007 [ har 5,

< CTn(q_l)(||5‘|%;n,(B, )

In+1 - ! In+1
+ B (1055, 5, + 100t NS ) + NBN ) )-

n

(2.42)
Following the proof of Theorem 2.1 we let
By = max {1, |25, 5,171 5 5 )}l/p" and
1
Fo = {0, 25 5., Hann%zn 5y} We obtain
Lo (m) < nEIfOOSUP il Lon (B,) < En
c(1+ RY)7 E (2.43)

¢ (14 R max {1, [ll (s, 151207 5, } -
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lollzo(yy < lim sup [0l zan(5,) < Fu
<c(1+ R Fy (2.44)
N .2 s
= c(1+ RO max {1, @l £, 15]2as) | -

Using a simple change of variables in (2.43) and (2.44) we obtain (2.35) and
(2.36).

3 Global estimates for solutions of (1.1)—(1.3)

Proposition 3.1 Let (u,v) € D¥P(Q) x DV4(Q) a solution of (1.1)-(1.3). We
assume that there exist a functions a,b € L*(Q)NL>®(Q) and a constant C' such
that

|/ (@, u,0)] < ala) + C(luP ™ + [o]77), (3.1)

lg9(a, u,0)] < b(x) + C(Jo]*~" + [oP/), (3-2)

where p > 1, ¢ > 1. Then
1) (u,v) € L7(Q) x L"(Q) for all (o,n) € [p*,+0) X [¢*, +00).
2) lim w(z)= lim o(z)=0.

|z|—+o00 |z|—+o00

Proof 1) Let p, = pm™, o = q7", my, = 7" =1, t, = 7" = 1, Ti(u) =
max{—k, min{k,u}} and w = |Tj(uw)|P"" Ty (u), with & > 0. Multiplying the
equation (1.1) by w and integrating over €2, we obtain

(pmy, + 1)/Q|VTk(u)|p\Tk(u)|”m“dx = /Qf(x,u, v)w dx.

Observing that

1
my, + 1

( )V (T ()™ P = T (u)P™ |V T ()7, (3-3)

we deduce from Hoélder and Sobolev inequalities that for any 0 < v < 1, we
have

[ oy
Q

(3.4)
- ntl ' n
< (a3 Ml ol + Nl oy + 10192 o el sy )
with ¢ depending from n. Letting &k tend to infinity in (3.4), we obtain
n n 1 n / n
012512 gy < € (N2t + Tl + 012 g Ity ) - (35)

We derive from (3.5) that u € LP~(2) for all n € N. Similarly, we prove that
v € Li(Q) for all n € N. By interpolation inequality (see [3]) we prove that
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(u,v) € L7(Q) x L"(Q), for all (o,n) € [p*,+00) X [¢*, +00). The proof of 2)
follows from Serrin inequality [4] and 1). &
Next, we study the sub-homogeneous system
—Ayu = B(z)|u|* tulv|PTT, (3.6)
—Agv = C(z)|u|*TH o]~ o, (3.7)
in Q an exterior domain or RV,
Proposition 3.2 Assume that B,C € L> () and

1 1
e s
p q
Then each solution (u,v) € DVP(Q) x DL4(Q) of the system (3.6), (3.7) satisfies
1. (u,v) € L7(Q) x L"(Q) for all (o,n) € [p*, +oo[ lq*, +o0l.
2. limpy—qoo u(x) = 0 and limy_ 1 v(x) =

<1l, p>1, g¢qg>1.

Proof LetT= Nip T = L_q and L=1— O‘p—tl — %. Assume ¢ > p, which
7. We define the sequences (pn)n, (¢n)n and (frn)n by
fori=7(fn+tL-1)+1, fo=1,
pn:p*fna dn :q*fn-
Let Ty (u) = max{—Fk, min{k,u}} for & > 0 and w = |Tj(u)|P""* Tk (u), with

mn:(l—a——’—l—@)pg = fag1—1 (3.8)

implies that 7 >

Multiplying (3.6) by w and integrating over 2, we obtain from (3.3) and Sobolev
inequality

L pma +1)(

. P @) < B ey [l ol s,
p

n+1

From the definition of m,, and Holder inequality, we deduce that

T (mn+1 a+14+pmy, 1
([ e meyiin < 5, R Bl ol

Let k tends to infinity, we have

*(m T (m’ﬂ + 1) a My,
([ 1ule )07 < 8, L o 2

p*(my + 1) = p*(fut1) = Dnt1, therefore u € LP»+1(Q). To show that v €
La+1(Q), We consider w = [T (v)|9 Ty (v), with

||,3+1
Lan (Q

Pn @ q (3.9)
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Proceeding as above, we obtain

1 (t +1> o4 1 n
([ et < i 1O = Il o I

Let @, = q*(t, + 1). Tt is clear that v € LI, and since

qn = q*(tn + ]-)
= ¢ (F(fu +L—1)+1)
2> Qn+1;

then ¢, < gnt1 < Gn. By interpolation inequality (see [3]), we deduce that
v € Li+1(Q). 2) follows from Serrin inequality [4] and 1).
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