Electronic Journal of Differential Equations, Vol. 2005(2005), No. 131, pp. 1-11.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu
ftp ejde.math.txstate.edu (login: ftp)

ASYMPTOTIC BEHAVIOR OF A PREDATOR-PREY DIFFUSION
SYSTEM WITH TIME DELAYS

YIJIE MENG, YIFU WANG

ABSTRACT. In this paper, we study a class of reaction-diffusion systems with
time delays, which models the dynamics of predator-prey species. The global
asymptotic convergence is established by the upper-lower solutions and itera-
tion method in terms of the rate constants of the reaction function, indepen-
dent of the time delays and the effect of diffusion

1. INTRODUCTION

The purpose of this paper is to study the asymptotic behavior of solutions to
the predator-prey diffusion system with time delays:

% = Au+ ufa; — bju — / fi(nu(t — 7, 2)dr — dyv(t — rq, x)],
0
t>0, xe€Q, (1.1)
% = Av + v[ag — byv — / fo(T)v(t — 7, 2)dT + dau(t — 71, 2)],
0

subjected to the boundary conditions

ou v

and to the nonnegative initial conditions
u(t,z) = ¢1(t, ), v(t,z) = go(t,x), i=1,2¢t<0, z€Q, (1.3)

where Q@ C RY (N > 1) is a bounded domain with smooth boundary 9, and
0/0n denotes differentiation in the direction of the outward normal. a;, b;, d; and
ri(i = 1,2) are positive constants. f; € C(RT) N L'(R*), and the integral part
means the hereditary term concerning the effect of the past history on the present
growth rate. ¢; € C'((—o00,0] x Q) is bounded nonnegative.
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We write f; = f;" — f; (i = 1,2), where f;"(s) = max(0, f(s)), and f; (s) =
max(0, — fi(s)) for s > 0. We set

cf = /00 fiF(s)ds, ¢ = /OO fi(s)ds i=1,2.
0 0

Throughout the paper, we assume that

by > / F1(s)[ds, by > / | fa(s)|ds, (1.4)
0 0
and
dgcj
(by — ¢ — ) (ba —¢f —c3) — duda

a _ (b —cf —ci)(ba—cf —c;) —didy
ai d1<b1 — C;)
Our result can be stated as follows.

Theorem 1.1. Assume that f and fa belong to C(RT) N L'(R*) and (L.4)(L.5)
hold. Then for every ¢; € C*((00,0]) x Q with ¢;(0,2) # 0, the solution of (1.1])—
(1.3) satisfies

<

)

al(bg + C;r — C;) — a2d1

lim u(t,x) = , 1.6
t—o0 ( ) (b1+C-1F761_)(b2+03762_)+d1d2 ( )
uniformly for x € Q. Also
b S— d
lim v(t,z) = af( ! —fcl Cl+) + ai 2 ) (1.7)
t=oo (b1 + ¢ —cp)(ba+ 3 —¢y) +didy

uniformly for x € Q).

Remark. If f; =0 and f; =0, then

. ale + a2d1 . (L2b1 + a1d2
% u(t, z) biby + dids’ ame % olt, ) biby + dids’

uniformly for x € Q, which coincides with the result of [4].

Let us introduce the following result (see [7]) on the asymptotic behavior of the
diffusion logistic equation with time delays, which plays an important role in the
proof of Theorem.

% :Au—l—u[a—bu—/ f(Mult —7,z)dr], t>0, zeqQ,
0
a—u:O, t>0, z €09, (1.8)
on

u(t,z) = ¢(t,x), t<0, x€,

where a and b are positive constants, ¢ € C'*((—o0, 0] x Q) is a bounded nonnegative
function.

Lemma 1.2. Assume that f € C(RT) N LY(RY) and b > [ |f(s)|ds. Then
(1.8) has a unique bounded nonnegative solution. Moreover, if $(0,z) £ 0, then
u(t,x) > 0 for all (t,x) € (0,00) x Q and

lim u(t,z) = . —
oo b+ [y f(s)ds’
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uniformly for x € Q.

Reaction-diffusion systems with delays have been studied by many authors. How-
ever, most of the systems are mixed quasimonotone, and most of the discussions
are in the framework of semi-group theory of dynamical systems [2] [3, [8, [9]. The
method of upper and lower solutions and its associated monotone iterations have
been used to investigate the dynamic property of the system, which is mixed quasi-
monotone with discrete delays [I, B, 6]. In this paper, the method of proof is via
successive improvement of upper-lower solutions of some suitable systems, and the
fact that we are dealing with system (1.1) without mixed quasimonotone forces us
to develop some significance in the process of proof.

2. PROOF OF MAIN RESULTS

In this section, we first introduce the following existence-comparison result for
the predator-prey system (|1.1)—(1.3)).
Definition [5] A pair of smooth functions (@, %) and (4, ?) are called upper-lower
solutions of (L.1)-(1.3), if @ > @, o > ¥ in R x Q, and if for all 4 < vy < 4,
0 < 1hg < v, the following differential inequalities hold.

% — Aa > 1fay — bia — /OOO f(T)1(t — 7, 2)dT — dio(t — 72, 2)],
t>0, z€Q,
G~ A0z = bt [ R(alt - ra)dr + dailt — o)L
% — A4 < dfay — bt — /000 fi(m)1(t — 1, 2)dT — di19(t — re, )], (2.1)
% — Ab < dfay — b0~ /Ooo Fa(r)¥o(t = 7y 2)dr + dai(t — 1, 2)],
%SOS%, %gogg, t>0,z €00,

a(t,x) < ¢1(t,x) < a(t,z), o(t,z) < dalt,x) <o(t,x), t<0, €.
With these definitions of upper-lower solutions, we can state the following lemma.

Lemma 2.1 ([5]). If there exists a pair of upper-lower solutions (u,v), (4,0) of

(1.1)—(1.3). Then the problem (1.1)—(1.3) has a unique solution (u*,v*) satisfying

u<u* <u,v<v*<o.

For a given ¢ = (¢1, ¢2), let My, My be constants such that

ai } as + do My }
bi—Jo 1fi(s)lds ) by — Jo° 1 fa(s)lds

where [[¢i|l = sup( ,)e(—oo0jxm [i(t;2)], @ = 1,2. Then (0,0) and (M, M2) are
clearly a pair of lower-upper solutions of 7. By Lemma(2.1] a unique global
nonnegative solution (u,v) to f exists and satisfies 0 < u < M71,0 <v <
Ms, moreover (u,v) is positive in (0, 4+00) x Q if ¢;(0,2) # 0(¢ = 1,2) by maximal
principle.

My > max { o1, My > max { | éa].
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Define u; (¢, ) by

% = ATy + Wy [ay — bl +/ fr(mu(t =7 z)dr], t>0,z€9,
0
%:o, t>0, x€0Q, 22
on

uy(t,z) =My, t<0, €.

By Lemma [T.2] we have

a —
L= @1, uniformly for x € Q.

lim uy (¢, x) =
t—o0 1( ) 51—01_

So, for all sufficiently small € > 0, there exists a t; > 0, such that

maxus (t,z) <oy +¢e, fort>t. (2.3)
z€Q

Define v (¢, z) by

87 o0
%:A@1+@1[a2—bﬁ1+/ fo (Mo1(t — 7, 2)dr + down], t> 11, x € 9,
0
%:0, t>t, x €09,
on

U (t,x) = Moy, t<ty, z€Q.
(2.4)
It is easy to check that (0,0) and (@;,7;) are the lower and upper solutions of

(1.1)—(1.3). Therefore, Lemma [2.1| implies

Oﬁugﬂh OSUSEL

From (2.3) and (2.4), it follows that

87 o0
% < Aty —l—@l[ag — byUy +/ f{(T)@l(t - T, CL‘)dT + dz(al + 8)]
0
By the comparison principle,
ﬁl S Vl)
where V; is the solution of the problem
oV, S — — * = _
W = AVl + Vl[ag - bng + f2 (T)Vl(t - T, ZL’)dT + dQ(Oél + E)},
0
t>t, x € Q,
57
—1:0, t>t, x €09,
on
Vilt,z) =My, t<t;, €.

From Lemma @,
as + docx ds
2001 c

= —, uniformly for z € Q.
bQ — Co bg — Coy

tlim Vilt,z) =

So, for all sufficiently small €, there exists a t5 > t; such that

max v (t,z) < By +¢, fort >t (2.5)
e
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where 3, = (az + da@y)/(ba — c5 ). Define u; by

% = Aﬁl + uy |:al - blﬂ1 +/ f1_(7')@1(t -7, .’L‘)dT
ot :
—/ ff(T)ﬂl(t—T,$)d7’—d151(t—7‘27$):|7 t > to, LL’EQ,
0 (2.6)
Ouy
710, t>t2,x€89,
on

1 _
Hl(ta .’E) = iu(t,x)v (t,iL’) € (_Ooth] x Q.
From ([2.5) and (2.6)), for t > t9, € Q we have

d - B
% > Auy + uyfa; — by +/ fr (Mug(t = 7,2)dr — of (@1 +¢) — di(By +¢€)]-
0

By the comparison principle,
u, >U,, t>ty, x€Q,
where U, is defined by
ou, <
TR =AU Ul — U+ [ 7 (00— )
—cf (@ +¢e)—di(B, +e)], t>tr, z€Q,
ou,
on
U, (t,z) = %u(t,x), (t,2) € (=00, ta] x Q.
By with e sufficiently small,
a1 —cf (@1 +¢) —di(B; +¢) > 0.
Thus from Lemma we have
ay —cfay —di3y cf +dy

lim U, (t,x) = — —€ —, uniformly for z € Q.
t—oo by — ¢} by — ¢}

=0, t>ty, x €I,

Hence for any sufficiently small € > 0, there exists a t3 > to such that

minu, (¢, 2) >ay —e, t>ts, (2.7)
e
where a; = (a3 — ¢fa; — di13;)/ (b1 — ¢y ). Define v, by
0v, o
S = Autuler —bwy + [ fo(T)u(t - Ta)dr
0
—/ (o1t — 7, 2)d7 + douy (t — 71, 2)], t>t3,7€Q,
0 (2.8)

0v,
— =0, t>t3,x689,
on

vy (t,x) = %v(t,x), (t, ) € (—o0,t3] x Q.

It is easy to check that (@;,71) and (uy,v;) are the upper and lower solutions of
(1.1)—(1.3), and from Lemma we get

w <u<lu, v <v7U.
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From and (2.8)), we have

86;1 > Av, + vq[az — bovy + / Iy (T)vy(t — 7 2)dT — cf (81 +¢€) + da(a;y — )]

By the comparison principle,

21211, t>t3,$EQ,

where V; is defined by

86%1 AV, +Vilas — bV, + / fo (MY (t — 7, 2)dr

*02(ﬂ1+5)+d2(7175)], t>t37I€Qa
aKl
on

Vi(ta) = %v(t,x), (t,2) € (=0, 1] x O

Note that from ([1.5)),

=0, t>ts, €,

as — ¢35 (B + &) + da(ay — ) > 0.
for sufficiently small €. From Lemma we get

—cf B, +d T +d
lim V,(t,z) = a2 = & by _L— 201 _ 22 ha =
t—o00 by — Cy by — Coy

uniformly for # € . So for any sufficiently small , there exists a t4 > t3 such that

minv, (¢, z) > B, —¢, >t (2.9)
e
where 5 = % Hence for all sufficiently small €, we can conclude
2 —C
0 < o <liminf minu(t, z) < limsup maxu(t,z) < @y, (2.10)
t—oo 1cq t—oo xeN
and
0 < g, < liminfminv(t, z) < limsupmaxv(t, ) < By (2.11)
t—00 20 t—oo xeQ
Define uy by
Ota _ _ _ Il
ke Aty + Usfa; — bius + fi(Dug(t — 7, z)dr
0

7/0 ff'(T)gl(th,x)dedlyl(tfrg,x)], t>ty,x €8Q, (2.12)
OUo
on

Up(t,x) = My, (t,x) € (—00,tq] x L.

From (2.7, (2.9) and (2.12)), for ¢ > t4, we have

a oo
% < At + Usfa; — bius + / fi (Dua(t — 7, 2)dr — ¢ () — ) — di(8, —¢)]-
0

=0, t>ty, x €0,
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By the comparison principle, we get @y < Uy, t > t4, where U; is defined by

U
%<AU1+U1a1—b1U1+/ fr (DUt — 7, 2)dr
—cf (@ —e)—di(B, —¢)], t>ts, z€Q,
%:0, t>ty, x €09,
on

Ul(t,x) = K, (t,.’l?) S (—OO,t4] x €.
For sufficiently small ¢, It is easy to show that
a; —cf (a; —¢) — dl(ﬁ1 —¢)>0.

Thus, from lemma we have

_ a1 — cta dlﬂ + 4 d _
lim Uq(t,z) = 1l Ecl + _17 uniformly for x € .
t—o00 bl — Cl bl — Cl

Hence, for any sufficiently small € > 0, there exists a t5 > t4 such that

maxus(t,r) <@z +e, t>ts, (2.13)
€S
a —C+O£ —
where ay = — 1= "'51 b1 =1 7d1g1
1—Cy
Define w5 by
O0vy o _ <o
Fr ATs + Talas — baTs + fo (M)02(t — 7, 2)dT
0
—/ f;_(’r)yl(t*T,l’)dTﬁ*dQﬂQ(t*Thl’)}, t>ts,x €9,
0 (2.14)
P
ﬂ:o, t>ts, v € 0N,
on

ﬁg(t, :l?) = MQ, (t,SC) € (*Oo,t5] X ﬁ
It is easy to check that (u;,v,) and (@s,V2) are the lower and upper solutions of

(1.1)—(1.3), and thus from Lemma we get

u Su<u, vy <o

From (2.9)), (2.13]) and (2.14), for ¢ > t5, we have
8’[}2

¥ < AUs + Talag — baTs + / fo (T)0a(t — T, 2)dT — C;(@1 —¢€) + da(ay +2)].
0

By the comparison principle, we get o < Vy, t > t5, where Vi is defined by
ov. B — o —
87152 :AV2+V2[a2—b2V2+/ fQ_(T)VQ(t—T,JZ)dT
0
—c%(ﬁl—é')—f—dg(ag—‘r&')], t>ts, JJEQ,
IV
on
VQ(t7x) = MQa (t,l‘) € (7005155] X ﬁ

=0, t>ts, xe€df,

For sufficiently small ¢, it is easy to show that

ag—c;(él 75)7d2(62+s) > 0.
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Thus from lemma [I.2] we have

+ —
_ as — ¢ + dot + 4 d
lim Va(t,z) = — 2B, +do G Bl

= =, uniformly for z € Q.
t—o0 b2 —Cy b2 —Cy

Hence for any sufficiently small € > 0, there exists tg > t5 such that

max vy (t, z) < By +e, t>tg, (2.15)
€
_ ot a
where (8, = %. Define u, by
27 Co
822 <
5 = Aug + ugla; — byuy + fi (Muy(t — 7, 2)dr
0

7/ fl"'(T)Hg(th,x)dedlﬁg(t—rg,x)], t>tg,x €€,
0

Ouy
on
wy(t,7) = %u(t,x), (t,2) € (—o0, tg] x 0.

(2.16)
=0, t>tg, xe€d,

From (2.13), (2.15)) and (2.16)), for ¢ > ts,x € Q we get

0 oo B
% > Au, +@2[a1—b1g2+/ I (Duy(t — 7, 2)dr — ¢ (@2 + ) — di(By + €)).
0

By the comparison principle,
QQZQ27 t>t67x€Qa
where U, is defined by

ou i
3;: = AU, + Ujlar — b1U, +/ fr (DUt —7,2)dr
0
—cf (@ +e) —di(By+e)], t>ts zEQ,
oU,
on

Uyt 2) = %u(t,x), (t,2) € (—o0, tg] x O

=0, t>tg, xe€I,

For sufficiently small €, we can get
a; — Cf(az + E) — dl(BQ + E) > 0.
Thus from Lemma [T.2] we have

—cta, - di 8 + 14 _
lim U,y(t,z) = i — 15, _a + j, uniformly for z € Q.
t—oo b1 — Cl b1 — cq

Hence, for any sufficiently small € > 0, there exists a t7 > tg such that

minuy (¢, ) > ay —e, t>ts, (2.17)
€N
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-

ay1—c, as—d

where a, = 1;72(,1’62. Define v, by
1—¢

% = Avy + vy[ag — bovy + / fo (T)uy(t — 7, 2)dr
0

ot
— / fj(T)Eg(t —1,2)dT + doug(t — 71, 2)], t>t7,2€Q,
0 (2.18)
v,
— =0, t>ty, x €I,
on

vy (t, ) = %v(t,x), (t,x) € (—o0,t7] x Q.

It is easy to check that (U2, 72) and (usy,v,) are the upper and lower solutions of
([T.1)-(T.3), and thus from Lemma [2.1] we get

Uy S U < Uz, Vy < v < Vo,
From (2.15)), (2.17)) and (2.18)), we have

0 oo B
% > vy + vplaz — bavy +/ fo (Mg (t — 1, 2)dr — ¢ (By + €) + da(ay — )]
0

By the comparison principle,
22212; t>t7a$€Q,
where V, is defined by

1% 00
8;t2 = AKQ + KQ[a2 - bQKQ + / f; (T)KQ(t - T, x)dT
0
_C;(B2+5)+d2(gg—5)], t>tr, x €9,
oV,
on

KZ(tax) = %’U(t7x)7 (t,l') € (—OO,t7] x Q.

=0, t>t7, x €,

For sufficiently small £, we can show that
az — 3 (By +€) + da(as —€) > 0.
From lemma we get
as — c;BQ + daay B Ec;' +ds
by —cqy by —cqy

tlim Vo(t,x) = ,  uniformly for x € Q.

So for any sufficiently small €, there exists a tg > t7 such that

minvy(t,z) > B, —¢, t>ts, (2.19)
€N
_t3
where 52 = %. Therefore, for all sufficiently small €, we can conclude
2 B—
ay < liminf minu(t, z) < lim sup max u(t, z) < @s, (2.20)
=00 20 t—oo x€Q
B, < liminf minv(t, z) < limsup max v(t, z) < B,. (2.21)
=2 t—oo 2eq t—oo zeQ

It is obvious that

g <a<@m<a, f,<p,<B<h (2.22)
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Define the sequences ay,, @y, f3, , Bi(k > 1) as follows

B a — cfgk_l — dlgk—l _ as — C;ék—l + doayy,
Qp = — y P = — )
bl — Cl b2 — 62 (223)
_ay — oy, — di B, _ag — cf By, + daayy,
Qk - — i gk - — .
bl —C bg — Cy
where o = 5, = 0.
Lemma 2.2. For the above defined sequences, we have
[Qk+1aak+l] g [Qk;aak]a [§k+173k+1] g [ﬁkaﬁk]a k 2 1. (224)

For k = 1, it has been shown that [a,, @] C [ay, @], [QZ,BQ} C [gl,ﬁl}. Using
induction, we can easily complete the proof, and omit the detail.

Note that Lemma @ implies that the following limits exist: limy_. ap = a,
limg oo 0 = a, limy_ o gk = ( and limy . B}, = B. By straightforward compu-
tation, we can obtain

al(bz + C; — C;) — a2d1

a=qa= R
[¢3 (b —|—Cl+ —C;)(bg—i—cér —cy )+ didy (2.25)
ﬂ:ﬁ: a2(b1 +CT—CI)+a1d2 -
- (br+cf —ep)(bat ey —cy) +dida
Lemma 2.3. For the solutions of (1.1))—(1.3]), we have
ap < litm inf minu(t, z) < limsupmaxv(t,z) < ag, fork>1, (2.26)
70 zeQ t—oo zEQ
B, < liminfminus(t,z) < limsup maxus(t,z) < By fork>1. (2.27)
- t—oo ;e t—oo x€Q

We have shown that (2.26) and (2.27)) are valid for k¥ = 1,2. Using induction
and repeating the above process, we can complete the proof of Lemma [2.3]
Combining the above lemmas, we can complete the proof of the main theorem.
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