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PERIODIC SOLUTIONS FOR A STAGE-STRUCTURE
ECOLOGICAL MODEL ON TIME SCALES

KEJUN ZHUANG

Abstract. In this paper, by using the Mawhin’s continuation theorem, we

prove the existence of periodic solutions for a stage-structure ecological model
on time scales. This unifies the results for differential and difference equations.

1. Introduction

Recently, Zheng and Cui constructed the following stage-structure population
model, with patches and diffusion,

I ′1(t) = aM1(t)− bI1(t)− cI1(t),

M ′
1(t) = cI1(t)− αM2

1 (t) + D12(M2(t)−M1(t)),

M ′
2(t) = −βM2(t) + D21(M1(t)−M2(t)),

(1.1)

where a, b, c, α, β,D12 and D21 are positive constants. I1(t) is the density of im-
mature rana chensinensis in patch 1, Mi(t) denotes the density of mature rana
chensinensis in the i-patch (i = 1, 2). Dij is the diffusion coefficient of the species
from patch j to patch i. The permanence and stability of equilibrium of system
(1.1) were investigated in [9].

Taking into account the periodicity of environment, Zhang and Zheng recon-
structed the model as follows:

I ′1(t) = a(t)M1(t)− b(t)I1(t)− c(t)I1(t),

M ′
1(t) = c(t)I1(t)− α(t)M2

1 (t) + D12(t)(M2(t)−M1(t)),

M ′
2(t) = −β(t)M2(t) + D21(t)(M1(t)−M2(t)),

(1.2)

where all the coefficients are positive continuous ω-periodic functions. Based on
the theory of coincidence degree, the existence of positive periodic solution was
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established in [8]. The corresponding discrete system

I1(k + 1) = I1(k) exp
{
− b(k)− c(k) + a(k)

M1(k)
I1(k)

}
,

M1(k + 1) = M1(k) exp
{
−D12(k)− α(k)M1(k) +

c(k)I1(k) + D12(k)M2(k)
M1(k)

}
,

M2(k + 1) = M2(k) exp
{
− β(k)−D21(k) +

D21(k)M1(k)
M2(k)

}
,

(1.3)
was considered in [7]. The coefficients are all strictly positive ω-periodic sequences.
The existence of periodic solutions for (1.3) was done. However, the work of [7, 8]
was repeated to some extent. It is natural to ask whether there is a unified way to
explore such kind of problem. To unify the continuous and discrete analysis, Stefan
Hilger in his Ph.D. Thesis initiated the theory of calculus on time scales in [5]. The
theme has received much attention in recent years, such as [1, 2, 3]. It is true that
unification and extension are the two main features of the calculus on time scales.

In this paper, we consider the following ecological model with stage structure
and diffusion on time scales:

u∆
1 (t) = −b(t)− c(t) + a(t)

eu2(t)

eu1(t)
,

u∆
2 (t) = −D12(t)− α(t)eu2(t) +

c(t)eu1(t) + D12(t)eu3(t)

eu2(t)
,

u∆
3 (t) = −β(t)−D21(t) +

D21(t)eu2(t)

eu3(t)
,

(1.4)

where a(t), b(t), c(t), α(t), D12(t), β(t) and D21(t) are rd-continuous positive ω-pe-
riodic functions on time scales T. Set I1(t) = eu1(t), M1(t) = eu2(t) and M2(t) =
eu3(t), if T = R and T = Z, then (1.4) can be reduced to (1.2) and (1.3), respectively.
As a result, it is unnecessary to investigate the periodic solutions of (1.2) and (1.3)
separately.

Thus, we shall prove the periodicity of system (1.4) by Mawhin’s continuation
theorem in coincidence degree theory to unify the results in [7, 8]. This approach
has been widely applied to deal with the existence of periodic solutions of differential
equations and difference equations but rarely applied to the dynamic equations on
time scales [2, 3].

2. Preliminary results

For the convenience of the reader, we first present some basic definitions and
lemmas about time scales and the continuation theorem of the coincidence degree
theory; more details can be found in [1, 4]. A time scale T is an arbitrary nonempty
closed subset of real numbers R. Throughout this paper, we assume that the time
scale T is unbounded above and below, such as R, Z and

⋃
k∈Z[2k, 2k + 1]. The

following definitions and lemmas about time scales are from [1].

Definition 2.1. The forward jump operator σ : T → T, the backward jump
operator ρ : T → T, and the graininess µ : T → R+ = [0,+∞) are defined,
respectively, by

σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, µ(t) = σ(t)− t.
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If σ(t) = t, then t is called right-dense (otherwise: right-scattered), and if ρ(t) = t,
then t is called left-dense(otherwise: left-scattered).

Definition 2.2. Assume f : T → R is a function and let t ∈ T. Then we define
f∆(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U.

In this case, f∆(t) is called the delta (or Hilger) derivative of f at t. Moreover,
f is said to be delta or Hilger differentiable on T if f∆(t) exists for all t ∈ T. A
function F : T → R is called an antiderivative of f : T → R provided F∆(t) = f(t)
for all t ∈ T. Then we define∫ s

r

f(t)∆t = F (s)− F (r) for r, s ∈ T.

Definition 2.3. A function f : T → R is said to be rd-continuous if it is continuous
at right-dense points in T and its left-sided limits exist(finite) at left-dense points
in T. The set of rd-continuous functions f : T → R will be denoted by Crd(T).

Lemma 2.4. Every rd-continuous function has an antiderivative.

Lemma 2.5. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T),then

(a)
∫ b

a
[αf(t) + βg(t)]∆t = α

∫ b

a
f(t)∆t + β

∫ b

a
g(t)∆t;

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)∆t ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then |
∫ b

a
f(t)∆t| ≤∫ b

a
g(t)∆t.

For simplicity, we use the following notations throughout this paper. Let T be
ω-periodic, that is t ∈ T implies t + ω ∈ T,

k = min{R+ ∩ T}, Iω = [k, k + ω] ∩ T, gL = inf
t∈T

g(t),

gM = sup
t∈T

g(t), ḡ =
1
ω

∫
Iω

g(s)∆s =
1
ω

∫ k+ω

k

g(s)∆s,

where g ∈ Crd(T) is an ω-periodic real function, i.e., g(t + ω) = g(t) for all t ∈ T.
Now, we introduce some concepts and a useful result from [4].
Let X, Z be normed vector spaces, L : Dom L ⊂ X → Z be a linear mapping,

N : X → Z be a continuous mapping. The mapping L will be called a Fredholm
mapping of index zero if dim kerL = codim Im L < +∞ and Im L is closed in Z.
If L is a Fredholm mapping of index zero and there exist continuous projections
P : X → X and Q : Z → Z such that ImP = kerL, Im L = kerQ = Im(I − Q),
then it follows that L|Dom L ∩ ker P : (I − P )X → Im L is invertible. We denote
the inverse of that map by KP . If Ω is an open bounded subset of X, the mapping
N will be called L-compact on Ω̄ if QN(Ω̄) is bounded and KP (I −Q)N : Ω̄ → X
is compact. Since Im Q is isomorphic to kerL, there exists an isomorphism J :
Im Q → ker L.

Next, we state the Mawhin’s continuation theorem, which is a main tool in the
proof of our theorem.

Lemma 2.6 (Continuation Theorem). Let L be a Fredholm mapping of index zero
and N be L-compact on Ω̄. Suppose
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(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is such that u /∈ ∂Ω;
(b) QNu 6= 0 for each u ∈ ∂Ω ∩ ker L and the Brouwer degree deg{JQN, Ω ∩

ker L, 0} 6= 0.
Then the operator equation Lu = Nu has at least one solution lying in Dom L∩ Ω̄.

3. Existence of periodic solutions

In this section, we shall derive the sufficient conditions for the global existence
of periodic solutions to system (1.4).

Theorem 3.1. If
cLaL

(b + c)M
+

DL
12D

L
21

(β + D21)M
−DM

12 > 0,

then (1.4) has at least one ω-periodic solution.

Proof. Let

X = Z =
{
(u1, u2, u3)T ∈ C(T, R3) : ui(t + ω) = ui(t), i = 1, 2, 3,∀t ∈ T

}
,

‖(u1, u2, u3)T ‖ =
3∑

i=1

max
t∈Iω

|ui(t)|, (u1, u2, u3)T ∈ X (or inZ).

Then X and Z are both Banach spaces when they are endowed with the above
norm ‖ · ‖. Let

N

u1

u2

u3

 =

N1

N2

N3

 =

 −b(t)− c(t) + a(t) eu2(t)

eu1(t)

−D12(t)− α(t)eu2(t) + c(t)eu1(t)+D12(t)e
u3(t)

eu2(t)

−β(t)−D21(t) + D21(t)e
u2(t)

eu3(t)

 ,

L

u1

u2

u3

 =

u∆
1

u∆
2

u∆
3

 , P

u1

u2

u3

 = Q

u1

u2

u3

 =

 1
ω

∫ k+ω

k
u1(t)∆t

1
ω

∫ k+ω

k
u2(t)∆t

1
ω

∫ k+ω

k
u3(t)∆t

 .

Then

ker L =
{
(u1, u2, u3)T ∈ X : (u1(t), u2(t), u3(t))T = (h1, h2, h3)T ∈ R3, t ∈ T

}
,

Im L =
{
(u1, u2, u3)T ∈ Z : ū1 = ū2 = ū3 = 0, t ∈ T

}
,

dim kerL = 3 = codim Im L.

Since Im L is closed in Z, then L is a Fredholm mapping of index zero. It is not
difficult to prove that P and Q are continuous projections such that Im P = ker L
and Im L = ker Q = Im(I − Q). Furthermore, the generalized inverse (of L) KP :
Im L → ker P ∩Dom L exists and is given by

KP

u1

u2

u3

 =


∫ t

k
u1(s)∆s− 1

ω

∫ k+ω

k

∫ t

k
u1(s)∆s∆t∫ t

k
u2(s)∆s− 1

ω

∫ k+ω

k

∫ t

k
u2(s)∆s∆t∫ t

k
u3(s)∆s− 1

ω

∫ k+ω

k

∫ t

k
u3(s)∆s∆t

 .

Thus

QN

u1

u2

u3

 =


1
ω

∫ k+ω

k

(
− b(t)− c(t) + a(t) eu2(t)

eu1(t)

)
∆t

1
ω

∫ k+ω

k

(
−D12(t)− α(t)eu2(t) + c(t)eu1(t)+D12(t)e

u3(t)

eu2(t)

)
∆t

1
ω

∫ k+ω

k

(
− β(t)−D21(t) + D21(t)e

u2(t)

eu3(t)

)
∆t

 ,
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KP (I −Q)N

u1

u2

u3



=


∫ t

k
u1(s)∆s− 1

ω

∫ k+ω

k

∫ t

k
u1(s)∆s∆t−

(
t− k − 1

ω

∫ k+ω

k
(t− k)∆t

)
ū1∫ t

k
u2(s)∆s− 1

ω

∫ k+ω

k

∫ t

k
u2(s)∆s∆t−

(
t− k − 1

ω

∫ k+ω

k
(t− k)∆t

)
ū2∫ t

k
u3(s)∆s− 1

ω

∫ k+ω

k

∫ t

k
u3(s)∆s∆t−

(
t− k − 1

ω

∫ k+ω

k
(t− k)∆t

)
ū3

 .

Obviously, QN and KP (I −Q)N are continuous. According to Arzela-Ascoli theo-
rem, it is easy to show that KP (I −Q)N(Ω̄) is compact for any open bounded set
Ω ⊂ X and QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄.

Now, we shall search an appropriate open bounded subset Ω for the application
of the continuation theorem, Lemma 2.6. For the operator equation Lu = λNu,
where λ ∈ (0, 1), we have

u∆
1 (t) = λ

(
−b(t)− c(t) + a(t)

eu2(t)

eu1(t)

)
,

u∆
2 (t) = λ

(
−D12(t)− α(t)eu2(t) +

c(t)eu1(t) + D12(t)eu3(t)

eu2(t)

)
,

u∆
3 (t) = λ

(
−β(t)−D21(t) +

D21(t)eu2(t)

eu3(t)

)
.

(3.1)

Assume that (u1, u2, u3)T ∈ X is a solution of system (3.1) for a certain λ ∈ (0, 1).
Integrating (3.1) on both sides from k to k + ω, we obtain

b̄ω + c̄ω =
∫ k+ω

k

a(t)
eu2(t)

eu1(t)
∆t,

D̄12ω +
∫ k+ω

k

α(t)eu2(t)∆t =
∫ k+ω

k

c(t)eu1(t) + D12(t)eu3(t)

eu2(t)
∆t,

β̄ω + D̄21ω =
∫ k+ω

k

D21(t)eu2(t)

eu3(t)
∆t.

(3.2)

Since (u1, u2, u3)T ∈ X, there exist ξi, ηi ∈ [k, k + ω], i = 1, 2, 3, such that

ui(ξi) = min
t∈[k,k+ω]

{ui(t)}, ui(ηi) = max
t∈[k,k+ω]

{ui(t)}, i = 1, 2, 3. (3.3)

From (3.1) and (3.3), we have

a(η1)eu2(η1) = (b(η1) + c(η1))eu1(η1), (3.4)

c(η2)eu1(η2) + D12(η2)eu3(η2) = D12(η2)eu2(η2) + α(η2)e2u2(η2), (3.5)

D21(η3)eu2(η3) = β(η3)eu3(η3) + D21(η3)eu3(η3). (3.6)

Thus,

(b + c)Leu1(η1) ≤ aMeu2(η2), (3.7)

(β + D21)Leu3(η3) ≤ DM
21eu2(η2). (3.8)
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From (3.5), (3.7) and (3.8), we have

αLe2u2(η2) + DL
12e

u2(η2) ≤ cMeu1(η1) + DM
12eu3(η3)

≤ cMaM

(b + c)L
eu2(η2) +

DM
12DM

21

(β + D21)L
eu2(η2).

From the above inequality, we get

eu2(η2) ≤ 1
αL

[ cMaM

(b + c)L
+

DM
12DM

21

(β + D21)L
−DL

12

]
:= L2. (3.9)

Substituting (3.9) into (3.7) and (3.8), respectively, the following estimates hold:

eu1(η1) ≤ aM

(b + c)L
L2 := L1, eu3(η3) ≤ DM

21

(β + D21)L
L2 := L3.

Similarly, we also get the results:

eu2(ξ2) ≥ 1
αM

[ cLaL

(b + c)M
+

DL
12D

L
21

(β + D21)M
−DM

12

]
:= l2,

eu1(ξ1) ≥ aL

(b + c)M
l2 := l1 , eu3(ξ3) ≥ DL

21

(β + D21)M
l2 := l3.

So, we have

max
t∈[k,k+ω]

|u1(t)| ≤ max{| lnL1|, | ln l1|} := R1,

max
t∈[k,k+ω]

|u2(t)| ≤ max{| lnL2|, | ln l2|} := R2,

max
t∈[k,k+ω]

|u3(t)| ≤ max{| lnL3|, | ln l3|} := R3.

Clearly, R1, R2 and R3 are independent of λ. Let R = R1 + R2 + R3 + R0, where
R0 is taken sufficiently large such that R0 ≥

∑3
i=1 |li|+

∑3
i=1 |Li|.

Now, we consider the algebraic equations:

b̄ + c̄− āey−x = 0,

D̄12 + ᾱey − c̄ex−y − D̄12e
z−y = 0,

β̄ + D̄21 − D̄21e
y−z = 0,

(3.10)

every solution (x∗, y∗, z∗)T of (3.10) satisfies ‖(x∗, y∗, z∗)T ‖ < R. Now, we de-
fine Ω = {(u1(t), u2(t), u3(t))T ∈ X, ‖(u1(t), u2(t), u3(t))T ‖ < R}. Then it is
clear that Ω verifies the requirement (a) of Lemma 2.6. If (u1(t), u2(t), u3(t))T ∈
∂Ω ∩ ker L = ∂Ω ∩ R3, then (u1(t), u2(t), u3(t))T is a constant vector in R3 with
‖(u1(t), u2(t), u3(t))T ‖ = |u1|+ |u2|+ |u3| = R, so we have

QN

u1

u2

u3

 =

 āeu2−u1 − b̄− c̄
c̄eu1−u2 + D̄12e

u3−u2 − D̄12 − ᾱeu2

D̄21e
u2−u3 − β̄ − D̄21

 6=

0
0
0

 .

Moreover, define

φ(u1, u2, u3, µ) =

 āeu2−u1 − b̄
c̄eu1−u2 − ᾱeu2

−D̄21 + D̄21e
u2−u3

 + µ

 −c̄
D̄12(eu3−u2 − 1)

−β̄

 ,
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where µ ∈ [0, 1] is a parameter. If (u1, u2, u3)T ∈ ∂Ω∩ker L, then φ(u1, u2, u3, µ) 6=
0. In addition, we can easily see that the algebraic equation φ(u1, u2, u3, 0) = 0 has
a unique solution in R3. Thus the invariance of homotopy produces

deg(JQN, Ω ∩ ker L, 0) = deg(QN, Ω ∩ ker L, 0)

= deg(φ(u1, u2, u3, 1),Ω ∩ ker L, 0)

= deg(φ(u1, u2, u3, 0),Ω ∩ ker L, 0)
6= 0.

By now, we have verified that Ω fulfills all requirements of Lemma 2.6; therefore,
system (1.4) has at least one ω-periodic solution in DomL ∩ Ω̄. The proof is
complete. �

Remark 3.2. Note that systems (1.2) and (1.3) are special cases of system (1.4),
both (1.2) and (1.3) have at least one ω-periodic solution when the conditions of
Theorem 3.1 hold. In addition, the conditions are weaker than those in [7, 8].
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