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A second eigenvalue bound for the Dirichlet

Schrödinger equation wtih a radially

symmetric potential ∗

Craig Haile

Abstract

We study the time-independent Schrödinger equation with radially
symmetric potential k|x|α, k ≥ 0, k ∈ R, α ≥ 2 on a bounded domain
Ω in Rn, (n ≥ 2) with Dirichlet boundary conditions. In particular, we
compare the eigenvalue λ2(Ω) of the operator −∆+ k|x|α on Ω with the
eigenvalue λ2(S1) of the same operator −∆+ kr

α on a ball S1, where S1
has radius such that the first eigenvalues are the same (λ1(Ω) = λ1(S1)).
The main result is to show λ2(Ω) ≤ λ2(S1). We also give an extension of
the main result to the case of a more general elliptic eigenvalue problem
on a bounded domain Ω with Dirichlet boundary conditions.

1 The Schrödinger eigenvalue equation with ra-

dially symmetric potential

In this paper we consider the Schrödinger eigenvalue equation with Dirichlet
boundary conditions on a bounded domain Ω ⊂ Rn (n ≥ 2):

−∆u+ k|x|αu = λu on Ω ⊂ Rn (1)

u = 0 on ∂Ω (2)

with α ≥ 2, k ≥ 0, k ∈ R. Also of interest will be the generalization of the
results to the case of a more general, second-order, elliptic, partial differential
equation of the form

−
∑n
i,j=1

∂
∂xi
(aij(x)

∂u
∂xj
) + k|x|αu = λr(x)u on Ω ⊂ Rn (3)

u = 0 on ∂Ω (4)

with the assumption that the equation is uniformly elliptic on Ω. This means
that there are positive numbers a and A such that the matrix [aij ] satisfies
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2 A second eigenvalue bound EJDE–2000/10

0 < a ≤ [aij ] ≤ A in the quadratic form sense throughout Ω. Also required
is that the weight function r(x) satisfy 0 < c ≤ r(x) ≤ C for some positive
constants c and C and all x ∈ Ω.
It is known that the set of eigenvalues {λk}

∞
k=1 corresponding to eigenfunc-

tions uk of the problems (1)-(2) and (3)-(4) are nonnegative and can be arranged
in nondecreasing order as follows:

0 < λ1 < λ2 ≤ λ3 . . . ≤ λk ≤ . . . →∞.

The purpose of this paper is to compare the eigenvalues of (1)-(2) and (3)-
(4) to those of problems on a ball. We will obtain comparison results for λ2
utilizing the “fixed λ1” technique of Ashbaugh and Benguria. This has been
used to show for the Laplacian with no potential that λ2(Ω) ≤ λ2(S1) where S1
is the n-ball with the same first eigenvalue as −∆ on Ω. Ashbaugh and Benguria
then used the fact that the ratio of eigenvalues on balls for −∆ is constant to
prove the Payne-Pólya-Weinberger conjecture (for −∆ the ratio of the first two
eigenvalues is maximized for balls).

2 New results

In this section a “fixed λ1” theorem for the Schrödinger problem (1)-(2), is
stated along with a generalization of that result to the general elliptic eigenvalue
problem (3)-(4). For the problem (1)-(2) the comparison eigenvalues considered
will be those of the problem

−∆z + krαz = λz on S1 ∈ Rn (5)

z = 0 on ∂S1 (6)

where S1 is an n-dimensional ball of the appropriate radius so that we have
λ1(Ω) = λ1(S1).

Note: Here and throughout the paper we will use k|x|α and krα somewhat
interchangeably depending on whether we are talking about the potential func-
tion on a general domain or on a ball. It should be apparent that this only
makes sense if the domain Ω allows us the make sense of the transformation of
the potential function from Ω to Ω? (the n-ball having the same volume as Ω)
or to S1. That is, the domain Ω should have its center of mass at the origin, i.e.,
at r = 0, so that the origin of the potential on Ω and on Ω? or S1 is unchanged.
Throughout this paper we will assume this is the case.

For the general elliptic problem (3)-(4), the potential in (5) will be modified
to kr

α

a
, where a is the “lower bound” of the matrix [aij ], and S1 will be chosen

so that λ1(S1) =
C
a λ1(Ω), where C is the upper bound of the weight function

r(x). The reason for these modifications will be discussed later in the paper.

The main result is now stated.
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Theorem 2.1. For equations (1) and (5), as specified above and with Dirichlet
boundary conditions, the first two eigenvalues of the respective problems satisfy

λ2(Ω) ≤ λ2(S1). (7)

An extension of this theorem for equation (3) will also be derived:

Theorem 2.2. For equations (3) and (5) specified previously (note, in partic-
ular, that S1 is specified by λ1(S1) =

C
a
λ1(Ω)), and with Dirichlet boundary

conditions, the first two eigenvalues of the respective problems satisfy

λ2

λ1
(Ω) ≤ 1 +

AC

ac

(
λ2

λ1
(S1)− 1

)
. (8)

3 Integral inequalities and rearrangements

We begin with the basic gap inequality

λ2 − λ1 ≤

∫
Ω |∇P |

2
u21dx∫

Ω
P 2u21dx

provided that

∫
Ω

Pu21dx = 0 and P 6≡ 0, (9)

derived using the Rayleigh-Ritz inequality and integration by parts.
To make use of inequality (9), we use not a single P but rather n different

trial functions Pi, i = 1, 2, . . . , n, where again n is the dimension of the space.
We define the Pi by

Pi = g(r)
xi

r
, i = 1, 2, . . . , n,

where g is chosen to be a nonnegative, nontrivial, continuous, differentiable,
and bounded function of the radial variable r = |x|. The exact choice of g will
be made later. Following [3] it can be shown that the side conditions in (9) of∫
Ω
Piu1

2dx = 0 for i = 1, 2, . . . , n can all be satisfied. Accepting this, rewrite
(9) as

(λ2 − λ1)

∫
Ω

Pi
2u21dx ≤

∫
Ω

|∇Pi|
2
u21dx

and sum on i, arriving at

λ2 − λ1 ≤

∫
Ω(
∑n
i=1 |∇Pi|

2
)u21dx∫

Ω
(
∑n
i=1 Pi

2)u21dx
.

Again following Ashbaugh and Benguria [3] the angular dependence of the Pi’s
drops out, leading to the new gap inequality

λ2 − λ1 ≤

∫
Ω[g

′(r)2 + (n− 1)g(r)2/r2]u21dx∫
Ω
g(r)2u21dx

. (10)

The next step is to choose g such that there is equality in (10) if Ω is a ball.
This implies the choice of
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g(r) =




y2(r)
y1(r)

for 0 ≤ r < r∗

lim
t↗r∗

g(t) for r ≥ r∗,
(11)

where r∗ is an appropriate radius (less than or equal to that of Ω∗, with equality
if Ω = Ω?) and y1 and y2 are solutions to certain one-dimensional radial eigen-
value problems obtained from (5)-(6) via separation of variables. By standard
separation of variables techniques in spherical coordinates and a result due to
Baumgartner, Gross, and Martin for R3 [7], extended by Ashbaugh-Benguria [1]
to all n and Ω a ball, one finds that for radial potentials W (r) with [rW ]′′ ≥ 0
(certainly satisfied in our case) the first two eigenvalues of −∆+W on a ball
B of radius r∗ are the respective first eigenvalues of certain one-dimensional
problems. In our case these are

y1
′′ +
n− 1

r
y1
′ + (λ?1 − kr

α)y1 = 0 (12)

with y1(0) finite, y1(r
∗) = 0, and

y2
′′ +
n− 1

r
y2
′ + (λ?2 −

n− 1

r2
− krα)y2 = 0 (13)

with y2(0) = y2(r
∗) = 0. Here λ?1 and λ

?
2 are defined as the first eigenvalues of

the respective problems. Note that by construction this makes g continuously
differentiable on [0,∞).
Finally, by defining the function B(r) by

B(r) ≡ g′(r)
2
+ (n− 1)

g(r)
2

r2
. (14)

the gap inequality (10) can be put into the form

λ2 − λ1 ≤

∫
ΩB(r)u

2
1dx∫

Ω g(r)
2
u21dx

. (15)

Next our attention is turned to proving two key properties of B and g. Both
functions are nonnegative, and now two important facts about their respective
derivatives need to be shown. Let r∗ be the radius of the ball of definition for
g and B. Then

(1) g(r) is increasing for r ∈ [0, r∗], and
(2) B(r) is decreasing for r ∈ [0, r∗].

The idea of the proof is based on the properties of the function q(r) defined
by

q(r) =
rg′(r)

g(r)
. (16)

With q as above and B defined by (14) an easy substitution shows B =

[q2 + (n − 1)](g/r)2 and hence B′ = 2[qq′ + (q − 1)(q2 + (n − 1))/r](g/r)2. It
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is clear that properties (1) and (2) will be met by showing that 0 ≤ q ≤ 1 and
q′ ≤ 0 for 0 ≤ r ≤ r∗.
To prove these results one uses a Riccati differential equation satisfied by q on

0 < r < r∗ to analyze the behavior of q both in the interval and at the boundary
points. To derive this differential equation, start from (16) and compute

q = r[
y′2
y2
−
y′1
y1
].

Next take the derivative

q′ = q/r − q(
y′1
y1
+
y′2
y2
) + r(

y′′2
y2
−
y′′1
y1
)

and use the fact that qr +
y′1
y1
=
y′2
y2
to eliminate

y′2
y2
from the equation. Then use

the differential equations for y1 and y2 to eliminate second derivatives of y1 and
y2 from the q

′ equation. This gives a Riccati differential equation

q′ = (λ?1 − λ
?
2)r +

(1 − q)(q + (n− 1))

r
− 2q

y′1
y1
. (17)

Now consider the behavior of q at the endpoints r = 0 and r = r∗. Straight-
forward calculations using L’Hopital’s rule show that

q(0) = 1, q′(0) = 0, q′′(0) = 2λ?1/n− 2λ
?
2/(n+ 2), (18)

and at the other endpoint,

q(r∗) = 0, q′(r∗) =
1

3
[(λ?1 − λ

?
2)r
∗ + (n− 1)/r∗]. (19)

This leads to the following lemma.

Lemma 3.1. For q defined as above, q ≥ 0 for 0 ≤ r ≤ r∗, and hence q′(r∗) ≤
0.

Proof. Assume not. Then there exist two points r1 and r2 with 0 < r1 < r2 ≤ r∗

and such that q(r1) = q(r2) = 0 but q
′(r1) ≤ 0 and q′(r2) ≥ 0. Suppose first

that r2 < r
∗. Then by (17) we have

0 ≥ q′(r1) = (λ
?
1−λ

?
2)r1+(n−1)/r1 > (λ

?
1−λ

?
2)r2+(n−1)/r2 = q

′(r2) ≥ 0, (20)

a contradiction. If r2 = r
∗, then using (17) and (19) a similar argument to the

above yields

0 ≥ q′(r1) = (λ
?
1 − λ

?
2)r1 + (n− 1)/r1 > (λ

?
1 − λ

?
2)r
∗ + (n− 1)/r∗ = 3q′(r∗) ≥ 0

(21)
which is again a contradiction.
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Moving on, we make some further definitions to simplify our notation. De-
note E = (λ?2 − λ

?
1)/2 and b = (n − 2)/2; also let p = y

′
1/y1. Then from (16)

and (17) one has q′ = 2T with T defined to be

T (r, q) = −pq −
bq

r
−
q2

2r
+
2b+ 1

2r
− Er. (22)

To analyze the behavior of T for fixed values of q, we will study the behavior
of ∂T

∂r
at points where T = 0 (fixed q) and the behavior of T (r, fixed q) near

r = 0 and r = r∗.
For r approaching zero, p is O(r), and thus from (22)

T (r, q) =
1

2r
[(2b+ 1 + q)(1 − q)] + O(r).

This implies that for q fixed, 0 < q < 1, T (r) → +∞ as r → 0. For q = 1,
T (r) → 0 as r → 0. For any fixed q and r → r∗ the boundary conditions on
y1 show p→ −∞, and all other terms in (22) being finite, T (r, q)|r→r∗,q fixed →
+∞. Now, taking the partial derivative of T with respect to r yields

∂T

∂r
= −qp′ +

bq

r2
+
N

r2
− E (23)

where N ≡ q2−(2b+1)
2 . Since from here on we are interested in T (r, q) only

when q is a fixed constant, it is permissible to consider T as a function of the
single variable r and abuse notation somewhat by referring to ∂T/∂r = T ′,
∂2T/∂r2 = T ′′, etc. When T = 0, we have, solving for p in (22) that

p|T=0 = −
b

r
−
N

qr
−
Er

q
. (24)

Also, from the equation for y1 we get the Riccati equation

p′ + p2 +
2b+ 1

r
p+ λ?1 − kr

α = 0. (25)

Now, substituting (24) into (25) and the combination into (23) we obtain

T ′|T=0 =
M

r2
+
E2r2

q
+Q− qkrα (26)

where

M =
1

q
(N2 − q2b2),

Q = qλ?1 +
2EN

q
− 2E.

We then define T ′|T=0 = Z(r) by

Z(r) =
M

r2
+
E2r2

q
+Q− qkrα. (27)



EJDE–2000/10 Craig Haile 7

(As with T , Z is really a function of r and q, but is treated as a function of r
only since q is considered fixed.) The behavior of Z at zero is determined by
M . To see what values this takes on for different q ∈ (0, 1], consider

qM = N2 − q2b2 ≡ d(q) =
1

4
(q2 − 1)[(q − 1)− (n− 2)][(q + 1) + (n− 2)] (28)

This implies that

d(q) is

{
> 0 if 0 < q < 1
= 0 if q = 1

Furthermore, we can show that M
r2
→ 0 as r → 0. This shows that

Z(0) is

{
+∞ if 0 < q < 1
Q if q = 1.

(29)

Using this information leads to the following lemmas.

Lemma 3.2. Given q(0) = 1, q′(0) = 0, and q(r∗) = 0, it follows that q must
first become less than one as r increases from zero.

Proof. Suppose not. Then certainly q′′(0) ≥ 0, else there is an immediate
contradiction. Then since q(r∗) = 0 there must exist at least one point 0 <
r1 < r

∗ such that q(r1) = 1 and q
′(r1) ≤ 0, with q crossing below one to the

right of r1.
Fix q ≡ 1 in T , then T (0) = 0 and recall that T (r∗, q) = +∞. Thus T

must start at zero, become positive to the right of zero, and at r1 be either 0 or
negative, and then tend to positive infinity. If T (r1) is zero, then T must still
cross below zero just to the right of r1 since q must cross below one just to the
right of r1. Hence T must have the following sign changes: positive-negative-
positive. Likewise, Z(r, q) = T ′(r, q fixed, T = 0), which has the representation

Z(r, q) =
M

r2
+
E2r2

q
+Q− qkrα

must start out positive as T increases from zero, then change to negative as T
decreases near r1, and become positive again as T heads off to infinity. Summing
up, Z should have the sign changes positive-negative-positive. (Note we have
used the fact that higher derivatives of Z match those of T when T = 0.) When
q is fixed at one M disappears so Z becomes

Z(r, q ≡ 1) = E2r2 +Q− krα

with Z(0, q ≡ 1) ≥ 0. Taking the derivative of Z with respect to r we get

Z ′(r, q ≡ 1) = 2E2r − αkrα−1.

Looking at this when Z = 0 and making substitutions we get

Z ′(r, q ≡ 1, Z = 0) = (2− α)krα−1 −
2Q

r
(30)
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and hence Z ′(r, q ≡ 1, Z = 0) ≤ 0 since Q = Z(0) ≥ 0 and α ≥ 2.
If α > 2 this is seen to be an immediate contradiction of the necessary sign

change of Z from negative to positive. If α = 2 we consider Z ′′ = 2E2 − 2k.
If E2 − k is less than zero we are done since that would make Z ′′ negative. If
E2−k is zero then Z ≡ Q, which would mean Z has no sign changes, an obvious
contradiction. If E2−k is greater than zero then Z ′ > 0, another contradiction.
Thus T cannot have the required sign changes if we assume q increases

away from one as r increases away from zero, so q must decrease from one as r
increases from zero.

With the end behavior of q established, the next step is to establish the
condition that q is decreasing and hence q ≤ 1.

Lemma 3.3. Given q(0) = 1, q first decreases from one as r increases from
zero, q(r∗) = 0, and q′(r∗) ≤ 0, it follows that q′(r) ≤ 0 for 0 ≤ r ≤ r∗.

Corollary 3.4. Given that q′(r) ≤ 0 on 0 ≤ r ≤ r∗ and q(0) = 1, it follows
that q(r) ≤ 1 on 0 ≤ r ≤ r∗.

Proof. (Of Lemma.) Suppose not. Then there exist three points 0 < r1 <
r2 < r3 < r

∗ with 0 < q(r1) = q(r2) = q(r3) < 1 and q
′(r1) < 0, q

′(r2) > 0,
q′(r3) < 0. Using the fixed value of q < 1 at these points in the function T , recall
that T should be positive for small and large values of r. Also, since T = q′/2,
we have T (r1) < 0, T (r2) > 0, and T (r3) < 0. Hence T must have at least
four sign changes: positive-negative-positive-negative-positive. The value of Z
at each of the roots of T must alternate in a similar way (positive to negative
in T implies negative Z, etc.) Starting from Z(0, q < 1) = +∞, this shows that
Z must also alternate positive-negative-positive-negative-positive. Recall from
(27) that

Z(r, q < 1) =
M

r2
+
E2r2

q
+Q− qkrα

and thus

Z ′(r, q < 1) =
−2M

r3
+
2E2r

q
− qαkrα−1

Z ′′(r, q < 1) =
6M

r4
+
2E2

q
− qα(α − 1)krα−2.

Since q less than one implies M > 0 and it follows that Z ′′(r, q < 1) is strictly
decreasing, Z(r, q < 1) could not have the changes in concavity necessary for its
changes in sign, a contradiction to the behavior of T (r, q < 1), and thus q′ ≤ 0
on [0, r∗]. This proves the lemma and thus the corollary.

Combining our work, we have 0 ≤ q ≤ 1 and q′ ≤ 0 on 0 ≤ r ≤ r∗, which
in turn shows that g(r) is increasing and B(r) is decreasing. These results are
fundamental in using the rearrangement techniques of Hardy, Littlewood, and
Pólya [11].
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Rearrangements have several useful properties. In particular, if f and h are
nonnegative functions, then we have the integral inequalities∫

Ω?
f?h

?dx ≤

∫
Ω

fhdx ≤

∫
Ω?
f?h?dx.

Also, if f is a nonnegative, radially symmetric decreasing (resp. increasing)
function on Ω then f?(r) ≤ f(r) and respectively f?(r) ≥ f(r) for r between 0
and the radius of Ω?. The previous lemmas showed that g(r) is increasing and
B(r) is decreasing (they are both nonnegative and radially symmetric), hence∫

Ω

B(r)u21dx ≤

∫
Ω?
B(r)

?
u?1
2
dx ≤

∫
Ω?
B(r)u?1

2
dx, (31)

and ∫
Ω

g(r)
2
u21dx ≥

∫
Ω?
g(r)2?u

?
1
2
dx ≥

∫
Ω?
g(r)

2
u?1
2
dx. (32)

Note also, concerning our potential function, or any potential function V (x) =
V (r) that is radially symmetric and increasing, that

∫
Ω

V (x)up1dx ≥

∫
Ω?
V?(r)u

?
1
p
dx ≥

∫
Ω?
V (r)u?1

p
dx

where p = 1, 2.

With the inequalities (31), (32) established, it is time to show the last set of
inequalities necessary for completing the theorem. These are∫

Ω?
B(r)u?1

2
dx ≤

∫
S1

B(r)z21dx (33)

and ∫
Ω?
g(r)

2
u?1
2
dx ≥

∫
S1

g(r)
2
z21dx (34)

where z1 is the first eigenfunction of the comparison problem (5)-(6). In order to
derive these two inequalities we establish a crossing result for u?1 and z1 similar
to the type found in [8, 9, 19, 3]. The result will resemble the work in these
papers, with the exception that the differential equation satisfied by z1 includes
a potential term, whereas those of the previous works had no potential.

4 Chiti and Talenti type arguments

Since the results of this section apply to any potential function that is continu-
ous, radially symmetric, increasing, and has its origin at the center of mass for
Ω, we will make our proof for a general potential function V (x) = V (r), and
keep in mind that our potential V (x) = k|x|α = krα = V (r) is a special case.
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As a first step we follow Talenti [19], Chiti [8], Ashbaugh and Benguria [3] in
integrating both sides of −∆u + V u = λu over the level set {x ∈ Ω : u(x) > t}
to get

−

∫
u(x)>t

∆udx =

∫
u(x)>t

(λ− V (x))udx.

Using Gauss’s Divergence Theorem we have

−

∫
u(x)>t

∆udx =

∫
u(x)=t

(|∇u|)Hn−1(dx),

whereHn−1 denotes (n−1)-dimensional measure. Now consider the distribution
function µ(t) = meas{x ∈ Ω : |u(x)| > t}. Taking the derivative of µ(t) we can
derive the following special case of the coarea formula:

−µ′(t) =

∫
u(x)=t

1

|∇u|
Hn−1(dx). (35)

Using (35) and the Cauchy-Schwarz inequality we find

Hn−1{x ∈ Ω : u(x) = t} =

∫
u=t

Hn−1(dx)

=

∫
u=t

|∇u|1/2

|∇u|1/2
Hn−1(dx)

≤

(∫
u=t

|∇u|Hn−1(dx)

)1/2(∫
u=t

1

|∇u|
Hn−1(dx)

)1/2

≤

[
−µ′(t)

∫
u=t

|∇u|Hn−1(dx)

]1/2
.

Also, the n-dimensional isoperimetric inequality gives us

Hn−1{x ∈ Ω : u(x) = t} ≥ nCn
1/nµ(t)1−1/n

where Cn is the volume of the n-dimensional unit ball. Combining these two
inequalities yields∫

u=t

|∇u|Hn−1(dx) ≥ n
2Cn

2/nµ(t)2−2/n(
−1

µ′(t)
).

Combining all these inequalities together for u = u1 and λ = λ1, one finds∫
u1(x)>t

[λ1 − V (x)]u1dx ≥ n
2Cn

2/nµ1(t)
2−2/n(−1/µ′1(t)).

We then use rearrangement properties to pass from u1 to u
∗
1. Finally, considering

the fact that u∗1 and µ1 are essentially inverse functions of each other, we get
the key inequality

−
du∗1
ds
≤ n−2Cn

−2/ns−2+2/n
∫ s
0

(λ1u
∗
1(w) − V (w)u

∗
1(w))dw, (36)
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which is similar to equations of Chiti [8], Ashbaugh and Benguria [2], and Talenti
[19].
Next consider the following lemma, an extension of the Faber-Krahn inequal-

ity [10, 12, 13].

Lemma 4.1 (Extension of Faber-Krahn). Suppose V is continuous, radi-
ally symmetric and increasing. Then the first eigenvalue for the operator −∆+V
on Ω?is less than or equal to λ1(Ω). Equivalently |S1| ≤ |Ω|, with equality if
and only if Ω = Ω? = S1.

Proof. By the Rayleigh-Ritz inequality and rearrangement properties we have

λ1 =

∫
Ω(|∇u1|

2
+ V u21)dx∫

Ω u
2
1dx

≥

∫
Ω?
(|∇u?1|

2 + V u?1
2)dx∫

Ω? u
?
1
2dx

≥ [first eigenvalue of −∆+ V on Ω?].

Thus

λ1(S1) = λ1(Ω) ≥ [first eigenvalue of −∆+ V on Ω?] = λ1(Ω
?).

Since λ1 is exactly the first eigenvalue of −∆ + V on S1 it follows by the
monotonicity property of Dirichlet eigenvalues with respect to domains that
|S1| ≤ |Ω?| = |Ω|, and thus S1 ⊆ Ω?, with equality if and only if Ω = Ω∗ = S1.

The groundwork has now been laid to prove a modified form of the Chiti
comparison result.

Theorem 4.2 (Modified Chiti Comparison Theorem). Let V be contin-
uous, radially symmetric and increasing. Let u1 and z1 be the first eigenfunc-
tions of −∆+ V on Ω and S1 respectively, with Dirichlet Boundary conditions,
assumed positive and normalized such that∫

Ω

u21dx =

∫
Ω?
u?1
2
dx =

∫
S1

z21dx. (37)

Then, making a change of variables so that z1 and u
?
1 can be viewed as functions

of s = Cnr
n, (so that we are actually looking at u∗1), there will exist a point

s1 ∈ (0, |S1|) such that u∗1(s1) = z1(s1) and{
u∗1(s) ≤ z1(s) for 0 ≤ s ≤ s1
u∗1(s) ≥ z1(s) for s1 ≤ s ≤ |S1|.

(38)

Proof. The arguments depend upon the continuity of u∗1 and z1. (The absolute
continuity of u∗1 is established in the arguments of Talenti [19] or Chiti [8]. See,
in particular, Lemma 1 in [8].) It should also be noted that z1 is positive and
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decreasing on [0, |S1|]. To show this, consider the Rayleigh quotient for λ1 and
the related rearrangement inequality.

λ1 =

∫
S1
(|∇z1|

2
+ V z21)dx∫

S1
z21dx

≥

∫
S1
(|∇z?1 |

2
+ V z?1

2)dx∫
S1
z?1
2dx

(39)

Since V is increasing, if z1 is not decreasing, then we have strict inequality in
(39). However, z?1 is a valid trial function for z1, so we have using Rayleigh-Ritz

λ1 ≤

∫
S1
(|∇z?1 |

2
+ V z?1

2)dx∫
S1
z?1
2dx

(40)

which is a contradiction.
The proof for (38) then consists of basically two parts, each following the

same line of reasoning. The first step is to show that if z1 is normalized so
that z1(0) = ess sup u1, then z1(s) ≤ u∗1(s) for all s ∈ [0, |S1|]. To prove this,
suppose not. Assuming |S1| 6= |Ω| and z1 6≡ u∗1 (otherwise it is trivial), there
are two possibilities. The first is that z1 first starts out above u

∗
1, and, since

|S1| < |Ω|, z1 eventually drops below u∗1. If this is the situation, multiply u
∗
1 by

some constant c > 1 such that there is a point s0 sufficiently close to zero so
that cu∗1(s0) = z1(s0), and λ1 − V (s0) ≥ 0. (This can be done since λ1 − V (0)
is positive and V is continuous at zero.) Now, define a new function h(s) such
that

h(s) =

{
cu∗1(s) for 0 ≤ s ≤ s0
z1(s) for s0 < s ≤ |S1|

and notice that h satisfies the inequality given in (36). This is true for s ≤ s0
by (36) and for s ≥ s0 by the fact that z1(s) satisfies (36) with equality, and
replacing z1 by cu

∗
1 on the interval (0, s0) will only increase the right-hand

side since cu∗1 ≥ z1 and λ1 − V (s) ≥ 0. (Note that with equality (36) is just an
integrated form of the radial differential equation for z in the variable s = Cnr

n,
hence the equality for h ≡ z1, see for example Talenti [19].) Since u∗1(0) = z1(0),
we must have cu∗1 > z1 on some subinterval of (0, s0), and hence there is strict
inequality in (36) beyond s0.
The other possibility is that z1 starts out below u

∗
1, crosses above u

∗
1 at some

point s̃0, and then crosses back below u
∗
1 at some point s̃1. If λ1 − V (s̃0) ≥ 0,

form h(s) exactly as above with s̃0 replacing s0 and the arguments that h satisfies
the inequality in (36) hold as before. If λ1 − V (s̃0) < 0, then on [0, s̃0] pick h
to be whichever function (u∗1 or z1) yields the greater value in the functional

I s̃00 [f ] =

∫ s̃0
0

(λ1 − V (w))f(w)dw. (41)

Choose h on the whole interval [0, |S1|] as follows:

h(s) =




{
u∗1(s) if I s̃00 [u

∗
1] ≥ I

s̃0
0 [z1]

z1(s) if I s̃00 [u
∗
1] < I

s̃0
0 [z1]

}
for s ∈ [0, s̃0]

min[u∗1, z1] for s ∈ (s̃0, s̃1)
z1(s) for s ∈ [s̃1, |S1|].
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Again we must check that (36) is satisfied. Certainly it is on (0, s̃0) for whichever
function is h. For s ∈ (s̃0, s̃1), if h(s) = u∗1(s) we have

−
dh

ds
= −

du∗1
ds

≤ n−2Cn
−2/ns−2+2/n

(∫ s̃0
0

(λ1 − V )u
∗
1dw +

∫ s
s̃0

(λ1 − V )u
∗
1dw

)

≤ n−2Cn
−2/ns−2+2/n

(∫ s̃0
0

(λ1 − V )hdw +

∫ s
s̃0

(λ1 − V )hdw

)

the first replacement on (0, s̃0) true by the construction that h would give the
greater integral for (41) and the second replacement true since h ≤ u∗1 and
λ1 − V (s) < 0 on (s̃0, s̃1). (Note that λ1 − V (s) is a decreasing function.)
Similarly, if h(s) = z1(s) for some s ∈ (s̃0, s̃1), then at this value of s we have

−
dh

ds
= −
dz1

ds
≤ n−2Cn

−2/ns−2+2/n

(∫ s̃0
0

(λ1 − V )hdw +

∫ s
s̃0

(λ1 − V )hdw

)
.

Finally, note that h = u∗1 < z1 on some subinterval of (s̃0, s̃1), else z1 ≤ u
∗
1 on

all [0, |S1|].
For whichever version of h being used, Φ(x) = h(Cn|x|n) is a valid trial

function for −∆+ V on S1, and it follows by Rayleigh-Ritz that

λ1 <

∫
S1
(|∇Φ|2 + V Φ2)dx∫

S1
Φ2dx

, (42)

the strict inequality since h 6≡ z1, or the theorem is proved. Also notice that by
definition of Φ(x) = h(Cn|x|n) we have∫

S1

Φ2dx =

∫ |S1|
0

h2(s)ds.

Taking the gradient of Φ and using the change of variable s = Cnr
n leads to

the integral identity∫
S1

|∇Φ|2dx = n2Cn
2/n

∫ |S1|
0

s2−2/nh′(s)
2
ds.

Now use the inequality (36) to substitute for one of the h′(s)’s above to get∫
S1

|∇Φ|2dx ≤ −

∫ |S1|
0

h′(s)

∫ s
0

(λ1 − V (w))h(w)dwds.

Next we integrate by parts, and observing that the boundary terms vanish, we
have ∫

S1

|∇Φ|2dx ≤ λ1

∫ |S1|
0

h2(s)ds −

∫ |S1|
0

V (s)h2(s)ds

= λ1

∫
S1

Φ2(x)dx −

∫
S1

V (r)Φ2(x)dx.
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It therefore follows that

λ1 ≥

∫
S1
(|∇Φ|2 + VΦ2)dx∫
S1
Φ2(x)dx

, (43)

a contradiction to (42). Hence z1(s) ≤ u∗1(s) for all s ∈ [0, |S1|].
Now normalize the functions as in (37). From above, it follows that z1(0) ≥

u∗1(0). If z1(0) = u
∗
1(0), then by the integral condition and part one just proved,

the identities |Ω| = |S1| and z1(s) = u1∗(s) for all s ∈ [0, |Ω|] would be forced,
and thus the theorem is proved trivially with any s1 ∈ (0, |S1|) sufficing.
Next, if z1(0) > u

∗
1(0), then by the extension of the Faber-Krahn inequality

|S1| < |Ω|, and, by the Dirichlet boundary conditions u∗1(|Ω|) = z1(|S1|) = 0, it
is clear that there is at least one point s ∈ (0, |S1|) at which u∗1(s) = z1(s).
Take s1 to be the largest s ∈ (0, |S1|) such that the condition u∗1(w) ≤ z1(w)

for all 0 ≤ w ≤ s holds. Then it remains to be proven that u1∗(s) > z1(s) for
all s ∈ (s1, |S1|]. If not, there is a point s2, with s1 < s2 < |S1|, which we define
to be the largest s such that u∗1(w) ≥ z1(w) for all s1 ≤ w ≤ s. If s2 exists,
there also exists a point s3, s2 < s3 < |S1|, defined to be the largest s such
that u∗1(w) ≤ z1(w) for all s2 ≤ w ≤ s. Now, as before, we piece together a
function v(s) from u∗1 and z1 which will satisfy the key integral inequality (36).
This construction is done again based upon the interval where the decreasing
function λ1 − V (s) changes sign from positive to negative.
The possibilities are as follows:
Case 1. λ1 − V (s) changes sign in [s2, |S1|] or not at all. Then define the

trial function v as

v(s) =

{
z1(s) for s ∈ [0, s1] ∪ [s2, |S1|]
max[u∗1, z1] for s ∈ (s1, s2)

Case 2. λ1 − V (s) changes sign in (s1, s2). Then

v(s) =




z1(s) for s ∈ [0, s1]{
u∗1(s) if Is2s1 [u

∗
1] ≥ I

s2
s1 [z1]

z1(s) if Is2s1 [u
∗
1] < I

s2
s1
[z1]

}
for s ∈ (s1, s2)

min[u∗1, z1] for s ∈ (s2, s3)
z1(s) for s ∈ [s3, |S1|].

Case 3. λ1 − V (s) changes sign in [0, s1]. Then

v(s) =




{
u∗1(s) if Is10 [u

∗
1] ≥ I

s1
0 [z1]

z1(s) if Is10 [u
∗
1] < I

s1
0 [z1]

}
for s ∈ [0, s1]

min[u∗1, z1] for s ∈ (s1, s3)
z1(s) for s ∈ [s3, |S1|].

As before, let F (x) = v(Cn|x|n) for whichever v is applicable. Then as long
as s2 exists F cannot be the ground-state eigenfunction on |S1|, which gives
the left-hand side of the inequality below. However, using the same methods
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that allowed us to arrive at (43) for Φ, one can derive the right-hand side of the
inequality

λ1 <

∫
S1
(|∇F |2 + V F 2)dx∫

S1
F 2dx

≤ λ1, (44)

a contradiction.

The fact that g(r) is increasing and the modified Chiti Comparison Theorem
can be used to prove the inequality (34). Keeping in mind that g and u?1 are
functions of the radial variable only, let r∗ be the radius of S1. Also, let r1
correspond to s1 from the Chiti theorem via the change of variable s1 = Cnr

n
1 ,

and let R be the radius of Ω?. Then we have∫
S1

g(r)
2
z21dx−

∫
Ω?
g(r)

2
u?1
2
dx

= nCn

[∫ r1
0

g(r)2(z21 − u
∗
1
2)rn−1dr +

∫ r∗
r1

g(r)2(z21

−u∗1
2)rn−1dr −

∫ R
r∗
g(r)2u∗1

2
rn−1dr

]

≤ nCn

[∫ r1
0

g(r1)
2(z21 − u

∗
1
2)rn−1dr

+

∫ r∗
r1

g(r1)
2(z21 − u

∗
1
2)rn−1dr −

∫ R
r∗
g(r1)

2u∗1
2
rn−1dr

]

= g(r1)
2nCn

[∫ r∗
0

z21r
n−1dr −

∫ R
0

u∗1
2
rn−1dr

]

= g(r1)
2

[∫
S1

z21dx−

∫
Ω?
u?1
2dx

]
= 0

the last line by virtue of the normalization hypothesis (37).

By a similar calculation, using the fact that B(r) is radially decreasing and
the Chiti Theorem, we can show the inequality (33):∫

Ω?
B(r)u?1

2
dx ≤

∫
S1

B(r)z21dx.

5 Conclusion of the proof of the main theorem

Combining the results (31), (32), (33), (34) yields the string of inequalities∫
Ω

B(r)u21dx ≤

∫
Ω?
B(r)

?
u?1
2
dx ≤

∫
Ω?
B(r)u?1

2
dx ≤

∫
S1

B(r)z21dx
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and ∫
Ω

g(r)
2
u21dx ≥

∫
Ω?
g(r)2?u

?
1
2
dx ≥

∫
Ω?
g(r)

2
u?1
2
dx ≥

∫
S1

g(r)
2
z21dx.

Together with (15) this gives

λ2(Ω)− λ1(Ω) ≤

∫
S1
B(r)z21dx∫

S1
g(r)

2
z21dx

.

Since B and g were defined in such a way as to give equality in the case of Ω
equal to a ball, the right hand side yields

λ2(S1)− λ1(S1) =

∫
S1
B(r)z21dx∫

S1
g(r)

2
z21dx

and so this reduces to the main inequality

λ2(Ω) ≤ λ2(S1),

since S1 was chosen so that λ1(S1) = λ1(Ω).

6 Extension to general elliptic equation

This section gives an outline of how to extend the bound given in Theorem 2.1
for the Schrödinger problem to the bound (8) referring to the general elliptic
problem of Theorem 2.2.
Proceeding as in the case of the Schrödinger operator we find B and g are

defined as before with the exception that krα becomes kr
α

a
. Equality to λ2−λ1

in the integral ratio ∫
Ω
B(r)u21dx∫

Ω
g(r)

2
u21dx

again comes for the Schrödinger operator on a ball. Since B and g differ only
by a constant in krα, their properties of g increasing and B decreasing remain
unchanged. The Chiti and Talenti type arguments proceed with little change,
the key differences being that S1 is chosen so that{

−∆z + kr
α

a
z = λz on S1

z = 0 on ∂S1,

has Ca λ1(Ω) as its first eigenvalue as opposed to λ1(Ω). Another extension of
the Faber-Krahn result shows that |S1| ≤ |Ω∗| = |Ω|.
Corresponding to the change from λ1 to

C
a
λ1, the key integral inequality

(36) changes to

−
du∗1
ds
≤
n−2Cn

−2/ns−2+2/n

a

∫ s
0

(Cλ1u
∗
1(w)− kw

αu∗1(w))dw.
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(In this inequality we see the necessity for the change in potential and first
eigenvalue.) The Chiti comparison result follows as before, leading to

λ2(Ω)− λ1(Ω) ≤
A

c

∫
S1
B(r)z21dx∫

S1
g(r)

2
z21dx

=
A

c
(λ2(S1)− λ1(S1))

which simplifies to the ratio inequality

λ2

λ1
(Ω) ≤ 1 +

AC

ac

(
λ2

λ1
(S1)− 1

)

which is the result stated in Theorem 2.2.
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