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NONLINEAR FREDHOLM EQUATIONS IN MODULAR

FUNCTION SPACES

MOSTAFA BACHAR

Abstract. We investigate the existence of solutions in modular function spaces

of the Fredholm integral equation

Φ(θ) = g(θ) +

∫ 1

0
f(θ, σ,Φ(σ)) dσ,

where Φ(θ), g(θ) ∈ Lρ, θ ∈ [0, 1], f : [0, 1]× [0, 1]× Lρ → R. An application in

the variable exponent Lebesgue spaces is derived under minimal assumptions

on the problem data.

1. Introduction

The purpose of this work is to study the existence of the solutions of Fred-
holm equations within the general theory of functional analysis in modular function
spaces Lρ [8, 9, 4]. Several authors study the case of integral equations in the space
of all ρ-continuous functions from [0, 1] into Lρ using the Banach contraction prin-
ciple or the Brouwer fix point theorem for continuous functions, see the references
[2, 6, 7, 15]. Taleb and Hanebaly [15] considered the Banach contraction mapping
principle in order to solve integral equations in modular function spaces taking into
account the ∆2-type condition. Hajji and Hanebaly [6, 7] use the argument in [15].
The theory of modular function spaces has gained attention with the publication
of the book by Diening et al. [4] on variable exponent spaces. We work within
the general theory of the spaces of all ρ-continuous functions from [0, 1] into Lρ,
denoted by Cρ([0, 1], Lρ) .

The aim of this article is to investigate the existence of solutions of Fredholm
equations in Cρ([0, 1], Lρ). Preliminaries on modular function spaces are presented
in Section 2. In Section 3, we present our main results concerning the existence
of the solutions in Theorem 3.5. In Section 4, we give an application of our main
result in the variable exponent spaces Lp(·).

2. Preliminaries

Let us consider the Fredholm integral equation

Φ(θ) = g(θ) +

∫ 1

0

f(θ, σ,Φ(σ)) dσ. (2.1)
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In general, this equation need not have a solution. See [1].
For basic definitions and properties of modular function spaces the reader is

referred to [8, 4]. We denote by M∞ the set of Lebesgue measurable functions
φ : [0, 1]→ [0,∞].

Definition 2.1 ([8]). We say that ρ : M∞ → [0,∞] is a convex regular modular
function if the following conditions hold:

(1) ρ(φ) = 0 if and only if φ = 0;
(2) ρ(αφ) = ρ(φ), if |α| = 1;
(3) ρ(αφ+ (1− α)ψ) ≤ αρ(φ) + (1− α)ρ(ψ), for any α ∈ [0, 1],

where φ, ψ ∈M∞.

We say that a set A ⊂ [0, 1] is ρ-null if ρ(1A) = 0, where 1A denote the character-
istic function of the set A, its clear that ρ-null sets are the same as Lebesgue-null
sets, by condition (1) of Definition 2.1. We say that a property holds ρ-almost
everywhere (ρ-a.e.) if the exceptional set is ρ-null. Define

X = {φ ∈M∞ : |φ(θ)| <∞ ρ-a.e.}.
The modular function space Lρ([0, 1]), or briefly Lρ, is defined as

Lρ = {φ ∈ X : lim
λ→0

ρ(λφ) = 0}.

Throughout this paper, the Luxemburg norm in Lρ is defined as:

‖φ‖ρ = inf
{
t > 0; ρ

(1

t
φ
)
≤ 1
}
.

Definition 2.2 ([8]). Let ρ be a convex regular modular function.

(a) {φn} is said to be ρ-convergent to φ if limn→+∞ ρ(φn − φ) = 0.
(b) {φn} is said to be ρ-Cauchy if limn,m→+∞ ρ(φn − φm) = 0.
(c) B ⊂ Lρ is said to be ρ-closed if for any sequence {φn} in B which ρ-

converges to φ, we have φ ∈ B. We will denote by B
ρ

the intersection of
all ρ-closed subsets which contain B. B

ρ
will be called the ρ-closure of B.

(d) B ⊂ Lρ is said to be ρ-bounded if

diamρ(B) = sup{ρ(φ− ψ);φ ∈ B,ψ ∈ B} <∞.
(e) B ⊂ Lρ is called ρ-compact if for any {Φn} in B, there exists a subsequence
{Φnk} such that {Φnk} is ρ-convergent to Φ ∈ B.

(f) B ⊂ Lρ is said to be ρ-relatively compact if its ρ-closure is ρ-compact.

In the following theorem we recall some of the needed properties of modular
spaces.

Theorem 2.3 ([8, 9]). Let ρ be a convex regular modular function. The following
properties hold:

(i) if limn→+∞ ρ(λφn) = 0, for some λ > 0, then there exists a subsequence
{φkn} which converges ρ-a.e. to 0;

(ii) (Fatou property) if {φn} converges ρ-a.e. to φ, then we have

ρ(φ) ≤ lim inf
n→+∞

ρ(φn).

Definition 2.4. We say that ρ satisfies the ∆2-type condition if there exists K > 0
such that ρ(2φ) ≤ K ρ(φ), for any φ ∈ Lρ.
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This property is crucial when studying modular function spaces. Note that if ρ
satisfies the ∆2-type condition, then

ωρ(2) = inf{K : ρ(2φ) ≤ K ρ(φ) where φ ∈ Lρ} <∞.
In this case, we have

ρ(φ+ ψ) = ρ
(

2
φ+ ψ

2

)
≤ ωρ(2)ρ

(φ+ ψ

2

)
≤ ωρ(2)

2

(
ρ(φ) + ρ(ψ)

)
, (2.2)

for any φ, ψ ∈ Lρ. This property is satisfied in b-metric spaces, see for example
[11]. Since ρ fails the triangle inequality, then the ρ-convergence may not imply the
ρ-Cauchy behavior. But if ρ satisfies the ∆2-type condition, then the ρ-convergence
does imply the ρ-Cauchy behavior.

As a consequence to Theorem 2.3, and without using the ∆2-type condition of
ρ, we have the following proposition:

Proposition 2.5 ([8]). Let ρ be a convex regular modular function. Then Lρ
is complete with respect to the ρ-convergence, i.e., any ρ-Cauchy sequence is ρ-
convergent. Moreover, the ρ-balls

Bρ(φ, r) = {ψ ∈ Lρ; ρ(φ− ψ) ≤ r},
are ρ-closed, for any φ ∈ Lρ and r ≥ 0.

Let us come back to the question of the relationship between convex regular
modular functions and norm convergence in modular function spaces Lρ.

Proposition 2.6 ([8]). Let ρ be a convex regular modular function. The ρ-convergence
with respect to the function modular ρ is equivalent to the ‖ · ‖ρ-convergence with
respect to the Luxemburg norm ‖ · ‖ρ in Lρ if and only if ρ satisfies the ∆2-type
condition.

3. Solvability of nonlinear Fredholm equations

In this section we discuss the solvability of the Fredholm integral equation in
modular function spaces Lρ,

Φ(θ) = g(θ) +

∫ 1

0

f(θ, σ,Φ(σ)) dσ, (3.1)

where Φ(θ), g(θ) ∈ Lρ, θ ∈ [0, 1] and f : [0, 1] × [0, 1] × Lρ → R. First, we need to
recall the definition of ρ-continuity [7, 15] and fix some notation.

Definition 3.1. Let ρ be a convex regular modular function, and Φ : [0, 1]→ Lρ.
Then Φ is said to be ρ-continuous at θ0 ∈ [0, 1], if ρ(Φ(θ)− Φ(θ0))→ 0 as θ → θ0.
A function Φ : [0, 1] → Lρ is said to be ρ-continuous if it is ρ-continuous at every
point of [0, 1].

If ρ satisfies the ∆2-type condition, then any ρ-continuous function in Lρ is
also ‖ · ‖ρ-continuous function in Lρ. We denote by Cρ([0, 1], Lρ) the space of all
ρ-continuous functions from [0, 1] into Lρ. Define ρCρ : Cρ([0, 1], Lρ)→ [0,∞], by

ρCρ(Φ) = sup
θ∈[0,1]

ρ(Φ(θ)), (3.2)

for any Φ ∈ Cρ([0, 1], Lρ). For any nonempty subset B ⊂ Lρ, we denote by
Cρ([0, 1], B) the set of functions Φ ∈ Cρ([0, 1], Lρ) such that Φ([0, 1]) ⊂ B. The
following Lemma will be useful throughout our work.
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Lemma 3.2 ([15]). Let ρ be a convex regular modular function. Assume that ρ
satisfies the ∆2-type condition, and B ⊂ Lρ is a nonempty ρ-closed convex subset
of Lρ. Then:

(a) ρCρ is convex modular satisfying the Fatou property and the ∆2-type condi-
tion with:

ωρCρ (2) ≤ ωρ(2).

(b) Cρ([0, 1], Lρ) is ρCρ-complete.
(c) Cρ([0, 1], B) is a ρCρ-closed, convex subset of Cρ([0, 1], Lρ).

Now, we can define the Luxemburg norm in Cρ([0, 1], Lρ) as

‖Φ‖Cρ = inf
{
t > 0; ρCρ

(1

t
Φ
)
≤ 1
}
. (3.3)

Assume that ρ satisfies the ∆2-type condition, then we can introduce the supremum-
norm of an element Φ ∈ Cρ([0, 1], Lρ) by

‖Φ‖∞ = sup
θ∈[0,1]

‖Φ(θ)‖ρ. (3.4)

Before we state the main theorem, we will need the following lemma.

Lemma 3.3 ([7]). Let ρ be a convex regular modular function that satisfies the
∆2-type condition. Let {Φn} be sequence in Cρ([0, 1], Lρ) and Φ ∈ Cρ([0, 1], Lρ).
Then the following statements are equivalent:

(a) limn→∞ ρCρ(Φn − Φ) = 0,
(b) limn→∞ ‖Φn − Φ‖Cρ = 0,
(c) limn→∞ ‖Φn − Φ‖∞ = 0.

Let f : [0, 1]×[0, 1]×Lρ → R and Φ, g ∈ Cρ([0, 1], Lρ) such that for each θ ∈ [0, 1],
f(θ, ·,Φ(·)) ∈ Lρ, and

(H1) σ → f(θ, σ,Φ(σ)) is Lebesgue measurable over [0,1];

(H2) θ →
∫ 1

0
f(θ, σ,Φ(σ)) dσ ∈ Cρ([0, 1], Lρ).

We will say that f is ρ-strongly continuous with respect to the first variable if

lim
θ→θ0

sup
σ∈[0,1]

ρ(f(θ, σ,Φ(σ))− f(θ0, σ,Φ(σ))) = 0,

for any θ0 ∈ [0, 1], and Φ ∈ Cρ([0, 1], B) where B is a nonempty ρ-bounded subset
of Lρ.

To the Fredholm integral equation (2.1) in the modular function spaces Lρ, we
associate the integral operator A : Cρ([0, 1], Lρ)→ Cρ([0, 1], Lρ) defined by

(AΦ)(·) = g(·) +

∫ 1

0

f(·, σ,Φ(σ)) dσ. (3.5)

It is clear that the solutions to (2.1) are exactly the fixed points of A, i.e., AΦ = Φ.
In the proof of the main result, we use Schaeffer’s fixed point theorem. We state

it here for the reader’s convenience.

Theorem 3.4 ([5, 13, 14]). Let X be a normed space, T a continuous mapping of
X into X, such that the closure of T (B) is compact for any bounded subset B of
X. Then either

(i) the equation x = λTx has a solution for λ = 1, or
(ii) the set of all such solutions x, for 0 < λ < 1, is unbounded.
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Note that if a map is continuous and the closure of bounded sets are compact, it is
known as completely continuous. More details on completely continuous mappings
may be found in Deimling, [3, p. 55]. Similarly, we will say that the operator A,
defined by (3.5), is ρCρ -completely continuous if it is ρCρ -continuous and the image
of any ρCρ -bounded subset is ρCρ -relatively compact. Now we are ready to state
the main result of our work.

Theorem 3.5. Let ρ be a convex regular modular function that satisfies the ∆2-type
condition. Assume that g ∈ Cρ([0, 1], Lρ) and f : [0, 1] × [0, 1] × Lρ → R satisfies
the following properties:

(SC) f is ρ-strongly continuous with respect to the first variable and satisfies
(H1) and (H2),

(LC) there exists L ≥ 0 such that

ρ(f(θ, ·,Φ(·))− f(θ, ·,Ψ(·))) ≤ L ρ(Φ(·)−Ψ(·)),
(BC) there exist M < 2/ωρ(2) and N ≥ 0 such that

ρ(f(θ, ·,Φ(·))) ≤MρCρ(Φ) +N,

for any Φ,Ψ ∈ Cρ([0, 1], Lρ) and θ ∈ [0, 1]. Then (2.1) has a solution in Cρ([0, 1], Lρ).

Proof. First, let us prove that the operator A : Cρ([0, 1], Lρ) → Cρ([0, 1], Lρ) is
ρCρ -completely continuous. Indeed, over the interval [0, 1], we choose the mesh
points

σni =
i

n
, i = 0, . . . , n,

where n > 1 is any positive integer. It is clear that σni+1 − σni = 1
n approaches 0 as

n approaches ∞, and

n−1∑
i=0

(σni+1 − σni )(f(θ, σni ,Φ(σni ))− f(θ, σni ,Ψ(σni )))

is ‖ · ‖ρ-convergent to
∫ 1

0
f(θ, σ,Φ(σ)) − f(θ, σ,Ψ(σ)) dσ in (Lρ, ‖ · ‖ρ), and conse-

quently, by using the ∆2-type condition, is also ρ-convergent. Since

n−1∑
i=0

σni+1 − σni =

n−1∑
i=0

1

n
= 1,

and using (LC) property of f , Fatou property and the convexity of ρ, we obtain

ρ((AΦ)(θ)− (AΨ)(θ)) ≤ lim inf
n→∞

ρ
( n−1∑
i=0

1

n
f(θ, σni ,Φ(σni ))− f(θ, σni ,Ψ(σni ))

)
≤ L lim inf

n→∞

n−1∑
i=0

1

n
ρ(Φ(σni )−Ψ(σni ))

≤ LρCρ(Φ−Ψ) lim inf
n→∞

n−1∑
i=0

1

n

= LρCρ(Φ−Ψ),

which implies
ρCρ(A(Φ)−A(Ψ)) ≤ L ρCρ(Φ−Ψ),
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for any Φ,Ψ ∈ Cρ([0, 1], Lρ). This will imply that the operator A is ρCρ -continuous
and the image of any nonempty ρ-bounded subset B ⊂ Lρ is ρ-bounded. Fix
B ⊂ Lρ a ρ-bounded nonempty subset. Let us prove that A(B) is ρCρ -relatively
compact. Using the property (BTI), we have

ρ((AΦ)(θ)− (AΨ)(θ̃))

≤ ωρ(2)

2
ρ(g(θ)− g(θ̃)) +

ωρ(2)

2
ρ
(∫ 1

0

f(θ, σ,Φ(σ))− f(θ̃, σ,Ψ(σ)) dσ
)

≤ ωρ(2)

2
ρ(g(θ)− g(θ̃)) +

ωρ(2)

2
lim inf
n→∞

ρ
( n−1∑
i=0

1

n
f(θ, σni ,Φ(σni ))− f(θ̃, σni ,Ψ(σni ))

)
≤ ωρ(2)

2
ρ(g(θ)− g(θ̃)) +

ωρ(2)

2
sup
σ∈[0,1]

ρ(f(θ, σ,Φ(σ))− f(θ̃, σ,Ψ(σ)))

n−1∑
i=0

1

n

=
ωρ(2)

2
ρ(g(θ)− g(θ̃)) +

ωρ(2)

2
sup
σ∈[0,1]

ρ(f(θ, σ,Φ(σ))− f(θ̃, σ,Ψ(σ))),

for any θ, θ̃ ∈ [0, 1] and any ρ-bounded subset B ⊂ Lρ. Since f is ρ-strongly
continuous with respect to the first variable and g is ρ-continuous, then by using
the ∆2-type condition and Lemma 3.3, we conclude that the family A(B) will be
equicontinuous with respect to the Luxemburg norm ‖ · ‖Cρ . Arzelà-Ascoli theorem
implies that A(B) is ‖ · ‖Cρ -relatively compact and then ρCρ -relatively compact.
Therefore, A is ρCρ -completely continuous. Next, we prove that A has a fixed
point. Consider the set

S = {Φ ∈ Cρ([0, 1], Lρ) : Φ = νAΦ, for some ν in [0, 1]}.

Let us prove that S is ρCρ -bounded. Note that the zero-function is in S. Hence S is
not empty. Next, let Φ ∈ S. We have Φ = ν AΦ, for some ν ∈ [0, 1], which implies

ρ(Φ(θ)) ≤ ρ(ν g(θ) + ν

∫ 1

0

f(θ, σ,Φ(σ) dσ)

≤ νρ( g(θ) +

∫ 1

0

f(θ, σ,Φ(σ)) dσ)

≤ ν ωρ(2)

2

(
ρ( g(θ)) + ρ

(∫ 1

0

f(θ, σ,Φ(σ)) dσ
))
,

by using ν ≤ 1, the ∆2-type condition. Hence the Fatou property implies

ρ(Φ(θ)) ≤ ωρ(2)

2
ρ( g(θ)) +

ωρ(2)

2
lim inf
n→∞

n−1∑
i=0

(σni+1 − σni )ρ(f(θ, σni ,Φ(σni )),

≤ ωρ(2)

2
ρ(g(θ)) +

ωρ(2)

2
(MρCρ(Φ) +N) lim inf

n→∞

n−1∑
i=0

(σni+1 − σni ),

=
ωρ(2)

2
ρ(g(θ)) +

ωρ(2)

2
(MρCρ(Φ) +N),

which implies

ρCρ(Φ) ≤ ωρ(2)

2
ρCρ(g) +

ωρ(2)

2
(MρCρ(Φ) +N).
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Since M < 2
ωρ(2)

, we obtain

ρCρ(Φ) ≤ ωρ(2)

2

ρCρ(g) +N

1− ωρ(2)
2 M

,

which implies that S is ρCρ -bounded. Using Schaefer’s fixed point theorem, we
conclude that A has a fixed point, i.e., the equation (FIE) has a solution in
Cρ([0, 1], Lρ). �

4. Applications

Electrorheological (ER) fluids are suspensions of extremely fine non-conducting
but electrically active particles (up to 50 micrometres diameter) in an electrically
insulating fluid. The apparent viscosity of these fluids changes reversibly by an
order of up to 100,000 in response to an electric field. For example, a typical
ER fluid can go from the consistency of a liquid to that of a gel, and back, with
response times on the order of milliseconds. The effect is sometimes called the
Winslow effect[16].

The giant electrorheological (GER) fluid was discovered in 2003, and is able to
sustain higher yield strengths than many other ER fluids. A mathematical model
associated to the study of the eigenvalues of the p-Laplacian for these kind of fluids
[10] is done via the variable exponent spaces introduced by Orlicz as early as 1931
[12].

Let p : [0, 1] → [1,∞] be a Lebesgue measurable function finite almost every-
where. We define

p− := p−[0,1] := ess infx∈[0,1] p(x). p+ := p+[0,1] := ess supx∈[0,1] p(x).

We define the variable exponent Lebesgue space Lp(·)([0, 1]) by

Lp(·) := Lp(·)([0, 1]) = {φ ∈ L0([0, 1]) : %Lp(·)(λφ) <∞ for some λ > 0},
where L0([0, 1]) denote the space of all R-valued, Lebesgue measurable functions
on [0, 1] and

%Lp(·)(φ) =

∫ 1

0

| φ(x) |p(x) dx. (4.1)

Note that %Lp(·) is a convex modular as p is finite almost everywhere [4]. If p+ <∞,
then %Lp(·) satisfies the ∆2-type condition. Indeed, we have

%Lp(·)(2φ) =

∫ 1

0

| 2φ(x) |p(x) dx

=

∫ 1

0

2p(x) |φ(x)|p(x)dx

≤ 2p
+

∫ 1

0

|φ(x)|p(x)dx

≤ 2p
+

%Lp(·)(φ),

for any φ ∈ Lp(·), which does imply ω%
Lp(·)

(2) ≤ 2p
+

. Consider the Fredholm

integral equation

Φ(θ) = g(θ) +

∫ 1

0

| sin(1 + θ + Φ(σ))| dσ. (4.2)
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Assume that Φ and g are in C%
Lp(·)

([0, 1], Lp(·)). Then (4.2) has a solution in

C%
Lp(·)

([0, 1], Lp(·)). Indeed, let Ψ,Φ ∈ C%
Lp(·)

([0, 1], Lp(·)). Set

φ := Φ(·) ∈ Lp(·), ψ := Ψ(·) ∈ Lp(·).
Since ∣∣| sin(1 + θ + Φ(·))| − | sin(1 + θ + Ψ(·))|

∣∣ ≤ ∣∣Φ(·)−Ψ(·)
∣∣,

we have

%Lp(·)
(
| sin(1 + θ + Φ(·))| − | sin(1 + θ + Ψ(·))|

)
≤ %Lp(·)(Φ(·))−Ψ(·)).

Moreover,

%Lp(·)(| sin(1 + θ + Φ(·))|) = %Lp(·)(| sin(1 + θ + φ)|)

=

∫ 1

0

| sin(1 + θ + φ(x))|p(x)dx

≤
∫ 1

0

1 dσ

= MρC%
Lp(·)

(Φ) +N,

where
%C%

Lp(·)
(Φ) = sup

θ∈[0,1]
%Lp(·)(Φ(θ)), M = 0, N = 1.

Clearly, we have M < ω(2)/2 = 2p
+−1. Therefore Theorem 3.5 implies that (4.2)

has a solution in C%
Lp(·)

([0, 1], Lp(·)).
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