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Quantitative, uniqueness, and vortex degree

estimates for solutions of the

Ginzburg-Landau equation ∗

Igor Kukavica

Abstract

In this paper, we provide a sharp upper bound for the maximal order of
vanishing for non-minimizing solutions of the Ginzburg-Landau equation

∆u = −
1

ε2
(1− |u|2)u

which improves our previous result [12]. An application of this result
is a sharp upper bound for the degree of any vortex. We treat Dirich-
let (homogeneous and non-homogeneous) as well as Neumann boundary
conditions.

1 Introduction

In this paper, we provide vortex degree estimates for solutions of the Ginzburg-
Landau equation

∆u = −
1

ε2
(
1− |u|2

)
u .

The vortices of solutions of this equation were studied by Bethuel, Brezis, and
Hélein in [5]. (We recall that x0 is a vortex if it is an isolated zero of u,
and if the degree of u at x0 is nonzero.) They prescribed nonhomogeneous
boundary conditions u|∂Ω = g with g: ∂Ω → S1 such that deg g = d > 0. If Ω
is convex, and if ε is sufficiently small, they proved that a minimizing solution
u has precisely d distinct vortices of degree 1. This result has been extended to
include all bounded smooth domains by Struwe [17]. It was further shown in
[5] that there exist non-minimizing solutions of the Ginzburg-Landau equation
whose vortex at the origin is an arbitrarily prescribed nonzero integer.
In this paper, we find a sharp upper bound in terms of 1/ε for the degree

of vortices for solutions which are not necessarily minimizing. Chanillo and
Kiessling proved in [7, Lemma 6] that if x0 is a vortex of degree d ∈ N, then the
vanishing order of u is at least d. Therefore, we may use unique continuation
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methods to address this problem. Using the result of Chanillo and Kiessling,
the paper [12] implies that in the homogeneous Dirichlet and periodic cases the
degree of u at any vortex x0 is less than Cε

−2 where C depends only on Ω. In
Theorem 3.1 below we improve this bound to Cε−1 and then show that this
bound is best possible. The main tool in the proof is a new logarithmically
convex quantity for the Laplacian operator. More precisely, for any α > −1 and
any harmonic function u, the quantity

H(r) =

∫
Br(0)

u(x)2
(
r2 − |x|2

)α
dx

is logarithmically convex, i.e., logH(r) is a convex function of log r. Due to
cancellations of terms involving α in (2.10)–(2.12) below, and due to a gradient
structure of the Ginzburg-Landau equation, we can choose an appropriate op-
timal α which gives our result. Inspired by an example in [5], we construct in
Remark 3.3 a solution which shows that our bound Cε−1 can not be improved
upon. Theorem 3.2 contains an estimate concerning the boundary condition
u|∂Ω = g where |g| = 1, while Theorem 3.5 covers the Neumann case.
For properties of stationary Ginzburg-Landau equation, cf. [5, 8, 15, 16, 17]

and to [1, 2, 3, 4, 9, 10, 12, 13] for various results on logarithmic convexity and
unique continuation.

2 Quantitative uniqueness for systems

In this section, we consider nontrivial solutions u of the system

∆u = F ′
(
|u|2
)
u

u|∂Ω = 0 (2.1)

where u ∈ C2(Ω,RD) ∩C(Ω,RD) with D ∈ N. We assume that Ω ⊆ Rd, where
d ≥ 2, and one of the following:

(a) Ω is a convex bounded domain;

(b) Ω is a Dini domain; Dini domains are bounded domains with the following
property: Around any point there is a neighborhood N , such that after
a rotation of coordinates Ω ∩ N lies below a graph of a function whose
normal is Dini continuous (see [14] for details);

(c) Ω is a periodic cube [0, L]d; in this case, ∂Ω = ∅.

As in [12], we are mainly interested in periodic boundary conditions; the pa-
pers [1] and [14] enable us to consider homogeneous Dirichlet conditions without
much change. As far as the Ginzburg-Landau equation is concerned, the non-
homogeneous boundary conditions u|∂Ω = g (with |g| = 1) and homogeneous
Neumann conditions (du/dν)|∂Ω = 0 are more physically relevant and more
widely studied. Theorem 3.1 addresses the homogeneous Dirichlet boundary
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conditions; the non-homogeneous boundary conditions are considered in Theo-
rem 3.2, while Theorem 3.5 covers the Neumann case. Let M = maxΩ |u|

2. On
F : [0,M ]→ R, we make the following assumptions:

(i) F ∈ C1
(
[0,M ]

)
and ∣∣F ′(x)∣∣ ≤ λ , x ∈ [0,M ] (2.2)

for some λ > 0;

(ii) F (0) = 0;

(iii) F is convex on [0,M ].

Conditions (ii) and (iii) imply

F (x) ≤ xF ′(x) , x ∈ [0,M ] (2.3)

and ∣∣F (x)∣∣ ≤ λx , x ∈ [0,M ] . (2.4)

The following is the main result of this section.
We recall that the order of vanishing at x0 ∈ Ω is defined as the largest

integer n ∈ N0 = {0, 1, . . .} such that

1

|Br(x0) ∩ Ω|

∫
Br(x0)∩Ω

|u|2 = O(r2n) , asr → 0 .

(Here and in each subsequent occurrence, one needs to replace Br(x0)∩Ω with
Br(x0) in the case of periodic boundary conditions (c).) In particular, if u does
not vanish at x0, then the order of vanishing is 0. We also add that u may not
have any zeros in Ω.

Theorem 2.1 Let x0 ∈ Ω. The order of vanishing of u at x0 is less than
C(
√
λ+ 1) where C is a constant depending only on Ω.

If λ is sufficiently small, and if Ω satisfies (a) or (b), then there are no
nontrivial solutions of (2.1). In these cases, the bound C(

√
λ + 1) may be

replaced by C
√
λ.

Let x0 ∈ Ω and R > 0 be such that BR(x0) ∩ Ω is starshaped with respect
to x0. For an arbitrary α > −1 and r > 0, denote

Hx0(r) =

∫
Br(x0)∩Ω

∣∣u(x)∣∣2(r2 − |x− x0|2)α dx
where |u|2 = ujuj . We will omit the dependency on x0 when it is clear from
the context.

Lemma 2.2 Let q ≥ 1, and let 0 < r1 < r2 be such that qr2 ≤ R. Then

log
Hx0(qr1)

Hx0(r1)
≤ log

Hx0(qr2)

Hx0(r2)
+
(q2 − 1)r22dλ

α+ 1
.
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Proof of Lemma 2.2 Without loss of generality, x0 = 0. Let r ∈ (0, R) be
arbitrary. Denoting Br = Br(0), we get

H ′(r) = 2αr

∫
Br∩Ω

|u|2
(
r2 − |x|2

)α−1
dx

=
2α

r
H(r) −

1

r

∫
Br∩Ω

xj |u|
2 ∂j
((
r2 − |x|2

)α)
dx (2.5)

whence, by the divergence theorem,

H ′(r) =
2α+ d

r
H(r) +

1

(α+ 1)r
I(r) (2.6)

where

I(r) = 2(α+ 1)

∫
Br∩Ω

xjuk ∂juk
(
r2 − |x|2

)α
dx . (2.7)

By the divergence theorem,

I(r) = −

∫
Br∩Ω

uk ∂juk ∂j
((
r2 − |x|2

)α+1)
dx

=

∫
Br∩Ω

∂juk ∂juk
(
r2 − |x|2

)α+1
dx

+

∫
Br∩Ω

|u|2F ′(|u|2)
(
r2 − |x|2

)α+1
dx .

As in (2.5) above, we get

I ′(r) =
2(α+ 1)

r

∫
Br∩Ω

∂juk ∂juk
(
r2 − |x|2

)α+1
dx

−
1

r

∫
Br∩Ω

xm ∂juk ∂juk ∂m
((
r2 − |x|2

)α+1)
dx

+2(α+ 1)r

∫
Br∩Ω

|u|2F ′(|u|2)
(
r2 − |x|2

)α
dx .

Using the divergence theorem on the second integral leads to

I ′(r) =
2(α+ 1) + d

r

∫
Br∩Ω

∂juk ∂juk
(
r2 − |x|2

)α+1
dx

+
2

r

∫
Br∩Ω

xm ∂juk ∂jmuk
(
r2 − |x|2

)α+1
dx

−
1

r

∫
Br∩∂Ω

xm ∂juk ∂juk
(
r2 − |x|2

)α+1
νm dσ(x)

+2(α+ 1)r

∫
Br∩Ω

|u|2F ′(|u|2)
(
r2 − |x|2

)α
dx
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where ν = (ν1, . . . , νd) denotes the outward unit normal and where dσ(x) stands
for the surface measure on ∂Ω. Applying the divergence theorem in the second
integral, this time with respect to the variable xj , we get

I ′(r) =
2α+ d

r

∫
Br∩Ω

∂juk ∂juk
(
r2 − |x|2

)α+1
dx

−
2

r

∫
Br∩Ω

xm∂muk F
′
(
|u|2
)
uk
(
r2 − |x|2

)α+1
dx

+
4(α+ 1)

r

∫
Br∩Ω

xm∂muk xj∂juk
(
r2 − |x|2

)α
dx

+
2

r

∫
Br∩∂Ω

xm∂muk ∂juk
(
r2 − |x|2

)α+1
νj dσ(x)

−
1

r

∫
Br∩∂Ω

xm∂juk ∂juk
(
r2 − |x|2

)α+1
νm dσ(x)

+2(α+ 1)r

∫
Br∩Ω

|u|2F ′
(
|u|2
)(
r2 − |x|2

)α
dx . (2.8)

The second term on the right hand side of (2.8) equals

−
1

r

∫
Br∩Ω

xm ∂m
(
F
(
|u|2
))(
r2 − |x|2

)α+1
dx

=
d

r

∫
Br∩Ω

F
(
|u|2
)(
r2 − |x|2

)α+1
dx

−
2(α+ 1)

r

∫
Br∩Ω

F
(
|u|2
)
|x|2
(
r2 − |x|2

)α
dx ;

since the boundary integral vanishes by F (0) = 0. On the other hand, the sum
of the fourth and the fifth term is

1

r

∫
Br∩∂Ω

xkνk
∂um

∂ν

∂um

∂ν

(
r2 − |x|2

)α+1
dσ(x)

which is due to the fact ∂ku = (∂u/∂ν)νk resulting from u|∂Ω = 0. This integral
is nonnegative since Br ∩ Ω is starshaped with respect to 0. Then

I ′(r) ≥
2α+ d

r
I(r) −

2α+ d

r

∫
Br∩Ω

|u|2F ′
(
|u|2
)(
r2 − |x|2

)α+1
dx

+
d

r

∫
Br∩Ω

F
(
|u|2
)(
r2 − |x|2

)α+1
dx

−
2(α+ 1)

r

∫
Br∩Ω

F
(
|u|2
)
|x|2
(
r2 − |x|2

)α
dx

+
4(α+ 1)

r

∫
Br∩Ω

xm ∂mukxj ∂juk
(
r2 − |x|2

)α
dx

+2(α+ 1)r

∫
Br∩Ω

|u|2F ′
(
|u|2
)(
r2 − |x|2

)α
dx . (2.9)
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The sum of the second, the third, the fourth, and the sixth term is

1

r

∫
Br∩Ω

E(x)
(
r2 − |x|2

)α
dx

where

E(x) = −(2α+ d)|u|2F ′
(
|u|2
)(
r2 − |x|2

)
+ dF

(
|u|2
)(
r2 − |x|2

)
−(2α+ 2)F

(
|u|2
)
|x|2 + (2α+ 2)F ′

(
|u|2
)
|u|2r2 . (2.10)

We get

E(x) = r2
(
−2α|u|2F ′

(
|u|2
)
− d|u|2F ′

(
|u|2
)
+ dF

(
|u|2
)

+2αF ′
(
|u|2
)
|u|2 + 2F ′

(
|u|2
)
|u|2
)

+|x|2
(
2αF ′

(
|u|2
)
|u|2 + dF ′

(
|u|2
)
|u|2

−dF
(
|u|2
)
− 2αF

(
|u|2
)
− 2F

(
|u|2
))

(2.11)

from where, using (iii),

E(x) ≥ r2
(
(2− d)|u|2F ′

(
|u|2
)
+ dF

(
|u|2
))
− 2|x|2F

(
|u|2
)
. (2.12)

By (2.2) and (2.4) and using |x|2 ≤ r2, we get

E(x) ≥ −4dλr2|u|2

which leads to

I ′(r) ≥
2α+ d

r
I(r)+

4(α+ 1)

r

∫
Br∩Ω

xm∂muk xj∂juk
(
r2−|x|2

)α
dx−4dλrH(r) .

Now, let N(r) = I(r)/H(r). Then

N ′(r) ≥ −4dλr +
4(α+ 1)

rH(r)2

(∫
Br∩Ω

xm∂muk xj∂juk
(
r2 − |x|2

)α
dx

×

∫
Br∩Ω

|u|2
(
r2 − |x|2

)α
dx−

( ∫
Br∩Ω

xjuk ∂juk
(
r2 − |x|2

)α
dx
)2)

whence, by the Cauchy-Schwarz inequality, N ′(r) ≥ −4dλr, i.e.,

N(r2)−N(r1) ≥ −2dλ(r2 − r1)(r2 + r1) , 0 < r1 ≤ r2 ≤ R . (2.13)

Let q ≥ 1, and let 0 < r1 ≤ r2 ≤ R be such that qr2 ≤ R. Dividing (2.6) by
H(r) and integrating the resulting equality between r1 and qr1 leads to

log
H(qr1)

H(r1)
= (2α+ d) log q +

1

α+ 1

∫ qr1
r1

N(ρ)

ρ
dρ

= (2α+ d) log q +
1

α+ 1

∫ qr2
r2

N(r1ρ/r2)

ρ
dρ .
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Using (2.13), we get

log
H(qr1)

H(r1)
≤ (2α+ d) log q + (r22 − r

2
1)
(q2 − 1)dλ

α+ 1
+

1

α+ 1

∫ qr2
r2

N(ρ)

ρ
dρ

= log
H(qr2)

H(r2)
+
(r22 − r

2
1)(q

2 − 1)dλ

α+ 1

and the lemma follows. �
Again, let x0 ∈ Ω be fixed, and denote

hx0(r) =

∫
Br(x0)∩Ω

|u(x)|2 dx .

Let R > 0 be such that BR(x0) ∩ Ω is starshaped with respect to x0 ∈ Ω.

Lemma 2.3 Let α ≥ 0, 0 < r1 < 4r2/3 and 4r2 ≤ R. Then, with the above
assumptions,

log
hx0(2r1)

hx0(r1)
≤ log

hx0(4r2)

hx0(r2)
+ C

(
α+

dr22λ

α+ 1

)

where C is a universal constant.

Proof of Lemma 2.3 Denote h(r) = hx0(r) andH(r) = Hx0(r). If 0 < r < ρ,
then

H(r) ≤ r2αh(r) (2.14)

and

h(r) ≤
H(ρ)

(ρ2 − r2)α
(2.15)

Therefore,

log
h(2r1)

h(r1)
≤ log

H(3r1)

H(r1)
− α log 5 ≤ log

H(3r1)

H(r1)

since α ≥ 0. By Lemma 2.2,

log
h(2r1)

h(r1)
≤ log

H(4r2)

H(4r2/3)
+
Cr22dλ

α+ 1
.

Using (2.14) and (2.15) again, we get our assertion. �
In Theorem 3.2 below, we will need an interior version of the above lemma,

which we state for sake of completeness.

Lemma 2.4 Let u be a solution of ∆u = F ′
(
|u|2
)
u, where F is as above, in

BR(x0). Let α ≥ 0, 0 < r1 < 4r2/3 and 4r2 ≤ R Then

log
hx0(2r1)

hx0(r1)
≤ log

hx0(4r2)

hx0(r2)
+ C

(
α+

dr22λ

α+ 1

)

where hx0(r) =
∫
Br(x0)

|u(x)|2 dx and C is a universal constant.
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Proof of Lemma 2.4 The proof is the same as that of Lemma 2.3. �
Next lemma will be used in the overlapping chain of balls argument.

Lemma 2.5 Let α ≥ 0. Assume that x1, x2 ∈ Ω and r > 0 are such that
B20r(x1)∩Ω is starshaped with respect to x2 ∈ Ω. If Br(x1) and Br(x2) intersect,
and if ∫

Ω

|u(x)|2 dx ≤ KHx1(r)

for some K ≥ 0, then∫
Ω

|u(x)|2 dx ≤ K3 exp

(
C

(
α+

λ

α+ 1

))
Hx2(r)

where C is a constant which depends only on d and diam(Ω).

Proof of Lemma 2.5 It is easy to check that Hx1(r) ≤ Hx2(4r) . Therefore,∫
Ω

|u|2 ≤ KHx1(r) ≤ KHx2(4r) (2.16)

which, by (2.14), implies

Hx2(8r) ≤ (8r)
2αh(8r) ≤ (8r)2α

∫
Ω

|u|2 ≤ CαKHx2(4r)

where C denotes a generic constant which depends only on d and diamΩ.
Lemma 2.2 then implies

log
Hx2(4r)

Hx2(2r)
≤ logK + C

(
α+

λ

α+ 1

)
(2.17)

and similarly

log
Hx2(2r)

Hx2(r)
≤ 2 logK + C

(
α+

λ

α+ 1

)
. (2.18)

The inequalities (2.16), (2.17), and (2.18) then give

log

∫
Ω
|u|2

Hx2(4r)
≤ 3 logK + C

(
α+

λ

α+ 1

)

which gives our assertion. �

Proof of Theorem 2.1 In the cases (a) and (c), we can take R to be arbi-
trarily large. Note that, in the case (a),

log
hx0(4r)

hx0(r)
= 0 , x0 ∈ Ω (2.19)
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provided r ≥ diamΩ. Therefore, by Lemma 2.3, there is a numerical constant
C such that

log
hx0(2r1)

hx0(r1)
≤ C

(
α+
ddiam(Ω)2λ

α+ 1

)
, x0 ∈ Ω

for every α ≥ 0 and r1 ∈ (0, diamΩ). Choosing α =
√
dλ diamΩ, we get

log
hx0(2r)

hx0(r)
≤ C
√
λd diamΩ , x0 ∈ Ω

for r ∈ (0, diamΩ), and Theorem 2.1 follows. In the case (c), the argument is
the same. The only difference is that (2.19) is replaced by

log
hx0(4r)

hx0(r)
≤ C , x0 ∈ Ω

provided r ≥ diamΩ, where C is a constant depending only on d. In this case
we therefore obtain

log
hx0(2r)

hx0(r)
≤ C(1 +

√
λ diamΩ) , x0 ∈ Ω

for r ∈ (0, diamΩ), where C is a constant which depends only on dimension d.
The proof in the case (b) involves a standard argument employing overlap-

ping chain of balls (cf. [11, 13]). Below, the symbol C denotes a generic constant
depending only on Ω. First, we choose r > 0 and x1, . . . , xm ∈ Ω such that

(1) B(x1, r/2), . . . , B(xm, r/2) cover Ω;

(2) for every j ∈ {1, . . . ,m}, the region Ω ∩ B(xj , 10r) is starshaped with
respect to xj ;

(3) if B(xj , 10r) intersects ∂Ω, it is assumed that the variation of the normal
ν is sufficiently small (cf. [14, p. 444]).

We fix α =
√
λ+ 1. There exists j0 ∈ {1, . . . ,m0} such that∫

Br/2(xj0 )

|u|2 ≥
1

m

∫
Ω

|u|2

whence ∫
Ω

|u|2 ≤ CαHxj0 (r) .

For every j ∈ {1, . . . ,m}, there exists an overlapping chain of (distinct) balls
from (1) connecting Br(xj) and Br(xj0 ). Repeated use of Lemma 2.4 then gives∫

Ω

|u|2 ≤ C
√
λ+1Hxj (r) , j = 1, . . . ,m .
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Therefore,

Hxj (2r) ≤ C
√
λ+1Hxj (r) , j = 1, . . . ,m .

An argument parallel to [14, p. 445] then leads to

Hx(2ρ) ≤ C
√
λ+1Hx(ρ)

for every x ∈ Ω and arbitrary ρ ∈ (0, r/2). Using (2.14) and (2.15), we get the
theorem. �

3 The degree of Ginzburg-Landau vortices

Now, we apply Theorem 2.1 to the Ginzburg-Landau equation

∆u = − 1
ε2

(
1− |u|2

)
u

u|∂Ω = 0 , (3.1)

where u: Ω → C is assumed to be nontrivial. The domain Ω ⊆ R2 is as in the
beginning of Section 2 and ε > 0.

Theorem 3.1 The order of vanishing of u at x0 ∈ Ω is less than

C

(
1

ε
+ 1

)
(3.2)

where C is a constant which depends only on Ω.

As it was pointed out in the remark following Theorem 2.1, the above bound
(3.2) can be replaced by C/ε if Ω satisfies (a) or (b).
By [7], (3.2) then provides an estimate for the the degree of u at any vortex

x0 ∈ Ω. (Recall that x0 is a vortex if u(x0) = 0 and the degree of u at x0 is
nonzero.) Namely, by [7, Lemma 6] and our Theorem 3.1, the degree at every
vortex is less than (3.2).

Proof By the maximum principle, we conclude
∣∣u(x)∣∣ ≤ 1 for x ∈ Ω, i.e.,

M = 1. Taking

F (x) = −
1

ε2
x+

1

2ε2
x2

we easily verify that (i)–(iii) are satisfied with λ = ε−2. Theorem 3.1 then
follows from Theorem 2.1. �
Next, we present a result concerning the nonhomogeneous boundary condi-

tions u|∂Ω = g where g: ∂Ω → S1 is sufficiently regular, e.g. continuous. We
assume that Ω is starshaped. In this case, Bethuel, Brézis, and Hélein proved
in [5, Lemma X.1] that ∫

Ω

(
1− |u|2

)2
≤ C0ε

2 (3.3)

where C0 depends only on g and Ω.

Theorem 3.2 The order of vanishing of u at x0 ∈ Ω is less than C/ε where C
depends on Ω, the boundary function g, and the distance from x0 to ∂Ω.



EJDE–2000/61 Igor Kukavica 11

Proof It is easy to check that if ε is sufficiently large, then u does not vanish.
(For instance, we may use the inequality

∣∣∇u(x)∣∣ ≤ C/ε from [5] where C
depends on g and Ω.) Let x0 ∈ Ω, denote R = dist(x0, ∂Ω) and r0 = R/4. We
distinguish two cases.

Case 1: ε ≥ R2/(C · C0) where C is a large enough numerical constant and
C0 is as in (3.3). In this case, we can use analyticity arguments to show that
the order of vanishing is bounded by a constant depending only on Ω, g, and R
(cf. [12]).

Case 2: ε ≤ R2/(C · C0) where C is large enough. Then (3.3) implies∫
BR/4(x0)

|u|2 ≥
R2

C

as can be readily checked. Since also maxΩ |u| = 1, we get∫
BR(x0)

|u|2 ≤ C

∫
BR/4(x0)

|u|2

where C depends on Ω, g, andR. Since R = dist(x0, ∂Ω), we haveBR(x0)∩∂Ω =
∅. Therefore, by Lemma 2.4, we get

log

∫
B2r(x0)

|u|2∫
Br(x0)

|u|2
≤ C + C

(
α+
2R2ε−2

α+ 1

)

for all α ≥ 0 provided r < R/3. Choosing α = R/ε, we get

log

∫
B2r(x0)

|u|2∫
Br(x0)

|u|2
≤ C

(
R

ε
+ 1

)
.

Note that 1 ≤ CR/ε due to the fact ε ≤ R2/CC0. Therefore,

log

∫
B2r(x0)

|u|2∫
Br(x0)

|u|2
≤ C
dist(x0, ∂Ω)

ε

and the statement follows. �

Remark 3.3 Here we show by means of an example that Theorem 3.1 is sharp.
Let Ω = B1(0). We shall show that there exists ε0 > 0 with the following
property: For every ε ∈ (0, ε0), there exists a solution u of (3.1) such that the
degree of u at 0 is at least 1/Cε.

We seek this solution in the form u(x) = f(r)eidθ, where x = reiθ , with a
suitable fixed integer d. We find f as a global minimizer of the functional

Φ(f) =

∫ 1
0

(
rf ′2 +

d2

r
f2 +

r

2ε2
(f2 − 1)2

)
dr



12 Quantitative uniqueness and vortex degree EJDE–2000/61

in the space

V =

{
f ∈ H1loc(0, 1) :

√
rf ′,

f
√
r
∈ L2(0, 1), f(1) = 0

}
.

What remains to be shown is that if d is suitably chosen, then the minimizer f
is not identically zero. Choose an arbitrary g ∈ V such that 0 < g(r) < 1 for
r ∈ (0, 1), say g(r) = r(1− r). Then if ε ∈ (0, ε0), where ε0 is sufficiently small,
and if d = [1/Cε] where C is large enough, then

Φ(g) <
1

2ε2

∫ 1
0

r dr = Φ(0)

and 0 can not be the global minimizer.
Now, u(x) = f(r)eidθ, where f and d are as above, is not identically 0, it

satisfies u ∈ C(B1) ∩ C∞
(
B1\{0}

)
and solves the Ginzburg-Landau equation

for x 6= 0. But then it can be readily checked that 0 is a removable singularity,
and consequently (3.1) holds. It also follows immediately that 0 is an isolated
zero. Indeed, in the opposite case, there would be a sequence r1, r2, . . . which
converges to 0 such that u(x) = 0 if |x| = rj for j ∈ N. Therefore, 0 would be a
zero of infinite order, which is not possible since u 6≡ 0.

The rest of the paper is concerned with the Ginzburg-Landau equation

∆u = −
1

ε2
(
1− |u|2

)
u (3.4)

with homogeneous Neumann boundary conditions

du

dν

∣∣∣∣
∂Ω

= 0 (3.5)

where Ω is a connected bounded C3 domain. The treatment is similar to (but
not completely the same as) the Dirichlet case. We need to consider a conformal
straightening of the boundary, which, in turn, leads us to consider the following
analog of (2.1). Let

∆u = vF ′
(
|u|2
)
u

du
dν

∣∣∣∣
∂′Ω

= 0 ,

where Ω = B+R0(0) =
{
(x1, . . . , xd) ∈ BR0 = BR0(0) : xd > 0

}
and ∂′Ω ={

(x1, . . . , xd) ∈ BR0 : xd = 0
}
. As in Section 2, we denote M = maxΩ |u|

2 and
we make same assumptions on F : [0,M ]→ R as before. We assume that v is a
nonnegative function such that maxx∈Ω v(x) ≤M0 and maxx∈Ω

∣∣∇v(x)∣∣ ≤M1.
Lemma 3.4 Let α > 0, 0 < r1 < 4r2/3, and 4r2 ≤ R0. Then

log
h(2r1)

h(r1)
≤ log

h(4r2)

h(r2)
+ C

(
α+

dr22λ

α+ 1

)

where C depends only on M0 and M1, and where h(r) =
∫
B+r

∣∣u(x)∣∣2 dx.
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Proof The proof is similar to that of Lemma 2.3; we only indicate the main
steps and point out the main differences. As before, we let

H(r) =

∫
B+r

|u|2
(
r2 − |x|2

)α
dx .

Then (2.6) holds with (2.7) (where Br ∩ Ω = B+r ). After a short computation,
we get

I ′(r) =
2α+ d

r
I(r) −

2α+ d

r

∫
B+r

|u|2vF ′
(
|u|2
)(
r2 − |x|2

)α+1
dx

+
d

r

∫
B+r

vF
(
|u|2
)(
r2 − |x|2

)α+1
dx

−
2(α+ 1)

r

∫
B+r

|x|2vF
(
|u|2
)(
r2 − |x|2

)α
dx

+
1

r

∫
B+r

xm∂mv F
(
|u|2
)(
r2 − |x|2

)α+1
dx

+
4(α+ 1)

r

∫
B+r

xj∂juk xm∂muk
(
r2 − |x|2

)α
dx

+2(α+ 1)r

∫
B+r

|u|2vF ′
(
|u|2
)(
r2 − |x|2

)α
dx

in place of (2.9). From here, we get

I ′(r) ≥
2α+ d

r
I(r) − 4dλrmax

Ω
v H(r)

+
4(α+ 1)

r

∫
B+r

xj∂juk xm∂muk
(
r2 − |x|2

)α
dx

−λ(max
Ω
|∇v|)

∫
B+r

|u|2
(
r2 − |x|2

)α+1
dx

where we also used nonnegativity of v. Instead of N ′(r) ≥ −4dλr, which we
had before, we now conclude

N ′(r) ≥ −rdλrmax
Ω
v − λr2max

Ω
|∇v| .

The rest follows as before. �
Now, we return to the Ginzburg-Landau equation (3.4) with the Neumann

boundary conditions (3.5), where Ω is a C3 bounded connected domain in R2.

Theorem 3.5 The order of vanishing of u at x0 ∈ Ω is less than (3.2) where
C is a constant which depends only on Ω.

Proof (sketch) The proof of the theorem is analogous to the proof os The-
orem 3.1. The main difference is that we use a conformal map to straighten
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the boundary. Namely, let x0 ∈ ∂Ω. Then, by the Riemann mapping theorem,
there exists R0 > 0 and r0 > 0 and a conformal map

f :Br0(x0) ∩ Ω→ B
+
R0
(0)

such that f(x0) = 0. The equation (3.4) then transfers to

∆u = −
1

ε2
v
(
1− |u|2

)
u

with v = 1/|f ′|2. The boundary of Ω being C3 guarantees that v and ∇v are
bounded up to the lower boundary ∂′B+R0 [6]. The rest is then established as
in the proof of Theorem 3.1, except that we use Lemmas 3.4 and 2.4 instead of
Lemma 2.3. �
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