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Quantitative, uniqueness, and vortex degree
estimates for solutions of the
Ginzburg-Landau equation *

Igor Kukavica

Abstract

In this paper, we provide a sharp upper bound for the maximal order of
vanishing for non-minimizing solutions of the Ginzburg-Landau equation

1 2
Ay = —6—2(1 — |u])u
which improves our previous result [12]. An application of this result
is a sharp upper bound for the degree of any vortex. We treat Dirich-
let (homogeneous and non-homogeneous) as well as Neumann boundary

conditions.

1 Introduction

In this paper, we provide vortex degree estimates for solutions of the Ginzburg-

Landau equation
1

Au = —6—2(1 — [ul*)u.

The vortices of solutions of this equation were studied by Bethuel, Brezis, and
Hélein in [5]. (We recall that zo is a vortex if it is an isolated zero of wu,
and if the degree of u at xy is nonzero.) They prescribed nonhomogeneous
boundary conditions u|pq = g with g: 9Q — S* such that degg = d > 0. If Q
is convex, and if € is sufficiently small, they proved that a minimizing solution
u has precisely d distinct vortices of degree 1. This result has been extended to
include all bounded smooth domains by Struwe [17]. It was further shown in
[5] that there exist non-minimizing solutions of the Ginzburg-Landau equation
whose vortex at the origin is an arbitrarily prescribed nonzero integer.

In this paper, we find a sharp upper bound in terms of 1/e for the degree
of vortices for solutions which are not necessarily minimizing. Chanillo and
Kiessling proved in [7, Lemma 6] that if 2 is a vortex of degree d € N, then the
vanishing order of u is at least d. Therefore, we may use unique continuation
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methods to address this problem. Using the result of Chanillo and Kiessling,
the paper [12] implies that in the homogeneous Dirichlet and periodic cases the
degree of u at any vortex zg is less than Ce~2? where C depends only on €. In
Theorem 3.1 below we improve this bound to Ce~! and then show that this
bound is best possible. The main tool in the proof is a new logarithmically
convex quantity for the Laplacian operator. More precisely, for any a > —1 and
any harmonic function u, the quantity

H(r) :/BT(O) u(z) (r — |z ) dx

is logarithmically convex, i.e., log H(r) is a convex function of logr. Due to
cancellations of terms involving « in (2.10)—(2.12) below, and due to a gradient
structure of the Ginzburg-Landau equation, we can choose an appropriate op-
timal o which gives our result. Inspired by an example in [5], we construct in
Remark 3.3 a solution which shows that our bound Ce~! can not be improved
upon. Theorem 3.2 contains an estimate concerning the boundary condition
u|aq = g where |g| = 1, while Theorem 3.5 covers the Neumann case.

For properties of stationary Ginzburg-Landau equation, cf. [5, 8, 15, 16, 17|
and to [1, 2, 3, 4, 9, 10, 12, 13] for various results on logarithmic convexity and
unique continuation.

2 Quantitative uniqueness for systems
In this section, we consider nontrivial solutions u of the system

Au=F'(Jul*)u
ulog =0 (2.1)

where u € C?(Q,RP) N C(Q,RP) with D € N. We assume that 2 C R%, where
d > 2, and one of the following:

(a) Q is a convex bounded domain;

(b) Q is a Dini domain; Dini domains are bounded domains with the following
property: Around any point there is a neighborhood N, such that after
a rotation of coordinates Q2 N N lies below a graph of a function whose
normal is Dini continuous (see [14] for details);

(c) Q is a periodic cube [0, L]¢; in this case, 0Q = 0.

As in [12], we are mainly interested in periodic boundary conditions; the pa-
pers [1] and [14] enable us to consider homogeneous Dirichlet conditions without
much change. As far as the Ginzburg-Landau equation is concerned, the non-
homogeneous boundary conditions ulgg = ¢ (with |g| = 1) and homogeneous
Neumann conditions (du/dv)|sn = 0 are more physically relevant and more
widely studied. Theorem 3.1 addresses the homogeneous Dirichlet boundary
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conditions; the non-homogeneous boundary conditions are considered in Theo-
rem 3.2, while Theorem 3.5 covers the Neumann case. Let M = maxg |u|>. On
F:[0, M] — R, we make the following assumptions:

(i) F e C'([0,M]) and
|F'(z)] <A, z€0,M] (2.2)
for some A > 0;
(i) F(0) = 0;
(iif) F is convex on [0, M].
Conditions (ii) and (iii) imply
F(z) <2F'(z), =€ 0,M)] (2.3)

and
|F(z)| <Az, = €[0,M]. (2.4)
The following is the main result of this section.

We recall that the order of vanishing at 2y € Q is defined as the largest
integer n € Ng = {0,1,...} such that

1
|Br(z0) N 2/ /B, (@0)n0
(Here and in each subsequent occurrence, one needs to replace B, (xo) N with
B,(x0) in the case of periodic boundary conditions (c).) In particular, if u does

not vanish at xg, then the order of vanishing is 0. We also add that v may not
have any zeros in ).

lul> = O(r*™), asr —0.

Theorem 2.1 Let zqg € Q. The order of vanishing of u at xy is less than
C(VA+ 1) where C is a constant depending only on €.

If X is sufficiently small, and if © satisfies (a) or (b), then there are no
nontrivial solutions of (2.1). In these cases, the bound C(v/A + 1) may be
replaced by Cv/A.

Let 2o € Q and R > 0 be such that Br(zg) N Q is starshaped with respect
to xg. For an arbitrary a > —1 and r > 0, denote

H,,(r) :/B ( )mQ|u(m)‘2(r2 — |z — ac0|2)adm

where |u|? = uju;. We will omit the dependency on zo when it is clear from
the context.

Lemma 2.2 Let ¢ > 1, and let 0 < r; < ry be such that gro < R. Then

Hwo (qu) < log Hwo (q’r2) (q2 — l)rgd)\
Hﬂ:o(rl) B Hﬂ:o(r2) a+1 ‘

log
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Proof of Lemma 2.2 Without loss of generality, zo = 0. Let r € (0, R) be

arbitrary. Denoting B, = B,.(0), we get

2ar/ lul*(r* — |ac|2)a_1 dzx

B,.NQ

H'(r)

2a 1

_ —H(r)——/ il 0, ((r — [2?)%) da
r T JB,.NQ

whence, by the divergence theorem,

:2a+dH(r)—|— 1 )TI(T)

() r (a+1

where
I(r)=2(a+ 1)/ ajuy, Oju (r* — |z?) dz .
B.NQ

By the divergence theorem,
) - - / w By B (1% — |22)°*) da
B,NQ
/ djur, Ojup (r* — |$|2)a+1 dx
B,NN

+/ 2P (jul?) (r* = |2[*) " da .
B,.NQ

As in (2.5) above, we get

2(a+1)
r
1

I'(r) = 7/ 8juk8juk(r2—|x|2)a+1da:
B.NQ

r

+2(a—|—1)r/ a2 (Juf?) (2 — [2]?) da .

B,.NQ

Using the divergence theorem on the second integral leads to

2 1 d a
I'tr) = M/ 8jukajuk(7”2—|x|2) +1 g
r BN
2 a
+—/ Trm Oj U ajmuk(r2 - |:1:|2) +
T JB,.nQ
1

r

—|—2(a—|—1)r/ PP ([ (7 — |2]?)” da

B,NN

—— / T Ojuk Ojuk am((r2 - |x|2)a+1) dx
B,.NQ

——/ T Oj UL 8juk(r2 — |ac|2)0t+11/m do(x)
B,.NoN

(2.5)
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where v = (11, ..., v4) denotes the outward unit normal and where do(x) stands
for the surface measure on 0f). Applying the divergence theorem in the second
integral, this time with respect to the variable z;, we get

2 d
I'(r) = ot / djuy, Ojup (r* — |ac|2)0t—|r1 dx
r B,.NQ
2
——/ Zon O Uk F’(|u|2)u1C (r2 — |$|2)a+1 dx
T JB.nQ
4 1
+M/ T O, 505U (r2 — |ac|2)a dx
r B,.NQ
2
+—/ T Om Uk DUk (r2 — |x|2)a+11/j do(x)
T JB,.Nnox
1
——/ T Oju, Ojug (r2 — |ac|2)0t+11/m do(x)
T JB,.Nnox
+2(a+ 1)r/ w2 F ([uf?) (r* — |2|*)" dz.. (2.8)
B,NQ

The second term on the right hand side of (2.8) equals

! / T O (F([uf2)) (2 — [2]?) " do
BN

r

= S PP

0

,M/ i F(|u|2)|x|2(7‘2—|x|2)adx;

r

since the boundary integral vanishes by F(0) = 0. On the other hand, the sum
of the fourth and the fifth term is

which is due to the fact dru = (Ou/Ov)yy, resulting from u|sq = 0. This integral
is nonnegative since B, N (2 is starshaped with respect to 0. Then

2 d 2 d a
Iy > 2044 207 / 2 F (Juf?) (2 — o) da
r r B,.NQ

+é/ . F(|u|2) (7‘2 — |$|2)a+1 dx

r

r

_M/ . F(|u|2)|m|2(r2 —|.11|2)ad11

4(a+1
LMot
r

+2(a+ 1)r /B,.mQ [l F (Juf?) (r* — |2|*)" dz.. (2.9)

/ Trm, O UK T 8juk(r2 — |x|2)adac
B,NQ
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The sum of the second, the third, the fourth, and the sixth term is

1 2 1212) da
;/BmE(x)(r 2[?)* d
where
E(x) = —(Qa+ d)|u|2F’(|u|2) (r2 — |:17|2) + dF(|u|2) (r2 - |:1:|2)
—(2a + 2)F(|u|2) lz|? + (20 + 2)F’(|u|2) u|?r? . (2.10)
We get
B(z) = r2(—2a|u|2F'(|u|2) — dlulF (Jul?) + dF (ju]?)

+20F" ([uf?)ul? + 2F (jul?) |u|2)

+lal? (20" (jul?) lul? + dF (Juf?) uf®

—dF (|uf?) = 20F (ju]?) - 2F (ju]?)) (2.11)
from where, using (iii),

E(z) > 7«2((2 — d)ul2F (juf?) + dF(|u|2)) —20aPF(jul?). (2.12)
By (2.2) and (2.4) and using |z|> < 2, we get
E(z) > —4d)r?|ul?

which leads to
o) > 2ar+ dI(r)+4(a:— 1)

Now, let N(r) = I(r)/H(r). Then

/ T O Uk xjajuk(r2—|m|2)adac—4d)\7‘H(r).
B,NQ

4 1
N'(r) > —4dxr+ % (/ Ty O 3 0 (r? — |x|2)a dz
B,.NQ

<P leP) e (s - |x|2>adx>2)
B,.NQ B,-NQ

whence, by the Cauchy-Schwarz inequality, N'(r) > —4d>r, i.e.,
N(’I“Q)—N(’I“l) > —Qd)\(’l“g—?“l)(?“g—l-’l“l), O0<ri<ra<R. (2.13)

Let ¢ > 1, and let 0 < r1 < ro < R be such that gro < R. Dividing (2.6) by
H(r) and integrating the resulting equality between r1 and ¢ry leads to

H(qry) 1 /‘"1 N(p)
- (Qa+d]l
& H(r) (2a + )qu+a+1 =

1 2 N(rip/r2)
2 d) 1 dp.
(a+)0gq+a+1/m ; p

lo

dp
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Using (2.13), we get

H(qr1) s oy (¢® = 1)dA 1 /‘"2 N(p)
1 < (2 d)1 - —d
% Fry) = (2a+d)logg+ (r; —r7) P axil), P
g ) | 03 =D~ )i
H(ry) a+1
and the lemma follows. O

Again, let 2o € Q be fixed, and denote

hrag (r) = /B RIS

Let R > 0 be such that Br(zo) N is starshaped with respect to o € €.

Lemma 2.3 Let a > 0, 0 < r1 < 4r3/3 and 4ry < R. Then, with the above
assumptions,

hao(2r71) hao(4r2) < dr%)\>
lo 0 <lo 0 + o+ —==
 hao(r) =0 hay(r2) a+1

where C 1s a universal constant.

Proof of Lemma 2.3 Denote h(r) = hy,(r) and H(r) = Hy,(r). If0 <7 < p,
then

H(r) < r?*h(r) (2.14)
and
H
h(r) < ﬁ (2.15)
Therefore,

h(27’1) H(?)Tl) H(?)Tl)
<lo —alogh <lo
A(r) = FH() RS H )
since a > 0. By Lemma 2.2,
h(2ry) H(4rs) Crid\
1 <1 .
i) = B H@/3) | a+l

log

Using (2.14) and (2.15) again, we get our assertion. O
In Theorem 3.2 below, we will need an interior version of the above lemma,
which we state for sake of completeness.

Lemma 2.4 Let u be a solution of Au = F'(|u|?)u, where F is as above, in
Br(zg). Let « >0, 0 <7y < 4r3/3 and 4ry < R Then

heo(2r1) hzo(472) ( dr%A)
1 ° <1 ° C
8t S %) T\ T o

where hq, (1) = [ (o) |u(z)|? dx and C is a universal constant.
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Proof of Lemma 2.4 The proof is the same as that of Lemma 2.3. ]
Next lemma will be used in the overlapping chain of balls argument.

Lemma 2.5 Let o« > 0. Assume that T1,L2 € Q and r > 0 are such that
Baor (1) is starshaped with respect to o € Q. If B.(x1) and By(x2) intersect,
and if

/ u()? da < KH, ()
Q

for some K > 0, then
/ lu(z)|? de < K2exp ( C oz—l—L H,,(r)

Q - o+ ]. r2
where C is a constant which depends only on d and diam({2).
Proof of Lemma 2.5 It is easy to check that H,, (r) < H,,(4r). Therefore,

/ lul* < KH,, (r) < KH,,(4r) (2.16)
Q
which, by (2.14), implies
H,,(8r) < (8r)**h(8r) < (8r)20‘/ lul?> < C*K H,,(4r)
Q

where C' denotes a generic constant which depends only on d and diam €.
Lemma 2.2 then implies

H,,(4r) A
1 2 <logK+C o 2.17
ou g <ok +€ o+ 35 (247
and similarly
H,,(2r) < A >
log—"—><2logK+C|a+——] . 2.18
SH,(r) =8 at1 (2.18)
The inequalities (2.16), (2.17), and (2.18) then give
fQ Jul? A
1 <3logK +C e
8 H,,(4r) — g+ at a+1
which gives our assertion. O

Proof of Theorem 2.1 In the cases (a) and (c), we can take R to be arbi-
trarily large. Note that, in the case (a),

ha (47) —
1 2 = Q 2.1
og T () 0, = € (2.19)
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provided r > diam 2. Therefore, by Lemma 2.3, there is a numerical constant
C such that

d diam(Q)%\

hw (2T1)
1 0
8 hy a+1

o(rl)

for every @ > 0 and . € (0,diam ). Choosing o = v/d\ diam 2, we get

< C’(a-+ > , Xo eN

hao (27)
hao (T)

for r € (0,diam ), and Theorem 2.1 follows. In the case (c), the argument is
the same. The only difference is that (2.19) is replaced by

log < CVAd diamQ, zp€Q

hao(4r)
b (1)

provided r > diam 2, where C is a constant depending only on d. In this case
we therefore obtain

log <C, xeN

log fiay (2r) < C(A+VAdiamQ), z€Q
haq ()

for r € (0,diam ), where C' is a constant which depends only on dimension d.
The proof in the case (b) involves a standard argument employing overlap-

ping chain of balls (cf. [11, 13]). Below, the symbol C' denotes a generic constant

depending only on Q. First, we choose r > 0 and z1,...,z,, € Q such that

(1) B(z1,7/2),...,B(xm,r/2) cover Q;

(2) for every j € {1,...,m}, the region Q N B(x;,10r) is starshaped with
respect to x;;

(3) if B(x;, 10r) intersects 012, it is assumed that the variation of the normal
v is sufficiently small (cf. [14, p. 444)).

We fix o = VA + 1. There exists jo € {1,...,mg} such that
1
Ny A
Br/z(wjo) m Q

/Q lu|? < C*Hy, (7).

For every j € {1,...,m}, there exists an overlapping chain of (distinct) balls
from (1) connecting B, (z;) and B,(z;,). Repeated use of Lemma 2.4 then gives

whence

/ > < CV M H, (r), j=1,...,m.
Q



10 Quantitative uniqueness and vortex degree EJDE-2000/61

Therefore,
H,,(2r) <CY'H, (r), j=1,...,m.
An argument parallel to [14, p. 445] then leads to
H.(2p) < OV Hy(p)

for every z € Q and arbitrary p € (0,7/2). Using (2.14) and (2.15), we get the
theorem. g

3 The degree of Ginzburg-Landau vortices

Now, we apply Theorem 2.1 to the Ginzburg-Landau equation
Au=—-%(1-|uf)u
ulon =0, (3.1)

where u: Q — C is assumed to be nontrivial. The domain Q C R? is as in the
beginning of Section 2 and € > 0.

Theorem 3.1 The order of vanishing of u at xo € Q is less than

1
C <€ + 1) (3.2)
where C is a constant which depends only on Q.

As it was pointed out in the remark following Theorem 2.1, the above bound
(3.2) can be replaced by C/e if Q satisfies (a) or (b).

By [7], (3.2) then provides an estimate for the the degree of u at any vortex
zog € Q. (Recall that xg is a vortex if u(zg) = 0 and the degree of u at xq is
nonzero.) Namely, by [7, Lemma 6] and our Theorem 3.1, the degree at every
vortex is less than (3.2).

Proof By the maximum principle, we conclude ‘u(x)‘ < 1forz € Q, ie.,
M = 1. Taking

1 1,
we easily verify that (i)—(iii) are satisfied with A = e¢~2. Theorem 3.1 then
follows from Theorem 2.1. O

Next, we present a result concerning the nonhomogeneous boundary condi-
tions ulpn = g where g:9Q — S! is sufficiently regular, e.g. continuous. We
assume that ) is starshaped. In this case, Bethuel, Brézis, and Hélein proved
in [5, Lemma X.1] that

/ (1- |u|2)2 < Cpé? (3.3)
Q
where Cj depends only on g and €.

Theorem 3.2 The order of vanishing of u at xg € Q is less than C/e where C
depends on Q, the boundary function g, and the distance from xq to 0).
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Proof It is easy to check that if € is sufficiently large, then u does not vanish.
(For instance, we may use the inequality |Vu(:1:)| < C/e from [5] where C
depends on g and .) Let 2o € Q, denote R = dist(xg, Q) and ro = R/4. We
distinguish two cases.

Case 1: € > R?/(C - Cy) where C is a large enough numerical constant and
Cy is as in (3.3). In this case, we can use analyticity arguments to show that
the order of vanishing is bounded by a constant depending only on {2, g, and R
(ct. [12]).

Case 2: € < R?/(C - Cp) where C is large enough. Then (3.3) implies

R2
[ o=
Brya(zo) c

as can be readily checked. Since also maxg |u| = 1, we get

[ owpzef
Br(zo) Br/a(zo)

where C depends on (2, g, and R. Since R = dist(zg, 912), we have Br(z¢)No2 =
(0. Therefore, by Lemma 2.4, we get

B (o) 112
fB,,,(xo) |ul?

log

2 _—2
<c+c<a+2Re >
a+1

for all & > 0 provided r < R/3. Choosing o = R/e, we get

|ul?
log fBzr(:Eo) 5 S C <E 4 1) .
fBT(:Eo) |ul €

Note that 1 < CR/e due to the fact ¢ < R?/CCj. Therefore,

. Jns o 1P dist(xo, 09)
fB,,(zo) lul> — €

and the statement follows. O

lo

Remark 3.3 Here we show by means of an example that Theorem 3.1 is sharp.
Let Q@ = B1(0). We shall show that there exists g > 0 with the following
property: For every € € (0,¢p), there exists a solution w of (3.1) such that the
degree of u at 0 is at least 1/Ce.

We seek this solution in the form u(z) = f(r)e’¥?, where x = re?, with a
suitable fixed integer d. We find f as a global minimizer of the functional

1 2
o= [ (24 Cr e =17 ) ar
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in the space

v={semon:vir L e o -of.
What remains to be shown is that if d is suitably chosen, then the minimizer f
is not identically zero. Choose an arbitrary g € V such that 0 < g(r) < 1 for
r € (0,1), say g(r) = r(1 —r). Then if € € (0, &9), where € is sufficiently small,
and if d = [1/Ce€] where C is large enough, then

B(g) < 2—12/0 rdr = (0)

and 0 can not be the global minimizer.

Now, u(z) = f(r)e'®, where f and d are as above, is not identically 0, it
satisfies u € C(B1) N C*°(B1\{0}) and solves the Ginzburg-Landau equation
for z # 0. But then it can be readily checked that 0 is a removable singularity,
and consequently (3.1) holds. It also follows immediately that 0 is an isolated
zero. Indeed, in the opposite case, there would be a sequence r1,7s, ... which
converges to 0 such that u(z) = 0 if |z| = r; for j € N. Therefore, 0 would be a
zero of infinite order, which is not possible since u # 0.

The rest of the paper is concerned with the Ginzburg-Landau equation

1
Au = —6—2(1 — Jul?)u (3.4)
with homogeneous Neumann boundary conditions
du
— | =0 3.5
dv |5q (8:5)

where  is a connected bounded C® domain. The treatment is similar to (but
not completely the same as) the Dirichlet case. We need to consider a conformal
straightening of the boundary, which, in turn, leads us to consider the following
analog of (2.1). Let

Au = vF'(Ju?)u

d
) —o,
Q)
where Q = B (0) = {(x1,...,24) € Br, = Bg,(0) : 24 > 0} and 9'Q =
{(xl, ...y Zd) € Bry g = O}. As in Section 2, we denote M = maxg |u|? and

we make same assumptions on F: [0, M] — R as before. We assume that v is a
nonnegative function such that max,cq v(z) < My and max$€Q|Vv(a:)‘ < M;.

Lemma 3.4 Let a >0, 0 <1y < 4re/3, and 4ro < Ry. Then

h(2r1) h(4ry) dra\
1 <1
%8 hi) S8y TO\ Ot oaT

where C' depends only on Mo and My, and where h(r) = [+ ‘u(m)‘Q dx.
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Proof The proof is similar to that of Lemma 2.3; we only indicate the main
steps and point out the main differences. As before, we let

H(r)= /B+ lul?(r® — |a:|2)ad:c.

Then (2.6) holds with (2.7) (where B, N Q = B;"). After a short computation,
we get

ey = 2904y, 2o d/ luf20F (|uf?) (2 — |2)2)° " da
'S 'S B:’
+é/ vF(|u|2) (r2 — |:1:|2)0Hr1 dx
T B:r
2(a+1)

LD e () (7 - faf)" do

r
+l/ Ty Om F(|u|2) (7‘2 — |ac|2)0t—|r1 dx
r B.,+

+4(oz +1)

/ 20Uk T OmU (7"2 — |:1:|2)a dx
r Bi

+2(a + 1)7‘/+ |U|2UF/(|U|2) (7“2 - |$|2)a dx
B

r

in place of (2.9). From here, we get

r'r)y > 20t dI(r) - 4d)\rm€xv H(r)
r
4 1
+M/ 205Uk T OmUk (r2 — |m|2)adm
T B,+

. 20,2 2\ a+1
)\(m(;21x|Vv|)/+ [ul*(r* — [z|*)"" da

r

where we also used nonnegativity of v. Instead of N'(r) > —4dAr, which we
had before, we now conclude

N'(r) > —rdXr max v — M max Vo).

The rest follows as before. O
Now, we return to the Ginzburg-Landau equation (3.4) with the Neumann
boundary conditions (3.5), where € is a C® bounded connected domain in R2.

Theorem 3.5 The order of vanishing of u at xo € Q is less than (3.2) where
C is a constant which depends only on €.

Proof (sketch) The proof of the theorem is analogous to the proof os The-
orem 3.1. The main difference is that we use a conformal map to straighten
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the boundary. Namely, let zg € 2. Then, by the Riemann mapping theorem,
there exists Ry > 0 and rp > 0 and a conformal map

f: Bro(z0) N Q — B (0)

such that f(z¢) = 0. The equation (3.4) then transfers to
1 2
Au = —6—20(1 = Jul)u

with v = 1/|f’|>. The boundary of Q being C*® guarantees that v and Vv are
bounded up to the lower boundary &’ BEO [6]. The rest is then established as
in the proof of Theorem 3.1, except that we use Lemmas 3.4 and 2.4 instead of
Lemma 2.3. g
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