
Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 52, pp. 1–16.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

GRADIENT ESTIMATES FOR TRANSMISSION PROBLEMS
WITH NONSMOOTH INTERNAL BOUNDARIES

YUNSOO JANG

Abstract. In this paper we obtain an interior gradient estimate for a weak

solution of a transmission problem with nonsmooth internal boundaries. The
coefficients are assumed to be merely measurable in one variable and have small

BMO semi-norms in the other variables on each subdomain whose boundary

satisfies the so-called δ-Reifenberg flat condition. Under these assumptions,
we prove a Calderón-Zygmund type estimate.

1. Introduction and statement of main results

In this study, we are interested in the regularity result for transmission problems.
Transmission problems are related to inhomogeneities of conditions and regularity
theory for transmission problems has been developed in various ways, see [2, 3, 8,
12, 14, 15, 16, 22, 23, 27] and references therein.

To study these problems, let Ω be a bounded connected open set in Rn with
n ≥ 2 and nonempty connected components Ω+ and Ω− of Ω be disjoint open
subsets of Ω satisfying

∂Ω+ ∩ Ω = ∂Ω− ∩ Ω,

Ω = Ω+ ∪ Ω− ∪ (∂Ω+ ∩ Ω).

We set
Aαβij (x) = Aαβ,+ij (x) · χΩ+(x) +Aαβ,−ij (x) · χΩ−(x),

where χΩ± is the indicator function of Ω± and Aαβ,±ij : Rn → R for 1 ≤ α, β ≤ n
and 1 ≤ i, j ≤ m with m ≥ 2. With these notation we consider the following
Dirichlet problem for an elliptic system in divergence form:

Dα

(
Aαβij (x)Dβu

j(x)
)

= DαF
i
α(x) in Ω, (1.1)

for each i = 1, . . . ,m, where the inhomogeneous term F = {F iα} is a given matrix
valued function. The tensor coefficients A(x) = {Aαβij (x)} is assumed to be uni-
formly elliptic and uniformly bounded, namely, we assume that there exist positive
constants ν and L such that

ν|ξ|2 ≤ Aαβij (x)ξiαξ
j
β and ‖Aαβij ‖L∞(Rn,Rmn×mn) ≤ L, (1.2)
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for all matrix ξ ∈ Rmn and for almost every x ∈ Rn. With these settings, we say
that u = (u1, . . . , um) ∈ H1(Ω,Rm) is a weak solution of (1.1) if∫

Ω

Aαβij Dβu
jDαφ

i dx =
∫

Ω

F iαDαφ
i dx, ∀φ = (φ1, . . . , φm) ∈ H1

0 (Ω,Rm).

Now, we introduce some notation to be used throughout this paper.
• An open ball in Rn with center y and radius r > 0 is defined by

Br(y) = {x ∈ Rn : |x− y| < r}.
• An open ball in Rn−1 with center y′ and radius r > 0 is defined by

B′r(y
′) = {x′ ∈ Rn−1 : |x′ − y′| < r}.

• An elliptic cylinder in Rn with center y = (y′, yn) ∈ Rn−1 × R and size
r > 0 is defined by

Qr(y) = B′r(y
′)× (yn − r, yn + r).

If the center is the origin 0 = (0′, 0), then we denote, for simplicity, Qr(0) =
B′r(0

′)× (−r, r) by Qr = B′r × (−r, r).
• The integral average of g ∈ L1(U) over a bounded domain U in Rn is

denoted by

gU = –
∫
U

g(x) dx =
1
|U |

∫
U

g(x) dx.

• For each xn ∈ R and for each bounded subset E′ of Rn−1 the integral
average of g(·, xn) over E′ is denoted by

gE′(xn) = –
∫
E′
g(x′, xn) dx′ =

1
|E′|

∫
E′
g(x′, xn) dx′.

In this work, we want to obtain the Calderón-Zygmund type regularity result
for transmission problems with very rough internal boundaries, including Lipschitz
continuous functions or even fractals. These problems are physically very natural
and have many applications in multiple fields, such as electrochemisrty related to
rough electrodes or transfer across irregular membranes, etc., see [1] and references
therein. Because of the understanding of recent researches on the regularity results
with respect to measurable coefficients, see [4, 5, 6, 7, 11, 13, 18, 20, 21, 25] and on
the geometric properties of Reifenberg domains, see [19, 28], it is possible to prove
the W 1,p regularity for a weak solution of (1.1). For this, our main assumption is
the following.

Definition 1.1. We say that (Aαβij , U) is (δ,R)-vanishing of codimension 1 if for
every point x0 ∈ U and for every number r ∈ (0, 3R] with

dist(x0, ∂U) = min
x1∈∂U

dist(x0, x1) >
√

2r,

then there exists a coordinate system depending on x0 and r, whose variables we
still denote by x = (x′, xn) = (x1, . . . , xn−1, xn), so that in this new coordinate
system

–
∫
Q√2r

∣∣Aαβij (x′, xn)−Aαβij B′√
2r

(xn)
∣∣2 dx ≤ δ2, (1.3)

while, for every point x0 ∈ U and for every number r ∈ (0, 3R] with

dist(x0, ∂U) = min
x1∈∂U

dist(x0, x1) ≤
√

2r,
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there exists a coordinate system depending on x0 and r, whose variables we still
denote by x = (x′, xn) = (x1, . . . , xn−1, xn), so that in this new coordinate system

Q3r ∩ {(x′, xn) : xn > 3rδ} ⊂ Q3r ∩ U ⊂ Q3r ∩ {(x′, xn) : xn > −3rδ}, (1.4)

–
∫
Q3r

∣∣Aαβij (x′, xn)−Aαβij B′3r (xn)
∣∣2 dx ≤ δ2. (1.5)

Remark 1.2. This means that if (Aαβij , U) is (δ,R)-vanishing of codimension 1,
then at each point and at each scale Aαβij are allowed to be merely measurable
in one variable while they have small BMO semi-norms in the other variables in
some appropriate coordinates and at the same time U is (δ,R)-Reifenberg flat.
Reifenberg flatness condition of U written in (1.4) is a generalization of Lipschitz
domains with small Lipschitz constant and includes even fractal structures, so this
definition is meaningful when 0 < δ < 1/8, see [5, 7, 26, 28]. In addition since
(1.1) has a scaling invariance property, the constant R can be taken as 1 or any
other constants greater than 1. However, the constant δ is a small positive constant
which is still invariant under such scaling. This small number will be selected later.

The following is our main result in this article.

Theorem 1.3. Suppose that F ∈ Lp(Ω,Rmn) for some 2 < p < ∞, for x̂ ∈ Ω,
Q150(x̂) ⊂ Ω and u ∈ H1(Ω,Rm) is a weak solution of (1.1). Then there exists
a small positive constant δ = δ(ν, L,m, n, p) such that if (Aαβ,±ij ,Ω±) are (δ, 25)-
vanishing of codimension 1, then

Du ∈ Lp(Q1(x̂),Rmn)

with the estimate ∫
Q1(x̂)

|Du|p dx ≤ c
∫
Q5(x̂)

|u|p + |F |p dx (1.6)

where the constant c depends on ν, L,m, n, p.

Remark 1.4. In the case p = 2, estimate (1.6) a classical one. If we have estimate
(1.6) in the case 2 < p < ∞, then the estimate follows from a duality in the case
1 < p < 2. For these reasons, we will consider the case 2 < p <∞.

It is well-known that with the basic structural conditions such as (1.2), W 1,p

regularity holds for only when p is close to 2, see [17]. However, in this study, we
want to get estimate (1.6) for the full range 1 < p <∞, so we need some additional
smoothness assumptions on both the coefficients and the boundaries of subdomains
as Theorem 1.3. The concept of coefficients in Definition 1.1 was studied in some
previous works, see [4, 5, 7, 13, 18, 20, 21] and related papers. However, in those
works, they only considered the case that the coordinate system described in Def-
inition 1.1 can be chosen in one fixed way at every point in the domain, while for
our problem at some internal boundary point the coordinate systems with respect
to Ω+ and Ω− may not coincide. For this reason, we additionally use geometric
properties of δ-Reifenberg domains to obtain our main result. Finally, we note that
our problem is not in the case of the counterexample in [24]. The counterexample
in [24] says that the coefficients cannot be allowed to be measurable in two inde-
pendent variables for the regularity theory considered in this direction. However,
in our situation, even though we have to consider two measurable directions at
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the internal boundary point, because of such geometric properties of δ-Reifenberg
domains, it is possible to prove Theorem 1.3, see Section 3 and Section 4.

2. Preliminaries

In this section, we introduce analytic and geometric tools which will be used later
in the proof of main theorem. In a technical point of view, Our approach is based
on the Hardy-Littlewood maximal function and Vitali type covering argument that
is developed from [10, 29] and used in [6, 7].

We first recall the Hardy-Littlewood maximal function and its basic properties.
Let g be a locally integrable function on Rn. Then the Hardy-Littlewood maximal
function is given by

(Mg)(x) = sup
r>0

1
|Qr(x)|

∫
Qr(x)

|g(y)|dy.

If g is defined only on a bounded subset of Rn, we define as

Mg =Mg,

where g is the zero extension of g from a bounded set to Rn. We also use the
notation

MΩg =M(χΩg)

if g is not defined outside Ω. The Hardy-Littlewood maximal function has two
basic properties that we will use in this paper: one is the weak 1-1 estimate and
the other is the strong p-p estimate.

• (weak 1-1 estimate) For g ∈ L1(Rn), there is a constant c = c(n) > 0 such
that

|{x ∈ Rn : (Mg)(x) > t}| ≤ c

t
‖g‖L1(Rn), ∀t > 0.

• (strong p-p estimate) For g ∈ Lp(Rn) for some p ∈ (1,∞), it holds Mg ∈
Lp(Rn) with the estimate

1
c
‖g‖Lp(Rn) ≤ ‖Mg‖Lp(Rn) ≤ c‖g‖Lp(Rn) (2.1)

for some constant c = c(n, p) > 0.
We need the following classical measure theory.

Lemma 2.1 ([9]). Assume that g is a nonnegative and measurable function defined
on a bounded domain Ω ⊂ Rn. Let θ > 0 and λ > 1 be constants. Then for
0 < q <∞,

g ∈ Lq(Ω) ⇐⇒ S =
∑
k≥1

λqk|{x ∈ Ω : g(x) > θλk}| <∞

and
1
c
S ≤ ‖g‖qLq(Ω) ≤ c(|Ω|+ S), (2.2)

where the positive constant c depending only on θ, λ, and q.

We will use the following version of Vitali covering lemma for the proof of our
main theorem.
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Lemma 2.2 ([29]). Assume that C and D are measurable sets, C ⊂ D ⊂ Q1, and
that there exists a small ε > 0 such that

|C| < ε|Q1| (2.3)

and for each x ∈ Q1 and r ∈ (0, 1] with |C ∩Qr(x)| ≥ ε|Qr(x)|,
Qr(x) ∩Q1 ⊂ D. (2.4)

Then |C| ≤ 2
√

2(10)nε|D|.

3. Comparison estimates

In this section, we use an approximation lemma which plays an important role
in our perturbation argument. We start with a simple interior case, see [5, Lemma
3.3].

Lemma 3.1. Assume that Q5 ⊂ Ω+ or Q5 ⊂ Ω−. Let u ∈ H1(Q5,Rm) be a weak
solution of

Dα(Aαβij Dβu
j) = DαF

i
α in Q5,

for i = 1, . . . ,m, under the assumption

–
∫
Q5

|Du|2 dx ≤ 1.

Then, there exists n1 = n1(ν, L,m, n) > 1 so that for 0 < ε < 1 fixed, we can find
a small δ1 = δ1(ε, ν, L,m, n) > 0 such that if

–
∫
Q5

|Aαβij (x′, xn)−Aαβij B′5(xn)|2 dx ≤ δ2
1 and –

∫
Q5

|F |2 dx ≤ δ2
1

hold for such a small δ1, then there exists a weak solution v ∈ H1(Q4,Rm) of

Dα

(
Aαβij B′5

(xn)Dβv
j
)

= 0 in Q4, (3.1)

for i = 1, . . . ,m, such that

–
∫
Q2

|D(u− v)|2 dx ≤ ε2 and ‖Dv‖2L∞(Q3) ≤ n
2
1.

For the case when two subdomains are involved, to construct our appropri-
ate map, for simplicity we assume that 0 ∈ ∂Ω+ ∩ Ω = ∂Ω− ∩ Ω and then
there exists an appropriate coordinate system depending on r, whose variables
x = (x1, . . . , xn), such that in this x-coordinate system the measurable direction of
Aαβ,−ij is (0, . . . , 0, 1) and

Qr,x ∩ {xn < −rδ} ⊂ Ω− ∩Qr,x ⊂ Qr,x ∩ {xn < rδ}. (3.2)

In addition, one can also find a coordinate system depending on r, whose variables
y = (y1, . . . , yn), such that in this y-coordinate system the measurable direction of
Aαβ,+ij is (0, . . . , 0, 1) and

Qr,y ∩ {yn > rδ} ⊂ Ω+ ∩Qr,y ⊂ Qr,y ∩ {yn > −rδ}. (3.3)

Here, we denote Qρ,z as the Qρ cylinder with respect to z coordinate system.
We observe that comparing two measurable directions of Aαβ,−ij and Aαβ,+ij at
0 is equivalent to comparing two straight lines. Therefore, we can further as-
sume that the measurable direction (0, . . . , 0, 0, 1) in the y-coordinate system is
(0, . . . , 0,− sin θ, cos θ) for some small θ > 0 in the x-coordinate system. In fact,
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the special case θ = 0, which means that x coordinate system coincides with y
coordinate system, was previously treated in [5] with Lemma 3.1.

Next we define the “curved cylinder” Q̃r in the z-chart with the notation

z = (z1, . . . , zn−2, zn−1, zn) = (z′′, zn−1, zn) ∈ Rn−2 × R× R,

Q̃r =
{

(z′′, zn−1, zn) : −r ≤ zi ≤ r for i = 1, . . . , n− 1 and

− r ≤ zn ≤ −2r tan(
θ

2
)
}

∪
{

(z′′, zn−1 cos θ − zn sin θ, zn−1 sin θ + zn cos θ) :

− r ≤ zi ≤ r for i = 1, . . . , n− 1 and 2r tan(
θ

2
) ≤ zn ≤ r

}
∪
{(
z′′,−2r + (zn−1 + 2r) cosφ, (zn−1 + 2r) sinφ− 2r tan(

θ

2
)
)

:

− r ≤ zi ≤ r for i = 1, . . . , n− 1 and 0 < φ < θ
}
.

We also define Q̃(a)
r for a ∈ (2r tan( θ2 ), r) by

Q̃
(a)
r =

{
(z′′, zn−1, zn) : −a ≤ zi ≤ a for i = 1, . . . , n− 1

and − a ≤ zn ≤ −2r tan(
θ

2
)
}

∪
{

(z′′, zn−1 cos θ − zn sin θ, zn−1 sin θ + zn cos θ) :

− a ≤ zi ≤ a for i = 1, . . . , n− 1 and 2r tan(
θ

2
) ≤ zn ≤ a

}
∪
{(
z′′,−2r + (zn−1 + 2r) cosφ, (zn−1 + 2r) sinφ− 2r tan(

θ

2
)
)

:

− a ≤ zi ≤ a for i = 1, . . . , n− 1 and 0 < φ < θ
}
.

Now, we fix r = 5. Then we shall construct a Lipschitz map Φ : Q̃5 → Q5 with
inverse Ψ = Φ−1 : Q5 → Q̃5. To do this, we define Ψ as follows:

Ψ(z′′, zn−1, zn)

=



(z′′, zn−1, zn), if zn ≤ −10 tan( θ2 );
(z′′, zn−1 cos θ − zn sin θ, zn−1 sin θ + zn cos θ), if zn ≥ 10 tan( θ2 );(
z′′,−10 + (zn−1 + 10) cos (zn+10 tan( θ2 ))θ

20 tan( θ2 )
,

−10 tan( θ2 ) + (zn−1 + 10) sin (zn+10 tan( θ2 ))θ

20 tan( θ2 )

)
,

if − 10 tan( θ2 ) < zn < 10 tan( θ2 )

and note that

detDΦ = detDΨ = 1 for 10 tan(
θ

2
) < |zn| < 5,

1
5
≤ detDΦ ≤ 5 for |zn| < 10 tan(

θ

2
).
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Going back to (3.2)-(3.3) with r = 5, we now assume that

(x′′, xn−1, xn) = (z′′, zn−1, zn),

(y′′, yn−1, yn) =
(
z′′, zn−1 cos θ − zn sin θ, zn−1 sin θ + zn cos θ

)
.

(3.4)

Actually, in the above construction, x coordinate system and z coordinate system
are same. However, to avoid confusion, we use x coordinate system and z coordinate
system separately in context.

Remark 3.2. Under the settings (3.2) and (3.3), one can easily see that
θ

2
≤ tan(

θ

2
) ≤ δ, that is, θ ≤ 2δ. (3.5)

In fact, since

Q5,x ∩ {xn = −5δ} ⊂ Ω− ∩Q5,x,

Q5,y ∩ {yn = 5δ} ⊂ Ω+ ∩Q5,y,

Ω− ∩ Ω+ = ∅,
we observe that

(Q5,x ∩ {xn = −5δ}) ∩ (Q5,y ∩ {yn = 5δ}) = ∅. (3.6)

From (3.6), we know that the angle θ between x and y coordinate systems must be
dependent on δ and we can derive from the geometry of Q̃5 that

5 tan(
θ

2
) ≤ 5δ.

This shows (3.5).

We next consider a mapping γ : [−5, 5] → Rn defined by γ(t) = Ψ(0, . . . , 0, t).
Then since γ is a regular C1 curve, the unit tangent vector of γ is well-defined. As a
consequence, we see that for each z ∈ Q̃5 one can find a unique t ∈ [−5, 5] such that
z is on the (n − 1)-dimensional hyperplane which is normal to the tangent vector
of γ at t. We then let P5,γ(t) the (n−1)-dimensional sphere of radius 5 centered at
γ(t) in the (n − 1)-dimensional hyperplane which is normal to the tangent vector
of γ at t.

We now define

Bστij (z) = DαΦσ(Ψ(z))Aαβij (Ψ(z))DβΦτ (Ψ(z)) for z ∈ Q5, (3.7)

Cαβij (w) = DσΨα(Φ(w))Bστij B5
′(Φ(w))DτΨβ(Φ(w)) for w ∈ Q̃5. (3.8)

Note that Bστij B5
′(z) = Bστij B5

′(zn) as a function of z ∈ Q5 depending only on zn.

Lemma 3.3. Assume Q̃5 ⊂ Ω. We further assume that
1
|Q5|

∫
Q5,x∩Ω−

∣∣Aαβ,−ij (x′, xn)−Aαβ,−ij B′5,x
(xn)

∣∣2 dx ≤ δ2, (3.9)

1
|Q5|

∫
Q5,y∩Ω+

∣∣Aαβ,+ij (y′, yn)−Aαβ,+ij B′5,y
(yn)

∣∣2dy ≤ δ2. (3.10)

Then we have
1

|Q̃5|

∫
fQ5

∣∣Aαβij (w)− Cαβij (w)
∣∣2dw ≤ cδ (3.11)

for some positive constant c = c(L,m, n).
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Proof. We recall (3.5) in Remark 3.2 and we compute as follows:

1

|Q̃5|

∫
fQ5

∣∣Aαβij (w)− Cαβij (w)
∣∣2dw

=
1

|Q̃5|

∫
{w∈P5,γ(t)|10 tan( θ2 )≤t≤5}

∣∣Aαβij (w)− Cαβij (w)
∣∣2dw

+
1

|Q̃5|

∫
{w∈P5,γ(t)|−10 tan( θ2 )<t<10 tan( θ2 )}

∣∣Aαβij (w)− Cαβij (w)
∣∣2dw

+
1

|Q̃5|

∫
{w∈P5,γ(t)|−5≤t≤−10 tan( θ2 )}

∣∣Aαβij (w)− Cαβij (w)
∣∣2dw

≤ c

|Q5|

∫
Q5,x∩Ω−

∣∣Aαβij (x′, xn)−Aαβij B′5,x(xn)
∣∣2 dx

+
1

|Q̃5|

∫
Q5∩{−10 tan( θ2 )<zn<10 tan( θ2 )}

cL2 dw

+
c

|Q5|

∫
Q5,y∩Ω+

∣∣Aαβij (y′, yn)−Aαβij B′5,y (yn)
∣∣2dy

≤ cδ

where c = c(L,m, n) > 0. �

Remark 3.4. Different from the previous works as [5, 7], in our case we can only
obtain that the left hand side of (3.11) is less than cδ instead of δ2 because we
consider the case that x coordinate system does not coincide with y coordinate
system.

Now we are in a position to find an interior approximation lemma.

Lemma 3.5. Let u ∈ H1(Q̃5,Rm) be a weak solution of

Dα(Aαβij (w)Dβu
j(w)) = DαF

i
α(w) in Q̃5 ⊂ Ω

under the assumption

–
∫

fQ5

|Du(w)|2 dw ≤ 1. (3.12)

There exists n2 = n2(ν, L,m, n) > 1 so that for 0 < ε < 1 fixed, we can find a small
δ = δ(ε, ν, L,m, n) > 0 such that if (3.9), (3.10), and

–
∫

fQ5

|F (w)|2 dw ≤ δ2 (3.13)

hold for such a small δ, then there exists a weak solution v ∈ H1(Q̃(4)
5 ,Rm) of

Dα

(
Cαβij (w)Dβv

j(w)
)

= 0 in Q̃
(4)
5 (3.14)

for each i = 1, . . . ,m, such that

–
∫

g
Q

(2)
5

|D(u− v)|2 dw ≤ ε2 and ‖Dv‖2
L∞(

g
Q

(3)
5 )
≤ n2

2. (3.15)
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Proof. Under the change of variables w = Ψ(z), from (3.7) we see that

Dσ

(
Bστij (z)Dτu

′j(z)
)

= Dσ(F ′)iσ(z) in Q5

where u′(z) = u(Ψ(z)) and (F ′)iσ(z) = DαΦσ(Ψ(z))F iα(Ψ(z)). Also, by (3.12) and
(3.13), we have

–
∫
Q5

|Du′(z)|2 dz ≤ c–
∫

fQ5

|Du(w)|2 dw ≤ c,

–
∫
Q5

|F ′(z)|2 dz ≤ c–
∫

fQ5

|F (w)|2 dw ≤ cδ2

for some constant c. Moreover, by (3.7), (3.8) and Lemma 3.3, we obtain

–
∫
Q5

∣∣Bστij (z)−Bστij B5
′(zn)

∣∣2dz ≤ c–∫fQ5

∣∣Aαβij (w)− Cαβij (w)
∣∣2dw ≤ cδ

for some constant c = c(L,m, n).
Since our equation is invariant under normalization, we can apply Lemma 3.1 to

our situation with small δ. That is, there exists a weak solution v′ ∈ H1(Q4,Rm)
of

Dσ

(
Bστij B5

′(zn)Dτv
′j(z)

)
= 0 in Q4

such that

–
∫
Q1

|D(u′ − v′)|2dz ≤ ε2

and we have an interior Lipschitz regularity as

‖Dv′‖2L∞(Q2) ≤ c

where c > 0 is a positive constant independent from v′, see [11].
Finally, we apply the change of variables z = Φ(w) then we obtain that v ∈

H1(Q̃(4)
5 ,Rm) is a weak solution of

Dα

(
Cαβij (w)Dβv

j(w)
)

= 0 in Q̃
(4)
5

where v(w) = v′(Φ(w)) satisfying (3.15). This completes the proof. �

4. W 1,p estimates

In this section, we prove the main theorem, Theorem 1.3. Since our problem
(1.1) is invariant under translation, without loss of generality, we prove Theorem
1.3 only for x̂ = 0.

Lemma 4.1. Let u ∈ H1(Ω,Rm) be a weak solution of (1.1) and assume Q150 ⊂ Ω.
Then there exists a universal constant N > 1 so that for each 0 < ε < 1 fixed, one
can select a small δ = δ(ε, ν, L,m, n) > 0 such that if (Aαβ,−ij ,Ω−) and (Aαβ,+ij ,Ω+)
are (δ, 25)-vanishing of codimension 1 for such δ and if for 0 < r ≤ 1 and x∗ ∈ Q1,
the cube Qr(x∗) satisfies

|{x ∈ Q1 :M(|Du|2) > N2} ∩Qr(x∗)| > ε|Qr(x∗)|, (4.1)

then it holds

Qr(x∗) ∩Q1 ⊂ {x ∈ Q1 :M(|Du|2) > 1} ∪ {x ∈ Q1 :M(|F |2) > δ2}. (4.2)
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Proof. We prove this lemma by contradiction. To do this, suppose that

Qr(x∗) ∩Q1 * {x ∈ Q1 :M(|Du|2) > 1} ∪ {x ∈ Q1 :M(|F |2) > δ2}. (4.3)

Then there is a point x1 ∈ Qr(x∗) ∩Q1 such that

1
|Qρ(x1)|

∫
Qρ(x1)∩Ω

|Du|2 dx ≤ 1 and
1

|Qρ(x1)|

∫
Qρ(x1)∩Ω

|F |2 dx ≤ δ2 (4.4)

for all ρ > 0.
We first prove the simplest case, when dist(x∗, ∂Ω±) > 5

√
2r, which means that

Q5
√

2r(x∗) ⊂ Ω− or Q5
√

2r(x∗) ⊂ Ω+. Then according to Definition 1.1, we may
assume that x∗ = 0 and

–
∫
Q5
√

2r

∣∣Aαβij (z′, zn)−Aαβij B′
5
√

2r

(zn)
∣∣2dz ≤ δ2.

Since x1 ∈ Qr, we observe that

Q5
√

2r ⊂ Q(
√

2+10)r(x1) ⊂ Q10
√

2r(x1)

and then by (4.4) we obtain

–
∫
Q5
√

2r

|Du|2 dx ≤
|Q10

√
2r(x1)|

|Q5
√

2r|
–
∫
Q10
√

2r(x1)

|Du|2 dx ≤ 2n.

Similarly,

–
∫
Q5
√

2r(y)

|F |2 dx ≤ 2nδ2.

To apply Lemma 3.1, we define the rescaled maps

ũ(z) =
u(
√

2rz)
r
√

2 · 2n
, F̃ (z) =

F (
√

2rz)√
2n

,
˜

Aαβij (z) = Aαβij (
√

2rz), (z ∈ Q5).

Then ũ ∈ H1(Q5,Rm) is a weak solution of

Dα( ˜
Aαβij (z)Dβ ũ

j) = DαF̃
i
α in Q5 (4.5)

with

–
∫
Q5

|Dũ(z)|2dz ≤ 1 and –
∫
Q5

|F̃ (z)|2dz ≤ δ2.

Then we are now in a position to apply Lemma 3.1 for (4.5), which implies that
there exists n1 = n1(ν, L,m, n) > 1 so that for any 0 < η < 1 fixed, we find a small
δ = δ(η, ν, L,m, n) > 0 and a weak solution ṽ of

Dα

(
Aαβij B′5

(zn)Dβ ṽ
j
)

= 0 in Q4

such that

–
∫
Q2

|D(ũ− ṽ)|2dz ≤ η2 and ‖Dṽ‖2L∞(Q3) ≤ n
2
1.

We scale back and then there exists a function v defined in Q3
√

2r such that

–
∫
Q2
√

2r

|D(u− v)|2dz ≤ 2nη2 and ‖Dv‖2L∞(Q3
√

2r) ≤ 2nn2
1. (4.6)

After letting N2
1 = 2nn2

1, we now claim that

{z ∈ Q√2r :M(|Du|2) > N2} ⊂ {z ∈ Q√2r :MQ2
√

2r
(|D(u− v)|2) > N2

1 } (4.7)
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where N2 = max{4N2
1 , 3

n}. To do this, we suppose that

x0 ∈ {z ∈ Q√2r :MQ2
√

2r
(|D(u− v)|2)(z) ≤ N2

1 }. (4.8)

If ρ ≤
√

2r, then from Qρ(x0) ⊂ Q2
√

2r, (4.6), and (4.8),

–
∫
Qρ(x0)

|Du|2dz ≤ 2–
∫
Qρ(x0)

[
|D(u− v)|2 + |Dv|2

]
dz ≤ 4N2

1

and if ρ >
√

2r, then Qρ(x0) ⊂ Q3ρ(x1)

–
∫
Qρ(x0)

|Du|2dz ≤ |Q3ρ(x1)|
|Qρ(x0)|

–
∫
Q3ρ(x1)

|Du|2dz ≤ 3n.

Thus we have that

x0 ∈ {z ∈ Q√2r :M(|Du|2)(z) ≤ N2}

and our claim (4.7) follows. Then we observe that Qr(x∗) in (4.3) is covered by
Q√2r in z = (z′, zn) coordinate system to find that

|{x ∈ Qr(x∗) :M(|Du|2)(x) > N2}|
≤ |{z ∈ Q√2r :M(|Du|2)(z) > N2}|
≤ |{z ∈ Q√2r :MQ2

√
2r

(|D(u− v)|2)(z) > N2
1 }|

≤ c
∫
Q2
√

2r

|D(u− v)|2dz

≤ cη2|Q√2r|

for some constant c = c(ν, L,m, n). By taking η small enough, we derive

|{x ∈ Q1 :M(|Du|2)(x) > N2} ∩Qr(x∗)| ≤ ε|Qr(x∗)|
which is a contradiction to assumption (4.1).

We now consider the case dist(x∗, ∂Ω−) ≤ 5
√

2r or dist(x∗, ∂Ω+) ≤ 5
√

2r. With-
out loss of generality, we assume that x∗ ∈ Ω−. By using Definition 1.1 again, we
can choose appropriate x coordinate system satisfying

Q75r,x ∩ {x : xn < −75rδ} ⊂ Q75r,x ∩ Ω− ⊂ Q75r,x ∩ {x : xn < 75rδ}, (4.9)

–
∫
Q75r,x∩Ω−

∣∣Aαβ,−ij (x′, xn)−Aαβ,−ij B′75r,x
(xn)

∣∣2 dx ≤ δ2. (4.10)

Note that Q15r,x contains Q5
√

2r(x∗) in this coordinate system. After fixing x
coordinate system, we can take y coordinate system at the origin satisfying

Q75r,y ∩ {yn > 75rδ} ⊂ Ω+ ∩Q75r,y ⊂ Q75r,y ∩ {yn > −75rδ}, (4.11)

–
∫
Q75r,y∩Ω+

∣∣Aαβ,+ij (y′, yn)−Aαβ,+ij B′75r,y
(yn)

∣∣2dy ≤ δ2. (4.12)

We let θ be the angle between xn direction in x coordinate system and yn direction
in y coordinate system. Since(

Q75r,x ∩ {xn = −75rδ}
)
∩
(
Q75r,y ∩ {yn = 75rδ}

)
= ∅, (4.13)

with the same spirit in Remark 3.2 we can see that
θ

2
≤ tan(

θ

2
) ≤ δ .
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For this θ, we define Q̃75r as in Section 3 and note that Q̃75r ⊂ Q150 ⊂ Ω. We
recall from (4.4) that x1 ∈ Qr(y) ∩ Ω to discover that

Q̃75r ⊂ Q150r(x1).

Consequently, we obtain

1

|Q̃75r|

∫
Q̃75r

|Du|2dw ≤ |Q150r(x1)|
|Q̃75r|

–
∫
Q150r(x1)

|Du|2dw ≤ 5 · 2n.

Here we use the fact that 1
5 |Qr| ≤ |Q̃r| ≤ 5|Qr|. Similarly, we have

1
|Q75r|

∫
Q75r∩Ω

|F |2dz ≤ 5 · 2nδ2.

With the same scaling argument which is used for the previous case, we apply
Lemma 3.5 to our case. Then for 0 < η < 1 fixed, we can find a small δ =

δ(η, ν, L,m, n) and a function v defined in Q̃
(60r)
75r such that

–
∫
Q̃

(30r)
75r

|D(u− v)|2 dw ≤ η2 and ‖Dv‖2
L∞(Q̃

(45r)
75r )

≤ N2
2 (4.14)

where N2 = N2(n, n2) similar to (4.6).
Note that for small δ, we assume that

Q̃
(15r)
75r ⊂ Q̃

(20r)
75r ⊂ Q25r ⊂ Q̃(30r)

75r .

Then, we claim that

{w ∈ Q̃(15r)
75r :M(|Du|2) > N2} ⊂ {w ∈ Q̃(15r)

75r :MQ25r (|D(u− v)|2) > N2
2 },
(4.15)

where N2 = max{4N2
2 , 6

n}. To do this, we suppose that

x0 ∈ {w ∈ Q̃(15r)
75r :MQ25r (|D(u− v)|2)(w) ≤ N2

2 }. (4.16)

If ρ ≤ 5r, then from Qρ(x0) ⊂ Q̃(20r)
75r ⊂ Q25r, (4.14), and (4.16),

–
∫
Qρ(x0)

|Du|2dw ≤ 2–
∫
Qρ(x0)

[|D(u− v)|2 + |Dv|2]dw ≤ 4N2
2

and if ρ > 5r, then Qρ(x0) ⊂ Q6ρ(x1)

–
∫
Qρ(x0)

|Du|2dw ≤ |Q6ρ(x1)|
|Qρ(x0)|

–
∫
Q6ρ(x1)

|Du|2dw ≤ 6n.

Thus we have

x0 ∈ {w ∈ Q̃(15r)
75r :M(|Du|2)(w) ≤ N2}

and our claim (4.15) follows. Then we observe that Qr(x∗) in (4.3) is covered by

Q̃
(15r)
75r to find that

|{x ∈ Qr(x∗) :M(|Du|2)(x) > N2}|

≤ |{w ∈ Q̃(15r)
75r :M(|Du|2)(w) > N2}|

≤ |{w ∈ Q̃(15r)
75r :MQ25r (|D(u− v)|2)(w) > N2

2 }|
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≤ c
∫
Q̃

(30r)
75r

|D(u− v)|2dw

≤ cη2|Q̃(15r)
75r |

≤ cη2|Q15r|

for some constant c = c(ν, L,m, n). By taking η small enough, we derive

|{x ∈ Q1 :M(|Du|2)(x) > N2} ∩Qr(x∗)| ≤ ε|Qr(x∗)|
which is a contradiction to assumption (4.1). �

Now, we are ready to prove the main Theorem.

Proof of Theorem 1.3. Let u ∈ H1
0 (Ω,Rm) be the weak solution of (1.1) under the

assumptions in Theorem 1.3. We first fix p > 2 and take N > 1 as in Lemma 4.1.
We denote the letter c by the constant that can be explicitly computed in terms of
known quantities, ν, L,m, n, and p. We assume that

‖u‖Lp(Q5) + ‖F‖Lp(Q5) ≤ δ (4.17)

by replacing u and F by
u

1
δ (‖u‖Lp(Q5) + ‖F‖Lp(Q5)) + σ

and
F

1
δ (‖u‖Lp(Q5) + ‖F‖Lp(Q5)) + σ

for σ > 0, respectively. We want to show that

‖Du‖Lp(Q1) ≤ c
after letting σ → 0. However, in view of (2.1), it suffices to show that

‖M(|Du|2)‖Lp/2(Q1) ≤ c.
To apply Lemma 2.2 we first define

C = {x ∈ Q1 :M(|Du|2) > N2},
D = {x ∈ Q1 :M(|Du|2) > 1} ∪ {x ∈ Q1 :M(|F |2) > δ2}.

For ε ∈ (0, 1) to be determined later, by weak 1-1 estimates, the standard L2

estimates, and Hölder’s inequality, we have

|C| ≤ c

N2

∫
Q1

|Du|2 dx

≤ c

N2

∫
Q5

|u|2 + |F |2 dx

≤ c

N2
(‖u‖2Lp(Q5) + ‖F‖2Lp(Q5))

≤ cδ2

N2
.

So we take δ > 0 so small that

|C| ≤ cδ2

N2
< ε|Q1| (4.18)

holds. This shows the first condition (2.3) of Lemma 2.2. Moreover, its second
condition (2.4) is shown by Lemma 4.1. Then, by Lemma 2.2, we see that

|C| < ε1|D| where ε1 = 2
√

2(10)nε.
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Since our problem (1.1) is invariant under normalization, we can obtain the same
results for ( uN ,

F
N ), ( u

N2 ,
F
N2 ), ( u

N3 ,
F
N3 ), . . . , inductively. From this iteration argu-

ment, see [6, Corollary 4.10], we have the following decay estimates of M(|Du|2):

|{x ∈ Q1 :M(|Du|2) > N2k}|

≤ εk1 |{x ∈ Q1 :M(|Du|2) > 1}|+
k∑
i=1

εi1|{x ∈ Q1 :M(|F |2) > δ2N2(k−i)}|.

Applying Lemma 2.1 to

g =M(|Du|2), λ = N2, θ = 1, q =
p

2
,

a direct computation yields

‖M(|Du|2)‖p/2
Lp/2(Q1)

≤ c
(

1 +
∑
k≥1

N2k p2 |{x ∈ Q1 :M(|Du|2) > N2k}|
)

≤ c(1 +
∑
k≥1

Nkpεk1 |{x ∈ Q1 :M(|Du|2) > 1}|

+
∑
k≥1

Nkp
k∑
i=1

εi1|{x ∈ Q1 :M(|F |2) > δ2N2(k−i)}|
)

=: S1 + S2.

We compute S1 and S2 in the following way:

S1 ≤ c
(

1 +
∑
k≥1

Nkpεk1 |{x ∈ Q1 :M(|Du|2) > 1}|
)
≤ c
(

1 +
∑
k≥1

Nkpεk1

)
and

S2 ≤ c
∑
k≥1

Nkp
k∑
i=1

εi1|{x ∈ Q1 :M(|F |2) > δ2N2(k−i)}|

= c
∑
i≥1

∑
k≥i

Nkpεi1|{x ∈ Q1 :M(|F |2) > δ2N2(k−i)}|

= c
∑
i≥1

(Npε1)i
∑
k≥i

(Np)k−i|{x ∈ Q1 :M(|F |2) > δ2N2(k−i)}|

= c
∑
i≥1

(Npε1)i
∑
j≥0

(Np)j |{x ∈ Q1 :M(|F
δ
|2) > N2j}|

≤ c
∑
i≥1

(Npε1)i‖M(|F
δ
|2)‖Lp/2(Q1)

≤ c
∑
i≥1

(Npε1)i
‖F‖2Lp(Q5)

δ2

≤ c
∑
i≥1

(Npε1)i.
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Therefore we have

‖M(|Du|2)‖p/2
Lp/2(Q1)

≤ c
(

1 +
∑
k≥1

(Npε1)k
)

where ε1 = 2
√

2(10)nε.
We first take ε > 0 sufficiently small satisfying

Npε1 < 1.

Then one can select a corresponding small δ = δ(ν, L,m, n, p) > 0 from Lemma 4.1.
This completes the proof. �
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