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THE HARNACK INEQUALITY

FOR ∞-HARMONIC FUNCTIONS

Peter Lindqvist

and

Juan J. Manfredi

Abstract. The Harnack inequality for nonnegative viscosity solutions of the equa-
tion ∆∞u = 0 is proved, extending a previous result of L.C. Evans for smooth
solutions. The method of proof consists in considering ∆∞u = 0 as the limit as
p→∞ of the more familiar p-harmonic equation ∆pu = 0.

The purpose of this note is to present a proof of the Harnack inequality for
nonnegative viscosity solutions of the ∞−harmonic equation

n∑
i=1,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0 (1)

where u = u(x1, · · · , xn). For classical C2−solutions this has recently been obtained
by Evans, see [E]. While Evans works directly with equation (1), we approximate
it by the p−harmonic equation

div(|∇u|p−2∇u) = 0 (2)

and let p→∞. (See [A], [K], and [BDMB] for background and information about
the ∞-Laplacian.)

The Harnack inequality for nonnegative p−harmonic functions can be proved
by the now standard iteration methods of DeGiorgi and Moser, see [S] and [DB-
T]. Unfortunately, in both of these methods the Harnack constants blow up as
p → ∞. Another approach to the Harnack inequality, valid only when p > n,
follows from energy bounds for ∇(log u), see [M] and [KMV]. We begin with a well
known estimate:
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Lemma. Suppose that up is a nonnegative weak solution of (2) in a domain Ω ⊂ Rn.
Then, we have ∫

Ω

|ζ∇ log up|
pdx 5

(
p

p− 1

)p ∫
Ω

|∇ζ|pdx (3)

whenever ζ ∈ C∞0 (Ω).

Proof. We may assume that up > 0. (Consider up(x) + ε and let ε→ 0+.) Use the
test function |ζ|pu1−p

p in the weak formulation of (2). This simple calculation is
given in [L, Corollary 3.8]. �

Our main result states that one can take the limit as p→∞ in (3).

Theorem. Suppose that u is a nonnegative viscosity solution of (1) in a domain
Ω ⊂ Rn. Then we have

‖ζ∇ log u‖∞,Ω 5 ‖∇ζ‖∞,Ω (4)

whenever ζ ∈ C∞0 (Ω).

Proof. Select a bounded smooth domain D such that

supp ζ ⊂ D ⊂ D ⊂ Ω.

By a fundamental result of Jensen u ∈ W 1,∞(D) and it is the unique viscosity
solution of (1) with boundary values u|∂D. For these results and the definition of
viscosity solutions we refer to [J].

For p > n let up be the solution to the problem{
div(|∇up|p−2∇up) = 0 in D

up − u ∈W
1,p
0 (D).

By the results of [BDBM, Section I], there exists a sequence pj → ∞ such that

upj tends to a viscosity solution v of (1) in Cα(D) for any α ∈ [0, 1) and weakly
in W 1,m(D) for any finite m. Since u and v have the same boundary values, the
uniqueness theorem of Jensen [J] implies that u ≡ v. Note, in addition, that any
other subsequence of up has a subsequence converging to a viscosity solution of (1)
and that this limit is u. We conclude that

up → u in Cα(D) for any α ∈ [0, 1) (5)

and
up ⇀ u in W 1,m(D) for any finite m (6)

as p→∞.
Fix m ≥ n and consider p > m. We have∫

D

|ζ∇ log up|
mdx 5

(∫
D

| ζ∇ log up |
pdx
)m/p

|D|(p−m)/p

5
(

p

p− 1

)m (∫
D

|∇ζ|p dx
)m/p

|D|(p−m)/p,
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where we have used the Lemma in the second inequality. Therefore, we get(∫
D

|ζ∇ log up|
mdx

)1/m

5 p

p− 1

(∫
D

|∇ζ|pdx
)1/p

|D|(p−m)/pm. (7)

Assume momentarily that ζ∇ log up converges weakly to ζ∇ log u in Lm(D). By
the weak lower semi-continuity of the norm we obtain(∫

D

|ζ∇ log u |mdx
)1/m

5 ‖∇ζ‖∞,D|D|1/m. (8)

Observe that (7) holds for the translated functions up(x) + ε, where ε > 0 is fixed,
in place of up. Since these functions are bounded away from zero, it is elementary
to check that ζ∇ log(up + ε) converges weakly to ζ∇ log(u+ ε) in Lm(D). It now
follows from (5) and (6) that estimate (8) holds for u(x) + ε.

We now let ε→ 0. By the Monotone Convergence theorem, we obtain estimate
(8) for u.

Finally, letting m→∞ we finish the proof of (4). �
If Br and RR are two concentric balls in Ω with radius r and R, the usual choice

of a radial test function ζ (0 5 ζ 5 1, ζ = 1 in Br, ζ = 0 outside BR) in (4)
yields the estimate

‖∇ log u‖∞,Br 5
1

R− r
(11)

provided that BR ⊂ Ω. In particular, we obtain the following result.

Corollary 1. (a) If u is a nonnegative viscosity solution of (1) in a domain Ω ⊂
Rn, then for a. e. x ∈ Ω

|∇u(x)| 5 u(x)

d(x, ∂Ω)
· (12)

(b) If u is a bounded viscosity solution of (1) in a domain Ω ⊂ Rn, then for a. e.
x ∈ Ω we have

|∇u(x)| 5 2‖u‖∞
d(x, ∂Ω)

· (13)

Proof. It remains to consider only the second case, which follows from the first by
considering v = u+ ‖u‖∞. �

Next, we state the Harnack inequality, which follows from (11).

Corollary 2. Suppose that u is a nonnegative viscosity solution of (1) in BR(x0).
Then if x, y ∈ Br(x0), 0 5 r < R, we have

u(x) 5 e|x−y|/(R−r)u(y). (14)

Proof. By integrating (11) on a line segment from x to y we obtain

| log u(x)− log u(y)| ≤
|x− y|

R− r
,
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from which (14) follows by exponentiating. �
Remarks.
§1. The Lemma holds for nonnegative super-solutions of the p−Laplacian by

exactly the same proof. Thus for p > n we get an estimate like (10) with m
replaced by p, from which a Harnack inequality follows easily. This suggests the
possibility that corollary 2 holds, indeed, for nonnegative viscosity super-solutions
of (1).
§2. If one uses the estimate in [L, (4.10)]∫

Ω

|∇up|
pu−1−ε
p ζpdx 5

(p
ε

)p ∫
Ω

up−1−ε
p |∇ζ|pdx

where 0 < ε < p− 1 instead of (3), we obtain the estimate

‖ζu−α∇u‖∞,Ω 5
1

α
‖u1−α∇ζ‖∞,Ω

for any α > 0 and for any nonnegative viscosity solution u of (1) in Ω. Roughly
speaking, estimates for the p−Laplacian that are independent of p, always yield
estimates for ∞−harmonic functions.
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