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THE HARNACK INEQUALITY
FOR oco-HARMONIC FUNCTIONS

PETER LINDQVIST
AND
JUAN J. MANFREDI

ABSTRACT. The Harnack inequality for nonnegative viscosity solutions of the equa-
tion Acou = 0 is proved, extending a previous result of L.C. Evans for smooth
solutions. The method of proof consists in considering Ascu = 0 as the limit as
p — oo of the more familiar p-harmonic equation Apu = 0.

The purpose of this note is to present a proof of the Harnack inequality for
nonnegative viscosity solutions of the co—harmonic equation
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where u = u(z1,- -+ ,x,). For classical C?—solutions this has recently been obtained
by Evans, see [E]. While Evans works directly with equation (1), we approximate
it by the p—harmonic equation

div(|VulP~2Vu) =0 (2)

and let p — oco. (See [A], [K], and [BDMB] for background and information about
the oo-Laplacian.)

The Harnack inequality for nonnegative p—harmonic functions can be proved
by the now standard iteration methods of DeGiorgi and Moser, see [S] and [DB-
T]. Unfortunately, in both of these methods the Harnack constants blow up as
p — o0. Another approach to the Harnack inequality, valid only when p > n,
follows from energy bounds for V(logu), see [M] and [KMV]. We begin with a well
known estimate:
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Lemma. Suppose that u, is a nonnegative weak solution of (2) in a domain @ C R™.

Then, we have
p
Jievogupa < (2) [1veras 3)
Q Q

whenever ¢ € C§°(Q).

Proof. We may assume that u, > 0. (Consider u,(z) + € and let € — 0".) Use the
test function |¢|Pu,”? in the weak formulation of (2). This simple calculation is
given in [L, Corollary 3.8]. O

Our main result states that one can take the limit as p — oo in (3).

Theorem. Suppose that u is a nonnegative viscosity solution of (1) in a domain
Q C R™. Then we have

¢ Viogullso,o = [[V(]lo. (4)
whenever ¢ € C§°(Q).
Proof. Select a bounded smooth domain D such that

supp( C D C D C Q.

By a fundamental result of Jensen v € W1°°(D) and it is the unique viscosity
solution of (1) with boundary values u|gp. For these results and the definition of
viscosity solutions we refer to [J].

For p > n let u, be the solution to the problem

{ div(|Vu,|P~2Vu,) =0 in D
u, —u € Wy (D).

By the results of [BDBM, Section I], there exists a sequence p; — oo such that
up, tends to a viscosity solution v of (1) in C*(D) for any « € [0,1) and weakly
in W1™(D) for any finite m. Since u and v have the same boundary values, the
uniqueness theorem of Jensen [J] implies that u = v. Note, in addition, that any

other subsequence of u, has a subsequence converging to a viscosity solution of (1)
and that this limit is u. We conclude that

u, —u in  C%D) for any «€0,1) (5)

and
Up — U in wt™(D) for any finite m (6)

as p — oo.
Fix m > n and consider p > m. We have

m/
/ICVloguplmdw /| ¢ Vlogu, |pd:c) p|D|(p_m)/p

m/
g( ) / v az)" Do,
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where we have used the Lemma in the second inequality. Therefore, we get
1/m 1/p
([1cTiogufman)™" < 2o ( [vepas) Mipfemim
p—
D D

Assume momentarily that ¢ V log u,, converges weakly to ( Vlogu in L™ (D). By
the weak lower semi-continuity of the norm we obtain

m 1/m 1/m
([1cvt0gu mas) " < 1960 lD )
D

Observe that (7) holds for the translated functions u,(z) + ¢, where € > 0 is fixed,
in place of u,. Since these functions are bounded away from zero, it is elementary
to check that { Vlog(u, + ¢) converges weakly to ¢ Vlog(u +¢) in L™ (D). It now
follows from (5) and (6) that estimate (8) holds for u(z) + «.

We now let ¢ — 0. By the Monotone Convergence theorem, we obtain estimate
(8) for w.

Finally, letting m — oo we finish the proof of (4). O

If B, and Rg are two concentric balls in 2 with radius r and R, the usual choice
of a radial test function ( (0 = ¢ <1, (=11in B,, (¢ = 0 outside Bgr) in (4)
yields the estimate

1
IViogulloo,5, = (11)

provided that Br C 2. In particular, we obtain the following result.

Corollary 1. (a) If u is a nonnegative viscosity solution of (1) in a domain Q C
R™, then for a. e. x € §2

V()| < % (12)

(b) If u is a bounded viscosity solution of (1) in a domain Q C R™, then for a. e.
x € 2 we have

|Vu(z)| < 2fulloo

= T, 00) (13)

Proof. It remains to consider only the second case, which follows from the first by
considering v = u + ||u[|s. O
Next, we state the Harnack inequality, which follows from (11).

Corollary 2. Suppose that u is a nonnegative viscosity solution of (1) in Br(xg).
Then if z,y € B-(29),0 < r < R, we have

w(z) < elr=I/ Ry (y). (14)

Proof. By integrating (11) on a line segment from z to y we obtain

|log u(z) — log u(y)| <
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from which (14) follows by exponentiating. [

Remarks.

§1. The Lemma holds for nonnegative super-solutions of the p—Laplacian by
exactly the same proof. Thus for p > n we get an estimate like (10) with m
replaced by p, from which a Harnack inequality follows easily. This suggests the
possibility that corollary 2 holds, indeed, for nonnegative viscosity super-solutions
of (1).

§2. If one uses the estimate in [L, (4.10)]

p
/\Vup!pu;“acpd:v < (g) /ug—l—f\vg\de
Q

Q

where 0 < ¢ < p — 1 instead of (3), we obtain the estimate

_ 1,
ICu™ Voo, = = [[u"™*V]loc,0
for any o > 0 and for any nonnegative viscosity solution w of (1) in €. Roughly

speaking, estimates for the p—Laplacian that are independent of p, always yield
estimates for co—harmonic functions.
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