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Abstract. The controllability of time-periodic solutions of a n-dimensional
nonlinear wave equation is established with n = 2, 3. The result is used to

establish the existence of time-periodic solutions of a nonlinear wave equation.

1. Introduction

The purpose of the article is to establish the existence of time-periodic solutions
of a nonlinear wave equation in bounded domains of Rn with n = 2, 3, using con-
trollability. Following the pioneering work of Rabinowitz [8, 9] on time-periodic
solutions of the one-dimensional nonlinear wave equation, extensive studies of the
problem were done by Berti-Bolle [1, 2], Brezis-Nirenberg [3] and others. Control-
lability and fictitious domains were used by Glowinski and his collaborators [5],
Glowinski-Rossi [6] to treat numerically the existence of time-periodic solutions of
the linear wave equation in cylindrical domains. For higher spatial dimensions,
Berti and Polle [3] used The Nash-Moser iteration to study T-periodic solutions of
the problem

u′′ −∆u+mu = εF (ωt, x, u)

u(t, x) = u(t, x+ 2kπ) ∀k ∈ Zn

where F is 2π/ω periodic in time and 2π-periodic in xj , j = 1, . . . , n.
In [10, 11] the author established the existence of time-periodic solutions of a

nonlinear wave equation in non-cylindrical domains of Rn, n = 2, 3 with the forcing
term in a non-empty subset of K⊥ with

K = {v : v ∈ L2(0, T ;L2(G)),
∫ T

0

v(·, t)dt = 0}

In this paper we shall show that for any f inK⊥ there exists a time-periodic solution
of a nonlinear wave equation in cylindrical domains. The proof is carried out in
Section 5.Notations and the basic assumption of the paper are given in Section 2.
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Given f in K⊥ and u0 in H1
0 (G) ∩ Lp(G) we shall establish the existence of a

control gf (u0) in (H1
0 (G) ∩ Lp(G))∗ and a time-periodic solution of the nonlinear

wave equation

u′′ −∆u+ |u|p−2u = f − gf (u0) in G× (0, T ),

u = 0 on ∂G× (0, T ), {u, u′}
∣∣
t=0

= {u, u′}
∣∣
t=T

= {u0, 0}

The solution and its derivative take prescribed values at t = 0 and at t = T .
In Section 4 we consider a semi-exact controllability problem. Given f in K⊥

and u0 in H1
0 (G) ∩ Lp(G), we shall prove the existence of (i) a control gf (u0) and

(ii) a time-periodic solution of the problem

u′′ −∆u+ |u|p−2u = f − gf (u0) in G× (0, T ),

u = 0 on ∂G× (0, T ), u(0) = u0 = u(T ), u′(0) = u′(T ).

As the solution u takes a prescribed common value at t = 0 and at t = T , its
derivative u′ is not required to take a specific value at the two end points, we shall
call it a semi-exact controllability problem.

Notation. Let G be a bounded open subset of Rn with n = 2, 3, and let

K = {v : v ∈ L2(0, T ;L2(G)),
∫ T

0

v( ., s)ds = 0}.

The set K is a closed convex subset of L2(0, T ;L2(G))and let J , be the duality
mapping of L2(0, T ;L2(G)) into L2(0, T ;L2(G)) with gauge function Φ(r) = r.
The penalty function

β(v) = J(v − PKv)

where PK is the projection of K onto L2(0, T ;L2(G)), is well-defined. For a given
u in L2(0, T ;L2(G)) there exists a unique PKu in K such that

‖u− PKu‖L2(0,T ;L2(G)) ≤ ‖u− k‖L2(0,T ;L2(G)) ∀k ∈ K.

In this article, we denote by (·, ·) the various pairings between L2(G), Lp(G) and
their duals.

Assumption. We assume that 2 ≤ p <∞ if G ⊂ R2 and 2 ≤ p ≤ 4 if G ⊂ R3.

2. Exact controllability time periodic problem

The main result of the section is the following theorem

Theorem 2.1. Let {f, u0} be in K⊥ × {H1
0 (G) ∩ Lp(G)} then there exist:

(i) gf (u0) in [H1
0 (G) ∩ Lp(G)]∗

(ii) {u, u′} in L∞(0, T ;H1
0 (G)∩Lp(G))×L∞(0, T ;L2(G)), solution of the prob-

lem
u′′ −∆u+ |u|p−2u = f − gf (u0) in G× (0, T )

u = 0 on ∂G× (0, T ), {u, u′}
∣∣
t=0

= {u, u′}
∣∣
t=T

= {u0, 0}
(2.1)

We consider the initial boundary-value problem

u′′ε − ε∆u′ε −∆uε + |uε|p−2uε + ε−1β(u′ε) = f in G× (0, T ),

uε = u′ε = 0 on ∂G× (0, T ), {uε, u
′
ε}
∣∣
t=0

= {u0, u1} .
(2.2)
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Lemma 2.2. Let {f, u0, u1} be in K⊥× [H1
0 (G)∩Lp(G)]×L2(G) then there exists

a unique solution uε of (2.2). Moreover

‖u′ε(t)‖2L2(G) + 2ε‖∇u′ε‖2L2(0,t;L2(G)) + ‖∇uε(t)‖2L2(G)

+ 2p−1‖uε(t)‖pLp(G) + 2ε−1

∫ t

0

(β(u′ε), u′ε)ds

≤ ‖u1‖2L2(G) + ‖∇u0‖2L2(G) + 2p−1‖u0‖pLp(G) + 2
∫ t

0

(f, u′ε)ds

The standard Galerkin approximation method gives the existence of a unique
solution of (2.2) with the stated estimate. We shall not reproduce the proof.

Lemma 2.3. Let uε be as in Lemma 2.2 then there exists a subsequence such that

{uε, u
′
ε, β(u′ε)} → {u, u′, 0}

in the space {
C(0, T ;L2(G)) ∩ [L∞(0, T ;H1

0 (G) ∩ Lp(G))]weak∗

}
× [L∞(0, T ;L2(G))]weak∗ × [L2(0, T ;L2(G))]weak.

Furthermore β(u′) = 0, i.e. u′ in K and thus, u(·, 0) = u(·, T ) = u0.

Proof. (1) From the estimate of Lemma 2.2 and the Gronwalls lemma, there exists
a subsequence such that {uε, u

′
ε} → {u, u′} in

C(0, T ;L2(G)) ∩ [L∞(0, T ;H1
0 (G) ∩ Lp(G))]weak∗ × [L∞(0, T ;L2(G))]weak∗

We have

‖β(u′ε)‖L2(0,T ;L2(G)) = ‖J(u′ε − PKu
′
ε)‖L2(0,T ;L2(G))

= Φ(‖u′ε − PKu
′
ε‖L2(0,T ;L2(G)))

= ‖u′ε − PKu
′
ε‖L2(0,T ;L2(G))

≤ ‖u′ε‖L2(0,T ;L2(G)) + ‖PKu
′
ε − PK0‖L2(0,T ;L2(G))

≤ 2‖u′ε‖L2(0,T ;L2(G)) ≤M

Thus,
β(u′ε)→ χ in (L2(0, T ;L2(G)))weak.

(2) We now show that χ = 0. From (2.2) we have

− ε
∫ T

0

(u′ε, ϕ
′)dt+ ε2

∫ T

0

(∇u′ε,∇ϕ)dt+ ε

∫ T

0

(∇uε,∇ϕ)dt

+ ε

∫ T

0

(|uε|p−2uε, ϕ)dt+
∫ T

0

(β(u′ε), ϕ)dt

= ε

∫ T

0

(f, ϕ)dt ∀ϕ ∈ C∞0 (0, T ;H1
0 (G) ∩ Lp(G))

Thus, ∫ T

0

(β(u′ε), ϕ)dt→ 0 ∀ϕ ∈ C∞0 (0, T ;H1
0 (G) ∩ Lp(G))

Since β(u′ε)→ χ in [L2(0, T ;L2(G)]weak, we deduce that χ = 0.
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(3) We now show that β(u′) = 0. Since β is monotone in L2(0, T ;L2(G)) we
have ∫ T

0

(β(u′ε)− β(v′), u′ε − v′)dt ≥ 0 ∀v′ ∈ L2(0, T ;L2(G)),

in particular for all v with

v =
∫ t

0

ϕ( ., s)ds, ϕ ∈ L2(0, T ;L2(G)).

Thus, ∫ T

0

(β(u′ε)− β(ϕ), u′ε − ϕ)dt ≥ 0 ∀ϕ ∈ L2(0, T ;L2(G)).

From the estimate of Lemma 2.2 and from the above we have

lim
ε→0

∫ T

0

(β(u′ε), u′ε)dt = 0 = lim
ε

∫ T

0

(β(u′ε), ϕ)dt.

Hence

−
∫ T

0

(β(ϕ), u′ − ϕ)dt ≥ 0 ∀ϕ ∈ L2(0, T ;L2(G)).

Take ϕ = u′ + λw, λ > 0 and w in L2(0, T ;L2(G)). We have∫ T

0

(β(u′ + λw), w)dt ≥ 0 ∀w ∈ L2(0, T ;L2(G)).

Letting λ→ 0 we obtain∫ T

0

(β(u′), w)dt ≥ 0 ∀w ∈ L2(0, T ;L2(G)).

Changing w to −w and we deduce that β(u′) = 0 i.e. u′ ∈ K and u(·, 0) = u(·, T ) =
u0. �

Lemma 2.4. Let {uε, u}, be as in Lemmas 2.2 and 2.3. There exists gf (u0, u1)
in [H1

0 (G) ∩ Lp(G)]∗ and associated with gf (u0, u1), a unique solution u, of the
problem

u′′ −∆u+ |u|p−2u = f − gf (u0, u1) in G× (0, T ),

u = 0 on ∂G× (0, T ), {u, u′}
∣∣
t=0

= {u0, u1} = {u(·, T ), u1}
(2.3)

with ∫ T

0

(gf (u0, u1), ϕ)dt = lim
ε→0

ε−1

∫ T

0

(β(u′ε), ϕ)dt

for all ϕ ∈ C∞0 (0, T ;H1
0 (G) ∩ Lp(G)). Furthermore,

lim inf ‖u′ε(t)‖2L2(G) + ‖∇u(t)‖2L2(G) + 2p−1‖u(t)‖pLp(G)

≤ ‖u1‖2L2(G) + ‖∇u0‖2L2(G) + 2p−1‖u0‖pLp(G) + 2
∫ t

0

(f, u′)ds.

Proof. (1) Since uε → u in C(0, T ;L2(G)) ∩ (L∞(0, T ;Lp(G)))weak∗ , a standard
argument gives

|uε|p−2uε → |u|p−2u in [L∞(0, T ;Lq(G))]weak∗ .
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(2) Let ϕ be in C∞0 (0, T ;H1
0 (G) ∩ Lp(G)) then ϕ′ is in K and we have∫ T

0

(β(u′ε)− β(ϕ′), u′ε − ϕ′)dt =
∫ T

0

(β(u′ε), u′ε − ϕ′)dt ≥ 0.

It follows from (2.2) that∫ T

0

(u′′ε , u
′
ε − ϕ′)dt+

∫ T

0

(∇(εu′ε + uε),∇(u′ε − ϕ′))dt

+
∫ T

0

(|uε|p−2uε, u
′
ε − ϕ′)dt+ ε−1

∫ T

0

(β(u′ε), u′ε − ϕ′)dt

=
∫ T

0

(f, u′ε − ϕ′)dt

(2.4)

Hence

‖u′ε(T )‖2L2(G) + 2ε‖∇u′ε‖2L2(0,T :L2(G)) + ‖∇uε(T )‖2L2(G) + 2p−1‖uε(T )‖pLp(G)

− 2
∫ T

0

(f, u′ε)dt−
{
‖u1‖2L2(G) + ‖∇u0‖2L2(G) + 2p−1‖u0‖pLp(G)

}
≤ 2

∫ T

0

(u′′ε , ϕ
′)dt+ 2

∫ T

0

(∇(εu′ε + uε),∇ϕ′)dt+ 2
∫ T

0

(|uε|p−2uε − f, ϕ′)dt

Letting ε→ 0, we obtain

lim inf ‖u′ε(T )‖2L2(G) + ‖∇u(T )‖2L2(G) + 2p−1‖u(T )‖pLp(G)

− {‖u1‖2L2(G) + ‖∇u0‖2L2(G) + 2p−1‖u0‖pLp(G)}

≤ 2
∫ T

0

< u′′ −∆u+ |u|p−2u− f, ϕ′ > dt

for all ϕ ∈ C∞0 (0, T ;H1
0 (G)∩Lp(G)). We have used the fact that f ∈ K⊥ and that

u′ is in K. Set

Φ(u, ϕ′) = 2
∫ T

0

< u′′ −∆u+ |u|p−2u− f, ϕ′ > dt

and

E(u) = lim inf ‖u′ε(T )‖2L2(G) + ‖∇u(T )‖2L2(G) + 2p−1‖u(T )‖pLp(G) − ‖u1‖2L2(G)

− ‖∇u0‖2L2(G) − 2p−1‖u0‖pLp(G)

Then
E(u) ≤ Φ(u, ϕ′) ∀ϕ ∈ C∞0 (0, T ;H1

0 (G) ∩ Lp(G)).
In particular

E(u) ≤ Φ(u,−ϕ′) ∀ϕ ∈ C∞0 (0, T ;H1
0 (G) ∩ Lp(G))

Hence
E(u) ≤ Φ(u, ϕ′) ≤ −E(u) ∀ϕ ∈ C∞0 (0, T ;H1

0 (G) ∩ Lp(G))
Let λ > 0 then λ−1ϕ is in C∞0 (0, T ;H1

0 (G) ∩ Lp(G)) and we have

λE(u) ≤ Φ(u, ϕ′) ≤ −λE(u)

Letting λ→ 0 we obtain

Φ(u, ϕ′) =
∫ T

0

〈u′′ −∆u+ |u|p−2u− f, ϕ′〉dt = 0
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for all ϕ ∈ C∞0 (0, T ;H1
0 (G) ∩ Lp(G)). Therefore

{u′′ −∆u+ |u|p−2u− f}′ = 0 in D′(0, T ; [H1
0 (G) ∩ Lp(G)]∗).

It follows that

u′′ −∆u+ |u|p−2 − f = gf (u0, u1) in D′(0, T ; [H1
0 (G) ∩ Lp(G)]∗) (2.5)

for any gf (u0, u1) in [H1
0 (G) ∩ Lp(G)]∗.

(3) We now show that gf (u0, u1) is uniquely defined. From (2.3) we have

−
∫ T

0

(u′ε, ϕ
′)dt+

∫ T

0

(∇(εu′ε + uε),∇ϕ)dt+
∫ T

0

(|uε|p−2uε, ϕ)dt

+ ε−1

∫ T

0

(β(u′ε), ϕ)dt−
∫ T

0

(f, ϕ)dt = 0

for all ϕ ∈ C∞0 (0, T ;H1
0 (G) ∩ Lp(G)).

Letting ε→ 0 we obtain

−
∫ T

0

(u′, ϕ′)dt+
∫ T

0

(∇u,∇ϕ)dt

+
∫ T

0

(|u|p−2, ϕ)dt+ lim
ε→0

ε−1

∫ T

0

(β(u′ε), ϕ)dt

=
∫ T

0

(f, ϕ)dt

for all ϕ ∈ C∞0 (0, T ;H1
0 (G) ∩ Lp(G)). Thus,

u′′ −∆u+ |u|p−2u+ lim
ε→0

ε−1β(u′ε) = f in D′(0, T ; [H1
0 (G) ∩ Lp(G)]∗)

Comparing with (2.4) and we have

lim
ε→0

ε−1β(u′ε) = gf (u0, u1) in D′(0, T ; [H1
0 (G) ∩ Lp(G)]∗)

It is clear that if h is any other element of (H1
0 (G) ∩ Lp(G))∗ in (2.5) then

h = gf (u0, u1) = lim
ε→0

ε−1β(u′ε) in D′(0, T ; [H1
0 ∩ Lp(G)]∗)

(4) Suppose that v is a solution of the problem

v′′ −∆v + |v|p−2v + gf (u0, u1) = f inG× (0, T ),

v = 0 on ∂G× (0, T ), v(·, 0) = u0, v′(·, 0) = u1

Then an argument as in Lions [11, p.14-15], shows that u = v and completes the
proof. �

Lemma 2.5. Let gf (u0, u1) be as in Lemma 2.4 then

‖gf (u0, u1)‖[H1
0 (G)∩Lp(G)]∗

≤ C{1 + ‖u0‖p−1
H1

0 (G)
+ ‖u1‖p−1

L2(G) + ‖u0‖p−1
Lp(G) + ‖f‖L2(0,T ;L2(G))}

Proof. Let h be in H1
0 (G) ∩ Lp(G) and let ζ be in C∞0 (0, T ) with ζ ≥ 0. From

Lemma 2.4 we have∫ T

0

ζ(gf (u0, u1), h) =
∫ T

0

(f, ζh)dt+
∫ T

0

(u′, ζ ′h)−
∫ T

0

(∇u, ζ∇h)dt
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−
∫ T

0

(|u|p−2u, ζh)dt

Hence

α|(gf (u0, u1), h)| ≤ C
{
‖f‖L2(0,T ;L2(G)) + ‖u′‖L2(0,T ;L2(G)) + ‖∇u‖L2(0,T ;L2(G))

+ ‖u‖p−1
L∞(0,T ;Lp(G))

}
‖h‖H1

0 (G)

for all h in H1
0 (G) ∩ Lp(G) and where

α =
∫ T

0

ζdt > 0.

Since 2 ≤ p, it follows from the estimate of Lemma 2.4 that

‖gf (u0, u1)‖[H1
0 (G)∩Lp(G)]∗

≤ C
{

1 + ‖u0‖H1
0 (G) + ‖u1‖L2(G) + ‖u0‖p−1

Lp(G) + ‖f‖L2(0,T ;L2(G))

}
The proof is complete. �

Lemma 2.6. Let u′′ε be as in Lemma 2.2. Then

‖u′′ε‖L2(0,T ;[H1
0 (G)∩Lp(G)]∗) ≤ C

where C is independent of ε. Moreover

u′ε → u′ in C(0, T ; [H1
0 (G) ∩ Lp(G)]∗) ∩ [L∞(0, T ;L2(G))]weak∗,

‖u′(T )‖L2(G) ≤ lim inf ‖u′ε(T )‖L2(G)

Proof. Let ϕ be in C∞0 (0, T ;H1
0 (G) ∩ Lp(G)) and set

γε(ϕ) =
∫ T

0

(u′′ε , ϕ)dt.

• Case 1: γε(ϕ) ≥ 0. We have

lim |
∫ T

0

(u′′ε , ϕ)dt|

= lim
∫ T

0

(u′′ε , ϕ)dt

= −
∫ T

0

(∇u,∇ϕ)dt−
∫ T

0

(|u|p−2u, ϕ)dt− lim ε−1

∫ T

0

(β(u′ε), ϕ)dt+
∫ T

0

(f, ϕ)dt

= −
∫ T

0

(∇u,∇ϕ)dt−
∫ T

0

(|u|p−2u, ϕ)dt−
∫ T

0

(gf (u0, u1), ϕ)dt+
∫ T

0

(f, ϕ)dt

≤ C{‖u‖L2(0,T ;H1
0 (G)) + ‖u‖p−1

L∞(0,T ;Lp(G)) + ‖f‖L2(0,T ;L2(G))}
× ‖ϕ‖L2(0,T ;H1

0 (G)∩Lp(G))

• Case 2: γε(ϕ) ≤ 0. Then we have

lim |
∫ T

0

(u′′ε , ϕ)dt|

= lim−
∫ T

0

(u′′ε , ϕ)dt
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=
∫ T

0

(∇u,∇ϕ)dt+
∫ T

0

(|u|p−2u, ϕ)dt+
∫ T

0

(gf (u0, u1), ϕ)dt−
∫ T

0

(f, ϕ)dt

≤ C{‖u‖L2(0,T ;H1
0 (G)) + ‖u‖p−1

L∞(0,T ;Lp(G)) + ‖f‖L2(0,T ;L2(G))}
× ‖ϕ‖L2(0,T ;H1

0 (G)∩Lp(G))

Hence

lim
∣∣ ∫ T

0

(u′′ε , ϕ)dt| ≤M‖ϕ‖L2(0,T ;H1
0 (G)∩Lp(G)) ∀ϕ ∈ C∞0 (0, T ;H1

0 (G) ∩ Lp(G)).

Since C∞0 (0, T ;H1
0 (G) ∩ Lp(G)) is dense in L2(0, T ;H1

0 (G) ∩ Lp(G)), we have

‖u′′ε‖L2(0,T ;[H1
0 (G)∩Lp(G)]∗) ≤M

The other assertions of the lemma are trivial to verify. �

Proof of Theorem 2.1. Taking u1 = 0, from Lemma 2.4 there exists gf (u0) in
[H1

0 (G) ∩ Lp(G)]∗ and

{u, u′} ∈ L∞(0, T ;H1
0 (G) ∩ Lp(G))× L∞(0, T ;L2(G)),

solution of the problem

u′′ −∆u+ |u|p−2u = f − gf (u0) in G× (0, T ),

u = 0 on ∂G× (0, T ), u(·, 0) = u(·, T ) = u0, u′(·, 0) = 0.

From the estimate in Lemma 2.4 we obtain

‖u′(T )‖2L2(G) ≤ 0

as f is in K⊥ and u′ is in K. Therefore

u′(·, 0) = 0 = u′(·, T ).

The proof is complete. �

3. Semi exact controllability

In this section we shall establish the existence of time-periodic solutions of a
nonlinear wave equation with the solution taking a prescribed value at t = 0.

Theorem 3.1. Let {f, u0} be in K⊥ × {H1
0 (G) ∩ Lp(G)}. There exists

(i) gf (u0) in [H1
0 (G) ∩ Lp(G)]∗

(ii) a solution u of the problem

u′′ −∆u+ |u|p−2u = f − gf (u0) in G× (0, T ),

u = 0 on ∂G× (0, T ), {u, u′}
∣∣
t=0

= {u, u′}
∣∣
t=T

= {u0, u
′(0)}

(3.1)

with {u, u′} in L∞(0, T ;H1
0 (G) ∩ Lp(G))× L∞(0, T ;L2(G)).

As u′(·, 0) and u′(·, T ) are not required to take a prescribed value and are allowed
to take the same value derived from the equation, we have only half of the exact
controllability condition.

A simple corollary of the theorem yields the existence of time-periodic solutions
of linear wave equations.
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Corollary 3.2. Let f be in K⊥ then there exists {ũ, ũ′} in L∞(0, T ;H1
0 (G)) ×

L∞(0, T ;L2(G)), solution of the problem

ũ′′ −∆ũ+ ũ = f in G× (0, T ),

ũ = 0 on ∂G× (0, T ), {ũ, ũ′}
∣∣
t=0

= {ũ, ũ′}
∣∣
t=T

(3.2)

Proof. Given f in K⊥ and a u0 in H1
0 (G) it follows from the theorem that there

exists gf (u0) in H−1(G) and associated with it a solution u of the problem

u′′ −∆u+ u+ gf (u0) = f in G× (0, T ),

u = 0 on ∂G× (0, T ), {u, u′}
∣∣
t=0

= {u, u′}
∣∣
t=T

= {u0, u
′(0)}

Consider the elliptic boundary problem

−∆û+ û = gf (u0) in G, û = 0 on ∂G.

There exists a unique solution û in H1
0 (G) of the problem. Set ũ = u + û and the

corollary is proved �

Proof of Theorem 3.1. (1) Let

{f, u0, u1} ∈ K⊥ × {H1
0 (G) ∩ Lp(G)} × L2(G)

then there exists gf (u0, u1) in [H1
0 (G) ∩ Lp(G)]∗ and associated with it, a unique

solution u of the problem

u′′ −∆u+ |u|p−2u+ gf (u0, u1) = f in G× (0, T ),

u = 0 on ∂G× (0, T ), u(·, 0) = u0 = u(·, T ), u′(·, 0) = u1

(3.3)

Moreover Lemmas 2.5 and 2.6 show that

‖u′(T )‖2L2(G) ≤ ‖u1‖2L2(G)

(2) Let B = {v : ‖v‖L2(G) ≤ 1}. Then it is clear that B is a compact convex
subset of [H1

0 (G) ∩ Lp(G)]∗. Denote by A the mapping of B into B given by

A(u1) = u′(T ) (3.4)

as f ∈ K⊥ and u′ is in K. The mapping is well-defined and takes B into B.
We now show that A is a [H1

0 (G)∩Lp(G)]∗-continuous mapping. Let u1,n in B,
then corresponding to {f, u0, u1,n}, there exists gf (u0, u1,n) in [H1

0 (G) ∩ Lp(G)]∗

and un, solution of the problem

u′′n −∆un + |un|p−2 + gf (u0, u1,n) = f in G× (0, T ),

un = 0 on ∂G× (0, T ), un(0) = u0 = un(T ), u′n(0) = u1,n

From Lemmas 2.4–2.6 we get

‖gf (u0, u1,n)‖[H1
0 (G)∩Lp(G)]∗ + ‖un‖L∞(0,T ;H1

0 (G)∩Lp(G)) + ‖u′n‖L∞(0,T ;L2(G)) ≤ C
We have a subsequence such that

{un, u
′
n, gf (u0, u1,n)} → {u, u′, gf (u0, u1)}

in

[L∞(0, T ;H1
0 (G) ∩ Lp(G))]weak∗ × [L∞(0, T ;L2(G)]weak∗ × [H1

0 (G) ∩ Lp(G)]weak∗

It is clear that {un, u
′
n} → {u, u′} in C(0, T ;L2(G)) × C(0, T ; [H1

0 (G) ∩ Lp(G)]∗),
and therefore

{un(0), u′n(0), u′n(T )} → {u(0), u′(0), u′(T )}
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in L2(G) × [H1
0 (G) ∩ Lp(G)]∗ × [H1

0 (G) ∩ Lp(G)]∗. Hence u(0) = u0 = u(T ) and
u′(0) = u1. A standard argument shows that

|un|p−2un → |u|p−2u in [Lq(0, T ;Lq(G)]weak

and thus,

u′′ −∆u+ |u|p−2u+ gf (u0, u1) = f in G× (0, T ),

u = 0 on ∂G× (0, T ), u(0) = u0 = u(T ), quadu′(0) = u1

It follows that A(u1) = u′(T ).
An application of the Schauder fixed point theorem yields the existence of û1 in

B such that A(û1) = û1. With u0 given and with the fixed point û1, there exists
as in Lemma 2.4 a control gf (u0, û1) = ĝf (u0) in [H1

0 (G) ∩ Lp(G)]∗ and associated
with the control, a solution of

û′′ −∆û+ |û|p−2û = f − ĝf (u0) in G× (0, T ),

û = 0 on ∂G× (0, T ), {û, û′}
∣∣
t=0

= {û, û′}
∣∣
t=T

with û(0) = û(T ) = u0. The theorem is proved. �

4. Periodic solutions

In this section we shall use u0 of Theorem 3.1 as a control to show that for any
given f ∈ K⊥, there exists

{f̃ , ũ0, gf̃ (ũ0)} ∈ K⊥ ×H1
0 (G) ∩ Lp(G)× [H1

0 (G) ∩ Lp(G)]∗

such that f = f̃ − gf̃ (ũ0). The main result of the section and of this article is the
following theorem.

Theorem 4.1. Let f be in K⊥. Then there exists a solution {u, u′} in the space
L∞(0, T ;H1

0 (G) ∩ Lp(G))× L∞(0, T ;L2(G)) for the problem

u′′ −∆u+ |u|p−2u = f in G× (0, T ),

u = 0 on ∂G× (0, T ), {u, u′}
∣∣
t=0

= {u, u′}
∣∣
t=T

.
(4.1)

Proof. First we consider the initial boundary-value problem

w′′ −∆w + |w|p−2w = f in G× (0, T ),

w = 0 on ∂G× (0, T ), {w,w′}
∣∣
t=0

= {u0, u1}
(4.2)

It is known that for a given

{f, u0, u1} ∈ L2(0, T ;L2(G))× {H1
0 (G) ∩ Lp(G)× L2(G)},

there exists a unique solution of (4.2) with

‖w′(t)‖2L2(G) + ‖∇w(t)‖2L2(G) + 2/p‖w(t)‖pLp(G)

≤ et{‖u1‖2L2(G) + ‖∇u0‖2L2(G) + 2/p‖u0‖pLp(G) + ‖f‖2L2(0,T ;L2(G))}

Consider the optimization problem

α(f) = inf
{
‖u(0)− u(T )‖L2(G) + ‖u′(0)− u′(T )‖L2(G) : u is the solution of (4.2)

∀{u0, u1} with ‖u0‖H1
0 (G)∩Lp(G) + ‖u1‖L2(G) ≤ R

}
(4.3)
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From Theorem 3.1 we know that for each u0 in H1
0 (G) ∩ Lp(G), for a given f in

K⊥ there exists gf (u0) in [H1
0 (G) ∩ Lp(G)]∗ and a solution u of

u′′ −∆u+ |u|p−2u = f − gf (u0) in G× (0, T ),

u = 0 on ∂G× (0, T ), u(0) = u0 = u(T ), u′(0) = u′(T ).

Let
S = ∪f∈K⊥

{
f ⊕ {−gf (u0) : u0 ∈ H1

0 (G) ∩ Lp(G)}
}
,

where gf (u0) is as in Theorem 3.1 and thus, α(f − gf (u0)) = 0.
The set S is non-empty and L2(G) = L2(G) ⊕ 0 ⊂ S. Indeed L2(G) ⊂ K⊥ as

the stationary solution of the elliptic boundary problem

−∆w + |w|p−2w = f(x) in G, w = 0 on ∂G

is time-periodic. Thus α(f) = 0 = α(f − gf ) and gf = 0, and hence f is in S.
We have

S ⊂ K⊥ ⊕ ∪h∈K⊥{−gh(u0) : u0 ∈ H1
0 (G) ∩ Lp(G)}

Thus,

L2(G) = {L2(G)⊕ 0} ∩ {K⊥ ⊕ 0}

⊂ S ∩ {K⊥ ⊕ 0}

⊂
{
K⊥ ⊕ ∪h∈K⊥{−gh(u0) : u0 ∈ H1

0 (G) ∩ Lp(G)}
}
∩ {K⊥ ⊕ 0}

⊂ K⊥ ⊕ 0.

Indeed
0 ∈ ∪h∈K⊥{−gh(u0) : u0 ∈ H1

0 (G) ∩ Lp(G)}
as α(f̂) = 0 = gf̂ for f̂ ∈ L2(G). Hence {K⊥ ⊕ 0} ⊂ S.

Let f in {K⊥⊕ 0} then there exists h in K⊥ and gh(u0) for some u0 in H1
0 (G)∩

Lp(G) such that
f = h− gh(u0), α(h− gh(u0)) = 0

and therefore α(f) = 0. Thus for f ∈ K⊥ there exists ũ, solution of the problem

ũ′′ −∆ũ+ |ũ|p−2ũ = f in G× (0, T ),

ũ = 0 on ∂G× (0, T ), {ũ, ũ′}
∣∣
t=0

= {ũ, ũ′}
∣∣
t=T

The proof is complete. �
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