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LOCALIZED NODAL SOLUTIONS FOR SEMICLASSICAL
NONLINEAR KIRCHHOFF EQUATIONS

LIXIA WANG

ABSTRACT. In this article, we consider the existence of localized sign-changing
solutions for the semiclassical Kirchhoff equation

—(e%a+ ab/ |Vu2dz)Au + V(z)u = [ulP"2u, z€R? ue H'(R?)
R3

where 4 < p < 2* =6, € > 0 is a small parameter, V (z) is a positive function
that has a local minimum point P. When ¢ — 0, by using a minimax char-
acterization of higher dimensional symmetric linking structure via the sym-
metric mountain pass theorem, we obtain an infinite sequence of localized
sign-changing solutions clustered at the point P.

1. INTRODUCTION AND MAIN RESULTS

In this article, we study the semiclassical states of nonlinear Kirchhoff equation

- (52a + Eb/ |Vu|2dx) Au+V(z)u=|uf?u, =x€cR?
- (1.1)
u e H' (R?),

where p € (4,2%),2* = 6, ¢ > 0 is a small parameter and V : R?® — R is a continuous
function satisfying the following conditions:
(A1) V € CYR3,R) and there exist ng > mgo > 0 such that mo < V(z) <
ng for any x € R3.
(A2) There is a bounded domain A C R? with smooth boundary A such that

fi(x) - VV(z) >0 Va € 0A, (1.2)

where 7i(z) denotes the outward normal to A at z and - denotes the inner
product in R3.

Note that if V' has an isolated local minimum set, the condition (A2) is satisfied.
That is, V has a local trapping potential well. Under (A2), the set of critical points
of Vis

A={x e AlVV(z) =0} # 0, (1.3)

and A is a compact subset of A. In the following, we will assume 0 € A.
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Equation (1.1)) or a more general version of
- (a + b/ |Vu|2dx)Au +V(zx)u = f(z,u), zcRN. (1.4)
R3

This equation has been studied recently under different conditions on f(z,u) and
V(z), where N = 1,2,3 and a,b are two positive constants. It is well known that
problem is a nonlocal problem since the presence of the term b [5, [Vu|?da.
This fact indicates that is not a pointwise identity. It causes some math-
ematical difficulties, and in the mean time, makes the study of such a problem
particularly interesting. For a pure power f(x,u) := |u[P™%u (3 < p < 6), Li and
Ye [13] studied the existence of a positive ground state solution by using a mono-
tonicity trick and a new version of global compactness lemma. The authors used
the constrained minimization on a new manifold which is related to the Pohozaev’s
identity to get a positive ground state solution to (1.4).

We note that if V(z) = 0 and R¥ is replaced by a bounded domain Q C R¥ in
, then we have the Kirchhoff Dirichlet problem

—<a—|—b/ \Vu|2dq:)Au: flz,u), =€,
Q

u=0, x¢€dQ,
which is arises when studying wave solutions of the equation
0%u P E [* du 0%u
BTN TS e
ot h 2L [, Oz Ox

It is related to the stationary analogue of the Kirchhoff equation
Ugy — (a +b |Vu|2dx> Au = g(z,t), (1.5)
R3

which is proposed by Kirchhoff [I2] as an extension of the classical D’Alembert’s
wave equation for free vibrations of elastic strings. Kirchhoff’s model takes into
account the changes in length of the string produced by transverse vibrations.
In [5], the authors pointed out that Problem models several physical and
biological systems, where u describes a process which depends on the average of
itself (for example, population density).

Motivated by the works above, in this paper we study the existence of local-
ized sign-changing solutions to the semiclassical nonlinear Kirchhoff equation .
Before giving our main results, we give some notations. Let H'(R?) be the usual
Sobolev space endowed with the standard scalar and norm

1/2
(u,v) :/ (VuVo +uwv)de;  |lul| = (/ (|Vul® + |u|2)da:)
R3 R3
D'2(R3) is the completion of C§°(R?) with respect to the norm

1/2
[ullp = llul[pr2rs) = (/ |Vul? dx) .
R3

The norm on L* = L*(R?) with 1 < s < oo is given by |uls = ( [gs |u|*dz)
Assume the functional space is

1/s

H. = {ue H'E): u]. = (/Rg(|Vu|2 +V(eznd) dm)1/2 < o).
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Since 0 < mg < V(x) < ng, we have
min(1, mo)]Jul|* < / (|Vu|* + V(ex)u?) dz < max{1,no}|ju|?
R3

H.(R%) — LP(R?) (2<p<6),
lulp < Cpllull < Cllu]..

Moreover we make the following assumptions. For any set @ C R3?,¢ > 0 and
0 >0, we set

Q. ={zeR®:cxecQ}, Q={zecR3:dist(z,Q):= irg2 |z — 2] <40} (1.6)

A function v € HY(R?) is called sign-changing if u™ # 0 and u~ # 0, where
u® = max{+u,0}.
Our main result reads as follows.

Theorem 1.1. Suppose that 4 < p < 6, (A1) and (A2) hold. Then for any positive
integer N, there exists ey > 0 such that if 0 < € < ep, has at least N pairs of
sign-changing solutions *v; ., j =1,2,..., N, satisfying that, for any § > 0, there
exist c = ¢(6,N) > 0 and C = C(6, N) > 0 such that

cdist(z, A%)

[0g6(2)] < Cexp (= =

), 1<j<N.

In recent years, the existence and multiplicity solutions for (SK.) have been
studied by many researchers under different assumptions on the potential and non-
linearity. Figueiredo [8] constructed a family of positive solutions which concen-
trates around the local minima of V as ¢ — 0, the nonlinearities is subcritical.
Motivated by [8], He [II] extended the result of Figueiredo to the case where the
nonlinearity is of critical growth, i.e. due to [20]. In [2I] the authors consider the
stability of ground states to a nonlinear focusing Schrodinger equation in presence
of a Kirchhoff term.

Especially, if a = 1, b = 0 and R? replaced by RY, is reduced to a singular
perturbed Schrédinger equation i.e.,

—2Au+V(@)u=|uf?u, zeRY 2<p<2* N>1. (1.7)

Floer and Weinstein [J] constructed a single peak solution which concentrates
around any given non-degenerate critical point of the potential V. Oh [I5] showed
the existence of muli-peak solutions which concentrate around any finite subsets of
the non-degenerate critical points of V. The methods in [9] [I5] are mainly used a
Lyapunov-Schmidt reduction.

The concentration behavior of the positive solutions also has been considered by
variational methods. When £ > 0 small enough, by using the Mountain-Pass The-
orem, Rabinowitz [16] proved that possesses a positive ground state solution
under the condition

(A3) Vo = liminf), o V(2) > Vo = inf cpny V(z) > 0.

Other results on the concentration behavior for the family of positive ground solu-
tion see [0]. By using the same arguments as in [6] [16], He and Zou [I0] considered
the existence, concentration and multiplicity of solutions for with general
nonlinearity f(u), and the potential V(x) satisfy the condition

(A4) 0 < Vo :=infV(z) < liminf), 0 V(2) = Voo, where Vo < +00
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and f(u) € C1(RT,R¥) is a subcritical function satisfying the Ambrosetti-Rabinowtiz
condition, which is concentrate on the minima of V(z) as € — 0.

Now we give an outline of the proof, we set v(z) = u(ex). Then (L.1) is changed
to

—(a+ b/ |Vo|2dz)Av + V(ex)v = |v|P~%0, =€ R3,
. (1.8)

v e HY(RY),
and the corresponding energy functional is

2
I.(v) = %/Rg(a\VM2 + V(ex)v?) dr + g(/}RS |Vv|2dar) - % /Rg vPdr.  (1.9)

It is well known that, by using Rabinowitz [I6], we can prove that I. satisfies
the (PS). condition if ¢ is smaller than the mountain pass value of the limiting
functional

1(—1 VQVZ'dé v2d21 Pd
v)—2 RS(a| v|? + Vo) a:+4 ]R3| v|“dx 5 R3v T

where Vy = liminf|;|_,o, V (z). However, we will construct the solutions in Theorem
have larger critical values. The variational problem does not satisfy the compact
condition anymore. Instead we use some ideas for nonlinear Schrodinger equations
(see [3]) in particular in the recent work of [4] in which for nonlinear Schrédinger
equations have an infinite sequence of localized nodal solutions were constructed
near a local minimum of the potential function V(z). This involves using the
Byeon-Wang’s penalization method [3], we define T'. : H. — R by

Te(v) = I.(v) + Qe(v),

where

Q€(v) = <A3 XEdex_ ]‘)i?

() 0, if x € A,
e\r) =
X eS¢(dist(z, AL)), if z ¢ A..

The function Q. will act as a penalization to force the concentration phenomena
to occur inside the set of A. The function I'. has an advantage that it has a
higher threshold for (PS). condition to hold. Indeed, for any positive integer L,
there exists e, > 0 such that I'. satisfies the (PS). condition for every ¢ < L if
O<e<er.

By using a minimax theorem for sign-changing solutions (see [I4]) and the genus
(see [IT]), we obtain that, for any positive integer N, there exists ey > 0 such
that I'. has at least N pairs of sign-changing critical points v;. (1 < j < N) if
O0<e<epn.

To verify the critical point v;. of I'c is a solution of the original problem ,
we need a finer asymptotic analysis and the local Pohozaev identity. Moreover, we
show that the concentration points of these solutions lie in A as e — 0.

Remark 1.2. As it is pointed in [4] [I8] considered the critical frequency case, that
is, V satisfies

(A5) liminf|, o V(z) > inf,cpy V(2) = 0;
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(A6) There exists a closed subset Z with a nonempty interior such that V(z) = 0
forx € Z.

By using minimax theorem, they obtained that for any integer NN, there exists
eny > 0 such that for 0 < € < ey, has at least N solutions. Under the as-
sumption of critical frequency, one can use higher dimensional symmetric structures
to construct minimax values below the mountain pass value of the limiting func-
tional I. However, in our case with positive potentials, the energies of the sequence
of localized nodal solutions tend to infinity.

To the best of our knowledge, there is no result on the existence and concentra-
tion of sign-changing solutions for Kirchhoff type equation under (Al) and (A2).
In the present paper, we will adopt the ideas of Chen and Wang [4] to study the
existence of sign-changing solutions for . But their method cannot be used
directly because of the nonlocal term and more careful analysis is needed.

Throughout this paper, the letters C,C’ will be used to denote various positive
constants which may vary from line to line and are not essential to the problem.
E’ is a dual space for a Banach space E. The closure and the boundary of set G
are denoted by G' and dG respectively. For FF € C'(E,R), we denote the Fréchet
derivative of F' at u by F’(u), and the Gateaux derivative of F' by (F’(u),v) for all
u,v € E. We denote — for weak convergence, and — for strong convergence. Also
if we take a subsequence of a sequence {u,,}, we shall denote it again {u,}.

This article is organized as follows. In Section 2, we introduce the penalized
function I'c, show that I'. satisfy (PS). condition for ¢ < L and & small enough. In
Section 3, when ¢ is small, we show the existence of multiple sign-changing solutions
of the problem through an abstract critical point theorem. In Section 4, we give
the proof of Theorem We prove the solutions obtained in Section 3 are in fact
solutions of the original problem for ¢ small.

2. VARIATIONAL SETTING AND COMPACTNESS CONDITION

Set £ € C*°(R) be a cut-off function such that 0 < £(¢t) < 1 and £'(¢) > 0 for
any t € R. £(t) >0if ¢ > 0,&(t) =1if ¢t > 1 and &(¢t) = 0 if ¢ < 0. Define

(2) 0, if x € Ag,
e\l) =
X eS¢ (dist(x, AL)), if z ¢ A..

Obviously, for e small, y. is a C* function and

(z) = 0, if x € A,
X060, e ¢ (M)

For u € H'(R?), we define the penalization function

Qe(v) = (/Rg xev?dz — 1>5 (2.1)

+
which 3 satisfies 2 < 23 < p and ()4 = max{t,0}. For v € H'(R3), we define

Te(v) = I.(v) + Qe(v), (2.2)
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where I. is defined by (1.9). For u,v € H(R?),
(TL(v),u) = / (aVuVu + V(ex)vu) dz + b/ |Vv|2d:13/ VoVudx
R3 R3 R3

p—1
+2B(/ stzdx—l) / Xevudx—/ |v[P~2vu da.
R3 + R3 R3

The critical point v of I'. is a solution of

- (a—l-b |VU|2dx)Av+V(sa:)v+26(/

R3 R
for any v € H*(R?). If v is a critical point of I'. with Q.(v) = 0, then v is a solution
of (9.
Lemma 2.1. For any L > 0, there exists e, > 0 such that, for any ¢ € (0,e1,) and
¢ < L, then T'. satisfies (PS). condition.
Proof. Let {u,} C H'(R3?) satisfy the conditions
To(un) — ¢, Ti(up) —0 in (H'(R?)).

€

(2.3)

2 p -2
Xev-dr — 1) X0 = [P0, (2.4)
3 +

Now we can show that {u,} contains a convergent subsequence in H!(R?). Note
that

ofllunll) + L
> o([|unll) + ¢

= FE(’U,TL) - %(F{g(un)vuT)

1/ (a|lVu |2+V(5m)u2)dx+9(/ [Vu \de)z—l/ |un|Pdx
2 R3 " " 4 R3 " P Jrs "

5 B
+ ( XeU,dxr — 1)
R3 +

1 9 9 b 9 2 1
i (alVu,|? + V(e)u;) dz — 7< [V, dm) + - |, |Pdz
D Jrs P NJrs P Jrs

2 £-1
_2% </ xeu? dx — 1) / xeu? dx
D R3 + R3

= (% - %) /Rs(awuﬂ2 + V(ex)ul) dx + b(i - %) (/R3 |Vun|2dw)2

B2 -1
+ (/ Xeuldr — 1) — —ﬂ(/ Xeuldr — 1) / xeu? dx
R3 + p R3 + R3

From this inequality and 2 < 28 < p, there exists n;, > 0 independent of £ such
that ||u,| < nz and Q. (u,) < nz. Suppose that u,, — u in H}(R3) as n — oo and

B—1
Ap = 2ﬁ</ Xsuidm—l) — A, n—oo.
R3 +
It is easy to prove that u solves
- (a + b/ |Vu|2d:c) Au+ V(ex)u + Axeu = [ulP~2u. (2.5)
R3

Hence, for v € H*(R3?),

a | V(u, —uw)Vvdr+b [ |Vul*dz | V(u, —u)Vode
RS RS RS
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+ b/ (|Vun|? — [Vul?) da:/ Vu,Vvdzr + Viex)(uy — u)vde
R3 R3 R3

+ /\/ Xe(un —w)vde + (A, — )\)/ Xelnv dx — / (\un|p72un - |u|p72u)v dx
R3 R3 R3
— (T (), o) = o(Jel), a7 — co.

Since A is a bounded set, there exists ro > 0 satisfy A C B(0,79). Let ¢. be a
C® cut-off function such that 0 < ¢. < 1 and |V¢.| < 4 in R3?, ¢.(z) = 1 if
|z| > e trg+2 and ¢c(x) = 0 if |#| < e~ lrg+ 1. We choose v = ¢p2(u,, —u) in
we obtain that

(a + b/RS |Vu|2dx) /]R IV (e (up — w))[?dz + /R V(ex)d? (up — u)?dz
+ b/ (|Vun|? = [Vul?) d:v/ Vu, (20:-V¢e(uy —u) + ¢2V (u, — u)) da
R3 R3
2 _ 2 _ 2 _ 2
‘*‘A/R3 Xe®z (up —u)*de + (A — ) /R3 Xe @2 (uy — u) dx 26)
—(p— 1)/ (Oup, + (1 — 0)u)P 202 (u,, — u)*da
R3

- (a +b |Vu|2dx) / (Un, — u)?| Ve |?dx
R3 R3
=o0(l) asn— oo.

where 0 < # < 1 comes from the mean value theorem. By A, — A as n — oo,
|V |? has compact support, and u,, — u in H'(R3) as n — oo, then we have

(An — )‘)/ X€¢§(un — u)up dr = o(1), / (un — U)2|v¢6|2 = o(1).
R3 R3
as n — oo. Then by V' > my in R? and (2.6), we obtain
min {a + b/ [Vl mo b6 (un — )]
RS
< (a+ b/ |Vu\2dz>/ |V e (un — u)|2dx+/ V(ex)d? (u, — u)?dx
RS R3 R3
+ b/ (|Vun|* — |Vul?) dac/ V{20V o (uy —u) + 2V (uy, — u)}dzx
R3 R3
<=1 [ 10un+ (1= 0)ul? 262, — w)da + of1) (27)
R3
(r—2)/ 2/
<=0 [ tpun+ = opupde) ([ ottu, - wrae) o)
R3 R3
<co-v{( [ [Pl
|z|>e~1ro+1

(p—2)/p
+ (/ |u|pdx) }ang(un w2+ o(l) asn - oo,
|z|>e~1ro+1

)(P*Q)/:D

where C' > 0 is a constant independent of n and . By Fatou’s Lemma, we have

/ (Vund?Vu, — Vu,¢?Vu)de = / (|Vun|?¢? — |Vun||Vu|p?) dz > 0,
R3 R3
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then
/ 2V Uy ¢V e (U, — w)uy, dz = o(1).
R3
By Q:(uy) <nz and (A) € B(0,e g + 1), we have
/ u? de < (1+75)YPeS.
|z|>e~1ro+1
It follows that
/ ulde < (14 7)Y/ Peb.
|z|>e—1ro+1

Assume p < ¢ < 6. By the inequality |ul, < |ufs|uli™" < C'luls|ul'~", where the
positive C” is independent of n and ¢, and % = % + %, by above two inequalities
and ||uy| < 7, we infer that there is a constant C';, > 0 independent of ¢ and n

such that
/ uf dr < O, / wPdr < CpePt.
|z|>e=1ro+1 |z|>e~1ro+1
Let e, > 0 satisfying that, for 0 < e < e,
p=2 1
Clp— 1)(20,7 20724 < Jminfa + b/ Vul2dz, mo}.
R3

Then by ([2.6) we obtain
Tim (g, — u)]| = 0. (28)

Choosing v = (1 — ¢¢)?(u, —u) in (2.5, we obtain that (2.6]) still holds if we
replace ¢. with 1 — ¢.. Indeed, 1 — ¢. has a compact support and u, — u in
L (R3) for any 2 < ¢ < 2%,

loc
(a + b/ﬂ@ |Vu|2dx> /R IV((1 = ¢e)2(un — v))|2da
- (a + b/w |Vu|2d:v) /R V(1 — )2 (uy — u)2da
—|—b/Rs(\Vun|2 — |Vul?) dx
+ / {(Vu, V(1 = ¢.)*(tp — 1) + Vun (1 — ¢.)?V (u,, —u)}dx

R3
+ [ V)1 =6 = w4 A [ 1= 6 — 0o

+ O = A) /R el — )2 (un — w)2da

—(p—-1) /RS(Hun + (1= 0)u)P (1 — ¢.)*(uy, — u)?dz = o(1), asn — oo.

This implies

i [[(1— 62)(u —w)]| =0 (2.9)
and
Ty — ul = lim (1= 62)(un — ) + G — )|

< lim (1= ) (un —u)l| + lim || (un —w)|| = 0.

n—oo
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The proof is complete. O

3. EXISTENCE OF MULTIPLE SIGN-CHANGING CRITICAL POINTS OF I'.

We will use an abstract critical point theorem in [I4] to obtain multiple sign-
changing critical points for I'c. First we give some definitions and notation.

Let X be a Banach space. For P C X, define —P = {—u : u € P}. The genus
(see [I7T]) of a closed symmetric subset B(i.e. — B = B) of X is denoted by v(B).
For J € C1(X,R) and ¢ € R, denote

J={ue X :J(u)<c},
K.={ueX:Ju)=cJ (u) =0}

Definition 3.1 ([14]). Let J € C'(X,R) be an even functional. Let P C X be a
non-empty open set and W = P U (—P). P is called an admissible invariant set
with respect to J at level c, if the following deformation property holds, there is
7o > 0 and a symmetric open neighborhood M of K.\ W with v(M) < oo, such
that for 7 € (0, 79), there exists n € C(X, X) satisfying

(1) n(0P) c P,n(0(—P)) C =P,n(P) C P,n(-P) C —P;

(2) n(—u) = —n(u), for all u € X;

(3) mlye-2r = id.

(4) n(Je\ MUW)) € Jo

Proposition 3.2. Assume J € C*(X,R) is an even functional, P C X is a non-
empty open set, M = PN (—P),W = PU(—P) and ¥ = 0PN I(—P). Let P be
an admissible invariant set with respect to J for ¢ € [¢*, L] for some L > c*, where
c¢* = infyex J(u) and for any n € N, there is a continuous map ¢, : B, = {x €
R™: |z| < 1} — X satisfying

(1) ¢n(0) € M, pp(—t) = —dn(t) for allt € By;

( ) ¢n(aB )ﬂM:@;

(3) max{J(0),sup,cy,(0m,) (W)} <c*.
For j € N, we define

cj = inf sup J
B€A7 wEB\W w),

where
A= {B :B=¢(B,\Y) for some ¢ € Gp,n > j,
and open'Y C B, such that =Y =Y and y(Y) <n—j}
and
Gn=A{0:¢ € C(Bn,X),¢(—t) = —¢(t) for any t € Bn, dlop, = dnlos, }-
Then for j > 2, if L > c;, we have

K., \ W # 0. (3.1)
Furthermore, if § > 2 and L > c:=c¢j = -+ = Cj4m > C«, we have
YEN\NW)>m+1. (3.2)

The above proposition was proved in [I4] Theorem 2.5]. If we choose k = 1 and
G = —id in [I4], we can obtain (3.1]). The result (3.2) is proved in [4] by a variant
of the argument in the proof of [14] Theorem 2.5]. So we omit it here.
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Let Py :={u € HY(R3) : u > (<)0}. For o > 0, let
P? = {ue H'(R?) : disty (u, Py) < o},
P? = {uc H'(R?) : dist1 (u, P_) < o},
where dist 1 (u, B) := inf,ep |u — v|| for v € H}(R?) and B C H'(R?). It is easy
to see that P7 = —PY.
To apply Proposition [3.2] to obtain multiple sign-changing critical points of I,
we let
X=H'R%, P=P], W=P°UP], J=I. (3.3)
in Definition [3.1]and Proposition [3:2} It is easy to know that W is a symmetric and
open subset of H!(R3) and sign-changing functions are contained in H*(R?)\ W.
Furthermore, since 0 is a strict local minimum point of I'c, the constant ¢* in
Proposition [3.2] satisfies
¢ = inf Ir. >0,
a(P2)NA(PY)
when o > 0 is small enough.
Without loss of generality, we assume that

0€ A (3.4)

For z € R and r > 0, we define B(z,r) = {z € R® : [z — 2| < r}. From (3.3)), we
obtain
B(0,1) C A (3.5)
if £ > 0 small enough.
Now we define a function

1 1 b 2
Jo(u) = f/ (a|Vu|? + nou?) dz — 7/ |u|Pdx + 7(/ |Vu|2d:17) )
2 B(0,1) P JB(o,1) 4 B(0,1)

u € Hi(B(0,1)).

Assume E,, := span{ey,...,e,}, where {e,} C H}(B(0,1)) is an orthonormal
basis. From p > 2, we can infer that there is an increasing sequence of positive
numbers {R, } satisfying

Jo(u) <0, forallueE, and ||u|| > R,.
We also we define ¢,, € C(By, Hj(B(0,1))) as

Gn(t) = Rp Y tie;, t=(t1,....ty) € By. (3.6)
i=1

One can easily prove that under (3.4)), ¢, satisfied (1)—(3) in Proposition
For j € N, we define four sets

Aj={B:B=¢(B,\Y) for some ¢ € Gp,,n > j,
and open Y C B, such that —Y =Y and v(Y) <n —j},
Aj={B:B=¢(B,\Y) for some ¢ € Gy,n > j,
and open Y C B, such that —Y =Y and y(Y) <n —j},
Gn={¢:¢ € C(By, H'(R)),p(~t) = —¢(t) for all t € By, lop, = dnlos, },
Gpn={¢: ¢ € C(Bn, Hy(B(0,1))), () = —o(1)
Vt € By, 9lop, = ¢nlon.}
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Then we can give the the minimax values

c;= inf sup Dc(u), & = inf sup Jo(u)
BeAj ueB\W BeAj ueB\W

We obtain
O<C§§C§§, o <c3<.... (37)
Because x. = 0 in A, from V < ng and (3.5), for all u € Hg(B(0,1)), we can
obtain that I'c(u) < Jo(u). And then by A; C A, for any j > 2 and sufficiently
small € > 0, we have
0< C; < éj. (38)

Proposition 3.3. Assume that o9 > 0 and L > 0. Then for any o € (0,00) and
e € (0,er), PY is an admissible invariant set with respect to T'c for ¢ < L, where
er, s from Lemma[2-1}

We prove the above proposition in the appendix.

Proposition 3.4. For any N € N, there exists ¢y > 0 such that, for any ¢ €
0,ey), T'- has at least N pairs of sign-changing critical points {+v;.:1<j < N
N J,
satisfying
Fs(vj,s):0§+1 SEN—&-l, 1 S]SN

The above proposition follows from Proposition using (3.3)), (3.7)), and
(3-8)-

4. PROOF OF THEOREM [L.1]

In this part, we first verify that the sign-changing critical points {v; .} obtained
in Proposition are solutions of (1.8)), then we can prove the main theorem.

Lemma 4.1. For any N € N and 0 < ¢ < &'y, there exist p = p(a, mg,p) > 0 and
nn > 0 such that

pg ||Uj,5||§nNa QE(vj,E)SnN7 1§]§Na
where Ny is independent of €.

Proof. Since
- - 1
CN+1 2 Cjpq = Le(vje) — 5(1“'5(11]',5),113',5}

1
= Is(”j,s) + Qs(vj,s) - ;(F;(Uj,s), Uj,s>
1 1

_ 1 2 2 1 1 20
— (2 p) /Rs(a\Vv],6| +V(E$)’Uj$€)d1'+b(4 p)(/Rs|VUJ’E| dx)

5 28 g1
2 2 2
+ (/RS stj’sdx — 1)+ — —p (/]Rif XsUj,gdf — 1)+ /]1{3 stj’gdx

and 2 < 2 < p, we can have that there exists ny > 0 independent of € such that

||Uj,5|| <N and Qs(vj,s) <.
From (I',(vj¢), vje) = 0, we obtain

2
2 < / (a|Vvje 2y V(E:L‘)’U?E) dx + b(/ \ij,€|2dx)
RS ' R3

B—1
+ 25(/ stfsdm — 1) / stfad:ﬂ
R3 ’ + R3 ’

min{a, mo}|vy.c
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= [ IoselPde < Clpoel

where C' = C(p) is the constant in Sobolev inequality. Since v; . are sign-changing
functions, v;. # 0 and p > 2, it follows that there exists p = p(a, mg,p) > 0 such
that ||vjc|| > p for 1 < j < N. The proof is complete. O

Lemma 4.2. If5 > 0, then lim5_>0 ||vj,€||L°°(R3\(A5)5) =0 fOT‘ 1 S ] S N.

Proof. From Q.(vj;-) < nn and the definition of cut-off function x., we have that,
for any § > 0, there exists a positive constant C' = C(§, N) such that

/ v de < Ce®, 1<j<N. (4.1)
RI\(A.)?

Because vj. solves (2.4), ||vjell < nn, Then by (4.1) and using the bootstrap

argument, we have
[0, ll oo R\ (A )5) < CE®, 1< j<N.
The proof is complete. 0

Lemma 4.3. Assume ¢ >0, {y.} CR3, and {v.} C HY(R3) N L>(R3) satisfy

sup ||ve || < +o0, (4.2)
e>0
/ vidr >, (4.3)
B(yavl)
sup{(T'.(ve),u) : u € H&(AE), HUHH(}(AE) <1} —=0ase—0, (4.4)
and for § > 0,
L [Jve| Loe m3\ (a2)5) = O- (4.5)

Then y. € A. and lim,_,¢ dist(y., OA.) = +00.

Proof. Tt follows from (4.3) and (4.5) that y. € (A.)l. Assume w. = v.(- + ye).
Then by (4.3), we obtain

/ widx > . (4.6)
B(0,1)
If not, we suppose
lim dist(ye, 0As) =1 < +00. (4.7
e—0
By changing variables, without loss of generality, we may assume that
Yye =0 (4.8)
and there exists z. = (a,0,...,0) € A, such that
|ae| = dist(ye, OA:) = L as e — 0. (4.9)

Up to a subsequence, we assume lim,_,g o, = a.

By y. € (A:)! and ([(.7)-(4.9), we can infer that —1 < o < +oo. Because
we| = [|ve|| and ([4.2), we can set that w, — w in H'(R?) as ¢ — 0. From (4.6),
we can obtain w # 0. And from and , if 1 > «, we obtain

w(z) =0, (4.10)
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where = (z1,x2,23). By xe = 0in A, and (4.8)), we obtain

a | Vw.Vudx+ V(Ex)wgud:v—&—b/ |Vw€|2dac/ Vw:Vudz
RS RS

R R (4.11)

= / lwe [P 2weudr + (Th(we),u), Yu € Hy(AL).
R3
By (4.4), (4.10), and (4.11), we infer that w is a weak solution of
—(a + b/ \Vw5|2dx)Aw + V(0w = [wP?w in{zecR®:z <a},
R3

Wz = = 0.

By [7, Theorem I.1], the only solution of this equation in H!(R?) is w = 0. This
contradicts with w # 0. The proof is complete. O

Lemma 4.4. Let v;. — 0p in H'(R?) ase — 0. Ifliminf. o ||vj,e — o £ (r3) > O,
then there exists m; € N,m; nonzero functions ¥; in HI(R?’),l <i<m; and my
sequences {y;-’s} C Ae, 1 <0 <my satisfy

(i) lime—o |y;8| = 400, lim._,¢ dist(y;.’@a[\e) =400, 1 <i<my, and
gl_% |y;',s - y;',s| =+to0, ifiF i/;
(il) g is a solution of
—(a+bA)Av+V(0)v = |v|P~%0, ve HY(R?), (4.12)
where
. 2 ~ 12
- A < A
A; Eh_r% . |V, .|“dz, /]RS |Voo|“de < A;
For every 1 <@ < 'mj, ¥; is a nontrivial solution of
— (a+bA;)Av + V(yj—)v = P72, ve H'(RY), (4.13)
where y; = lim,_,g Ey;vs cA;
(iii) For any 2 < q < 6,
tim [foy — B — 33 — o)l ages) = 0. (4.14)
i=1

Proof. Since ||vj.|| and Q(v; ) are bounded and v, . solves (2.4), we can prove that
7o is a solution of ([4.12). Indeed, since v;. — ¥y in H!(R?) as ¢ — 0, we assume
that for some constant A; € R,

. 2

;12(1) . |V c|°de = A;.

For any ¢ € C§°(R?), we have that (I'.(v;.),¢) — 0, i.e.,
(a + b/ |Vvj. 2da:>/ Vv; Vodr + | V(ex)vj pdx —/ |vj e
R3 R3 RS RS

B—1
+ 25(/ XE’UJQ-,E dr — 1)+ / X500 dr = o(1)
R3 R3

which implies that as € — 0,

(a+ bAj)/ VgV dr + V(0) / Do da — / |vo|P~2vod dx = 0.
RS RS RS

2
P75 e dx
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Since C§°(R3) is dense in H'(R?), we have that ¥ solves

—(a+bA)Av+V(0)v = [vP%v, ve HY(R?).
Let v . = v — U and {y; .} C R? be such that

/ (v}s)zdx: sup/ (vjl-E)de =l
Byl 1) yerRs JB(y,1)

Jse?

Since vjls — 0 as € — 0, we have |yjls| — 00 as € — 0 if liminf._,g5. > 0. Since

v solves (2.4) and ¥y solves (4.12)), we have

_ CLA’U]{E — b/ |ij7€\2d1:Avjl»,E — b(/ |V, |2de — Aj)Afzo
R3 R3

+ V(ax)v;E + (V(ex) — V(0))bo + E-xevt + ExD0 (4.15)
= |Uj,s|p72”j,€ - |770‘p72770
where
2 A=l
¢ = 2ﬂ(/3 Xev2 . d — 1)+ . (4.16)
From and -, for u € H'(A.), we have
<r;<v;, )} = / (o P20« — [30[P =250 — b [P0 Juda
R (4.17)
2 1
+b</R3 |ijs| — |Vvj ¢ )) /R3 Vu; Vudz
b(/ Vv, |2 — ) / VoV da.
R3
By [19, Lemma 8.1] and
sup{ [ (V(ex)—V(0))Toudz : u € H'(R?),[jul| <1} =0 (4.18)
R3
as € — 0. and m, we obtain
sup{ ]E) uy uEHO( c)s ||u||H1(A) <1}—>O (4.19)

as e — 0. Since 7y € Hg(R?) and @y solves (£.12), we have that lim|;|_ To(z) = 0.
By Lemma for any ¢ > 0, we have

: 1
;1_1}(1) HU]-’EHLOC(RB\(AE)J) =0. (420)

By Lions Lemma [19] and lim inf. g ||v;,c =00l Lr(r3) > 0, we have lim inf. o ¢l >0.
Then by Lemma[£.3] (£.19) and (4.20), we obtain that

1 . . 1 .
Yje € Ac, gl_r}(l) dist(y; ., OAe) = +oc. (4.21)
Let wj. =vj (- +yj.). Then

lim inf / (w}.)?dz = liminf¢! > 0. (4.22)
B(O 1) ’ e—0

e—0
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I&e‘; wj. — U as € — 0. By (2.3) and [{.19), we deduce that for any u € H(y; . +
c), as e = 0,

(a—i—b/ |ngl‘,e‘2d$)/ Vw]{EVudac—l—/ V(e(z +y;.))wj udx
= = R (4.23)

1 jp-2, 1
—/J%A w! udz = 0,
R

where yi _ + A, = {z +yj. -z € A.}. By @-21)and(@.23), we know that o, is
a solution of (4.13)) with ¢ = 1. From Lemma we obtain that there exists a
positive constant p depending only on a,mg and p such that

o] = p- (4.24)

Let v?_ = v} —01(- —yj.). Since o1 € H'(R?) is a solution of (4.13), we can

deduce that lim|;|o 01(2) = 0. Then by (4.20) and (4.21)), we obtain that, for all
6 >0,

lim ([0 [ (o 4 )5) = 0. (4.25)
Since v ¢, 99 and ; solves (2.4), (4.12)), and (4.13)) with ¢ = 1 respectively, we

have
- (J,AUJQ-’E - b/ |V’l}j’5|2dl‘A’UJ2~’€ - b(/ Vv e |? — Aj)A@O
R3 R3

- b(/ |vvj,5|2 - Aj)Aﬁl + £6X5Uj2‘,e + fEXE’Z}O + §6Xz-:’61 (426)
R3

+ V(ex)vi . + (V(ex) — V(0))To + (V(ex) — V(y;))01(- — y; )
= [0].|P?vje — |To|P 200 — |51 [P0 (- — yjl',e)~

By (2.3), (4.26) and [19, Lemma 8.1 ], for any u € Hg(Ac) with [lullgza.y < 1, we
have

(T (vio) )

= /3 (|Uj,€|p_2vj,6 - |1~}0|p—21~}0 - |1~}1( - yjl,s)'p_lﬁl(' - ygl',s) - ‘sz,e‘p_g/u]z,a) udx

- / (V(ex) —V(0)) doudx — / (V(ex) — V(yjl»))ﬂl(- — y}s)u dx
RS

R3

+ b(/ﬂ§3(|vv?’€|2 _ |ij)€|2) /R3 va.)EVudx

- b(/ ‘V’Uj,5|2 — AJ>/ VﬂOVudx
R3 R3

— b(/ |V, | — Aj) / V(- — yj ) Vudz + o(1)
R3 R3
(4.27)
as € — 0. Since lim. o eyj . = y;, we obtain

sup { /3(‘/(8(1' + yjla)) — V(y}))f}lud:ﬂ cu € HYR?), |Jul| < 1} —0
R.
as € — 0. It follows that

sup { /RE;(V(E;U)) - V(yjl))f)l( - yjlg)u dr:u€ H'(R®),|jul| <1} -0 (4.28)
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as e — 0. By (4.18), ([£.27), ([4.28), and [, [Vv,.|?dz — A;, we have

sup {<rg(v§.75),u> cu € HY(AL), Jull gaa, < 1} —0ase— 0. (4.29)

Let {y7.} C R? be such that

/ (U?E)le‘ = sup / (vfs)zdx =2
B(y2.1) yeR3 JB(y,1) 7

By (4.25),(4.29) and Lemma we have that y2 _ € A.,dist(y;_,0A.) — 400 as

e — 0, lime_9 |y]2-,8| = +00, limg_,q |yj2E — y]15| = +o0 if liminf. g2 > 0.
Iterating the above argument we can know that the iteration procedure has to

stop in finite number of steps, since ||v; || < nw, ||0:]] > p for all 1 <4 < m;, and

195,17 = oy 2 1P = -1l + o(1)
= (4.30)
= llojell® =D I13al® +o(1), ase—o0.
n=1
Hence, we obtain m; € N such that U;:L;H =00 — U, (- — y; ) satisfies
sup / (v;ngﬂ)zdx =0 ase—0. (4.31)
yeR3 JB(y,1) 7

It follows from the Lions lemma and (4.31)) that for any 2 < ¢ < 2* =6,

/ |vﬁj+1\qdaj =0 ase—0.
R3

Hence, we obtain m; nonzero functions ; in H*(R?),1 < i < m; and m; sequences
{y! .} € Ac,1 <@ < my such that the results (i), (ii), and (iii) hold. The proof is
complete. |

Next, for each ¢ > 0 and 1 < 7 < N, we assume that y?ys = 0. Let ¢, > 0 be
such that

lim &, = 0.
n—oo

Up to a subsequence, we assume that lim,, Eny;:ﬁn exists for every i. We may
write the set of these limiting points by

{at 2, = {nll}n;o enlfie, 10 <i<m;} CA, (4.32)

for some 1 < 55 < m;. Set

10

) iomin.{\x:—xjd:1§S<SI§5j}7 if 57> 2 (4.33)
+oo, lf Sj =1.

Lemma 4.5. If 0 < & < 0., then there exist two positive constants C and c
independent of n such that, for every 0 <i < mj;, when n is large enough,

IVvje, ()] + V)6, ()] < Cexp(—ce;l), forze (“)B(yj-’sn, set).

2
deduce that for every 0 < i,i" < m;,

Proof. Define A}, = B(y ., 35ent)\ By .., 16e,1). From 0 < § < 0., we can

dist(y;‘-:sn,Afi) — 00 asmn — oo. (4.34)
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From Lemma [4.4] (4.34)), and

lim |9 (- — b )
R—o0 Ra\B(U;,sn’R) ' Ien

Pde =0, 0<i<m,, (4.35)

we obtain that
lim [ |vj.,[Pdz =0 for 0 <i<m,;. (4.36)

R—o0 Al
Then there exists n; € N such that for n > nq,
-2
||Uj,6n||1]:oo(A3L) <a/2. (4.37)
For m € N, let

P S P
R, = B(yj’sn7 §5an —m)\ B(y;., 55571 +m).
Let (,, be a cut-off function satisfying that 0 < &,,(t) < 1 for all t € R,

Cnlt) = 0, iftﬁééegl—km—lortz%5651_m+17
1, if %55;1+m§t§%5€;1_m’

and [/, (t)] < 4 for all t. For z € R?, let ¢, (2) = (|2 — ¥} ., |). Multiplying both
sides of (2.4) by ¢2,v; ., and integrating on R3, by (4.37) we have that

(a + b/ Ve, |2d33> / |Vvje, |2’(/J3,L dxr + / V(em)visnwfn dx
R3 R

Rpy—1
L e, /
R

> min{a + b

m—1

Xsnvjz,snw%z dx — / V... P2, d (4.38)
m—1 Rom—1

A m

T [ (Ve e,

2dJU) / |Vvjie.,
Rpm—1

and

(a + b/}R3 [Vvje,

22 dx + / V(ex)v?  vn, dx

Ry—1
2 2 . P,/2
s / Xen o U2, di / (0.0 P02, d (4.39)
Rpy—1 Rp—1
<Sarbd) [ (Vo Pl
Rim—1\Rm

where
B—1
£, = 25(/ Xen 2o dx—l) ,
- n N

2dy = Aj, then there exists ny € N,

here we have used the fact, lim,, fRS |ij,5n
such that [z, [Vvjc, |2dx > % when n > ns. By above inequalities, letting
~ min{a + bA,;/2,mo/2}

we have

/ (|ij,5n|2 + U?’En) dx < C/R \R (|ij’5n|2 + vian) dx. (4.40)
m m—1

Let am, = [ (IVvje,|?+v3 ., ) de, we obtain that ap, < C(am—1—am) which gives
am < OBay,—1 with 8 = C/(1 4 C) < 1. Therefore a,, < apf™. By Lemma 4.1 we
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obtain ag < n3. Hence, for sufficiently large n, a,, < n3e™". Denote [z] be the
integer part of z. Choosing m = [§¢71/2] —1 and noting that [§e71/2] -1 < de~1/4
when n is large enough, we obtain

/ (Vogen P 402, ) do < ap < 0 exp(([51 /2] — 1)ind)
D, (4.41)

1
< n%exp( 1 e, tnd),

where

D, =Byl 0en" + 1)\ B(y,., .0, —1).
By the standard regularity of elliptic equations, we can obtain the result of this
lemma. The proof is complete. O

Lemma 4.6. For each 0 <1¢ < mj, lim._,o dist(z—:yiw A)=0.

Proof. If not, we assume that there exist 1 < i9 < m; and €, > 0 such that
lim,,_,~ €, = 0 and 4

lim dist(e,y}%, ,A4) > 0.

n—00 =n

Without loss of generality, we assume that for every 4, lim._, 5ny§75n exists. By the
condition of (A2), we deduce that there exists & > 0 such that, for every y € A%,

inf VV(y) - Vdist(z,0A) > 0. 4.42
il VY)Y dist(z,00) (1.42
Since y§° = limy, 00 5ny;?5n ¢ A, we infer that there exists ¢” > 0 such that, for
sufficiently large n,

inf VV(enz)  VV(enyl.,) >

z€B(YL. ,8"ent)

Jien’

IVV(yi0)? > 0. (4.43)

N —

Let 0 < §p < min{d’,d8”,9,}. To abbreviate notation, let w, = v,., and B =
B(y;»?en,éoegl). Because 0 < §p < ¥, and Lemma there exist constants ¢, C' > 0
independent of n such that

|V, (x)] + |wn(2)] < Cexp(—ce,t), € B, (4.44)

for sufficiently large n. From Lemma [} we infer that there exists C' > 0 indepen-
dent of n such that
0<E, <C Vn. (4.45)
We denote #,, = VV(any;-?En). Since w,, solves and the coefficients of are
all C! functions, we infer that w,, is a C? function. Multiplying both sides of
by t, - Vw,, and integrating in B, we obtain the local Pohozaev type identity
1

5 [ Cafi (VV)(ent) + 60V, o) i
B

1 -
= (a+b/ |an|2dx)/ —|Vw,|*t, - v
R3 oB 2

_ (a+b/ |an|2dx)/~(an-y)(an.Fn)ds
R3 OB
1 o
—7/~ o P (s - ) ds,
o]

P JoB

where v denotes the unit outward normal to the boundary of B.

(4.46)
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From (4.43) and w(- + y;os_l) — 9, # 0 in H'(R?), we obtain that
n

en | (tn - (VV)(enz))w? do

(4.47)

I o

S 2P [ ke, )de > e
B(0,,60en )

where )
_ 0|2 ~2
C = Z|VV(yj°)| /R3 v; > 0.
By (£.42), we obtain that, for any = € B \ A,
tn - Vxe, (z) > 0. (4.48)

Furthermore, by (4.44) and (4.45)), there exist two positive constants C, ¢ indepen-
dent of n such that, for sufficiently large n,

1 =
(a + b/ |an|2dx> / ~|Vw,|*t, - v
R3 oB 2

- <a+b/ |an|2dz>/ (Vw, - v)(Vw,, - t,) ds
R3 oB

(4.49)
1 =
— 7/ |wp|P(tn - v)ds
P JoB
< Cexp(—cs,h).
This contradicts (4.46)). The proof is complete. O

Lemma 4.7. For any § > 0, there exist two positive constants C = C(d,N) and
¢ = ¢(8, N)O independent of e such that for every 1 < j < N,

|vje(x)] < Cexp(—cdist(z, (AE)‘S)), x € R3.

Proof. By (4.14), (4.35)), and Lemma[4.6] we infer that there is Ry > 0 independent
of € such that, for sufficiently small ¢ > 0,

[vj.e(2)[P~2 < mg/2if dist(z, (A:)°) > Ro. (4.50)
To prove the result, we only need to show that
|vje(x)] < Cexp(—cdist(z, (A.)%)), if dist(x, (A.)°) > Ry. (4.51)

For m € N, let B,, = {z € R3 : dist(z, (A.)® > Ry — m + 1}. Let p,, be a cut-off
function satisfying 0 < p,,(t) < 1, |pl,(t)] < 4 for all t € R and

o [0 S Rotmo,
Pl =01, it t < Ry +m.

For 2 € R?, set ¢, () = p(dist(z, A9)). Multiplying both sides of ([2-4) by ¢2,v; -
and integrating on R3, we have

(ato / (Vo de) / IVj. 262, da + / V(ea)v? 42, dz
R3 B

m m

te / Xet B2, i — / 0 2762, di (4.52)
B By,
< 8(a+bA;) / (Vs + 02.) de,
B \Bm+1
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and by (4.50)), we obtain
(a0 / Vo de) / IVv; o[22, da + / V(ew)v? 42, do
R3

Bt B4
+ & / X&U]2'75¢3n dx — / |'Uj,8|p'(/}1%1 du (4.53)
Bt Bmt1
>m1n{a+b ' }/ (Vv +v]€)
7n,+1

where &, is defined by (4.15)). From the above two inequalities, we have
(aer/ |ij7€|2d:ﬂ> / |ij7€|2¢>fn de < C (|V11j75|2 +vj2'78) dz, (4.54)
Rf}

Bm Bm\Bm+t1
where C' = 8/ min{a + bA;/2,mo/2}. Then similar to the proof of Lemma we
can obtain (4.51)). The proof is complete.

Lemma 4.8. There exist ey > 0 such that if 0 < € < ey, then for every 1 < j <
N, v is a solution of (2.4).

Proof. Since A is a compact subset of A, dist(A4,0A) > 0. By choosing 0 < § <
dist(A4, OA), from Lemma [4.7] we obtain that, for every 1 < j < N,

. 2
glg%) . Xevj dz = 0. (4.55)

It follows from that Q.(v;.) = 0if € > 0 is small enough. Hence there exists ex > 0
such that if 0 < € < ey, then for every 1 < j < N, v, . is a solution of (2.4]). The

proof is complete. O
Proof of Theorem[I1.1 By Proposition 3.4 and Lemmas [£.7] and [£.8] we can obtain
the results for Theorem [l O

5. APPENDIX

In this section, we give the proof of Proposition Let G is an operator on
HY(R3). For u € H'(R?), we define w = G(u) by

B-1

f(aer/ \Vu|2dx>Aw+V(€:c)w+25(/ Xsuzdzfl) xew = [uP~2u, (5.1)
R3 R3 +
where w € H'(R3). We can check that G is odd on H*(R3?).

Lemma 5.1. G is well defined and continuous on H'(R3).

Proof. Since

&(u) = 26(/}1@ xeu?dr — 1)6_1 (5.2)

+
is non-negative, G is well defined and continuous on H!(R?). If u,, — u in H(R3),
we can obtain that

min {a + b/ |Vul?dz, ao }||A(u,) — A(u)|)?
R3
< / ||un|p_2un — |u|p_2u| |A(uy,) — A(u)|dx

+ € (un) |/ XelA(uy) — A(w)||A(u)|d.
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Since |£(un) — &(u)| — 0 is obvious, by Sobolev embedding, we can get the conclu-
sion. The proof is complete. ([

Lemma 5.2. For any u € H*(R3),

(T (w), u — Aw)) = (a n b/RS |Vu|2d:c) /]R IV (u — Auw))2dz

(5.3)
+ / V(ex)(u — A(u))?dz 4 &(u) / Xe(u — A(u))?dz.
R3 R3
and for any u € HY(R?), there exists a positive constant C such that
ITL(w)]| < JJu— A(u)]] (max {a+ b/ |Vu|2de, 1} + C’Hu||2672), (5.4)
R3

Proof. By a direct computation, we can get (5.3). In the following, we only need
to show (5.4)). For any ¢ € H'(R?),

(T (u),9) = (a—l—b/Rg |Vu|2d:c> /N VuVip dw+/R3 V(ex)up dx

(5.5)
o) [ xeuvdo— [ juptuvds
R3 R3
Multiplying (b.1) by %, and then then integrating on both sides, we obtain
(a +b |Vu|2dx) / VwV dr + / V(ex)wy dx + &(u) / Xewtp dz
R3 R3 R3 R3 (5 6)

:/ |u|P~2up da.
R3
By (5.5) and (5.6), we have

(T (u),) = (a—i—b/RS |Vu|2dx) /}R3 V(u—w)Vyd —|—/ Vex)(u —w)ypdx

RS
e [ xlu—wvds.
Then
(T (u),¥)| < max {a + b/]RS |Vuldz, 1} lu — A(w)]||[¥]|
+ Ol =2 |lu — A@w)||[[¥]
that is for any u € H'(R3), we obtain that
T () < flu— )| (ma {a + b/RB Vul?de, 1} + Cflul*).

The proof is complete. (Il
Lemma 5.3. There exists o9 > 0 such that for o € (0,00),

GO(P?)) c P?, G(O(P])) C PY.

Proof. We only proof G(9(P?)) C P°. For u € HY(R?), let w = G(u),C; :=
(min{a + b 5, |Vul?dz,me}) . We obtain

dist g (w, P-)[[w ]| < Cyf|w™|?
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< {(a+b/ |Vu|2d:£)/ |Vw|2dx—|—/ V(sm)de:c}
R3 R3 R3
= Ol{ (a +0b |Vu\2dx> / wwdr + / V(ex)wardm}
R3 R3 R3

= C’l/ Ju|P~2uw™ dx — C’lf(u)/ xeww T de

R3 R3
<G [l runt ds

R3

< Cl/ lulP~2uTwt dx
R3

< Crllut (B Jw ™I,
= C(dist r» (u, P,))p_1||w+||p
< C1C(dist g1 (u, P_))P~ 1 |lwT]|.

Then we can infer that distg:(w, P-) < CoP~!. For ¢ > 0 small enough, we can
get the conclusion. The proof is complete. (Il

We need to have a locally Lipschitz perturbation of G, here G may be only
continuous. We Ey = H(R3) \ K, where K is the set of fixed points of G, that is,
the set of critical points of I'..

Lemma 5.4. There exists a locally Lipschitz continuous operator B : Eg — H*(R3)
such that

(1) B(O(P7)) C PY and B(O(P?)) C P2 for o € (0,00);

(2) 5llu— Bl < |lu— G| < 2|lu— B(u)|| for u € Eo;

(3) (Te(u),u—B(w)) = zllu—Gu)|? for u € Eo;

(4) B is odd.

Since the proof of the above lemma is similar to the proofs of [I, Lemma 4.1]
and [2, Lemma 7], we omit it here.

Note that I'. satisfies (P.S). condition for ¢ < L if 0 < £ < €, by using the map
B and similar argument of [14, Lemma 3.5], we can obtain the following lemma.

Lemma 5.5. Assume that 0 < € < €1, ¢ < L, and N is a symmetric closed
neighborhood of K.. Then there exist a positive constant vy such that for 0 < 1 <
' < 19, there exists a continuous map ¢ : [0,1] x H*(R?) — HY(R3) satisfying
(0,u) = u for all u € H'(R3);
(t,u) =u fort € [0,1], Te(u) & [c— e+ ];
(t,—u) = —C(t,u) for allt € [0,1] and u € H (R3);
(L, (Te)t) (Do)

(t,0(P7)) C P2, ((t,0(P%)) C P°, ((t,Pg) C P{, ((t,P?) C P’, t €
[0,1].
Proof of Proposition[3.3 Set D is a closed symmetric neighborhood of K.\ W.

Notice that N = D U P]‘f U P is a closed symmetric neighborhood of K.. By
Lemma [5.5] we can choose n = ((1,-) in Definition O

(1) ¢
(2) ¢
(3) ¢
(4) ¢
() ¢
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