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FAST HOMOCLINIC SOLUTIONS FOR DAMPED VIBRATION

SYSTEMS WITH SUBQUADRATIC AND ASYMPTOTICALLY

QUADRATIC POTENTIALS
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Communicated by Claudianor C. Alves

Abstract. In this article, we study the nonperiodic damped vibration prob-

lem

ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0,

where L(t) is uniformly positive definite for all t ∈ R, and W (t, x) is either
subquadratic or asymptotically quadratic in x as |x| → ∞. Based on the min-

imax method in critical point theory, we prove the existence and multiplicity

of fast homoclinic solutions for the above problem.

1. Introduction and statement of main results

This article concerns the existence and multiplicity of homoclinic orbits for the
damped vibration problem

ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, (1.1)

where t ∈ R, u = (u1, u2, . . . , uN ) ∈ RN , q ∈ C(R,R), L ∈ C(R,RN2

) is a symmet-
ric matrix for all t ∈ R, W ∈ C1(R × RN ,R) and ∇W (t, x) denotes the gradient
of W with respect to x. As usual, we say that a solution u of problem (1.1) is
homoclinic to 0 if u(t) → 0 as |t| → ∞. Furthermore, if u 6= 0, then u is called a
nontrivial homoclinic solution.

Homoclinic orbits play an important role in the study of qualitative behavior of
dynamical systems. They may be “organizing centers” for the dynamics in their
neighborhood. Under certain conditions, their existence may imply the existence of
chaos nearby or the bifurcation behavior of periodic orbits. Such orbits have been
studied since the time of Poincaré, but mainly by perturbation techniques. During
the last twenty more years, critical point theory and variational methods have been
widely used in homoclinic motions.

If q(t) ≡ 0, problem (1.1) reduces to the second order Hamiltonian system

ü(t)− L(t)u(t) +∇W (t, u(t)) = 0, t ∈ R. (1.2)

There are many papers devoted to the study on the existence and multiplicity of
homoclinic orbits of system (1.2) under various hypotheses on the nonlinearity, see,
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for example, [3, 6, 7, 8, 10, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23] and the references
therein. If q(t) 6= 0, only a few results are known for problem (1.1). Damped
vibration problems with constant coefficient of the form

ü(t) +Au̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, ∀t ∈ R, (1.3)

have been studied by Zhang and Ruan [24], where the authors prove the existence
of one nontrivial homoclinic orbit under the following conditions:

(A1) L ∈ C(R,RN2

) is a symmetric and positive definite matrix for all t ∈ R and
there exists a function α ∈ C(R, (0,∞)) such that α(t)→ +∞ as |t| → ∞
and

(L(t)x, x) ≥ α(t)|x|2, ∀(t, x) ∈ R× RN ;

(A2) W (t, x) = a(t)|x|γ , where 1 < γ < 2 is a constant and a ∈ C(R,R) ∩
L

2
2−γ (R,R) such that a(t0) > 0 for some t0 ∈ R.

Zhu [26] assume that L ∈ C(R,RN×N ) is T -periodic with T > 0, W (t, x) ≥ 0
and there exist a symmetry T -periodic matrix valued function M ∈ C(R,RN×N )
such that |∇W (t, x) −M(t)x|/|x| → 0 as |x| → ∞ and prove the existence of one
homoclinic orbit of problem (1.3). The proof is based on a version of mountain
pass theorem and the concentration-compactness principle. See also [20, 24] for the
related results. Inspired by [1], Zhang and Yuan [25] introduce the concept of fast
homoclinic orbits and investigate the existence of fast homoclinic orbits of a special
case of problem (1.1),

ü(t) + cu̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, t ∈ R, (1.4)

where c > 0 is a constant. Precisely, they make the following assumptions:

(A1’) L ∈ C(R,RN2

) is a positive difinite symmetric matrix for all t ∈ R and
there is K1 > −c2/4 such that

(L(t)x, x) ≥ K1|x|2, ∀(t, x) ∈ R× RN ;

[(A2’) W (t, x) = a(t)|x|γ , where 1 < γ < 2 is a constant and a ∈ L2/2−γ(ect) such
that a(t0) > 0 for some t0 ∈ R.

Theorem 1.1 (see [25]). Assume that L(t) satisfies (A1) or (A1’) and W (t, x)
satisfies (A2’). Then problem (1.4) has at least one nontrivial fast homoclinic so-
lution.

This result has been extended in [4, 5] to more general situations. Particularly,
Chen and Tang [5] constructed the existence and multiplicity of fast homoclinic
orbits of problem (1.1) under the following assumptions:

(A3) L ∈ C(R,RN2

) is a positive definite symmetric matrix of all t ∈ R, and
there exists β > 0 such that

(L(t)x, x) ≥ β|x|2, ∀(t, x) ∈ R× RN .

(A4) There exist two constants 1 < γ1 < γ2 < 2 and two functions a1 ∈
L

2
2−γ1 (eQ(t)), a2 ∈ L

2
2−γ2 (eQ(t)) such that

|W (t, x)| ≤ a1(t)|x|γ1 , ∀(t, x) ∈ R× RN , |x| ≤ 1,

|W (t, x)| ≤ a2(t)|x|γ2 , ∀(t, x) ∈ R× RN , |x| ≥ 1.
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(A5) There are two functions b ∈ L
2

2−γ1 (eQ(t)) and ϕ ∈ C(R+,R+) such that

|∇W (t, x)| ≤ b(t)ϕ(|x|), ∀(t, x) ∈ R× RN ,

where ϕ(s) = O(sγ1−1) as s→ 0+.
(A6) There is an open set J ⊂ R and two constants γ3 ∈ (1, 2) and η > 0 such

that

W (t, x) ≥ η|x|γ3 , ∀(t, x) ∈ J × RN , |x| ≤ 1.

Theorem 1.2 (see [5, Theorems 1.3 and 1.4]). Assume that conditions (A3)–(A6)

hold and Q(t) :=
∫ t

0
q(s)ds satisfies

Q(t)→ +∞ as |t| → ∞. (1.5)

Then (1.1) has at least one nontrivial fast homoclinic solution. If moreover W (t, x)
is even in x, then (1.1) has infinitely many nontrivial fast homoclinic solutions.

Motivated by [1, 4, 5, 25], in this article, we try to obtain new existence and
multiplicity results of system (1.1) by imposing general subquadratic conditions on
the potential W . Furthermore, we consider the situation where W is asymptotically
quadratic as |x| → ∞, and also establish the existence and multiplicity.

Before stating our main results, we describe some properties of the weighted
Sobolev space E on which the variational functional associated to problem (1.1)
will be defined. Let

E :=
{
u ∈ H1(R,RN ) :

∫
R
eQ(t)[|u̇(t)|2 + (L(t)u(t), u(t))]dt < +∞

}
,

where Q(t) is given in (1.5). Then E is a Hilbert space with the inner product and
norm

(u, v) =

∫
R
eQ(t)[(u̇(t), v̇(t)) + (L(t)u(t), v(t))]dt, ‖u‖ = (u, u)1/2.

Define

Lp(eQ(t)) := {u : R→ RN is Lebesgue measurable, ‖u‖p < +∞},

where

‖u‖p :=
(∫

R
eQ(t)|u(t)|pdt

)1/p

, 2 ≤ p < +∞.

Clearly, under (A3), the embedding of E ↪→ L2(eQ(t)) is continuous, and hence
there exists τ > 0 such that

‖u‖2 ≤ τ‖u‖, ∀u ∈ E. (1.6)

Definition 1.3. If (1.5) holds, then a solution u (∈ E) of problem (1.1) is called
a fast homoclinic solution.

We use the following hypotheses:

(A7) There exist constants σ, γ ∈ (1, 2) and functions m ∈ L
2

2−σ (eQ(t)), h ∈
L

2
2−γ (eQ(t)) such that

|∇W (t, x)| ≤ m(t)|x|σ−1 + h(t)|x|γ−1, ∀(t, x) ∈ R× RN .
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(A8) There exist t0 ∈ R, two sequences {δn}, {Mn} and constants a, δ, d > 0
such that δn > 0, Mn > 0 and

lim
n→∞

δn = 0, lim
n→∞

Mn = +∞,

|x|−2W (t, x) ≥Mn for |t− t0| ≤ d and |x| = δn,

|x|−2W (t, x) ≥ −a for |t− t0| ≤ d and |x| ≤ δ.

Theorem 1.4 (Subquadratic case). Assume that (A3), (A7), (A8) hold and q(t)
satisfies (1.5). Then (1.1) possesses at least one nontrivial fast homoclinic solution.
If moreover W (t, x) is even in x, then (1.1) possesses infinitely many nontrivial fast
homoclinic solutions.

Remark 1.5. Comparing Theorem 1.4 with Theorem 1.2, our condition (A8) is

much weaker than (A6), since (A6) implies lim|x|→0
W (t,x)
|x|2 = +∞ uniformly for

t ∈ J .

Next we study the asymptotically quadratic problem. Let A := −d2/dt2 −
q(t)d/dt+ L(t),

W̃ (t, x) =
1

2
(∇W (t, x), x)−W (t, x), ∀(t, x) ∈ R× RN ,

and denote the spectrum of A in L2(R,RN ) by σ(A). We assume the following:

(A9) W (t, x) ≥ 0 for all (t, x) and ∇W (t, x) = o(|x|) as x→ 0 uniformly in t.
(A10) ∇W (t, x) = L∞(t)x+∇R(t, x), where L∞(t) is a bounded continuousN×N

matrix-valued function and ∇R(t, x) = o(|x|) uniformly in t as |x| → ∞.
(A11) l0 := inft∈R,|x|=1(L∞(t)x, x) > inf σ(A).
(A12) γ < β, where γ := sup|t|≥t0,x 6=0 |∇W (t, x)|/|x| for some t0 > 0.

(A13) Either (i) 0 6∈ σ(A−L∞), or (ii) W̃ (t, x) ≥ 0 for all (t, x) and W̃ (t, x) ≥ δ0
for some δ0 > 0 and all (t, x) with |x| sufficiently large.

From conditions (A9)–(A13) we infer that for every ε > 0, there exists Cε > 0
such that

|∇W (t, x)| ≤ ε|x|+ Cε|x|p−1, (1.7)

|W (t, x)| ≤ ε|x|2 + Cε|x|p (1.8)

for all (t, x) ∈ R × RN , where p ≥ 2. Let m denote the number of eigenfunctions
with corresponding eigenvalues of A lying in (0, l0). We have the following theorem.

Theorem 1.6 (Asymptotically quadratic case). Assume (A3), (A9)–(A13) hold
and q(t) satisfies (1.5). Then (1.1) possesses at least one nontrivial fast homoclinic
solution. Moreover, if W (t, x) is even in x, then (1.1) possesses at least m pairs of
nontrivial fast homoclinic solutions.

The rest of this article is organized as follows. In Section 2 we introduce some
preliminary results and prove Theorem 1.4. Section 3 is concerned with the asymp-
totically quadratic case and the proof of Theorem 1.6 is complete. Finally, we give
two typical examples to illustrate our results.

Throughout this article, we denote by c and ci (i = 1, 2, . . . ) various positive
constants, which may vary from line to line. “→” (resp. “⇀”) denotes the strong
(resp. weak) convergence.
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2. Proof of Theorem 1.4

Lemma 2.1. If u ∈ E, then

‖u‖∞ ≤
1√

2e0

√
β
‖u‖ =

1√
2e0

√
β

(∫
R
eQ(t)[|u̇(t)|2 + (L(t)u(t), u(t))]dt

)1/2

,

where ‖u‖∞ = ess, supt∈R |u(t)| and e0 = emin{Q(t):t∈R}.

Proof. Fix t ∈ R. For each k ∈ N, we have

|u(t)|2 =

∫ t

k

2(u̇(s), u(s))ds+ |u(k)|2, |u(t)|2 =

∫ t

−k
2(u̇(s), u(s))ds+ |u(−k)|2.

Thus

2|u(t)|2 ≤
∫ t

k

2(u̇(s), u(s))ds+

∫ t

−k
2(u̇(s), u(s))ds+ |u(k)|2 + |u(−k)|2

≤
∫ k

−k
2|u̇(s)||u(s)|ds+ |u(k)|2 + |u(−k)|2.

Letting k →∞, we obtain

|u(t)|2 ≤
∫
R
|u̇(s)||u(s)|ds

≤ 1

2
√
β

∫
R

(
|u̇(s)|2 + β|u(s)|2

)
ds

≤ 1

2
√
β

∫
R

[
|u̇(s)|2 + (L(s)u(s), u(s))

]
ds

≤ 1

2e0

√
β

∫
R
eQ(t)

[
|u̇(s)|2 + (L(s)u(s), u(s))

]
ds

for every t ∈ R, where e0 = emin{Q(t):t∈R}. This completes the proof. �

We remark that the above lemma was stated in [5] without proof. We include
its proof here for the readers’ convenience.

Lemma 2.2. Suppose that (A7) is satisfied and un ⇀ u in E. Then

∇W (t, un)→ ∇W (t, u) in L2(eQ(t)). (2.1)

Proof. By the properties of the functions m and h, we have that for every ε > 0,
there exists Tε > 0 such that

(∫
|t|≥Tε

eQ(t)|m(t)|
2

2−σ dt
) 2−σ

2

<
√
ε,

(∫
|t|≥Tε

eQ(t)|h(t)|
2

2−γ dt
) 2−γ

2

<
√
ε.
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Hence, using (A7), the boundedness of (un) and Hölder’s inequality, we obtain∫
|t|≥Tε

eQ(t)|∇W (t, un)−∇W (t, u)|2dt

≤
∫
|t|≥Tε

eQ(t)[m(t)(|un|σ−1 + |u|σ−1) + h(t)(|un|γ−1 + |u|γ−1)]2dt

≤ 4

∫
|t|≥Tε

eQ(t)m2(t)(|un|2σ−2 + |u|2σ−2)dt

+ 4

∫
|t|≥Tε

eQ(t)h2(t)(|un|2γ−2 + |u|2γ−2)dt

≤ 4

(∫
|t|≥Tε

eQ(t)|m(t)|
2

2−σ dt

)2−σ

(‖un‖2σ−2
2 + ‖u‖2σ−2

2 )

+ 4

(∫
|t|≥Tε

eQ(t)|h(t)|
2

2−γ dt

)2−γ

(‖un‖2γ−2
2 + ‖u‖2γ−2

2 )

≤ cε.

(2.2)

It follows from the boundedness of (un), Lemma 2.1 and the dominated convergence
theorem that∫

|t|≤Tε
eQ(t)|∇W (t, un)−∇W (t, u)|2dt→ 0 as n→∞,

which, together with (2.2), shows that (2.1) holds. �

Consider the functional ϕ defined on (E, ‖ · ‖) by

ϕ(u) =
1

2
‖u‖2 −

∫
R
eQ(t)W (t, u(t))dt.

It follows from (A7), (1.6) and the Hölder inequality that∫
R
eQ(t)W (t, u)dt ≤

∫
R
eQ(t)(m(t)|u|σ + h(t)|u|γ)dt

≤
(∫

R
eQ(t)|m(t)|

2
2−σ dt

) 2−σ
2
(∫

R
eQ(t)|u(t)|2dt

)σ/2
+
(∫

R
eQ(t)|h(t)|

2
2−γ dt

) 2−γ
2
(∫

R
eQ(t)|u(t)|2dt

)γ/2
≤ τσ‖m‖ 2

2−σ
‖u‖σ + τγ‖h‖ 2

2−γ
‖u‖γ .

(2.3)

Hence ϕ is well defined. In addition, we have the following lemma.

Lemma 2.3. Let (A3) and (A7) be satisfied. Then ϕ ∈ C1(E,R) and

〈ϕ′(u), v〉 =

∫
R
eQ(t)[(u̇(t), v̇(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))]dt

for all u, v ∈ E. The critical point u of ϕ is a classical solution of problem (1.1)
with u(±∞) = 0.

Proof. In view of Lemma 2.2 and (1.6), the proof is standard and we refer to
[14]. �

We shall use the following two propositions to prove Theorem 1.4.
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Proposition 2.4 (see [13]). Let E be a real Banach space and Φ ∈ C1(E,R) satisfy
the (PS) condition, i.e., (un) ⊂ E has a convergent subsequence whenever {Φ(un)}
is bounded and Φ′(un)→ 0 as n→∞. If Φ is bounded from below, then c∗ = infE Φ
is a critical value of Φ.

To prove the existence of infinitely many homoclinic orbits, we require the new
version of symmetric mountain pass lemma by Kajikiya (see [11]). Let E be a
Banach space and

Γ := {A ⊂ E\{0} : A is closed and symmetric with respect to the origin}.
We define Γk := {A ∈ Γ : γ(A) ≥ k}, where

γ(A) := inf
{
m ∈ N : ∃h ∈ C(A,Rm\{0}),−h(x) = h(−x)

}
.

If there is no such mapping h for any m ∈ N, we set γ(A) = +∞.

Proposition 2.5 (Symmetric mountain pass lemma). Let E be an infinite dimen-
sional Banach space and Φ ∈ C1(E,R) be even, Φ(0) = 0 and satisfies the following
conditions:

(i) Φ is bounded from below and satisfies the Palais-Smale condition (PS).
(ii) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak Φ(u) < 0.

Then either one of the following two conditions holds:

(1) There exists a sequence {uk} such that Φ′(uk) = 0, Φ(uk) < 0 and {uk}
converges to zero.

(2) There exist two sequence {uk} and {vk} such that Φ′(uk) = 0, Φ(uk) = 0,
uk 6= 0, limk→∞ uk = 0, Φ′(vk) = 0, Φ(vk) < 0, limk→∞ Φ(vk) = 0 and
{vk} converges to a non-zero limit.

Remark 2.6. From Proposition 2.5, we deduce a sequence {uk} of critical points
such that I(uk) ≤ 0, uk 6= 0 and limk→∞ uk = 0.

Lemma 2.7. Let (A3) and (A7) hold. Then ϕ is bounded from below and satisfies
the (PS) condition.

Proof. By (2.3), we obtain

ϕ(u) ≥ 1

2
‖u‖2 − (τσ‖m‖ 2

2−σ
‖u‖σ + τγ‖h‖ 2

2−γ
‖u‖γ)

for all u ∈ E. Since σ, γ ∈ (1, 2), it follows that

ϕ(u)→ +∞ as ‖u‖ → ∞. (2.4)

Hence ϕ is bounded from below.
Let (un) ⊂ E be a (PS)-sequence of ϕ. From (2.4), we know that (un) is bounded,

and then, passing to a subsequence, un ⇀ u in E for some u ∈ E. By Lemma 2.2,
we have

‖un − u‖2

= 〈ϕ′(un)− ϕ′(u), un − u〉+

∫
R
eQ(t)(∇W (t, un)−∇W (t, u), un − u)dt

≤ ‖ϕ′(un)‖E∗‖un − u‖ − 〈ϕ′(u), un − u〉

+
(∫

R
eQ(t)|∇W (t, un)−∇W (t, u)|2dt

)1/2(∫
R
eQ(t)|un − u|2dt

)1/2

→ 0

as n→∞. Therefore the (PS) condition holds. �
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Proof of Theorem 1.4. (Existence) Lemmas 2.3 and 2.7 enable us to apply Propo-
sition 2.4 to ϕ to get a critical point u∗ such that ϕ(u∗) = infE ϕ. Now we show

u∗ 6= 0. Without loss of generality, we set t0 = 0. Choose u0 ∈ (W 1,2
0 (J) ∩ E)\{0}

with ‖u0‖∞ ≤ 1 and |u0(t)| = 1 for t ∈ [−d/2, d/2], where J = [−d, d]. Hence, for
ζ ∈ (0, δ) (δ is given by (A8)), we obtain

ϕ(ζu0) =
ζ2

2
‖u0‖2 −

∫
R
eQ(t)W (t, ζu0)dt

=
ζ2

2
‖u0‖2 −

∫
J

eQ(t)W (t, ζu0)dt

≤ ζ2

2
‖u0‖2 −

∫ d/2

−d/2
eQ(t)W (t, ζu0)dt+ aζ2

∫
J\[−d/2,d/2]

eQ(t)dt

by (A8). Substituting ζ = δn and noting that |δnu0(t)| = δn for t ∈ [−d/2, d/2], we
obtain

ϕ(δnu0) ≤ δ2
n

(‖u0‖2

2
+ a

∫
J\[−d/2,d/2]

eQ(t)dt−Mn

∫ d/2

−d/2
eQ(t)dt

)
.

Since δn → 0 and Mn → +∞, we can choose n0 > 0 large enough such that the
right side of the above inequality is negative. So

ϕ(u∗) ≤ ϕ(δn0u0) < 0,

which implies that u∗ 6= 0. Hence u∗ is a nontrivial homoclinic solution of problem
(1.1).

(Multiplicity) From Lemmas 2.3, 2.7 and the evenness of W , we know that
ϕ ∈ C1(E,R), satisfies the condition (i) of Proposition 2.5 and ϕ(−u) = ϕ(u). It
remains to verify that condition (ii) of Proposition 2.5 is satisfied. We adapt an
argument in [11].

For simplicity, we assume that t0 = 0 in (A8). For arbitrary k ∈ N, we shall
construct an Ak ∈ Γk satisfying supu∈Ak ϕ(u) < 0. Divide [−d, d] equally into k
closed subintervals and denote them by Ii with 1 ≤ i ≤ k. Setting a = 2d/k, then
the length of each Ii is a. For 1 ≤ i ≤ k, let ti be the center of Ii and Ji be the
closed interval centered at ti with length a/2. Choose a function ξ ∈ C∞0 (R,RN )
such that |ξ(t)| ≡ 1 for t ∈ [−a/4, a/4], ξ(t) ≡ 0 for t ∈ R\[−a/2, a/2] and |ξ(t)| ≤ 1
for t ∈ R. Now for each 1 ≤ i ≤ k, define ξi ∈ C∞0 (R,RN ) by

ξi(t) = ξ(t− ti), t ∈ R.

We see that

supp ξi ⊂ Ii, supp ξi ∩ supp ξj = ∅ (i 6= j), (2.5)

|ξi(t)| = 1 (t ∈ Ji), and |ξi(t)| ≤ 1 (t ∈ R). Let

Vk =
{

(s1, s2, . . . , sk) ∈ Rk : max
1≤i≤k

|si| = 1
}
, (2.6)

Wk =
{ k∑
i=1

siξi(t) : (s1, s2, . . . , sk) ∈ Vk
}
. (2.7)

Since Vk is homeomorphic to the unit sphere in Rk by an odd mapping, we obtain
γ(Vk) = k. Besides, γ(Wk) = γ(Vk) = k because the mapping (s1, s2, . . . , sk) 7→
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i=1 siξi(t) is odd and homeomorphic. Noting Wk is compact, there exists Ck > 0

such that

‖u‖ ≤ Ck, ∀u ∈Wk. (2.8)

For 0 < ζ < δ (δ is the constant given in (A8)) and u =
∑k
i=1 siξi(t) ∈ Wk, we

obtain

ϕ(ζu) =
1

2
‖ζu‖2 −

∫
R
eQ(t)W

(
t, ζ

k∑
i=1

siξi(t)
)
dt

≤ ζ2

2
C2
k −

k∑
i=1

∫
Ii

eQ(t)W (t, ζsiξi(t))dt

by (2.8) and (2.5). Noting (2.6), there exists an integer i0 ∈ [1, k] such that |si0 | = 1.
Then it follows that

k∑
i=1

∫
Ii

eQ(t)W (t, ζsiξi(t))dt

=

∫
Ji0

eQ(t)W (t, ζsi0ξi0(t))dt+

∫
Ii0\Ji0

eQ(t)W (t, ζsi0ξi0(t))dt

+
∑
i 6=i0

∫
Ii

eQ(t)W (t, ζsiξi(t))dt.

(2.9)

By (A8), one has∫
Ii0\Ji0

eQ(t)W (t, ζsi0ξi0(t))dt+
∑
i 6=i0

∫
Ii

eQ(t)W (t, ζsiξi(t))dt ≥ −aζ2

∫ d

−d
eQ(t)dt.

Combining this with (2.9), (A8) and the fact |ζsi0ξi0(t)| = ζ for t ∈ Ji0 , we have

ϕ(δnu) ≤ δ2
n

2
C2
k + aδ2

n

∫ d

−d
eQ(t)dt−

∫
Ji0

eQ(t)W (t, δnsi0ξi0(t))dt

≤ δ2
n

(C2
k

2
+ a

∫ d

−d
eQ(t)dt−Mn

∫
Ji0

eQ(t)dt
)
.

Since δn → 0 and Mn → +∞ as n → ∞, we can choose n1 > 0 large enough such
that the right side of the last inequality is negative. Take

Ak = δn1
Wk.

Then we have γ(Ak) = γ(Wk) = k and supu∈Ak ϕ(u) < 0. Consequently, by
Proposition 2.5, problem (1.1) has infinitely many nontrivial homoclinic solutions.
This completes the proof. �

3. Proof of Theorem 1.6

It follows from (A3) and (1.7) that the functional ϕ : E → R given by

ϕ(u) =
1

2
‖u‖2 −

∫
R
eQ(t)W (t, u)dt

is of class C1, and

〈ϕ′(u), v〉 =

∫
R
eQ(t)[(u̇(t), v̇(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))]dt (3.1)
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for all u, v ∈ E. The critical point u of ϕ is a classical solution of (1.1) with
u(±∞) = 0.

We shall apply the following two propositions to prove Theorem 1.6. The first
one is Rabinowitz’s mountain pass theorem which can be found in [14], and the
second is a result by Bartolo et al. [2, Theorem 2.4]. In the linking theorem it is
usually required that the functional Φ satisfies the stronger Palais-Smale condition.
Nevertheless, the Cerami condition is sufficient for the deformation lemma, and
hence for the linking theorem to hold (see [2]).

Proposition 3.1 (see [14]). Let E be a real Banach space and Φ ∈ C1(E,R) with
Φ(0) = 0. Suppose that

(i) there are constants ρ, α > 0 such that Φ|∂Bρ ≥ α;
(ii) there is an e ∈ E\Bρ such that Φ(e) < 0;
(iii) Φ satisfies the (C) condition, i.e., (un) ⊂ E has a convergent subsequence

whenever {Φ(un)} is bounded and (1 + ‖un‖)‖Φ′(un)‖ → 0 as n→∞.

Then Φ has a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

Φ(g(s)),

where Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

Proposition 3.2 (see [2]). Suppose that Φ ∈ C1(E,R) is even, Φ(0) = 0 and
there exist closed subspaces E1, E2 such that codimE1 < ∞, inf Φ(E1 ∩ Sρ) ≥ α
for some α, ρ > 0 and sup Φ(E2) < +∞. If Φ satisfies the (C)c condition for all
c ∈ [α, sup Φ(E2)], then Φ has at least dimE2−codimE1 pairs of critical points with
corresponding critical values in [α, sup Φ(E2)].

Next we give Lemmas 3.3 and 3.4 which ensure that the functional ϕ satisfies
the (C) condition.

Lemma 3.3. Assume that conditions (A9)-(A12) are satisfied. Then any bounded
(C) sequences of ϕ has a strongly convergent subsequence in E.

Proof. Let (un) ⊂ E be a bounded sequence such that {ϕ(un)} is bounded and
(1 + ‖un‖)‖ϕ′(un)‖ → 0 as n → ∞. We claim that for any ε > 0, there exists
Rε > 2t0 (the constant t0 appears in (A12)) and nε > 0 such that∫

|t|≥R
eQ(t)[|u̇n|2 + (L(t)un, un)]dt < ε for all R ≥ Rε and n ≥ nε. (3.2)

Indeed, choose ξR ∈ C∞(R, [0, 1]) such that

ξR(t) =

{
0, |t| ≤ R/2,
1, |t| ≥ R,

(3.3)

and there exists c0 independent of R such that

| d
dt
ξR(t)| ≤ c0

R
, ∀t ∈ R. (3.4)
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Since ϕ′(un) → 0 and (un) ⊂ E is bounded, we obtain, for any ε > 0, there exists
nε > 0 such that

ε

2
≥ 〈ϕ′(un), ξRun〉

=

∫
R
eQ(t)[|u̇n|2 + (L(t)un, un)]ξRdt+

∫
R
eQ(t)ξ̇R(u̇n, un)dt

−
∫
R
eQ(t)(∇W (t, un), un)ξR dt

(3.5)

for n ≥ nε. It follows from (3.3), (3.4) and (A12) that there exists Rε ≥ 2t0 such
that ∫

R
eQ(t)|ξ̇R(u̇n, un)|dt ≤ c0

R

∫
R
eQ(t)(|u̇n|2 + |un|2)dt

≤ c0
R

(‖un‖2 + ‖un‖22) ≤ c

R
≤ ε

2

(3.6)

and ∣∣ ∫
R
eQ(t)(∇W (t, un), un)ξRdt

∣∣ ≤ γ ∫
|t|≥R/2

eQ(t)|un|2ξRdt

≤ γ

β

∫
|t|≥R/2

eQ(t)(L(t)un, un)ξRdt

≤ γ

β

∫
R
eQ(t)(L(t)un, un)ξRdt

(3.7)

for R ≥ Rε. Thus, combining (3.5)-(3.7) implies

(1− γ

β
)

∫
R
eQ(t)[|u̇n|2 + (L(t)un, un)]ξRdt ≤ ε

for all R ≥ Rε and n ≥ nε. Hence (3.2) holds.
Since (un) is bounded, we may assume that, up to a subsequence, un ⇀ u in

E for some u ∈ E. To prove our lemma, it suffices to show that ‖un‖ → ‖u‖ as
n→∞. From (3.1), we obtain

o(1) = 〈ϕ′(un), un〉 = (un, un)−
∫
R
eQ(t)(∇W (t, un), un)dt,

o(1) = 〈ϕ′(un), u〉 = (un, u)−
∫
R
eQ(t)(∇W (t, un), u)dt.

So showing ‖un‖ → ‖u‖ is equivalent to proving that∫
R
eQ(t)(∇W (t, un), un − u)dt = o(1). (3.8)

By (3.2), we have∣∣ ∫
|t|≥R

eQ(t)(∇W (t, un), un − u)dt
∣∣

≤ γ
∫
|t|≥R

eQ(t)|un||un − u|dt

≤ c
∫
|t|≥R

eQ(t)|un|2dt+ c

∫
|t|≥R

eQ(t)|u|2dt

≤ c

β

∫
|t|≥R

eQ(t)(L(t)un, un)dt+ c

∫
|t|≥R

eQ(t)|u|2dt ≤ cε
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for all R ≥ Rε and n ≥ nε large enough. This, together with the compactness of
the embedding E ↪→ L2

loc(e
Q(t)), implies (3.8). This completes the proof. �

Lemma 3.4. Suppose that (A3), (A9)-(A13) are satisfied. Then ϕ satisfies the (C)
condition.

Proof. Let (un) be a Cerami sequence of ϕ. In view of Lemma 3.3, it suffices to
show that (un) is bounded. Arguing indirectly, assume that ‖un‖ → ∞. Take
wn = un/‖un‖. Then ‖wn‖ = 1 and there is w ∈ E such that

wn ⇀ w in E, wn → w in L2
loc(e

Q(t)), wn(t)→ w(t) a.e. t ∈ R, (3.9)

after passing to a subsequence. We claim that

ẅ(t) + q(t)ẇ(t)− (L(t)− L∞(t))w(t) = 0. (3.10)

In fact, for each ψ ∈ C∞0 (R,RN ), there holds

o(1) =
〈ϕ′(un), ψ〉
‖un‖

= (wn, ψ)−
∫
R
eQ(t) (∇W (t, un), ψ)

‖un‖
dt (3.11)

Noticing that |∇R(t, x)| ≤ c|x| for all (t, x), |∇R(t, un(t))|/|un(t)| → 0 if w(t) 6= 0

and ‖wn‖∞ ≤ (
√

2e0

√
β)−1 for all n, we have∣∣ ∫

R
eQ(t) (∇R(t, un), ψ)

‖un‖
dt
∣∣

≤
∫

suppψ

eQ(t) |∇R(t, un)|
|un|

|wn||ψ|dt

≤
(∫

suppψ∩{w=0}
+

∫
suppψ∩{w 6=0}

)
eQ(t) |∇R(t, un)|

|un|
|wn||ψ|dt

→ 0 as n→∞ ,

(3.12)

by the dominated convergence theorem. It follows from the second limit of (3.9)
and Hölder’s inequality that∣∣ ∫

R
eQ(t)(L∞(t)(wn − w), ψ)dt

∣∣
≤ c

∫
suppψ

eQ(t)|wn − w||ψ|dt

≤ c
(∫

suppψ

eQ(t)|wn − w|2dt
)1/2(∫

suppψ

eQ(t)|ψ|2dt
)1/2

→ 0 as n→∞.

Combining this with (3.12) and (3.11), we obtain

(w,ψ) = lim
n→∞

∫
R
eQ(t) (∇W (t, un), ψ)

‖un‖
dt

= lim
n→∞

∫
R
eQ(t)

[
(L∞(t)wn, ψ) +

(∇R(t, un), ψ)

‖un‖
]
dt

=

∫
R
eQ(t)(L∞(t)w,ψ)dt.

Therefore (3.10) holds.
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For the function ξR given by (3.3), we have

o(1) = 〈ϕ′(un), ξRun〉

=

∫
R
eQ(t)[|u̇n|2 + (L(t)un, un)]ξRdt+

∫
R
eQ(t)ξ̇R(u̇n, un)dt

−
∫
R
eQ(t)(∇W (t, un), un)ξRdt

which implies that

o(1) =

∫
R
eQ(t)[|ẇn|2 + (L(t)wn, wn)]ξRdt+

∫
R
eQ(t)ξ̇R(ẇn, wn)dt

−
∫
R
eQ(t) (∇W (t, un), wn)

‖un‖
ξRdt.

(3.13)

As in (3.2), by (A9) and (A12), for every ε > 0, there exists R̄ε ≥ 2t0 and n̄ε > 0
such that∫

|t|≥R
eQ(t)[|ẇn|2 + (L(t)wn, wn)]dt < ε for all R ≥ R̄ε and n ≥ n̄ε.

Combining this with (A3), we obtain∫
|t|≥R

eQ(t)|wn|2dt ≤
1

β

∫
|t|≥R

eQ(t)(L(t)wn, wn)dt ≤ cε

for all R ≥ R̄ε and n ≥ n̄ε. This, jointly with the second limit of (3.9), shows that

wn → w in L2(eQ(t)). (3.14)

Moreover, it follows from (A10) and the dominated convergence theorem that∣∣ ∫
R
eQ(t) (∇R(t, un), wn)

‖un‖
dt
∣∣

≤
(∫

w=0

+

∫
w 6=0

)
eQ(t) |∇R(t, un)|

|un|
|wn|2dt→ 0

as n→∞. Combining this with (3.10), (3.13) (with ξR replaced by 1), (3.14) and
the Hölder inequality, we obtain

‖wn − w‖2

= (wn, wn)− (w,w) + o(1)

=

∫
R
eQ(t) (∇W (t, un), wn)

‖un‖
dt−

∫
R
eQ(t)(L∞(t)w,w)dt+ o(1)

≤
∫
R
eQ(t)(L∞(t)wn, wn)dt−

∫
R
eQ(t)(L∞(t)w,w)dt+ o(1)

=

∫
R
eQ(t)(L∞(t)(wn − w), wn)dt+

∫
R
eQ(t)(L∞(t)w,wn − w)dt+ o(1)

≤ c (‖wn − w‖2‖wn‖2 + ‖w‖2‖wn − w‖2) + o(1)

= o(1),

i.e., wn → w in E and hence w 6= 0. This is a contradiction if (i) of (A13) holds.

Now we assume that (ii) is satisfied. Then W̃ (t, x) ≥ 0 and there exists η > 0 such
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that W̃ (t, x) ≥ δ0 whenever |x| ≥ η. Thus there exists C1 > 0 such that

C1 ≥ ϕ(un)− 1

2
〈ϕ′(un), un〉

=

∫
R
eQ(t)

(1

2
(∇W (t, un), un)−W (t, un)

)
dt

≥ e0

∫
|un|≥η

W̃ (t, un)dt

≥ e0δ0 meas{t ∈ R : |un(t)| ≥ η},
and then

meas{t ∈ R : |un(t)| ≥ η} ≤ C1

e0δ0
,

where e0 is the constant appears in Lemma 2.1. It follows form (3.10) and the
unique continuation arguments similar to Heinz [9] that w(t) 6= 0 a.e. t ∈ R. Hence
there exist ε > 0 and Ω ⊂ R such that |w(t)| ≥ 2ε in Ω and C1/(e0δ0) < |Ω| < +∞.

Since ‖wn − w‖∞ ≤
(√

2e0

√
β
)−1‖wn − w‖ n→ 0, we obtain, for almost all n,

|wn(t)| ≥ ε and hence |un(t)| ≥ η in Ω. Thus

C1

e0δ0
< meas Ω ≤ meas{t ∈ R : |un(t)| ≥ η} ≤ C1

e0δ0
,

a contradiction again. Consequently, (un) is bounded in E. �

Now we study the linking structure of ϕ. We arrange all the eigenvalues (counted
with multiplicity) of A in (0, l0) by 0 < µ1 ≤ µ2 ≤ · · · ≤ µm < l0, and ej de-
notes the corresponding eigenfunctions, that is, Aej = µjej , 1 ≤ j ≤ m. Set

Ẽ =span{e1, e2, . . . em}. Obviously,

µ1‖u‖22 ≤ ‖u‖2 ≤ µm‖u‖22, ∀u ∈ Ẽ.

Lemma 3.5. If conditions (A3) and (A9) hold, then there exist ρ, α > 0 such that
ϕ(u)|‖u‖=ρ ≥ α.

Proof. By (A9), for any ε > 0 (< β/4), there exists δ > 0 such that

|∇W (t, x)| ≤ ε|x|, ∀t ∈ R, |x| ≤ δ,
and then

|W (t, x)| ≤ ε|x|2, ∀t ∈ R, |x| ≤ δ.
Hence, using (A3) and Lemma 2.1, we obtain

ϕ(u) ≥ 1

2
‖u‖2 − ε

β

∫
R
eQ(t)(L(t)u, u)dt ≥ 1

4
‖u‖2

for u ∈ E with ‖u‖ ≤ δ
√

2e0

√
β. Taking ρ := δ

√
2e0

√
β and α := ρ2/4, we have

ϕ(u)|‖u‖=ρ ≥ α. �

Lemma 3.6. Suppose that (A3), (A9)–(A12) are satisfied. Then ϕ(u) → −∞ as

‖u‖ → ∞ in Ẽ.

Proof. We suppose by contradiction that there exists a sequence (un) ⊂ Ẽ with
‖un‖ → ∞ such that ϕ(un) ≥ −a for some a > 0. Take vn = un/‖un‖. Then

‖vn‖ = 1 and there is v0 ∈ Ẽ\{0} such that

vn → v0 in Ẽ, vn → v0 in L2(eQ(t)), vn(t)→ v0(t) a.e. t ∈ R.
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Since

‖v0‖2 −
∫
R
eQ(t)(L∞(t)v0, v0)dt ≤ ‖v0‖2 − l0‖v0‖22 ≤ µm‖v0‖22 − l0‖v0‖22 < 0,

there is L > 0 such that

1−
∫ L

−L
eQ(t)(L∞(t)v0, v0)dt = ‖v0‖2 −

∫ L

−L
eQ(t)(L∞(t)v0, v0)dt < 0. (3.15)

From (A9) and (A12) it folows that |R(t, x)| ≤ c|x|2 for all (t, x), and that

R(t, un(t))/|un(t)|2 → 0

if v0(t) 6= 0. Hence, using the dominated convergence theorem and the fact ‖vn‖∞ ≤
(
√

2e0

√
β)−1,

lim
n→∞

∫ L

−L
eQ(t)R(t, un)

‖un‖2
dt = lim

n→∞

∫ L

−L
eQ(t)R(t, un)

|un|2
|vn|2dt = 0. (3.16)

Consequently, (3.16), (3.15) and (A9) imply that

0 ≤ lim
n→∞

ϕ(un)

‖un‖2

= lim
n→∞

[1

2
−
∫
R
eQ(t)W (t, un)

‖un‖2
dt
]

≤ lim
n→∞

(1

2
−
∫ L

−L
eQ(t)W (t, un)

|un|2
|vn|2dt

)
≤ 1

2
− 1

2

∫ L

−L
eQ(t)(L∞(t)v0, v0)dt < 0,

a contradiction. �

As a special case, we have the following lemma.

Lemma 3.7. Suppose that (A3), (A9)–(A12) are satisfied. Then there is e ∈ E
with ‖e‖ > ρ such that ϕ(e) < 0.

Proof of Theorem 1.6. (Existence) Lemmas 3.5 and 3.7 yield that ϕ possesses the
linking structure, and the (C) condition is satisfied by Lemma 3.4. Hence, using
Proposition 3.1, we know that ϕ has at least one nontrivial critical point.

(Multiplicity) Take E1 = E and E2 = Ẽ. Assume that W is even in x, then
ϕ is even. Lemma 3.6 says that ϕ|Ẽ < +∞. Therefore, ϕ has at least m pairs of
nontrivial critical points by Lemmas 3.4, 3.5 and Proposition 3.2. �

4. Examples

Example 4.1. Consider the second-order system

ü(t) + 2tu̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, t ∈ R, u ∈ RN , (4.1)

where L(t) = (1 + t2)IN , IN denotes the unit matrix of order N and

W (t, x) =

{
|t|e−t2 |x|α sin2

(
1
|x|ε
)
, x 6= 0,

0, x = 0,
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ε > 0 small enough and α ∈ (1 + ε, 2). A direct calculation shows that

∇W (t, x) = |t|e−t
2[
α|x|α−2x sin2

( 1

|x|ε
)
− ε|x|α−ε−2x sin

( 2

|x|ε
)]
,

for all (t, x) ∈ R× RN . So it is easy to check that W satisfies (A7) and (A8) with

0 6∈ [t0 − d, t0 + d], m(t) = h(t) = |t|e−t2 ,

δn =
( 2

(2n+ 1)π

)1/ε

, Mn = min
|t−t0|≤d

|t|e−t
2
( (2n+ 1)π

2

) 2−α
ε

.

Hence Theorem 1.4 applies. However, it does not satisfy Theorem 1.2, because
(A6) fails.

Example 4.2. Consider the second-order system

ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, ∀t ∈ R, u ∈ RN ,

where L(t) = ln(e2 + t2)IN , q ∈ C(R,R), Q(t) :=
∫ t

0
q(s)ds with lim|t|→∞Q(t) =

+∞ and

W (t, x) = a(t)|x|2
(

1− 1

ln(e+ |x|)

)
, ∀(t, x) ∈ R× RN .

Here a ∈ C(R, (0, 1]) with inft∈R a(t) > 0. A simple computation yields

∇W (t, x) = 2a(t)x
(

1− 1

ln(e+ |x|)

)
+

a(t)|x|x
(e+ |x|) ln2(e+ |x|)

and

W̃ (t, x) =
a(t)|x|3

2(e+ |x|) ln2(e+ |x|)
for all (t, x) ∈ R× RN . Therefore, it is easy to see that conditions (A9)–(A13) are
satisfied, and Theorem 1.6 applies.
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