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MAXIMAL ESTIMATES FOR FRACTIONAL SCHRODINGER
EQUATIONS WITH SPATIAL VARIABLE COEFFICIENT

BO-WEN ZHENG

Communicated by Jerome A. Goldstein

ABSTRACT. Let v(r,t) = Tivo(r) be the solution to a fractional Schrodinger
equation where the coefficient of Laplacian depends on the spatial variable.
We prove some weighted LY estimates for the maximal operator generated by
7: with initial data in a Sobolev-type space.

1. INTRODUCTION

In this article, we study the maximal estimates of solutions for the fractional
Schrédinger equation with spatial variable coefficient,

i0p0(r,t) + [—17° Dy + %ar - %)]O‘/Qv(r, £) =0,
(r,t) e RT xR, o € R, (1.1)
v(r,0) = vo(r), reRT,

where v is a complex-valued function, r = |z|, (x € R™) is the radius, and the array
(po, p1,p2) satisfies the assumptions

2—po p1—1

<2 p>1 opp= (o) - (F) w20 (1.2)

The difficulty in this equation comes from the spatial variable coefficient term

rPo in front of the Laplacian operator. Such a rPo-factor arises in the problem of the

integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnetic
spin system (HFSS)

. - o n—1- e

Se(r,t) = p(r)S x [Spr + TST] + pr(r)[S x S;], (1.3)

where the spin S = (58%,8Y,5%) is constrained by §2 =1, p(r) is a scalar function,
r=|z|, 0 <r<oo.
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2 B.-W. ZHENG EJDE-2018/139
By a known geometrical process [8, [13], the spin evolution equation ([1.3)) is
equivalent to the following generalized nonlinear Schrédinger equation

n—1 n—
Uy —
r2

1
vy + p(vpr + v+ 2[v|*v) + 2p,v,
(1.4)

_ 1 T T
+ [orr + nTpT + 2/ pr|v)2dr’ + 4(n — 1)/ £|v|2dr’]v =0,
0 0

and the integrability of holds for the conditions p(r) = e;r= 2"~V ey (=2)
where €1, €z are arbitrary constants. Obviously, the factor rP° corresponds to the
term p(r) in the (1.4).

In the case of the non-fractional (i.e. a = 2) Schrodinger equation without
the spatial variable coefficient (i.e. pg = 0), the reduces to the classical
Schrodinger equation with(out) the inverse-square potential under the assumption
of the spherical symmetry:

10uu(z, t) — Au(z,t) + %u(x,t) =0, (z,t)eR" xR,
|| (1.5)
u(z,0) = f(z), zeR™

As we know, when a = 0, there is a large body of literature studying values of s for
which the estimates

15" fll Lo wday < Clf e @ny,  (S*F)(@) = jlelﬂglemf(m)l (1.6)

holds for some ¢ and weight w(x). This has implications for the existence almost ev-
erywhere of lim;_, u(z, t) for its solution u(z,t) = €2 f(z), which can be formally
expressed as

A fa) = [ ) €, (1.7

where F is the usual spatial Fourier transform defined by Ff = [, e "¢ f(x)da.

The maximal estimate and related questions were raised by Carleson [4]
who proved convergence for s > i when n = 1. Dahlberg and Kenig [7] showed that
this result is sharp. In higher dimension, the question of identifying the optimal
exponent s has been studied by several authors and our state of knowledge may
be summarized as follows. For n = 2, the strongest result to date appears in [10]
for s > 3/8. For n > 2, the convergence is shown to hold for s > % (see
[1,2]). More generally, it should also be observed that the maximal estimates
developed for with @ = 0 can be extended to the case of fractional Schrodinger
equation without the spatial variable coefficient (i.e. @ > 0, py = 0). Some positive
partial results were obtained by Sjolin [14], Heinig-Wang [9], Cho-Lee-Shim [5], []
and Bourgain [IJ.

In the case when pg # 0 and o > 0, equation can be viewed as the general
fractional Schrédinger equation with spatial variable coefficient proposed by authors
in [T9], which is a simplified version of . Inspired by the results of the papers
[18, 19] and equation , we try to explore the maximal estimate for the more
general equation , which seems that there is no previous literature on it. In this
paper, we try to derive some maximal estimates of solution to the general equation

[TD).
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Let v(r,t) = Tyvp(r) be the solution to (1.1)), we define the maximal operator 7*
as

(Tw0)(r) = sup | Zevo(r)]- (1.8)

Our aim is to investigate the mapping properties of 7*, which are from a Sobolev-
type space X to a weighted L? space. The estimates are of the form

17" 00l s, ) < Cllwollx, X =W ?(RY) or H},4(R"), (1.9)

where W#%2(R™) is the inhomogeneous Hankel-Sobolev space in Definition and
H? ,(R™) is the usual homogeneous Sobolev space

150 (R") = {f s radial, 1F1%: —/ € |(F))PdE < o0} (1.10)

We also note that the norm || F|| s  (r+) is abbreviated by

Pl oy = [ PG at)d0) ", (111)

where dw, = rP17Podr is the Lebesgue measure. For simplicity, ||[F[|yq@+) =
IFlzs ¢ R+) and ||| pag+) = ([po [F(r)|2dr)t/e.

For , the presence of the factor r?° makes it difficult to give the expression
of the solution by using the usual Fourier transform, which is only a well-suited
tool to analyze constant coefficient Schrédinger equation such as . Inspired by
[18, [19], we introduce a suitable Hankel transform.

Definition 1.1. Suppose f(r) is an integrable function in R™, we define the Hankel
transform

D = [ 00 F TG00 F) 1) (112)

where J,(z) is the first Bessel function of order y defined as

(z/2)" Lo 2y 1
s Dz |, ¢ 0oy

We deﬁne the fractional power of the second-order operator A, := —rPo (Orr +

Bo,. -5 m.by

Tu(z) =

o 2-P0
A g(r) = Hu N2 (Hug) V] (r). (1.13)
It should be noticed that the definition of Az/ ? can be referred in [12} 18] and
makes sense.
For our purpose, we also introduce the Hankel-Sobolev space via the Hankel
transform.

Definition 1.2. The homogeneous Hcmkel Sobolev space W*2(R') consists of tem-

pered distributions f for which H [)\ S(Huf)(N)](r) exists and is in L2(RT)
function. That is,

PQ

2
YWs:2 (RT) = {f e S'(R), ||f||Ws,z(R+) = /]R+ (A2
We also define the inhomogeneous Hankel-Sobolev space W*?%(RT) as

W) = (£ € SR I yanqury = [ (1+ X104 < 00},

*(Huf)(N)|Pdwy < oo}
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Note that the space Hfad(]R”) is the special case of W#2(R") when (po, p1, p2) =

(0,n —1,0). Our first result is to derive an weighted L? estimate for the maximal
function 7 *vg, which is stated as follows.

Theorem 1.3. Suppose ps = 0. Let b € (27%,2 —po),2<n< 2‘21117;0“ +2 and
s€(1/2,1). Then

IT"volzz, @) < Cloosprs @)ool qany: (114)
where o(r) = (1 +7r)7°.

As a consequence, we obtain the almost convergence result for vy € Hﬁad(R”).

Corollary 1.4. Let vy € H?

rad

(R") with s € (3,1) and 2 <n < 2|2pi71701\ +2. Then
tlin(l)v(r, t) =wvo(r), ae reRT.

If the initial data vg lies in the space W*%2(R*), we improve the integrability of
the maximal function 7 *vg for (L.1)).

Theorem 1.5. For 0 < a # 1. If the initial data vy € W**(RT) with s € [1,3),
Then the estimates

17 vol|La m+y < C(po,p1)llvollws2@+ys (1.15)
17 voll g ,m+) < C(po, p1)l|lvollws2@+), (1.16)
hold for
8 — 1 2 — 1 2 — 1
(p1 — po + )S < (p1 —po+ 1) and q= (p1—po+1)
4p1 — 3po + 2 p1—po+1—(2—po)s pr—po+1—(2—po)s

respectively, where o(r) = r®°(1 +7r)7° b> 0.

The plan of this paper is as follows: Section 2 is devoted to the preliminaries,
including the properties of Bessel function and the relation between WS’2(R+) and
Hf’ad(R”). In Section 3, through delicate computation, we give the complete ar-
gument about the weighted LY maximal estimates of the . If not specified,
throughout this paper, the notations M < N and M ~ N denote M < C~'N and
CM < N < CM respectively for some large constants C' and C. We also denote
<g as < C(f), where C(f3) denotes various constant that only depends on 5. We
abbreviate by writing A + € as A+ or A —cas A— for 0 < e < 1.

2. PRELIMINARIES

In this section, we collect some basic facts which will be used in the later context.
We recall some asymptotic properties of the first Bessel function J,(z) (see [17]).
For fixed p, if z < 1, a simple calculation gives the rough estimate

Czt 1
< 2ur(u+§)r(1/2)(1+ u+1/2)’ (2.1)

where C' is a absolute constant. Another well known asymptotic expansion about
the Bessel function is

Tu(2) = 272 (b e +b_e )+ ®,(2), 2> 1, (2.2)

T (2)
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where |®,(z)] < Cz71, |by| < C and the constant C is independent of u. As
pointed out in [I6], if one seeks a uniform bound for large p and z, then the best
one can do is

|Tu(2)] < C27Y3 2 >1. (2.3)
A simple consequence of the above properties is the following Lemma.

Lemma 2.1. For R > 1, there exists a constant C(po) independent of p, R such
that

2R 2 p
/ T () 2dr < Cpo) RPP.
R

Next we review some properties of the Hankel transform, which appear in [3} [19].

Lemma 2.2. The Hankel transform H,, satisfies:
(i) Hu = H,Il;
(i) H,, is an L? isometry, i.e. |[Huoll2 ®e) = )22 @),
(ili) Hu(Aug)(A) = NP (H,o)(N), where the operator Hy,' is the inverse op-
erator of H,,.

For the Hankel-Sobolev space We:2 (RT), there exists the following embedding
theorem with HZ ;(R™), which is proved in the paper [I§].

Lemma 2.3. Letn > 2 and p > ”?_2 If f e H”ad(R"), 0<0 <73, then

1 by < Cloemm) | Fll s amy. (2.4)

Proof. We give only an outline of the proof. From the definition of Hankel trans-
form, (1.13) and using the integral formula of Bessel function [I7, p. 385], we
obtain

MIAT2f1(2)

2z—p1+1 2z—p1+1 o+
_ . TGehy 7)) TA-5a55 + %57 2—po , (25)
- (2 7p0) (1 — 2z—pi1+1 © T 2z—p1+1 _ o—p M[-ﬂ(z - 9 g
(=55 t2) Tty —27)

where M([f(r)](z) = [+ 7*7 f(r)dr is the Mellin transform.
bDenote By, = AZ/Z.A;U/Q. Writing z = 2320 and & = ’2’1;3, by (2.5)), we
obtain

MBS o f](2) = F(§~—§+g)/2)1“(1 - g —o—k—p)/2)

M/

—~

z

For z = ’”}w +iyand Z=F+1+ ﬁiy, using the following properties of
Gamma function I'(z):

I'(z) =T(z), VzeC,

0 2

. Yy —

‘F("E+Zy)|:1—‘($) | |(1+m) 1/27 V"E>0, Vye]R,
k=0
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we obtain
pr—po+1 . Flw )/2) T((w — o + 1+ 52-1y)/2)
P +Zy”"r(( —a+1+—zy)/2) T((w+o+1- 52-iy)/2)
:|F((u+0+1)/2) F((w—-0+41)/2) |H &
FN(p—0+1)/2)T((w+0o+1)/2)
where
Ri(j) (1+32/(p—0o+1+2k)2)(1+7%/(w+0o+1+2k)?)
Y= (14+32/(p+o+1+28)2) 1+ 352/ (w— o + 1+ 2k)2)
_ 0+ 7/ (M = 0)) (A + /(N +0)*) _
1+ 72/ (My +0)?)(L+5°/(Ny —0)?) =
andgj—2 — , M = p+ 1+ 2k, N, = w+ 1+ 2k. Therefore, for n > 20, we have
sup|lf(l%o+1 + 1y)| < oo.

Hence, using [I8, Lemma 2.5], we obtain

1By fllLz ®+) < CllfllLz @+,
which is the desired result. O

At the end of this section, we show the oscillatory integral estimate [6] [15].

Lemma 2.4. Suppose ¢ € C2(R™\{0}) is a radial function such that |o®) (¢)| ~
€%, k = 0,1,2 for 0 < a # 1. Let A,B,o be the real numbers such that
A B #0, o €[1/2,1), then there exists a constant C(a, o), independent of A, B,
such that

|/ei(Asa(€)+B€)|§|—Ud§| < c|B[~0-9. (2.6)
R

3. PROOF OF MAIN RESULTS

Applying the Hankel transform (1.12)) to the (1.1]), by Deﬁnition (1.13) and
Lemma (i), we have

105+ A7 5 =0
9(A,0) = 00(A),
where
(A1) = (Huv)(As 1), 00(A) = (Hpuvo)(A)-
Solving the ODE and inverting the Hankel transform, we obtain the formal solution

Ton) = [ 0 F TG00 T T . @)
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Proof of Theorem [1.3] The key ingredients are the asymptotic behavior of the
Bessel function, and the properties of Hankel transform.

By the continuity of the embedding Hz~(R) N HzT(R) < L>(R), it suffices to
prove

Proposition 3.1. Let po = 0. Forb € (2_2p°,2 —po), and a € [1 — m,% +

n b
2a ~ (2—po )a)’

dw,dt
[ 100 @) 25 < Clonp )10/

there exists a constant C independent of vy such that

.— @Qa—la , b
where o 1= 5 T o

This proposition, NS Lemma[2.3] yield Theorem- Indeed, under the assump-

tion of a,b above, we have o € [0, %) and 252 < ‘pl 1' , then
“ dw,dt
| [ o @ Fﬁ < o<po,p1,a7a>||vo|\zfad<w). (32)

. _ 1 .
Choosing a = §—|— and a = 5— in , we obtain

dw
T*vo(r)|? L _ < C(po,p1,a)|v .
[Tl g < Con el

rad
Hence, Theorem is proved.

Proof of Proposition|3.1] Using the Plancherel theorem of the usual Fourier trans-
form with respect to tlme t, we have

dw,dt itr drdw,
// 108 (Tyvo ) |2 ——m L /R+/|T/ T (To0)( rt)dt\2(T S (63)

Using (B.1), we obtain
left-hand side of (| .

2r0 (A TFEe ) 2
/\7’ (Ar) 72 e vo()\)dedt‘
R+ R+ — Po
dewT
(1+7)
—p1 2 2—pg 2-ro ~ 2
. R SO O 7)io(A)dw|
R _
dewT
(I+7)
P1=2po+3 4 27“27% 1. 2 2
/ Ao T ( A )Tp(A @0 )5 (A — T)d)\‘
2—po
dewT
(1+7)
2-pg
1-p;  P1=— 2P0+3,1+a 2r—= 1 . 2 2 d)dw,
(2—pg)a o (2—pg) "
_po, / / >\ 0 jﬂ( 92— Do A )UO(A 0 ) (1 + T)bv

where the above inequality can be rewritten as

1-p1 . p1—2p0+2 (2-pg)a 2 2-pg . dAdw,
o) // [r AT e T g () s W s
R+ 2 —po
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We make a dyadic decomposition by choosmg X, which is a smoothing function
supported in [2, 2], and change the variable {7 — A\, Mr—r,

left-hand side of .

2py —2pg+1 2?0 1 2 2—-pg A 2 dw dA
Ad+ (A AT) 7)o (A) x(— "
<o 3 [ ] CUNRKAE p0< R ]

b
Me2? (1 + T)
Sae 0 M [ 00 g 00 )
Me2” R¥ ~ o
dw,dw),
(L
Soape Y D MEPpti g
Me2? Re2%
(3.4)
where d := (2a — 1)%. By integrating,
2R
1-p3 2 2-po | . drdw,\
ICMzz/ / M) 2 T (—— (Ar) 2 )T (M 27
Ko [ ] 1005 2T 0n =R OO
Now we need to prove the bound of K, Which is divided in two cases:
Case 1: R << 1. Since A ~ 1, we have (r)\)
function , we have
2R 1 P14Gopo) drdw,
K o [ [ 1005 50y >|2ﬁ
(3.5)
<pous R2-P1+(2—po)p min{1, (— }/ )| dwy.
Case 2: R > 1. Since )\ ~ 1, we obtain (T)\) * > 1. Then K¥ can be bounded
by
2R
2 2-po dr
C Rl—m/ o (M )\2/ Tu(z—— ()2 )P )dwi.

Noticing that A ~ 1, so

2R
2 2—2110 2 dr
|19 E 00 2

—n

)|2dr

2R
<minfL (30"} [ 1,65
<o min, <§> YR,
where the last inequality is obtained by Lemma [2.1] Then
KH <o RH min(1 ()"} [ mOONWPder. (39
Hence, combining and (3.6] @ for po = 0, we obtain the estimate

o REptlp=tprro=pi=tmin{1, (3)2} |50 (A\)x (3y )”LZ(]R‘*' <,
R Spopi R%M”U p1i— 1mln{l ( }HUO( ) ( )”La (R+)> R>1.
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Now, returning to (3.4), we have
left-hand side of ((3.3)
A

12— 1. M -
Swopop P, ., MMR>TPTIR 1'mm{lv(f)b}HUO(A)X(M)H%g(Rﬂ
Me2Z Re2Z:RK1
2d p2re My = A
+ > Y MR mln{L(f) }”’UO()‘)X(M)”Li(]RJr)
Me2% Re2%:R>>1

dib _ —po—b 2(1-b)—pg . . A
Swapon 3 MEHYD RIS RS ) (3w
Me2Z RK1 R>1

Z=po 9 po), the above inequality can be further

From the assumption b € (=5

controlled by

a—1)2=Po) ~ A
3 My n +bHvo(/\)X(M)H%5(R*)'

Me2?
Finally, by Lemma (i) and letting M = 27, we have

. (2—po)o A
left-hand side of (3.3) <a,a,p0,p: Z2J(2 7o) ||HH[X(§)HHUO]H%3(R+)
JEZL
(2-po)o A 1/2
Zaamon |( D22 ) Iy e
JEZ

where o := @ + ﬁ and Proposition follows from Lemma below. [

Lemma 3.2 ([I8]). Let ¢ € R. Then there exists a constant C that depends only
. 2¢
on s and B such that for all f € W7 *(R"), we have

. 1/2
12 2 HulBHAIE)  lrae) < CUFIL 25 (3.7)
jez
where the function 8 € C§°(R™) is supported in the interval [1/2,2], 5;(\) = ﬁ(%),
Zjez ﬂj =1

Proof of Theorem We consider the solution (3.1J):

- 2 _ L 2=Ppo
Tuor) = [ O F TG On) Fe™ i (),

By changing the variable ﬁ)\rz—zpo — A, P50 r, the solution becomes

1—-py

(Bl [ A g, (e g (2P i
R+

2 2
i= E[oo] (r),
To prove (1.15) in Theorem (1.5} it suffices to prove that for ¢ = pl—foﬁ;—%

Il ~ e .
and s’ € [7,5), the norm [|T[0o](r)r =707 || L4 poc (m+ xr) is bounded by

2- 2 - 2p1-pg. 1/2
([ GG + (P a B i)
R+

where the norm [|h(7,t)[| Lape (m+ xr) = SUDser [|R (5 )| Lar+)-
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We write g(A) = To((2522X) 770 )[1 + (2522 0)2| 5 \3350) . Then the above esti-
mate is equivalent to

||P(g)|||LquC(R+><R) <4.,po.p1 ||g||L2(R+)7

where

2p P . — P
Plg)(rit) = Clpo, p)r & =50 | 7, (e
R

Mg\

9 _
X [+ (52 72 2,
Therefore, utilizing the dual argument, our main task is to prove that

IP*(De2@+) Sapopr 1Flrri e xrys (3-8)

2(p1—po+1)
p1—po+1+(2—po)s’ and

P*(F)N) = Clpo,p)[1 + (C2F0 p°m s/2)1/2

where p =

1-p3

/ Tu(Ar)e —it(2LeN)> f(r, t)rfz“p(ﬁ%ﬂ ro dr dt.
R+

Now we decompose P*(f)(A) = >_,_g.12(P; f)(A), where
(P} = Olpo, po)[1 + (C 52207+

X / T (r)e Ar
R JR+

Vi (St T drat,
and ¢; are smooth cut-off functions such that ¢o = 1 on {|n| < i}’ ¢o = 0 on
{Inl < 1/4}, ¢1 = 1 on {|n| ~ 1}, ¢1 = 0 otherwise, po = 0 on {|n| < 2}, ¢ =1

on {|n| > 3}, and ¢¢ + ¢1 + ¢2 = 1. The symbol v = 2”1 pﬁ"(; - é)

2—pg
2

Non-endpoint case: s’ € [Z’ s). (i) 4 = 0. Using the property of Bessel function
1), and ' € [2522, 5), we obtain
w/(2X)

(PEAYO] Spon (1 2N/ [T a0 ) g

0

ey
Sy A / Ny

From the basic relation that |[(Pg f)(A)|l 2@+ = (PG f)(5) 512 r+), we have

r=

, r(eXN)/2
”(ng)(/\)HLQ(]RH <po.p1.1t Hﬂl_s /0 W||f(r>')“L}dr||L2(R+)' (3.9)
2

By extending the function r~7||f(r,-)[|z2 to O for r < 0, the right hand side of
(3-9) can be controlled by the Riesz potential operator Ig, 0 < 8 < 1, where

A) = Cg/ A =77 lg(r)dr, XER,
R
and Cj is chosen so that (I5)" (&) = |€]7°g(€). So we further obtain

* _ /L>\
1Po fllez @y Spopropost s (7 I1F () ) ()22 e (3.10)
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/ 1/2
<wvan ([ 16716707l O ) (3.11)

po.pr.ps’ HfHLPLtl(]R‘*'x]R) (3.12)

where the last inequality is proved by using Pitt’s inequality for the usual Fourier
transform:

Lemma 3.3 ([I1]). Ifi >p,0<a<1-1/p,0<d <1/l andd = a+1/p+1/1—1,

then
/ Forea)” / (@) Pla|dz) VP,

where f(f) is the usual Fourier transform.

(ii) j = 1. The estimate of P; f is similar to Pgf. When |Ar| ~ u, the property
(2.3)) implies |j#()\r)¢1(%)\ < C(\r)~Y/3, we obtain
1 2ud re
z

1
P*f (*)* 2(R+ S D14ty S" f 1dr]| 72 +
1PN Sz S || g 1l

po.prws L (P F () £3) (2pA) [ L2 ey

<po.p1,u.s' Hf”LI’L}(R‘*' xR)*

(3.13)

(iii) j = 2. Applying the asymptotic expansion of Bessel function (2.2)), we write

(P3N = Cloo, pr)bsl1 + (E 20N ~

/ / A ]¢< )F(r, ) drdt
R+
25N (rA) 20, (rA)

+C(P0,p1)[1—|—(T/\) ]75/2/R/R+ efit(Q_

X ¢2(%)f(7“, t)r=7 drdt
i= C(po, p1)[(Pf)(N) + (QF)Y(N)],

(3.14)
where |®,(r\)] < C(rA)71, |bL| < C and the constant C' is independent of .
For the estimate of (P f)()), it is sufficient to consider (P4 f)(X). We decompose

(PLf)(A) = S1(A) + S2(N),

where

2 — ; 2—-pg y\«
S1(A) =b+[1+(TPOA)Q}‘S/Q//R+ e DtV £ 4)r =7 dr dit,

S2(>\):b+[1+(2 2]70)\ 3/2//R+ iAr—t( 2520 0)° (¢2():)—1)f(7“ t)r= dr dt.

For S5(A), arguing as PJ f, we obtain

3p

! >\ _
1S2(N) || 2y < [|A™° /0 £ lpar A/dTHLz(Rﬂ < fllzerr@exmy-  (3:15)

For S1()), we extend S7 to R by setting

2 — . -p P
51(5) — b+[1 + (Tpoy)Q]—s/Q /‘/RQ ez[ry—t(2 520 |y[) ]f('f'7 t)?“_vdrdt, y <0,




12 B.-W. ZHENG EJDE-2018/139

SO
||Sl||i2(R+) SPO ////K(r’ r/’t7t/)'r'f'yf(’r‘,t)(r')*’Yf('r/?t’) d’/‘dtdr’dtl’

where
.

K(r,r' t,t") = / eI =)= (=) (FFENT] =25 g\

Since s’ € [, 3), by Lemma we obtain |K(r,,t,1')] <g.o |r— /> "1

Using the theory of Riesz potential and the Plancherel theorem of the usual Fourier
transform, we have

ISillizey <o ([ 167216708 ) )P

Spo.s Hf”LPL}(]R'F xR)*

1/2
(3.16)

It remains to estimate (Qf)(A). The uniform decay of the function ®, on p
shows that

oo

@) S 1+ CGPN A [ b )
o

Applying Holder’s inequality to (3.17]), we obtain
1Qflz2@+) <pospr £~ N2 x(0,) (V)
s'—s—1
+ A 2X (u,00) (M) L2 (R 1) ||f||LPL§(R+ xR) (3.18)

Spo.pr.p.s’ ”fHLPL}(]RJr xR)

Combining ({3.15))-(3.18]), we conclude that
||P§f“L2(R+) < C(poapl, Hy s, O‘)HfHLPLtl(R‘*'x]R)a (3-19)
Therefore, the claim (3.8) follows from the estimates (3.12)), (3.13)) and (3.19).

Endpoint case: s’ = s. For the endpoint case ¢ =

_ 20pi=potl) o o )
p1=po+1—(2—po)s’ s 4227
we follow the almost same line as in the argument of (3.8]) by replacing s’ with
2 2

s and 77 with r~7p(r? 70 )1/9 except for the estimate (3.18), where o(rZ %) =

b
re (1+ P70 )~°. We only need to check the part of Pj f.

2

Replacing 77 with = 7g(rZ=70 )% in (3.17) and using Holder inequality, we

obtain

o0
[ e ar
2

W/ A
oo 2bg L 1/q
< (/ min{1, 7?70 }r‘(5+7)qd7“) £l r L2 (et xR)-
20/ '
Then for v = 2’2’1_7;30(% — %) and b > 0,

QDN Spoy 1+ (2 SN TN

20 _, 2, 20
X {((7) *X(o,0)(A) + (7) (2=ro) sX(u,oo)()‘)}’Hf”LPL}(R‘*'x]R)a

which yields the estimate (3.18)). Hence (|1.16|) follows. This completes the proof of
Theorem [L5
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