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MAXIMAL ESTIMATES FOR FRACTIONAL SCHRÖDINGER
EQUATIONS WITH SPATIAL VARIABLE COEFFICIENT

BO-WEN ZHENG

Communicated by Jerome A. Goldstein

Abstract. Let v(r, t) = Ttv0(r) be the solution to a fractional Schrödinger

equation where the coefficient of Laplacian depends on the spatial variable.
We prove some weighted Lq estimates for the maximal operator generated by

Tt with initial data in a Sobolev-type space.

1. Introduction

In this article, we study the maximal estimates of solutions for the fractional
Schrödinger equation with spatial variable coefficient,

i∂tv(r, t) + [−rp0(∂rr +
p1

r
∂r −

p2

r2
)]α/2v(r, t) = 0,

(r, t) ∈ R+ × R, α ∈ R+,

v(r, 0) = v0(r), r ∈ R+,

(1.1)

where v is a complex-valued function, r = |x|, (x ∈ Rn) is the radius, and the array
(p0, p1, p2) satisfies the assumptions

p0 < 2, p1 > 1, p2 = (
2− p0

2
µ)2 − (

p1 − 1
2

)2, µ ≥ 0. (1.2)

The difficulty in this equation comes from the spatial variable coefficient term
rp0 in front of the Laplacian operator. Such a rp0-factor arises in the problem of the
integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnetic
spin system (HFSS)

~St(r, t) = ρ(r)~S × [~Srr +
n− 1
r

~Sr] + ρr(r)[~S × ~Sr], (1.3)

where the spin ~S = (Sx, Sy, Sz) is constrained by ~S2 = 1, ρ(r) is a scalar function,
r = |x|, 0 < r <∞.
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By a known geometrical process [8, 13], the spin evolution equation (1.3) is
equivalent to the following generalized nonlinear Schrödinger equation

ivt + ρ(vrr +
n− 1
r

vr −
n− 1
r2

v + 2|v|2v) + 2ρrvr

+ [ρrr +
n− 1
r

ρr + 2
∫ r

0

ρr′ |v|2dr′ + 4(n− 1)
∫ r

0

ρ

r′
|v|2dr′]v = 0,

(1.4)

and the integrability of (1.3) holds for the conditions ρ(r) = ε1r
−2(n−1) +ε2r−(n−2),

where ε1, ε2 are arbitrary constants. Obviously, the factor rp0 corresponds to the
term ρ(r) in the (1.4).

In the case of the non-fractional (i.e. α = 2) Schrödinger equation without
the spatial variable coefficient (i.e. p0 = 0), the (1.1) reduces to the classical
Schrödinger equation with(out) the inverse-square potential under the assumption
of the spherical symmetry:

i∂tu(x, t)−∆u(x, t) +
a

|x|2
u(x, t) = 0, (x, t) ∈ Rn × R,

u(x, 0) = f(x), x ∈ Rn.
(1.5)

As we know, when a = 0, there is a large body of literature studying values of s for
which the estimates

‖S∗f‖Lq(wdx) ≤ C‖f‖Hs(Rn), (S∗f)(x) := sup
t∈R
|eit∆f(x)| (1.6)

holds for some q and weight w(x). This has implications for the existence almost ev-
erywhere of limt→0 u(x, t) for its solution u(x, t) = eit∆f(x), which can be formally
expressed as

eit∆f(x) =
∫

Rn
ei(x·ξ−t|ξ|

2)(Ff)(ξ)dξ, (1.7)

where F is the usual spatial Fourier transform defined by Ff =
∫

Rn e
−ix·ξf(x)dx.

The maximal estimate (1.6) and related questions were raised by Carleson [4]
who proved convergence for s ≥ 1

4 when n = 1. Dahlberg and Kenig [7] showed that
this result is sharp. In higher dimension, the question of identifying the optimal
exponent s has been studied by several authors and our state of knowledge may
be summarized as follows. For n = 2, the strongest result to date appears in [10]
for s > 3/8. For n ≥ 2, the convergence is shown to hold for s > 2n−1

4n (see
[1, 2]). More generally, it should also be observed that the maximal estimates (1.6)
developed for (1.5) with a = 0 can be extended to the case of fractional Schrödinger
equation without the spatial variable coefficient (i.e. α > 0, p0 = 0). Some positive
partial results were obtained by Sjölin [14], Heinig-Wang [9], Cho-Lee-Shim [5, 6]
and Bourgain [1].

In the case when p0 6= 0 and α > 0, equation (1.1) can be viewed as the general
fractional Schrödinger equation with spatial variable coefficient proposed by authors
in [19], which is a simplified version of (1.4). Inspired by the results of the papers
[18, 19] and equation (1.5), we try to explore the maximal estimate for the more
general equation (1.1), which seems that there is no previous literature on it. In this
paper, we try to derive some maximal estimates of solution to the general equation
(1.1).
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Let v(r, t) = Ttv0(r) be the solution to (1.1), we define the maximal operator T ∗
as

(T ∗v0)(r) = sup
t∈R
|Ttv0(r)|. (1.8)

Our aim is to investigate the mapping properties of T ∗, which are from a Sobolev-
type space X to a weighted Lq space. The estimates are of the form

‖T ∗v0‖Lqω,%(R+) ≤ C‖v0‖X , X =Ws,2(R+) or Ḣs
rad(Rn), (1.9)

where Ws,2(R+) is the inhomogeneous Hankel-Sobolev space in Definition 1.2 and
Ḣs

rad(Rn) is the usual homogeneous Sobolev space

Ḣs
rad(Rn) = {f is radial, ‖f‖2

Ḣsrad(Rn)
=
∫

Rn
|ξ|2s|(Ff)(ξ)|2dξ <∞}. (1.10)

We also note that the norm ‖F‖Lqω,%(R+) is abbreviated by

‖F‖Lqω,%(R+) :=
(∫

R+
|F (r)|q%(r)dωr

)1/q

, (1.11)

where dωr = rp1−p0dr is the Lebesgue measure. For simplicity, ‖F‖Lqω(R+) :=
‖F‖Lqω,1(R+) and ‖F‖Lq(R+) := (

∫
R+ |F (r)|qdr)1/q.

For (1.1), the presence of the factor rp0 makes it difficult to give the expression
of the solution by using the usual Fourier transform, which is only a well-suited
tool to analyze constant coefficient Schrödinger equation such as (1.5). Inspired by
[18, 19], we introduce a suitable Hankel transform.

Definition 1.1. Suppose f(r) is an integrable function in R+, we define the Hankel
transform

(Hµf)(λ) =
∫

R+
(λr)

1−p1
2 Jµ(

2
2− p0

(λr)
2−p0

2 )f(r)dωr, (1.12)

where Jµ(z) is the first Bessel function of order µ defined as

Jµ(z) =
(z/2)µ

Γ(µ+ 1
2 )π1/2

∫ 1

−1

eizy(1− y2)µ−
1
2 dy.

We define the fractional power of the second-order operator Aµ := −rp0(∂rr +
p1
r ∂r −

p2
r2 ) in (1.1) by

Aα/2µ g(r) = Hµ[λ
2−p0

2 α(Hµg)(λ)](r). (1.13)

It should be noticed that the definition of Aα/2µ can be referred in [12, 18] and
makes sense.

For our purpose, we also introduce the Hankel-Sobolev space via the Hankel
transform.

Definition 1.2. The homogeneous Hankel-Sobolev space Ẇs,2(R+) consists of tem-
pered distributions f for which Hµ[λ

2−p0
2 s(Hµf)(λ)](r) exists and is in L2

ω(R+)
function. That is,

Ẇs,2(R+) =
{
f ∈ S ′(R+), ‖f‖2Ẇs,2(R+)

=
∫

R+
|λ

2−p0
2 s(Hµf)(λ)|2dωλ <∞

}
.

We also define the inhomogeneous Hankel-Sobolev space Ws,2(R+) as

Ws,2(R+) =
{
f ∈ S ′(R+), ‖f‖2Ws,2(R+) =

∫
R+

(1 + λ2−p0)s|(Hµf)(λ)|2dωλ <∞
}
.
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Note that the space Ḣs
rad(Rn) is the special case of Ẇs,2(R+) when (p0, p1, p2) =

(0, n− 1, 0). Our first result is to derive an weighted L2 estimate for the maximal
function T ∗v0, which is stated as follows.

Theorem 1.3. Suppose p2 = 0. Let b ∈ ( 2−p0
2 , 2 − p0), 2 ≤ n < 2|p1−1|

2−p0 + 2 and
s ∈ (1/2, 1). Then

‖T ∗v0‖L2
ω,%(R+) ≤ C(p0, p1, α)‖v0‖Ḣsrad(Rn), (1.14)

where %(r) = (1 + r)−b.

As a consequence, we obtain the almost convergence result for v0 ∈ Ḣs
rad(Rn).

Corollary 1.4. Let v0 ∈ Ḣs
rad(Rn) with s ∈ ( 1

2 , 1) and 2 ≤ n < 2|p1−1|
2−p0 + 2. Then

lim
t→0

v(r, t) = v0(r), a.e. r ∈ R+.

If the initial data v0 lies in the space Ws,2(R+), we improve the integrability of
the maximal function T ∗v0 for (1.1).

Theorem 1.5. For 0 < α 6= 1. If the initial data v0 ∈ Ws,2(R+) with s ∈ [ 1
4 ,

1
2 ),

Then the estimates

‖T ∗v0‖Lqω(R+) ≤ C(p0, p1)‖v0‖Ws,2(R+), (1.15)

‖T ∗v0‖Lqω,%(R+) ≤ C(p0, p1)‖v0‖Ws,2(R+), (1.16)

hold for

8(p1 − p0 + 1)
4p1 − 3p0 + 2

≤ q < 2(p1 − p0 + 1)
p1 − p0 + 1− (2− p0)s

and q =
2(p1 − p0 + 1)

p1 − p0 + 1− (2− p0)s

respectively, where %(r) = rb(1 + r)−b, b > 0.

The plan of this paper is as follows: Section 2 is devoted to the preliminaries,
including the properties of Bessel function and the relation between Ẇs,2(R+) and
Ḣs

rad(Rn). In Section 3, through delicate computation, we give the complete ar-
gument about the weighted Lq maximal estimates of the (1.1). If not specified,
throughout this paper, the notations M � N and M ∼ N denote M ≤ C−1N and
CM ≤ N ≤ C̃M respectively for some large constants C and C̃. We also denote
≤β as ≤ C(β), where C(β) denotes various constant that only depends on β. We
abbreviate by writing A+ ε as A+ or A− ε as A− for 0 < ε� 1.

2. Preliminaries

In this section, we collect some basic facts which will be used in the later context.
We recall some asymptotic properties of the first Bessel function Jµ(z) (see [17]).
For fixed µ, if z � 1, a simple calculation gives the rough estimate

|Jµ(z)| ≤ Czµ

2µΓ(µ+ 1
2 )Γ(1/2)

(1 +
1

µ+ 1/2
), (2.1)

where C is a absolute constant. Another well known asymptotic expansion about
the Bessel function is

Jµ(z) = z−1/2(b+eiz + b−e
−iz) + Φµ(z), z � 1, (2.2)
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where |Φµ(z)| ≤ Cz−1, |b±| ≤ C and the constant C is independent of µ. As
pointed out in [16], if one seeks a uniform bound for large µ and z, then the best
one can do is

|Jµ(z)| ≤ Cz−1/3, z ≥ 1. (2.3)

A simple consequence of the above properties is the following Lemma.

Lemma 2.1. For R � 1, there exists a constant C(p0) independent of µ,R such
that ∫ 2R

R

|Jµ(r
2−p0

2 )|2dr ≤ C(p0)Rp0/2.

Next we review some properties of the Hankel transform, which appear in [3, 19].

Lemma 2.2. The Hankel transform Hµ satisfies:
(i) Hµ = H−1

µ ,
(ii) Hµ is an L2 isometry, i.e. ‖Hµφ‖L2

ω(R+) = ‖φ‖L2
ω(R+),

(iii) Hµ(Aµφ)(λ) = λ2−p0(Hµφ)(λ), where the operator H−1
µ is the inverse op-

erator of Hµ.

For the Hankel-Sobolev space Ẇσ,2(R+), there exists the following embedding
theorem with Ḣσ

rad(Rn), which is proved in the paper [18].

Lemma 2.3. Let n ≥ 2 and µ > n−2
2 . If f ∈ Ḣσ

rad(Rn), 0 ≤ σ < n
2 , then

‖f‖Ẇσ,2(R+) ≤ C(σ, µ, n)‖f‖Ḣσrad(Rn). (2.4)

Proof. We give only an outline of the proof. From the definition of Hankel trans-
form, (1.13) and using the integral formula of Bessel function [17, p. 385], we
obtain

M[Aσ/2µ f ](z)

= (2− p0)σ
Γ( 2z−p1+1

2(2−p0) + µ
2 )

Γ(1− 2z−p1+1
2(2−p0) + µ

2 )

Γ(1− 2z−p1+1
2(2−p0) + σ+µ

2 )

Γ( 2z−p1+1
2(2−p0) −

σ−µ
2 )

M[f ](z − 2− p0

2
σ)

(2.5)

where M[f(r)](z) =
∫

R+ r
z−1f(r)dr is the Mellin transform.

Denote Bσµ,w := Aσ/2µ A−σ/2w . Writing z̃ = 2z
2−p0 and κ̃ = p1−1

2−p0 , by (2.5), we
obtain

M[Bσµ,wf ](z) =
Γ((z̃ − κ̃+ µ)/2)Γ(1− (z̃ − σ − κ̃− µ)/2)
Γ(1− (z̃ − κ̃− µ)/2)Γ((z̃ − σ − κ̃+ µ)/2)

× Γ((z̃ − σ − κ̃+ w)/2)Γ(1− (z̃ − κ̃− w)/2)
Γ(1− (z̃ − σ − κ̃− w)/2)Γ((z̃ − κ̃+ w)/2)

M[f ](z)

:= F (z)M[f ](z).

For z = p1−p0+1
2 + iy and z̃ = κ̃ + 1 + 2

2−p0 iy, using the following properties of
Gamma function Γ(z):

Γ(z) = Γ(z̄), ∀z ∈ C,

|Γ(x+ iy)| = Γ(x)
∞∏
k=0

(1 +
y2

(x+ k)2
)−1/2, ∀x > 0, ∀y ∈ R,
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we obtain

|F (
p1 − p0 + 1

2
+ iy)| = |

Γ((µ+ σ + 1− 2
2−p0 iy)/2)

Γ((µ− σ + 1 + 2
2−p0 iy)/2)

Γ((w − σ + 1 + 2
2−p0 iy)/2)

Γ((w + σ + 1− 2
2−p0 iy)/2)

|

= |Γ((µ+ σ + 1)/2)
Γ((µ− σ + 1)/2)

Γ((w − σ + 1)/2)
Γ((w + σ + 1)/2)

|
∞∏
0

[Rk(ỹ)]1/2,

where

Rk(ỹ) =
(1 + ỹ2/(µ− σ + 1 + 2k)2)(1 + ỹ2/(w + σ + 1 + 2k)2)
(1 + ỹ2/(µ+ σ + 1 + 2k)2)(1 + ỹ2/(w − σ + 1 + 2k)2)

=
(1 + ỹ2/(Mk − σ)2)(1 + ỹ2/(Nk + σ)2)
(1 + ỹ2/(Mk + σ)2)(1 + ỹ2/(Nk − σ)2)

≤ 1.

and ỹ = 2y
2−p0 , Mk = µ+ 1 + 2k,Nk = w + 1 + 2k. Therefore, for n > 2σ, we have

sup
y
|F (

p1 − p0 + 1
2

+ iy)| <∞.

Hence, using [18, Lemma 2.5], we obtain

‖Bσµ,κf‖L2
ω(R+) ≤ C‖f‖L2

ω(R+),

which is the desired result. �

At the end of this section, we show the oscillatory integral estimate [6, 15].

Lemma 2.4. Suppose ϕ ∈ C2(Rn\{0}) is a radial function such that |ϕ(k)(ξ)| ∼
|ξ|a−k, k = 0, 1, 2 for 0 < a 6= 1. Let A,B, σ be the real numbers such that
A,B 6= 0, σ ∈ [1/2, 1), then there exists a constant C(a, σ), independent of A,B,
such that ∣∣ ∫

R
ei(Aϕ(ξ)+Bξ)|ξ|−σdξ

∣∣ ≤ C|B|−(1−σ). (2.6)

3. Proof of main results

Applying the Hankel transform (1.12) to the (1.1), by Definition 1.1, (1.13) and
Lemma 2.2 (i), we have

i∂tṽ + λ
2−p0

2 αṽ = 0

ṽ(λ, 0) = ṽ0(λ),

where

ṽ(λ, t) = (Hµv)(λ, t), ṽ0(λ) = (Hµv0)(λ).

Solving the ODE and inverting the Hankel transform, we obtain the formal solution

Ttv0(r) =
∫

R+
(λr)

1−p1
2 Jµ(

2
2− p0

(λr)
2−p0

2 )eitλ
2−p0

2 α

ṽ0(λ)dωλ. (3.1)
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Proof of Theorem 1.3. The key ingredients are the asymptotic behavior of the
Bessel function, and the properties of Hankel transform.

By the continuity of the embedding Ḣ
1
2−(R)∩ Ḣ 1

2 +(R) ↪→ L∞(R), it suffices to
prove

Proposition 3.1. Let p2 = 0. For b ∈ ( 2−p0
2 , 2 − p0), and a ∈ [ 1

2 −
b

(2−p0)α ,
1
2 +

n
2α −

b
(2−p0)α ), there exists a constant C independent of v0 such that∫

R

∫
R+
|∂at (Ttv0(r))|2 dωrdt

(1 + r)b
≤ C(p0, p1, a, α)‖v0‖2Ẇσ,2(R+)

,

where σ := (2a−1)α
2 + b

2−p0 .

This proposition, NS Lemma 2.3, yield Theorem 1.3. Indeed, under the assump-
tion of a, b above, we have σ ∈ [0, n2 ) and n−2

2 < |p1−1|
2−p0 , then∫

R

∫
R+
|∂at (Ttv0(r))|2 dωrdt

(1 + r)b
≤ C(p0, p1, a, α)‖v0‖2Ḣσrad(Rn)

. (3.2)

Choosing a = 1
2+ and a = 1

2− in (3.2), we obtain∫
R+
|T ∗v0(r)|2 dωr

(1 + r)b
≤ C(p0, p1, α)‖v0‖2

Ḣ
b

2−p0
rad (Rn)

.

Hence, Theorem 1.3 is proved.

Proof of Proposition 3.1. Using the Plancherel theorem of the usual Fourier trans-
form with respect to time t, we have∫

R

∫
R+
|∂at (Ttv0)|2 dωrdt

(1 + r)b
=
∫

R+

∫
R
|τa
∫

R
e−itτ (Ttv0)(r, t)dt|2 dτdωr

(1 + r)b
. (3.3)

Using (3.1), we obtain

left-hand side of (3.3)

=
∫

R+

∫
R

∣∣∣τa ∫
R

∫
R+

(λr)
1−p1

2 Jµ(
2

2− p0
(λr)

2−p0
2 )eit(λ

2−p0
2 α−τ)ṽ0(λ)dωλdt

∣∣∣2
× dτdωr

(1 + r)b

≤
∫

R+

∫
R

∣∣∣τa ∫
R+

(λr)
1−p1

2 Jµ(
2

2− p0
(λr)

2−p0
2 )δ(λ

2−p0
2 α − τ)ṽ0(λ)dωλ

∣∣∣2
dτdωr

(1 + r)b

≤p0,α
∫

R+

∫
R

∣∣∣τar 1−p1
2

∫
R+
λ
p1−2p0+3
(2−p0)α −1Jµ(

2r
2−p0

2

2− p0
λ

1
α )ṽ0(λ

2
(2−p0)α )δ(λ− τ)dλ

∣∣∣2
dτdωr

(1 + r)b

≤p0,α
∫

R+

∫
R

∣∣∣r 1−p1
2 λ

p1−2p0+3
(2−p0)α −1+aJµ(

2r
2−p0

2

2− p0
λ

1
α )ṽ0(λ

2
(2−p0)α )

∣∣∣2 dλdωr
(1 + r)b

,

where the above inequality can be rewritten as

C(p0, α)
∫∫

R+

∣∣r 1−p1
2 λ

p1−2p0+2
2 +(2a−1)

(2−p0)α
4 Jµ(

2
2− p0

(λr)
2−p0

2 )ṽ0(λ)
∣∣2 dλdωr

(1 + r)b
.
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We make a dyadic decomposition by choosing χ, which is a smoothing function
supported in [ 1

2 , 2], and change the variable λ
M 7→ λ, Mr 7→ r,

left-hand side of (3.3)

≤p0,α
∑
M∈2Z

∫∫
R+

∣∣λd̃+
2p1−2p0+1

2 (λr)
1−p1

2 Jµ(
2

2− p0
(λr)

2−p0
2 )ṽ0(λ)χ(

λ

M
)
∣∣2 dωrdλ

(1 + r)b

≤a,α,p0
∑
M∈2Z

M2d̃+p1−p0+1

∫∫
R+

∣∣(λr) 1−p1
2 Jµ(

2
2− p0

(λr)
2−p0

2 )ṽ0(Mλ)χ(λ)
∣∣2

× dωrdωλ
(1 + r

M )b

≤a,α,p0
∑
M∈2Z

∑
R∈2Z

M2d̃+p1−p0+1Rp1−p0KMR ,

(3.4)
where d̃ := (2a− 1) (2−p0)α

4 . By integrating,

KMR :=
∫

R+

∫ 2R

R

|(λr)
1−p1

2 Jµ(
2

2− p0
(λr)

2−p0
2 )ṽ0(Mλ)χ(λ)|2 drdωλ

(1 + r
M )b

.

Now we need to prove the bound of KMR , which is divided in two cases:

Case 1: R� 1. Since λ ∼ 1, we have (rλ)
2−p0

2 � 1. Using the property of Bessel
function (2.1), we have

KMR ≤p0,µ
∫

R+

∫ 2R

R

|(λr)
1−p1+(2−p0)µ

2 ṽ0(Mλ)χ(λ)|2 drdωλ
(1 + r

M )b

≤p0,µ R2−p1+(2−p0)µ min{1, (M
R

)b}
∫

R+
|ṽ0(Mλ)χ(λ)|2dωλ.

(3.5)

Case 2: R� 1. Since λ ∼ 1, we obtain (rλ)
2−p0

2 � 1. Then KMR can be bounded
by

C(p1)R1−p1
∫

R+
|ṽ0(Mλ)χ(λ)|2(

∫ 2R

R

|Jµ(
2

2− p0
(λr)

2−p0
2 )|2 dr

(1 + r
M )b

)dωλ.

Noticing that λ ∼ 1, so∫ 2R

R

|Jµ(
2

2− p0
(λr)

2−p0
2 )|2 dr

(1 + r
M )b

≤ min{1, (M
R

)b}
∫ 2R

R

|Jµ(
2

2− p0
(λr)

2−p0
2 )|2dr

≤p0 min{1, (M
R

)b}Rp0/2,

where the last inequality is obtained by Lemma 2.1. Then

KMR ≤p0,p1 R
p0−2p1+2

2 min{1, (M
R

)b}
∫

R+
|ṽ0(Mλ)χ(λ)|2dωλ. (3.6)

Hence, combining (3.5) and (3.6), for p2 = 0, we obtain the estimate

KMR ≤p0,p1

{
R2−p1+|p1−1|Mp0−p1−1 min{1, (MR )b}‖ṽ0(λ)χ( λM )‖2L2

ω(R+), R� 1,

R
p0−2p1+2

2 Mp0−p1−1 min{1, (MR )b}‖ṽ0(λ)χ( λM )‖2L2
ω(R+), R� 1.
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Now, returning to (3.4), we have

left-hand side of (3.3)

≤a,α,p0,p1
∑
M∈2Z

∑
R∈2Z:R�1

M2d̄R2−p0+|p1−1|min{1, (M
R

)b}‖ṽ0(λ)χ(
λ

M
)‖2L2

ω(R+)

+
∑
M∈2Z

∑
R∈2Z:R�1

M2d̄R
2−p0

2 min{1, (M
R

)b}‖ṽ0(λ)χ(
λ

M
)‖2L2

ω(R+)

≤a,α,p0,p1
∑
M∈2Z

M2d̄+b[
∑
R�1

R|p1−1|+2−p0−b +
∑
R�1

R
2(1−b)−p0

2 ]‖ṽ0(λ)χ(
λ

M
)‖2L2

ω(R+).

From the assumption b ∈ ( 2−p0
2 , 2 − p0), the above inequality can be further

controlled by ∑
M∈2Z

M (2a−1)
(2−p0)α

2 +b‖ṽ0(λ)χ(
λ

M
)‖2L2

ω(R+).

Finally, by Lemma 2.2 (ii) and letting M = 2j , we have

left-hand side of (3.3) ≤a,α,p0,p1
∑
j∈Z

2j(2−p0)σ‖Hµ[χ(
λ

2j
)Hµv0]‖2L2

ω(R+)

≤a,α,p0,p1 ‖
(∑
j∈Z
|2

(2−p0)σ
2 jHµ[χ(

λ

2j
)Hµv0]|2

)1/2

‖2L2
ω(R+),

where σ := (2a−1)α
2 + b

2−p0 and Proposition 3.1 follows from Lemma 3.2 below. �

Lemma 3.2 ([18]). Let ς ∈ R. Then there exists a constant C that depends only
on ς and β such that for all f ∈ Ẇ

2ς
2−p0

,2(R+), we have

‖
(∑
j∈Z
|2jςHµ[βj(λ)Hµf ]|2

)1/2

‖L2
ω(R+) ≤ C‖f‖

Ẇ
2ς

2−p0
,2 , (3.7)

where the function β ∈ C∞0 (R+) is supported in the interval [1/2, 2], βj(λ) = β( λ2j ),∑
j∈Z βj = 1.

Proof of Theorem 1.5. We consider the solution (3.1):

Ttv0(r) =
∫

R+
(λr)

1−p1
2 Jµ(

2
2− p0

(λr)
2−p0

2 )eitλ
2−p0

2 α

ṽ0(λ)dωλ.

By changing the variable 2
2−p0λ

2−p0
2 7→ λ, r

2−p0
2 7→ r, the solution becomes(2− p0

2
) p1−p0+1

2−p0

∫
R+
λ
p1−p0+1

2−p0 r
1−p1
2−p0 Jµ(λr)eit(

2−p0
2 λ)α ṽ0

(
(
2− p0

2
λ)

2
2−p0

)
dλ

:= T[ṽ0](r),

To prove (1.15) in Theorem 1.5, it suffices to prove that for q = 2(p1−p0+1)
p1−p0+1−(2−p0)s′

and s′ ∈ [ 1
4 , s), the norm ‖T[ṽ0](r)r

2p1−p0
(2−p0)q ‖LqL∞t (R+×R) is bounded by(∫

R+
|ṽ0((

2− p0

2
λ)

2
2−p0 )[1 + (

2− p0

2
λ)2]s/2λ

2p1−p0
2(2−p0) |2dλ

)1/2

,

where the norm ‖h(r, t)‖LqL∞t (R+×R) := supt∈R ‖h(·, t)‖Lq(R+).
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We write g(λ) = ṽ0(( 2−p0
2 λ)

2
2−p0 )[1 + ( 2−p0

2 λ)2]
s
2λ

2p1−p0
2(2−p0) . Then the above esti-

mate is equivalent to

‖P(g)|‖LqL∞t (R+×R) ≤q,p0,p1 ‖g‖L2(R+),

where

P(g)(r, t) = C(p0, p1)r
2p1−p0
(2−p0)q+

1−p1
2−p0

∫
R+
Jµ(λr)eit(

2−p0
2 λ)αg(λ)

× [1 + (
2− p0

2
λ)2]−s/2λ1/2dλ.

Therefore, utilizing the dual argument, our main task is to prove that

‖P∗(f)‖L2(R+) ≤q,p0,p1 ‖f‖LpL1
t (R+×R), (3.8)

where p = 2(p1−p0+1)
p1−p0+1+(2−p0)s′ and

P∗(f)(λ) = C(p0, p1)[1 + (
2− p0

2
λ)2]−s/2λ1/2

×
∫

R

∫
R+
Jµ(λr)e−it(

2−p0
2 λ)αf(r, t)r

2p1−p0
(2−p0)q+

1−p1
2−p0 dr dt.

Now we decompose P∗(f)(λ) =
∑
j=0,1,2(P∗j f)(λ), where

(P∗j f)(λ) = C(p0, p1)[1 + (
2− p0

2
λ)2]−s/2λ1/2

×
∫

R

∫
R+
Jµ(λr)e−it(

2−p0
2 λ)αφj(

λr

µ
)f(r, t)r

1
2−γ dr dt,

and φj are smooth cut-off functions such that φ0 = 1 on {|η| < 1
4}, φ0 = 0 on

{|η| < 1/4}, φ1 = 1 on {|η| ∼ 1}, φ1 = 0 otherwise, φ2 = 0 on {|η| < 2}, φ2 = 1
on {|η| > 3}, and φ0 + φ1 + φ2 = 1. The symbol γ = 2p1−p0

2−p0 ( 1
2 −

1
q ).

Non-endpoint case: s′ ∈ [ 1
4 , s). (i) j = 0. Using the property of Bessel function

(2.1), and s′ ∈ [ 2−p0
2 , s), we obtain

|(P∗0f)(λ)| ≤p0,p1 [1 + (
2− p0

2
λ)2]−s/2

∫ µ/(2λ)

0

(λr)µ+ 1
2 r−γ‖f(r, ·)‖L1

t
dr

≤p0,p1,µ λ−s
′
∫ µ/(2λ)

0

r−γ‖f(r, ·)‖L1
t
dr.

From the basic relation that ‖(P∗0f)(λ)‖L2(R+) = ‖(P∗0f)( 1
λ ) 1

λ‖L2(R+), we have

‖(P∗0f)(λ)‖L2(R+) ≤p0,p1,µ ‖µ1−s′
∫ (µλ)/2

0

r−γ

(µλ2 )1−s′
‖f(r, ·)‖L1

t
dr‖L2(R+). (3.9)

By extending the function r−γ‖f(r, ·)‖L1
t

to 0 for r ≤ 0, the right hand side of
(3.9) can be controlled by the Riesz potential operator Iβ , 0 < β < 1, where

Iβ(g)(λ) = Cβ

∫
R
|λ− r|β−1g(r)dr, λ ∈ R,

and Cβ is chosen so that (Iβ)∧(ξ) = |ξ|−β ĝ(ξ). So we further obtain

‖P∗0f‖L2(R+) ≤p0,p1,µ,s′ ‖Is′(r−γ‖f(r, ·)‖L1
t
)(
µλ

2
)‖L2(R+) (3.10)
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≤p0,p1,µ,s′
(∫

R
|ξ|−2s′ |(r−γ‖f(r, ·)‖L1

t
)∧(ξ)|2dξ

)1/2

(3.11)

≤p0,p1,µ,s′ ‖f‖LpL1
t (R+×R) (3.12)

where the last inequality is proved by using Pitt’s inequality for the usual Fourier
transform:

Lemma 3.3 ([11]). If l ≥ p, 0 ≤ a < 1−1/p, 0 ≤ d < 1/l and d = a+1/p+1/l−1,
then (∫

R
|f̂(ξ)|l|ξ|−dldξ

)1/l

≤ C(
∫

R
|f(x)|p|x|apdx)1/p,

where f̂(ξ) is the usual Fourier transform.

(ii) j = 1. The estimate of P∗1f is similar to P∗0f . When |λr| ∼ µ, the property
(2.3) implies |Jµ(λr)φ1(λrµ )| ≤ C(λr)−1/3, we obtain

‖(P∗1f)(
1
λ

)
1
λ
‖L2(R+) ≤p0,p1,µ,s′ ‖

∫ 2µλ

(µλ)/2

r
1
6−γ

(2µλ)
7
6−s′
‖f(r, ·)‖L1

t
dr‖L2(R+)

≤p0,p1,µ,s′ ‖Is′(r−γ‖f(r, ·)‖L1
t
)(2µλ)‖L2(R+)

≤p0,p1,µ,s′ ‖f‖LpL1
t (R+×R).

(3.13)

(iii) j = 2. Applying the asymptotic expansion of Bessel function (2.2), we write

(P∗2f)(λ) = C(p0, p1)b±[1 + (
2− p0

2
λ)2]−s/2

×
∫

R

∫
R+
ei[±λr−t(

2−p0
2 λ)α]φ2(

λr

µ
)f(r, t)r−γ dr dt

+ C(p0, p1)[1 + (
2− p0

2
λ)2]−s/2

∫
R

∫
R+
e−it(

2−p0
2 λ)α(rλ)1/2Φµ(rλ)

× φ2(
λr

µ
)f(r, t)r−γ dr dt

:= C(p0, p1)[(P±f)(λ) + (Qf)(λ)],
(3.14)

where |Φµ(rλ)| ≤ C(rλ)−1, |b±| ≤ C and the constant C is independent of µ.
For the estimate of (P±f)(λ), it is sufficient to consider (P+f)(λ). We decompose

(P+f)(λ) = S1(λ) + S2(λ),

where

S1(λ) = b+[1 + (
2− p0

2
λ)2]−s/2

∫
R

∫
R+
ei[λr−t(

2−p0
2 λ)α]f(r, t)r−γ dr dt,

S2(λ) = b+[1 + (
2− p0

2
λ)2]−s/2

∫
R

∫
R+
ei[λr−t(

2−p0
2 λ)α](φ2(

λr

µ
)− 1)f(r, t)r−γ dr dt.

For S2(λ), arguing as P∗0f , we obtain

‖S2(λ)‖L2(R+) ≤
∥∥λ−s′ ∫ 3µ

λ

0

‖f(r, ·)‖L1
t
r−γ dr

∥∥
L2(R+)

≤ ‖f‖LpL1
t (R+×R). (3.15)

For S1(λ), we extend S1 to R by setting

S1(ξ) = b+[1 + (
2− p0

2
y)2]−s/2

∫∫
R2
ei[ry−t(

2−p0
2 |y|)α]f(r, t)r−γdrdt, y < 0,
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so

‖S1‖2L2(R+) ≤p0
∫∫∫∫

K(r, r′, t, t′)r−γf(r, t)(r′)−γf(r′, t′) dr dt dr′ dt′,

where
K(r, r′, t, t′) =

∫
e−i[λ(r′−r)−(t′−t)( 2−p0

2 λ)α]λ−2s′dλ.

Since s′ ∈ [ 1
4 ,

1
2 ), by Lemma 2.4, we obtain |K(r, r′, t, t′)| ≤s′,α |r − r′|2s′−1.

Using the theory of Riesz potential and the Plancherel theorem of the usual Fourier
transform, we have

‖S1‖L2(R+) ≤p0,s′,α
(∫

R
|ξ|−2s′ |(r−γ‖f(r, ·)‖L1

t
)∧(ξ)|2dξ

)1/2

≤p0,s′,α ‖f‖LpL1
t (R+×R).

(3.16)

It remains to estimate (Qf)(λ). The uniform decay of the function Φµ on µ
shows that

|(Qf)(λ)| ≤p0,p1 [1 + (
2− p0

2
λ)2]−s/2λ−1/2

∫ ∞
2µ/λ

r−
1
2−γ‖f‖L1

t
dr. (3.17)

Applying Hölder’s inequality to (3.17), we obtain

‖Qf‖L2(R+) ≤p0,p1 µ−s
′
‖(λ− 1

2 +s′χ(0,µ)(λ)

+ λs
′−s− 1

2χ(µ,∞)(λ))‖L2(R+)‖f‖LpL1
t (R+×R)

≤p0,p1,µ,s′ ‖f‖LpL1
t (R+×R)

(3.18)

Combining (3.15)-(3.18), we conclude that

‖P∗2f‖L2(R+) ≤ C(p0, p1, µ, s
′, α)‖f‖LpL1

t (R+×R), (3.19)

Therefore, the claim (3.8) follows from the estimates (3.12), (3.13) and (3.19).

Endpoint case: s′ = s. For the endpoint case q = 2(p1−p0+1)
p1−p0+1−(2−p0)s , s ∈ [ 1

4 ,
1
2 ),

we follow the almost same line as in the argument of (3.8) by replacing s′ with
s and r−γ with r−γ%(r

2
2−p0 )1/q except for the estimate (3.18), where %(r

2
2−p0 ) =

r
2b

2−p0 (1 + r
2

2−p0 )−b. We only need to check the part of P∗2f .
Replacing r−γ with r−γ%(r

2
2−p0 )1/q in (3.17) and using Hölder inequality, we

obtain ∫ ∞
2µ/λ

r−
1
2−γ%(r

2
2−p0 )1/q‖f‖L1

t
dr

≤
(∫ ∞

2µ/λ

min{1, r
2bq

2−p0 }r−( 1
2 +γ)qdr

)1/q

‖f‖LpL1
t (R+×R).

Then for γ = 2p1−p0
2−p0 ( 1

2 −
1
q ) and b > 0,

|(Qf)(λ)| ≤p0,p1 [1 + (
2− p0

2
λ)2]−s/2λ−1/2

× {((2µ
λ

)−sχ(0,µ)(λ) + (
2µ
λ

)
2b

(2−p0)−sχ(µ,∞)(λ)}‖f‖LpL1
t (R+×R),

which yields the estimate (3.18). Hence (1.16) follows. This completes the proof of
Theorem 1.5.

Acknowledgments. This work was supported by grant NSFC11671354.
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