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�e presence of demand uncertainty brings challenges to network design problems (NDP), because �uctuations in origin-destination 
(OD) demand have a prominent e�ect on the corresponding total travel time, which is usually adopted as an index to evaluate 
the network design problem. Fortunately, the macroscopic fundamental diagram (MFD) has been proved to be a property of the 
road network itself, independent of the origin-destination demand. Such characteristics of an MFD provide a new theoretical basis 
to assess the tra�c network performance and further appraise the quality of network design strategies. Focusing on improving 
network capacity under the NDP framework, this paper formulates a bi-level programming model, where at the lower level, �ows 
are assigned to the newly extended network subject to user equilibrium theory, and the upper level determines which links should 
be added to achieve the maximum network capacity. To solve the proposed model, we design an algorithm framework, where 
tra�c �ow distribution of each building strategy is calculated under the dynamic user equilibrium (DUE), and updated through 
the VISSIM-COM-Python interaction. �en, the output data are obtained to shape MFDs, and k-means clustering algorithm is 
employed to quantify the MFD-based network capacity. Finally, the methodology is implemented in a test network, and the results 
show the bene�ts of using the MFD-based method to solve the network design problem under stochastic OD demands. Speci�cally, 
the capacity paradox is also presented in the test results.

1. Introduction

With a substantial increase in travel demand and existing 
limited road space, high priorities of governments, and the 
general public have been given to the problem of tra�c con-
gestion. From the perspective of supply, considerable e�orts 
have been undertaken to mitigate tra�c congestion, among 
which infrastructure construction such as expanding road 
capacity, or building a new road is a common approach. 
�ese e�orts could be associated with the transportation 
Network Design Problem (NDP), which is recognized as a 
strategical decision-making problem to improve system e�-
ciency. Depending on the continuity of involved decision 
variables, the NDP can be categorized into (1) the continuous 
network design problem (CNDP) aiming to optimize road 

network performance by the expansion of road capacity, (2) 
the discrete network design problem (DNDP) proposed to 
optimize road network performance by adding new road 
sections to an existing network, and (3) the mixed network 
design problem (MNDP) simultaneously taking CNDP and 
DNDP into consideration [1]. �is research selects DNDP 
as a topic.

Traditionally, most of the DNDPs focus on minimizing 
the total travel cost within a given budget while being subject 
to user equilibrium constraints. However, the network travel 
cost is hyper-sensitive to the input information, small pertur-
bations to the origin-destination (OD) tables, or minor 
changes to drivers’ route choices can drastically change the 
tra�c congestion indexes such as the total travel time, the 
number of bottlenecks, delay, density, and other network 
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outputs [2]. �at means, although the newly built road can 
decrease the network travel time most at present, when the 
OD demand varies in the future, the constructing strategy may 
not meet the original design expectations anymore, or even 
result in a higher cost than the original network.

With these observations, in this study, we attempted a 
new approach to the measurement of network-wide perfor-
mance in light of macroscopic fundamental diagram (MFD) 
concept. An MFD demonstrates a robust demand-insensitive 
relationship between network vehicle density and space-
mean flow, which can also be expressed as the relationship 
between vehicle accumulations and network outflow [2]. 
MFD is an attribute of the network infrastructure and the 
control strategy implemented. It implies that fluctuations in 
traffic demand would not change the shape of MFD, but 
modifying the road infrastructure or signal control can make 
a difference to an MFD. To circumvent the demand uncer-
tainty problems of a traditional traffic flow model, the MFD-
based network characterization method is employed as the 
performance evaluation index of a road network in this 
paper.

For a DNDP, the paper applies the MFD method to 
improve network capacity in order to mitigate traffic conges-
tion by optimizing the topology of an urban road network. A 
bi-level programming model is developed where the upper 
level goal is to maximize network capacity subject to limited 
budgets, and the lower level presents a user equilibrium model 
to reflect traffic state under different road construction plans. 
�e MFD-based DNDP is solved by a simulation-based frame-
work, where a�er adding each building strategy, the traffic 
flow of the extended road network is dynamically updated by 
the Frank–Wolfe algorithm. �e simulation data are then fed 
into MFDs.

2. Background

LeBlanc first addressed the DNDP for determining which 
links should be added to an urban road network to ease 
traffic congestion [3]. To explicitly describe the network 
design problem, LeBlanc developed a bi-level programming 
model, which has an upper level minimizing the total travel 
time, and a lower level reflecting user equilibrium routes of 
vehicles for a given road network configuration. Subsequently, 
extensive research studies have been carried out to deal with 
the network design problem. However, a vast majority of the 
earlier studies only concentrated on the objective of mini-
mizing the system travel time to improve the network per-
formance. In later research investigations, the researchers 
gradually shi� their attention to equity, sustainability, con-
sumer surplus, reserve capacity, and accessibility, etc. For 
example, Behbahania et al. incorporated social equity into 
transportation network planning for simultaneously mini-
mizing total travel time and achieving social equity objec-
tives [4]. Jiang and Szeto formulated a multiobjective 
network design model that measures network performance 
and health condition of residents respectively by maximizing 
the increase in consumer surplus and the reduction in the 
health cost. In the health cost function, three sustainability 

indicators, including traffic emissions, noise, and accidents, 
were considered [5]. A�er comparing the objectives of min-
imizing the total system cost and maximizing the network 
reserve capacity, Yang and Wang found that the equivalence 
relation of the two objectives varies by level of congestion. 
�at means, the higher the congestion is, the objective of 
maximizing the reserve capacity deviates farther from the 
goal of minimizing the total travel cost. �us, the authors 
suggested a combined target by applying different weightings 
on the two objectives [6]. Recognizing the difference 
between reserve capacity and system travel time, 
Miandoabchi et al. proposed a three-objective model that 
involves one reserve capacity and two new travel-related 
objective functions [7]. Di et al. combined traffic flow and 
accessibility to straightforwardly measure whether travellers 
could reach their destinations [1]. To summarize the above 
research studies, when considering other aspects like equity, 
sustainability, consumer surplus, reserve capacity, and/or 
accessibility, most studies proposed multiobjective models 
still including travel time as one of the objectives to optimize 
the network performance. However, travel time as a perfor-
mance measure is susceptible to network inputs such as 
travel demand.

2.1. Demand Uncertainty.  Due to the space-time uncertainty 
of travellers, OD demand changes over time. Most obviously, 
both newly constructed roads and ever-increasing population 
may stimulate future travel demand. In general, changes in 
OD demand have a great influence on system travel time, 
and consequently, sway the travel time-based constructing 
strategy in network design problems. Waller et al. proved 
that ignoring demand uncertainty tends to overestimate 
network performance and might engender an erroneous 
choice of improvements [8]. Patil and Ukkusuri justified 
that the deterministic demand-based approaches can only 
yield suboptimal enhancements [9]. �erefore, it would be 
more realistic to study the DNDP with a varied or stochastic 
demand.

To make the DNDP consistent with reality, a few studies 
have considered demand uncertainty in transportation net-
work design. Several methods have been proposed to hedge 
against the demand fluctuation, including the expected value 
model, chance-constrained model, mean-variance model, and 
min-max model [10]. To address demand uncertainties along 
with equity issues, Chen and Yang advanced two different sto-
chastic programming models: a chance-constrained model 
and an expected-value model. Both of the two models aimed 
at minimizing the expected value of total travel time. Besides, 
the chance-constrained model formulated the maximal equity 
ratio as a chance constraint and ensured that the probability 
of having the maximal equity ratio less than a given equity 
ratio is above a predefined confidence level [11]. Ukkusuri et 
al. adopted the mean-variance model, simultaneously mini-
mizing the expected value and the standard deviation of total 
system travel time [12]. Lou et al. aimed to minimize the 
worst-case travel cost under various future demand scenarios, 
and the model can be regarded as a min-max method [13]. 
But whatever methods are used to cope with demand uncer-
tainty, NDPs are usually solved by what are deemed to be 
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reasonable assumptions, for example, assuming OD demand 
as random variables with known probability distributions or 
under given scenario sets [1, 7, 11–14].

However, it is challenging to accurately predict the long-
term future demand, especially when we are always in 
changes and uncertainties with numerous factors a�ecting 
the course of the future growth in travel demand. In 
Goodwin’s report, the real growth in tra�c since 1989 di�ers 
widely from that forecast by the Department for Transport 
in England [15]. Clearly, if the estimate of future demand is 
wrong, then the network design decisions would be primarily 
a�ected. �erefore, it would be necessary to develop a robust 
plan for NDPs with less dependence on a prediction or 
assumption of future demand.

2.2. Macroscopic Fundamental Diagram. In this paper, 
we adopted an alternative methodological approach that 
employs MFD to circumvent the demand uncertainty 
problem of traditional models for evaluating network 
improvement. Geroliminis and Daganzo �rst veri�ed the 
existence of macroscopic fundamental diagram (MFD) 
linking space-mean �ow, density, and speed on a large 
urban area using the �eld experiment data of Yokohama 
[16]. As shown in Figure 1, the shape of an MFD illustrates 
a unimodal relationship between weighted average �ow and 
density. �ere is a similar relationship between out�ow and 
accumulation as the ratio of network �ow and out�ow is 
constant [16]. Generally, there are three parts in an MFD, 
representing unsaturated, saturated, and oversaturated 
tra�c states, respectively. In the case of the unsaturated state, 
network �ow increases with the network density. When 
more and more vehicles come into the network, the network 
space-mean density keeps growing, and the consequential 
network �ow gradually grows to its capacity, which is known 
as the saturated state. When more vehicles are added into 
the road network at the maximum �ow, the network �ow 
will start to decrease until a gridlock, also considered as 
an oversaturated state, occurring if the network density 
continues increasing.

One of the most intriguing observations of Geroliminis 
and Daganzo showed that MFD is a property of the road net-
work itself and is independent of demand. More speci�cally, 

the maximum �ow (or out�ow) of a road network remains 
invariant when the demand changes. On the other hand, var-
iations in road spatial distribution can result in di�erent MFDs 
of the same neighbourhood [16]. Likewise, the space-mean 
�ow is maximum for the same value of critical vehicle density, 
irrespective of the time-dependent OD tables [17]. �ese 
steady and elegant properties of MFDs can be fully utilized to 
develop a robust network design strategy for meeting stochas-
tic demand in the future.

A¬erwards, people in di�erent cities have proved the exist-
ence of MFD in the urban network by simulations [18], exper-
imental methods [19, 20], and mathematical approaches of 
variational theory [21, 22]. Nevertheless, experimental meth-
ods to estimate MFDs are based on observations of loop detec-
tor data or probe vehicle data, both of which are unavailable 
in an unbuilt road network for DNDPs. �e mathematical 
approach is only limited to homogeneous loadings; otherwise, 
the obtained MFD may fall far upper to the real MFD. Besides, 
the mathematical method is restricted to urban corridors, and 
is di�cult in gaining the network MFD [23]. For convenience 
and feasibility, many applications based on MFD resorted to 
simulation methods [24–30]. Also, in this research, in order 
to compare the network improvements a¬er building di�erent 
new links, we leverage VISSIM so¬ware to simulate tra�c �ow 
and then gain MFDs.

To our knowledge, there is little research undertaken for 
the network design problem with an application of the MFD 
measure. To �ll the gap, this paper takes network capacity 
(maximum network �ow) in an MFD as the measurement of 
network performance, and formulates a bi-level model where 
the upper level determines which new links from the candi-
dates should be built in order to achieve the highest network 
capacity, while the lower level generates a new user equilib-
rium every time when the decision variable in the upper-level 
changes.

�e rest of this paper is organized as follows. Section 3 
presents the problem formulation with a bi-level programming 
model. �en, the Frank-Wolfe and k-means clustering algo-
rithms are utilized to solve the lower and upper models, 
respectively. In Section 4, the model formulations and algo-
rithms are then applied in a medium-size test network—Sioux 
Falls network under stochastic demands, the MFD-based 
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Figure 1: General shape of an MFD.
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performance. �e network capacity is de�ned as the maximum 
network �ow, which is linearly related to network out�ow. 
�erefore, the network capacity can describe how many vehi-
cles, at most, are able to depart from a network per hour, and 
the critical density corresponding to the network capacity 
re�ects the optimal load of a road network. By comparing 
MFDs under di�erent network design schemes, the optimal 
design strategy is determined as the design leading to the max-
imum network capacity.

s.t.

In objective function (1), the optimal network capacity is 
expressed as the maximum weighted �ow in all feasible build-
ing plans under varied tra�c demand scenarios. Constraint 
(2) ensures the total cost of building new roads does not over-
run the given budget. Constraint (3) is used to calculate the 

(1)� = max
�∈�
��,

(2)∑
�∈�
���� ≤ �, ∀� ∈ �,

(3)� = �0 ∪ {�|�� > 0, � ∈ �},

(4)�� = ∑�∈��
�
� ⋅ ��∑�∈��� , ∀� ∈ �,

(5)�� = {0, 1}, ∀� ∈ �.

methodology is veri�ed suitable for solving network design 
problems. Finally, some concluding remarks and possible 
future extensions are presented in Section 5.

3. Problem Formulation

We use bi-level programming to describe the underlying pro-
cess of DNDP, where the transport planner determines the 
detailed network design strategy at the upper level. Over the 
newly extended network based on each construction strategy, 
travellers choose their routes in a user optimal manner at the 
lower level. �e objective of this model is to maximize the 
network capacity by selecting the optimal network design 
scheme. �e following notations in Table 1 are used in the 
model formulation.

3.1. Upper-Level Network Design. Given an existing road 
network �0, if the transportation infrastructure gradually 
faces di�culty in undertaking the current travel demand, 
transport planners would like to build one or more new roads 
from candidates � within a limited budget � to increase tra�c 
supply and alleviate tra�c congestion. �e set � contains 
randomly generated tra�c demand scenarios, where the 
generation and attraction of each tra�c zone are diversi�ed.

To evaluate the e�ectiveness of each feasible construction 
strategy for varied tra�c demands, MFD-based network 
capacity is proposed in this model for measuring the network 

Table 1: Notations and de�nitions in model formulation.

Notation Detailed de�nition
� Set of all links in a new network
�0 Set of all links in the original road network
� Set of candidate links to be built� �e total budget for building new links
��� �e capacity of link � under demand scenario �
� Set of OD pairs� Set of random OD demand scenarios
���� Set of routes between OD pairs �� under demand scenario �� Optimal network capacity�� Network weighted �ow under demand scenario �
�� Total travel time of equilibrium �ow under demand scenario �� Link index
�� �e construction cost of link �, � ∈ �����,� Flow on the route � ∈ ��� between OD pairs �� under tra�c demand scenario �� Index of a random OD demand scenario�� �e length of link ����� Travel demand between OD pairs �� under demand scenario �
��,�� Free-�ow travel time on link � under demand scenario �
���(���) Travel time on link � relating to �ow ��� under demand scenario �
��� Tra�c �ow on link � ∈ � under demand scenario �
�� Binary decision variable which equals 1 if and only if link � ∈ � is to be built, and 0 otherwise

���,��,� A binary variable which equals 1 if the route � between OD pairs �� under tra�c demand scenario � passes link �, and 0 
otherwise
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extended network � based on the original network �0 and 
potential links to build. �e MFD concept is re�ected in con-
straint (4), where �� is achieved by aggregating tra�c �ows of 
all the links in a road network under the demand scenario �. 
Constraint (5) decides whether or not to construct the new 
road �.
3.2. Lower-Level Flow Assignment 

s.t.

Travelers in the lower level are assumed to follow the user 
equilibrium (UE) principle whose purpose is to minimize 
users’ own travel cost described in formula (6). Constraint (7) 
depicts the OD demand conservation law under each tra�c 
demand scenario, constraint (8) demonstrates the relationship 
between link �ow and route �ow under each tra�c demand 
scene, and constraint (9) guarantees the nonnegativity of the 
route �ow. To acquire the link travel time ���(���) in the objec-
tive function (6), the following Bureau of Public Roads (BPR) 
function is introduced as Equation (10) relating travel time to 
tra�c �ow [31].

Updating tra�c networks, achieving lower-level UE, and pro-
ducing MFDs are three keys to �nding a solution to the pro-
posed model. Usually, network assignment �ow can be 
calculated by solving UE in each feasible network design plan, 
but vehicle density and vehicle accumulation of each link 
cannot be acquired. What is more, the realistic tra�c network 
state and in�uencing factors of MFDs, such as driver behav-
iours, network load capacity, actual network output, tra�c 
con�ict points, tra�c composition, and road types, are hard 
to be re�ected by static UE. In view of this, VISSIM is intro-
duced in this paper to simulate equilibrium �ow under ran-
domly generated OD demands, and further to update tra�c 
network state and output tra�c data for plotting MFDs. In 
VISSIM, to reduce intricate network drawing work, the orig-
inal network plus all candidate links are drawn in advance. 
All of the network information (network input, topology, and 
link length) can be extracted to an external control platform 
(Python console in this paper) by the VISSIM COM interface. 
In the external control platform, network �ow assignment 
can be calculated by the following rule, and then, according 
to assignment results, route decisions are obtained to set up 
simulation con�guration (Algorithm 1).

(6)�� = min∑
�∈�
∫���
0
���(���)��, ∀� ∈ �,

(7)
∑
�∈���
����,� = ���� , ∀�� ∈ �, � ∈ �,

(8)
��� = ∑

��∈�
∑
�∈���
����,����,��,�, ∀� ∈ �, � ∈ �,

(9)����,� ≥ 0, ∀� ∈ ���, �� ∈ �, � ∈ �.

(10)���(���) = ��,�� ⋅ [1 + 0.15( �
�
����)
4].

In the implementation process, in order to reduce the 
impact of abnormal data on the model, the highest centroid 
of clustering results of simulation data in the lower-level UE 
problem is selected to evaluate the network performance. 
More speci�cally, we get data points through weighting the 

Step 0: Initialization: � = �0 ∪ �.
 Draw network � in VISSIM;
 Termination condition: all building plans have been 
enumerated;
 Get the information of drawn VISSIM network by call-
ing COM interface;
 Remove all routes of vehicles by calling Remove Vehicle 
Route Static method;  

Step 1: Update tra�c network and plot MFDs by calling 
VISSIM COM:
 While termination condition is false, for each building 
plan � do.
  For each link � in � do:  //Update tra�c network 
through update travel time.
   If link � in plan �.
    �0� = �0�;
   Else.
    �0� = ∞;
  End for.
  For each � in � do:
   //Input tra�c demand.
   Find all links whose upstream vertexes generate 
tra�c demand, and denote the link set as �;
   For each link � in � do:
    Set link �.��ℎ���������� = �e generated 
tra�c demand in link ��� upstream vertex;
   End for.
   //Solve UE model.
   Solve UE model by Frank–Wolfe Algorithm;
   Get link equilibrium �ow ���;
   //Reset vehicle routes and simulate tra�c 
 assignment state.
   For each link � in � do:
    Find link ��� downstream link set �;
    For each downstream links �� in set � do:
     Link �.�����ℎ��������������� 
(Destination link = ��, Relative �ow = �

�
��
∑�∈����

);
    End for.
   End for.
   VISSIM. Simulation;
   Output simulation data;
  End for.
  Plot MFD;
 End while

Algorithm 1  
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Initialization: 

A = A0 
∪ A2.

3. Draw the network A in VISSIM and calibrate driver behavior parameters,
4. Con�gure OD demand to the simulation network,
5. Activate link evaluation function in VISSIM,
6. Python Environment.

Input: OD demand, network A, updated travel time
Model: User equilibrium
Output: Tra�c �ow assignment result 

Y is the lastlink 
group in Φ ?

Update travel time:
(1) ta = ta ∀a ∈Y;

∀a ∈ A, a∉Y;

Lower level

VISSIM 
COM

Calling VISSIM COM in Python environment to set up path �ows:

Calculate and output weighted densities and �ows by the following 
algorithm:
t = 0;
While (t< = T) do:
1. Give arandom disturbance to generate tra�c demand at each origin 
node that also is a tra�c input point in VISSIM,
2. Run VISSIM simulation in time interval [t, t + Sim_interval],
3. Obtain both tra�c density and tra�c�ow of each link,
4. Calculate weighted density and �ow by weighting the link length, 
5. t = t + Sim_interval
End While

1. Fit MFDY by k-means clustering algorithm based on the output
data of weighted densities and �ows,

Upper level

Yes

Output the optimal link group Y and optimal MFDY .

Y = Next link group in Φ.
No

Frank-Wolfe 
algorithm

1. Calculate the container Φ of link groups satisfying budget constraint (2),

Y = ø, Y = ø, Q = Q0, MFDY 

0 0

(2) ta = ∞0

1. Generate path decision point for each link,
2. Set up route decisions for each link based on link equilibrium �ows.

2. Estimate the maximum weighted-�ow QY of MFDY,
3. Update the global maximum weighted-�ow Q , and the global
optimal MFD: MFDY by the following rule: if QY >Q , then Y = Y,
Q = QY, MFDY  = MFDY.

= MFD0

Figure 2: Algorithmic framework for solution strategies.
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in Sioux Falls network [3]. As shown in Figure 3, there are 24 
nodes and 76 directed links in the original Sioux Falls network 
drawn in solid black lines. Each node is both an origin and a 
destination, so there is a total of 552 OD pairs in this network, 
and the OD demand is half of that in LeBlanc [3].

Now the government plans to build two-way streets in the 
Sioux Falls network to improve the network operation. In this 
case study, there are four pairs of candidate links in �, respec-
tively (7–16), (9–11), (11–15), and (13-14) drawn in red dashed 
lines. Each pair of links contains two links in opposite direc-
tions; for example, link pair (7–16) includes one link from node 
7 to node 16 and one link from node 16 to node 7. Assuming 
the construction cost of each pair of links is the same, the capital 
budget can only a�ord one pair of links to be built.

4.1. MFD Results. In order to get the MFD of Sioux Falls 
network under demand uncertainty, OD demand is changed 
randomly every 200 seconds ranging from 0 to double the 
original input, and the simulation time is totally 40000 seconds 
(about 11 hours), indicating 200 demand �uctuations in the 
process of simulation.

During a simulation, the tra�c �ow, density, and speed in 
each link are collected every second. �rough weighting both 
�ow and density with link length every 200 seconds by the 
following formulas: �w = ∑�����/∑����w = ∑�����/∑���, the 
MFD curve is made with the weighted network density as 
abscissa and the space-mean network �ow as the ordinate. In 
the formulas, �w and �w represent the weighted network �ow 
and weighted network density respectively, �� is denoted by 
length of link �, �� means the �ow of link �, and �� stands for 
the density of link �.

In this paper, we mainly concentrate on the saturated state 
of an MFD to analyze the network capacities of di�erent 

(density, �ow) sets from VISSIM output. Given the data points 
and the number of clusters, the k-means clustering algorithm 
is used to calculate the centroid of each cluster by taking the 
mean of all data points assigned to that centroid’s cluster. By 
comparing the �ow values of all the centroids, the largest �ow 

value is de�ned as the network capacity.

3.3. Solution Algorithm. For clarity, we give Figure 2 to 
illustrate the algorithmic framework straightforwardly, 
notations are listed in Table 2. As shown, at the beginning 
of the algorithm, feasible solutions are generated by the 
budget constraint (2) at the upper level. Each feasible solution 
represents a link group which can be constructed on the 
original road network. Every time a new link group is added 
to the original network, we apply the classic Frank-Wolfe 
algorithm in the newly extended network to solve the �ow 
assignment model in the lower level, and tra�c �ow on each 
link is calculated. Consequently, given link �ow obtained from 
the above step, the VISSIM COM in a Python environment 
is called to determine vehicle routes. �rough simulating the 
extended road network, the tra�c �ow, and density of each 
link can be output and used to calculate the weighted �ow and 
density by weighting the link length. With the weighted �ow 
and weighted density at hand, we are able to �t an MFD and 
extract the maximum weighted �ow as the network capacity. 
To reduce the impact of abnormal data on the result, we use 
the k-means clustering algorithm to get the network capacity. 
By comparing with the result in the previous step, a present 
optimal solution can be determined. If the last link group in 
the feasible solution set is not reached, a new link group needs 
to be added to the original network again. �e procedure 
keeps running until the last link group is examined, and then 
the encountered best solution will be the output.

4. Numerical Experiments

To test the proposed methodology, a simulation in VISSIM 10.0 
with COM interface connecting to Python 3.6 is implemented 

Table 2: Notations and de�nitions in the solution algorithm.

Notation Detailed de�nition
� �e original road network drawn in VISSIM
MFD0 Fitted MFD for the original network �
MFD� Fitted MFD for New_��
MFD�∗ Global optimal MFD

New_�� An extended network {� ∪ �} by adding new 
link group � to the original network�0 �e maximum weighted �ow of MFD0�� �e maximum weighted �ow of MFD��∗ Global maximum weighted �ow

Sim_interval Simulation interval� Simulation period� Link group index�∗ Global optimal link group index� Time index

Φ �e container of candidate link groups satisfying 
budget constraints

1 2
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Figure 3: Sioux Falls test network.
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network. �erefore, the change of MFDs before and a¬er con-
structing di�erent link groups in the Sioux Falls network is 
demonstrated. To obtain the capacity of each extended net-
work, k-means clustering algorithm is implemented to extract 
the saturated state of each MFD, and the centroid of saturated 
state shows the network capacity.

As shown in Figure 7, the highest centroid of each 
extended network is marked by a black cross with values 
(critical density, capacity) beyond. It is easy to derive that, 
under a certain budget, if only one link group is a�ordable 
in this case, the addition of link pair (11–15) leads to the 
maximum performance improvements, in which the net-
work capacity quadruples from 1140 veh/h to 4032 veh/h 
and the corresponding critical density triples from 37.63 veh/
km to 99.52 veh/km. �at is to say, a¬er building link pair 
(11–15), not only is the network out�ow increased remark-
ably, but also the road network is able to accommodate many 
more vehicles. When the network density reaches about 
100 veh/km, the original Sioux Falls network is almost at a 
standstill, but the extended network containing links 
(11−15) operates at an incredibly high throughput. In addi-
tion, both link pair (9–11) and (7–16) double the network 
capacity to 2250 veh/h and 2539 veh/h, respectively. 
However, far from increasing the network �ow, the addition 
of link pair (13-14) reduces the network capacity from 1140 
to 1110 veh/h. �ese results provide an order of priority for 
the candidate links to be built, which is link group (11–15), 
(9–11), (7–16), and link pair (13-14) should be avoided.

4.2. Capacity Paradox. Figure 8 depicts the comparison of 
MFDs between the original Sioux Falls network and the 
extended network that adds link pair (13-14) to the original 
Sioux Falls network. To our surprise, the network capacity of 
the original Sioux Falls network is 1140 veh/h, but when we 
build new links (13-14) to the Sioux Falls network, the network 
capacity reduces to 1110 veh/h instead. Moreover, the optimal 
density decreases as well from 37.63 veh/km to 36.24 veh/km. 
�at means, to maintain a network operating in the maximum 
�ow, a¬er building link pair (13-14), fewer vehicles are allowed 
to travel in the Sioux Falls network.

�e counter-intuitive phenomenon in Figure 8 can be 
explained by the capacity paradox, where the addition of new 
links to an existing network may worsen the network in terms 

networks, where the k-means clustering algorithm is used to 
recognize the maximum network �ow. To achieve the optimal 
number of clusters of the k-means clustering algorithm, the 
Elbow method, gap statistic method, and Silhouette method 
are all utilized in the paper. For example, the optimal number 
of clusters for the MFD of the original Sioux Falls network is 
determined as 4, as shown in Figure 4.

�en, in Figure 5, the MFD is divided into four parts by 
the k-means clustering algorithm, where the centroid (37.63, 
1140) of the highest red part implies that the network capacity 
of the original Sioux Falls network is 1140 veh/h and the cor-
responding critical density is 37.63 veh/km. �is means that 
the Sioux Falls network functions optimally when the network 
density is in the neighborhood of 37.63 veh/km. Density above 
37.63 veh/km can actually lead to a drop in network �ow.

A comparative graph is plotted in Figure 6, where x-axis 
and y-axis represent weighted density and weighted �ow 
respectively to determine an MFD, each color stands for an 
extended Sioux Falls network. �e six scenarios are the orig-
inal Sioux Falls network and extended networks by adding 
link pair (13-14), adding link pair (7–16), adding link pair 
(9–11), adding link pair (11–15), and adding all the candidate 
link pairs (13-14, 7–16, 9–11, 11–15) in the original Sioux Falls 
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Figure 7: MFDs and capacities of four extended Sioux Falls networks.
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better performance than the network adding four link pairs, 
especially when tra�c is in the congested condition. For the 
extended network containing link pairs (7–16, 9–11, 11–15, 
13-14), it is noteworthy that, once the density approaches about 
150 veh/km, no more vehicles are allowed to enter the network. 
Tra�c congestion spreads quickly, both the density and �ow 
would experience a sudden drop, eventually forming a tra�c 
standstill. �e phenomenon is called the clockwise hysteresis 
loop [34]. According to Geroliminis and Sun [35, 36], the hys-
teresis phenomenon in the network level happens because of 
di�erent degrees of spatial heterogeneity in vehicle density in 
the onset and o�set of the peak period. However, the hysteresis 
phenomenon disappears in the Sioux Falls network extended 
by adding only three link pairs (7–16, 9–11, 11–15). As shown 
by the green dots in Figure 9, a¬er the weighted density is 
150 veh/km, although the network �ow gradually decreases, 
more vehicles are allowed to pour into the network. It is veri�ed 

of reduction in maximum network �ow [32]. �e capacity par-
adox is introduced by the Braess paradox [33], in which adding 
a new link will result in a higher cost in a user optimized net-
work. As highlighted before, travel time is vulnerable to OD 
demand, and the occurrence of Braess paradox is no exception. 
For example, a link adding to the existing road network could 
increase the network performance when the current demand 
is relatively low. However, if the future demand increases to a 
su�cient extent, the same new link may, in contrast, result in 
longer travel time. �erefore, the result of a travel time-based 
network design problem is not �t for a network with stochastic 
demand. Conversely, due to the stable property of MFDs, the 
solution of an MFD-based network design problem is robust 
and suited for a long-term design. �e proposed methodology 
also has the ability to avoid capacity paradox because the objec-
tive of this model is to maximize the network capacity.

Moreover, Figure 9 shows the MFDs of two extended Sioux 
Falls networks. �e network adding three link pairs achieves a 
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Figure 8: MFD comparison of two extended networks: (a) original network; (b) adding link pair (13-14).
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study have shown the e�ectiveness of the proposed meth-
odology based on MFD in solving DNDPs under stochastic 
demands. For the test network, the candidate link pair  
(11–15) is given the highest priority because it improves the 
network performance most, quadrupling the network capac-
ity. (4) Interestingly, a capacity paradox occurs in the test 
network, where building a new link reduces the network 
capacity, and even incurs a hysteresis loop. �e proposed 
approach has the ability to avoid the  capacity paradox, 
because pursing a new network with higher capacity is the 
objective of this reseach. (5) According to the comparison 
between network capacity and network betweenness, we also 
provide a potential to utilize network betweenness to solve 
DNDPs, but the betweenness index has the inability to rec-
ognize the capacity paradox.

Despite pronounced predominance, there are still 
limitations in this study for the inability to address upheaval 
of demand in a methodologically sound manner, as rapidly 
changing tra�c demands can drastically a�ect MFD shape 
[18]. Besides, the scatter of an MFD and its shape can be 
in�uenced by the spatial distribution of network density [35]. 
A large scale heterogeneous network with uneven distribution 
of congestion may not have a well-de�ned MFD. 
Consequently, the network design problem in a large-scale 
heterogeneous urban network will be a future research 
direction.
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again that building more roads is not always better, and the 
selection of roads to be built needs to be careful.

4.3. Sensitivity to Network Betweenness. Betweenness for 
each edge is de�ned as the number of all the shortest paths 
in a connected graph that pass through the edge. We take 
the sum of all the betweenness of edges in a network as 
the network betweenness. As shown in Figure 10(a), the 
network betweenness of the original Sioux Falls network 
is 1656. When adding links (11–15) to the Sioux Falls 
network, the network betweenness decreases to 1617, 
because there are fewer links that serve only as media in 
the network, and travelers have fewer detours. �us, the 
smaller the network betweenness, the more e�cient the 
network may be. By comparing Figures  10(a)  and 10(b), 
we can easily discover that a¬er adding new links, the two 
indicators, network betweenness and network capacity, 
have the opposite trends. For example, a¬er adding links 
(11–15), the network betweenness decreases the most, and 
the network capacity increases the most. A¬er adding links 
(13-14), the network betweenness decreases the minimum, 
and the network capacity increases the minimum. It is 
an interesting �nding that for a network design problem, 
we may also use the network betweenness to measure the 
strategies of building new roads. �e network betweenness 
is probably the simplest and fastest way to solve NDPs so far. 
But compared with the proposed MFD-based methodology, 
there is a downside of the betweenness-based method for its 
inability to recognize the capacity paradox.

5. Conclusions

�is paper has outlined a novel approach to the measure-
ment of network performance with respect to the network 
capacity, and developed a bi-level programming model for 
the formulation of the DNDP. �e following are the main 
contributions of this paper: (1) Di�erent from the existing 
traditional models for DNDPs, this model aims to improve 
the network performance by obtaining the optimal MFD-
based network capacity. �e proposed method is appropriate 
for deciding which links should be built when tra�c demand 
is stochastic and di�cult to estimate accurately or unpre-
dictable during the planning years. (2) To solve the proposed 
model, an algorithm based on microsimulation so¬ware 
VISSIM is desgined, and the output MFDs are guaranteed 
to incorporate complicated driver behaviors and random 
demand scenarios simultaneously. (3) Results in the case 
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