
PARALLEL KNAPSACK ALGORITHMS ON MULTICORE ARCHITECTURES

THESIS

Presented to the Graduate Council
of Texas State University-San Marcos

in Partial Fulfillment
of the Requirements

for the Degree

Master of SCIENCE

by

Hammad A. Rashid, B.S

San Marcos, Texas
May 2010

PARALLEL KNAPSACK ALGORITHMS ON MULTICORE ARCHITECTURES

Committee Members Approved:

Apan Qasem, Chair

Clara Novoa

Mark McKenney

Approved:

J. Michael Willoughby

Dean of the Graduate College

COPYRIGHT

by

Hammad A. Rashid

2010

ACKNOWLEDGMENTS

I would firstly like to thank God Almighty without whose help and support

nothing would be possible. I would then like to thank Dr. Apan Qasem for all of his

help and support. I would also like to thank Dr. Clara Novoa for her help and

support as well. Lastly I would like to thank Dr. Mark Mckenney for agreeing to be

on my committee and for his insight and help.

This manuscript was submitted on May 12, 2010.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. IV

LIST OF TABLES .. Vll

LIST OF FIGURES .. Xll

ABSTRACT . XVll

CHAPTER

1. INTRODUCTION. .. 1

2. BACKGROUND. 5
2.1 The Integral Knapsack Problem 5
2.2 Solution approaches. 6

2.2.1 DP forward recursion 1 . 6
2.2.2 DP forward recursion 2 . 7
2.2.3 Hybrid approaches . . . 8

2.3 Schemes for Reducing the Search Space. 8

3. EVALUATING SEQUENTIAL KNAPSACK ALGORITHMS. 9
3.1 Dynamic Programming Algorithms 9

3.1.1 Classic Algorithm. . . 10
3.1.2 Morales Algorithm 12
3.1.3 The use of Dominance . . . 14

3.1.3.1 Classic Algorithm. 14
3.1.3.2 Morales Algorithm 16

3.2 Data set generation 16
3.3 Results of running the dominance optimization on the classic

and morales sequential algorithms 17

V

3.3.1
3.3.2
3.3.3

Impact of Sorting .
Using Different types of datasets and Sizes with sorting.
Summary

18
22
23

4. PARALLELIZATION OF KNAPSACK ALGORITHMS. . . . 34
4.1 Morales Parallel Algorithm. 34

4.1.1 The Sequential algorithms used for Parallelization 34
4.1.2 Naive Parallelization 35
4.1.3 Adapting the SPA algorithm. 36
4.1.4 Handling communication between threads 40
4.1.5 Improving Synchronization Cost . 42
4.1.6 Blocking...... 45

4.2 Classic Parallel Algorithm 47
4.2.1 Blocking..... 49

5. EXPERIMENTAL RESULTS . 52
5.1 Experimental Framework. 52
5.2 Speedup and Scalability . 54
5.3 Impact of Blocking Factor and Granularity 55

5.3.1 Using the Data set: data.dat : 10000 items x 10000 capacity. 55
5.3.1.1 Core2 with 2 threads: 55
5.3.1.2 Quad with 4 threads: 79
5.3.1.3 8-core with 8 threads: 82

5.4 Impact of Data Set Size and Range of Values. 85
5.4.1 Using the Data set : ds60-30k.dat : 30000 items x

30000 capacity. 85
5.4.1.1 Overall Speed up of Quad and 8-core compared 86
5.4.1.2 Quad with 4 threads: 87
5.4.1.3 8-core with 8 threads: 91

5.4.2 Using the Data set : ds60-30k.dat : 60000 items x
60000 capacity. 92
5.4.2.1 Overall Speed up 8-core 92
5.4.2.2 8-core with 8 threads: . 93

6. RELATED WORK . 98
6.1 Parallelization on Multi-core Architecture ... 98
6.2 Previous Work on the Parallelization of the IKP . 99

7. CONCLUSIONS AND FUTURE WORK 102

BIBLIOGRAPHY. .. 104

VI

LIST OF TABLES

Table Page

3.1 Procedure to generate Pj and Cj for IKP instances 17

3.2 Run times using Algorithms with dominance 19

3.3 Run times using Algorithms with dominance 20

3.4 Run times using Algorithms with dominance 21

3.5 Number of rows skipped in computation using Algorithms
with dominance 22

3.6 Number of rows skipped in computation using Algorithms
with dominance 23

3.7 Number of rows skipped in computation using Algorithms
with dominance 25

3.8 Number of rows skipped in computation using Algorithms
with dominance 26

3.9 Number of rows skipped in computation using Algorithms
with dominance 26

3.10 Number of rows skipped in computation using Algorithms
with dominance 27

3.11 Number of rows skipped in computation using Algorithms
with dominance 28

Vll

3.12 Number of rows skipped in computation using Algorithms
with dominance . 29

3.13 Number of rows skipped in computation using Algorithms
with dominance . 30

3.14 Number of rows skipped in computation using Algorithms
with dominance . 31

3.15 Number of rows skipped in computation using Algorithms
with dominance . 32

3.16 Number of rows skipped in computation using Algorithms
with dominance . 33

4.1 Running times of the Parallel Morales Diagonal Algorithm 37

4.2 The running times of the initial algorithms to implement
the SPA
Algorithm . 43

5.1 Performance improvement with increasing number of cores 54

5.2 Impact of block size on performance of parallel classic on
Core2 using data.dat : 10000 items x 10000 capacity. 55

5.3 Impact of block size on performance of parallel morales on
Core2 using data.dat : 10000 items x 10000 capacity 56

5.4 Thread 1 L1, L2 Misses on Core2 with Classic parallel al-
gorithm using data.dat : 10000 items x 10000 capacity 58

5.5 Thread 2 L1, L2 Misses on Core2 with Classic parallel al-
gorithm using data.dat : 10000 items x 10000 capacity 58

viii

5.6 Thread 1, Thread 2 Instructions completed on Core2 with
Classic parallel algorithm using data.dat : 10000 items x
10000 capacity . 59

5.7 Thread 1, Thread 2 CPU Cycles on Core2 with Classic par-
allel algorithm using data.dat : 10000 items x 10000 capac-
ity . 60

5.8 Total L1, L2 misses, CPU cycles and Instruction completed
including all Threads on Core2 with Classic parallel algo-
rithm using data.dat : 10000 items x 10000 capacity 63

5.9 Total L1, L2 Miss Rates per 1000 ins for all Threads on
Core2 with Classic parallel algorithm using data.dat : 10000
items x 10000 capacity . 64

5.10 Thread 1 L1, L2 Misses on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity 66

5.11 Thread 2 L1, L2 Misses on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity 67

5.12 Thread 3 L1, L2 Misses on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity 68

5.13 Thread 1, Thread 2, Thread 3 Instructions completed on
Core2 with Morales parallel algorithm using data.dat : 10000
items x 10000 capacity . 69

5.14 Thread 1, Thread 2, Thread 3 CPU Cycles on Core2 with
Morales parallel algorithm using data.dat : 10000 items x
10000 capacity . 71

5.15 Total L1, L2 misses, CPU cycles and Instruction completed
including all Threads on Core2 with Morales parallel algo-
rithm using data.dat : 10000 items x 10000 capacity 71

ix

5.16 Total L1, L2 Miss Rates per 1000 ins for all Threads on
Core2 with Morales parallel algorithm using data.dat : 10000
items x 10000 capacity . 74

5.17 Impact of block size on performance of parallel classic on
Quad using data.dat : 10000 items x 10000 capacity 79

5.18 Impact of block size on performance of parallel morales on
Quad using data.dat : 10000 items x 10000 capacity 81

5.19 Impact of block size on performance of parallel classic on
8-core using data.dat : 10000 items x 10000 capacity 82

5.20 Impact of block size on performance of parallel morales on
8-core using data.dat : 10000 items x 10000 capacity 84

5.21 Classic parallel on 8-core using ds30-300.dat (R:300, 30000
items x 30000 capacity) . 86

5.22 Performance improvement with increasing number of cores
with ds60-30k.dat dataset (R:30000, 30000 items x 30000 capacity) 87

5.23 Impact of block size on performance of parallel classic
on Quad using ds60-30k.dat (R:30000, 30000 items x 30000
capacity) . 88

5.24 Impact of block size on performance of parallel morales
on Quad using ds60-30k.dat (R:30000, 30000 items x 30000
capacity) . 89

5.25 Impact of block size on performance of parallel classic on
8-core using ds60-30k.dat (R:30000, 30000 items x 30000
capacity) . 91

5.26 Impact of block size on performance of parallel morales on
8-core using ds60-30k.dat (R:30000, 30000 items x 30000
capacity) . 93

x

5.27 Performance improvement with increasing number of cores
with ds60-30k.dat dataset: 60000 items x 60000 capacity 94

5.28 Impact of block size on performance of parallel classic on
8-core using ds60-30k.dat (R:30000, 60000 items x 60000
capacity) . 95

5.29 Impact of block size on performance of parallel morales on
8-core using ds60-30k.dat (R:30000, 60000 items x 60000
capacity) . 97

xi

LIST OF FIGURES

Figure Page

3.1 Pseudo code of the Classic algorithm(rrks2) 12

3.2 Dependence between entries for Classic Algorithm (rrks2) . 13

3.3 Pseudo code of the Morales Algorithm (rrks3) . 14

3.4 Dependence between entries for Morales (rrks3) 15

4.1 Parallelization of the Morales Sequential Algorithm using
a Diagonal Approach 36

4.2 The way the SPA Algorithm runs 38

4.3 The Pseudo code of the SPA Algorithm 39

4.4 Final Parallel implementation of morales using SPA 46

4.5 The implementation of Blocking in the Morales Parallel Algorithm 47

4.6 The way the Classic Parallel Algorithm works 48

4.7 The Code of the Classic Parallel Algorithm. 49

4.8 Blocking in the Classic Parallel Algorithm 51

5.1 Performance improvement with increasing number of cores,
Graph from Table 5.1 54

Xll

5.2 Impact of block size on performance of parallel classic
on Core2 using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.2 . 56

5.3 Impact of block size on performance of parallel morales
on Core2 using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.3 . 57

5.4 Thread 1 L1, L2 Misses on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.4 . 59

5.5 Thread 2 L1, L2 Misses on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.5 . 60

5.6 Thread 1, Thread 2 Instructions completed on Core2 with
Classic parallel algorithm using data.dat : 10000 items x
10000 capacity, Graph from Table 5.6 61

5.7 Thread 1, Thread 2 CPU Cycles on Core2 with Classic
parallel algorithm using data.dat : 10000 items x 10000
capacity, Graph from Table 5.7 62

5.8 Total L1, L2 misses including all Threads on Core2 with
Classic parallel algorithm using data.dat : 10000 items x
10000 capacity, Graph from Table 5.8 63

5.9 Total CPU cycles and Instruction completed including all
Threads on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Ta-
ble 5.8 . 64

5.10 Total L1 Miss Rates per 1000 ins for all Threads on Core2
with Classic parallel algorithm using data.dat : 10000 items
x 10000 capacity, Graph from Table 5.9 65

xiii

5.11 Total L2 Miss Rates per 1000 ins for all Threads on Core2
with Classic parallel algorithm using data.dat : 10000 items
x 10000 capacity, Graph from Table 5.9 65

5.12 Thread 1 L1, L2 Misses on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.10 . 67

5.13 Thread 2 L1, L2 Misses on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.11 . 68

5.14 Thread 3 L1, L2 Misses on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.12 . 69

5.15 Thread 1, Thread 2, Thread 3 Instructions completed on
Core2 with Morales parallel algorithm using data.dat :
10000 items x 10000 capacity, Graph from Table 5.13 70

5.16 Thread 1, Thread 2, Thread 3 CPU Cycles on Core2 with
Morales parallel algorithm using data.dat : 10000 items x
10000 capacity. Graph from Table 5.14 72

5.17 Total L1, L2 misses including all Threads on Core2 with
Morales parallel algorithm using data.dat : 10000 items x
10000 capacity, Graph from Table 5.15 73

5.18 Total CPU cycles and Instruction completed including all
Threads on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Ta-
ble 5.15 . 73

5.19 Total L1 Miss Rates per 1000 ins for all Threads on Core2
with Morales parallel algorithm using data.dat : 10000
items x 10000 capacity, Graph from Table 5.16 74

xiv

5.20 Total L2 Miss Rates per 1000 ins for all Threads on Core2
with Morales parallel algorithm using data.dat : 10000
items x 10000 capacity, Graph from Table 5.16 75

5.21 Impact of block size on performance of parallel classic
on Quad using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.17 . 80

5.22 Impact of block size on performance of parallel morales
on Quad using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.18 . 80

5.23 Impact of block size on performance of parallel classic
on 8-core using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.19 . 83

5.24 Impact of block size on performance of parallel morales
on 8-core using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.20 . 84

5.25 Classic parallel on 8-core using ds30-300.dat (R:300, 30000
items x 30000 capacity), Graph from Table 5.21 86

5.26 Performance improvement with increasing number of cores
with ds30-60k.dat dataset (R:30000, 30000 items x 30000
capacity), Graph from Table 5.22 87

5.27 Impact of block size on performance of parallel classic
on Quad using ds60-30k.dat (R:30000, 30000 items x 30000
capacity), Graph from Table 5.23 89

5.28 Impact of block size on performance of parallel morales
on Quad using ds60-30k.dat (R:30000, 30000 items x 30000
capacity), Graph from Table 5.24 90

5.29 Impact of block size on performance of parallel classic on
8-core using ds60-30k.dat (R:30000, 30000 items x 30000
capacity), Graph from Table 5.25 92

xv

5.30 Impact of block size on performance of parallel morales on
8-core using ds60-30k.dat (R:30000, 30000 items x 30000
capacity), Graph from Table 5.26 94

5.31 Performance improvement with increasing number of cores
with ds30-60k.dat dataset: 60000 items x 60000 capacity,
Graph from Table 5.27 . 94

5.32 Impact of block size on performance of parallel classic on
8-core using ds60-30k.dat (R:30000, 60000 items x 60000
capacity), Graph from Table 5.28 96

5.33 Impact of block size on performance of parallel morales on
8-core using ds60-30k.dat (R:30000, 60000 items x 60000
capacity), Graph from Table 5.29 96

xvi

ABSTRACT

PARALLEL KNAPSACK ALGORITHMS ON MULTICORE ARCHITECTURES

by

Hammad A. Rashid

Texas State University-San Marcos

May 2010

SUPERVISING PROFESSOR: APAN QASEM

Emergence of chip multiprocessor systems has dramatically increased the

performance potential of computer systems. Since the amount of exploited

parallelism is directly influenced by the selection of the algorithm, algorithmic

choice also plays a critical role in achieving high performance on modern

architectures. Hence, in the era of multicore computing, it is important to

re-evaluate algorithms efficiency for key problem domains. This paper investigates

the impact of algorithmic choice on the performance of parallel implementations of

the integral knapsack problem on multicore architectures. The study considers two

algorithms and their parallel implementations, and examines several aspects of

performance including speedup and scalability.

xvii

CHAPTER 1

INTRODUCTION

It is widely agreed, that the trend of packing more and more cores on a single chip,

brought on by the advent of multicore technology, is likely to continue for the next

couple of years - perhaps decades. This fundamental shift in processor design

technology implies that software plays a key role in harnessing the true potential of

any computer system. In particular, compilers need to uncover parallelism at

different levels and transform code for parallel execution. Also, run-time systems

need to schedule concurrent threads for efficient utilization of underlying

architectural resources. For many problem domains, however, advances in

performance optimizing software will not be sufficient. To a great extent, the

parallelism that can be extracted by the compiler is determined by the initial choice

of the algorithm. For example, in the combinatorial optimization field dynamic

programming and branch-and-bound algorithms are used to solve optimization

problems but these algorithms have different degrees of parallelism and therefore,

lead to widely varying performance. Thus, it is important to consider algorithmic

choice when implementing parallel solutions on current chip multiprocessor (CMP)

architectures.

Finding the most suitable algorithm that will deliver high-performance across

different architectures and problem sizes has always been a significant challenge,

1

2

researched over years. In particular, approaches based on automatic tuning have

been quite successful for automating the selection of the optimal (or near optimal)

algorithmic variant for specific domains [7, 26, 5]. However, the emergence of CMP

systems adds a new level of complexity. CMP architectures contain one or more

levels of cache shared among multiple processing cores. A shared-cache (or memory,

in general) poses an inherent trade-off between data locality and parallelism [24].

On one hand, any parallel decomposition will inevitably influence the data access

patterns from concurrent threads and consequently affect locality. On the other

hand, any transformation for improving locality will impose constraints on

parallelism that will affect performance. Thus, when parallelizing an application for

CMP architectures, it is imperative to find the right balance between data locality

and parallelism. Since algorithmic choice dictates the amount of exploited

parallelism and data locality, it plays a key role in obtaining high-performance on

CMP systems.

This research studies the impact of algorithmic choice on the performance of

parallel algorithms for solving the integral knapsack problem (IKP) under a

dynamic programming (DP) approach. Two different DP algorithms are studied.

IKP is very relevant in combinatorial optimization because it directly models

practical situations such as capital budgeting [22], cutting stock [9, 10] cargo

loading problems [4, 14] and scheduling of batch processors [18]. Furthermore, IKP’s

appear as sub-problems in set-partitioning formulations for multi-dimensional

cutting stock [11], crew scheduling and generalized assignment problems [3]. IKP’s

have also contributed to the generation of minimal cover induced constraints and in

3

the development of coefficient reduction procedures for strengthening bounds for

general integer programming (IP) problems [16]. This relationship between IKP’s

and other IP’s has motivated great interest for developing efficient IKP algorithms.

Several factors make IKP a suitable target for evaluating the impact of

algorithm choice. IKP algorithms under a DP approach are amenable to different

types of parallelism. For example, some IKP algorithms can be parallelized in a

pipelined fashion [2] and in other algorithms the central loop lends itself to a data

parallel decomposition. Also most implementations of IKP exhibit data locality that

can be exploited through compiler transformations.

The primary goal of this study is to understand the performance trade-offs from

choosing a particular type of DP algorithm for solving an IKP instance. Specifically

this research makes the following contributions:

- a quantitative analysis of performance for two DP algorithms is presented. To

the best of our knowledge, no previous work has looked at performance issues

for IKP algorithms on multicore architectures.

- a key tunable parameter is identified which can be used to significantly

enhance performance of both parallel algorithms.

The rest of this document is organized as follows: chapter 2 provides background

on the IKP; chapter 3 describes the sequential algorithms used and also discusses

optimizing them with dominance; chapter 4 disscusses the parallel implementations

of the sequential algorithms; chapter 5 presents experimental results and analysis;

4

chapter 6 discusses related work on parallelization of IKP; and finally, chapter 7

provides conclusions.

CHAPTER 2

BACKGROUND

2.1 The Integral Knapsack Problem

IKP can be formulated as follows: Given a knapsack of capacity C and a set of n

different objects (items) each one of them with profit pj and weight wj, find

non-negative integers x1, ..., xn, where xj represents the number of jth type objects,

such that the total weight of the objects does not exceed the knapsack capacity and

the total profit is maximized. In the IKP, wj, pj, n, and C are all positive integers.

If xi ∈ 0, 1 the problem reduces to the 0/1 knapsack problem.

Some authors refer to the IKP as unbounded knapsack problem (UKP) [16]. The

UKP assumes that an infinite number of objects of each kind are available while the

bounded knapsack problem (BKP) assumes that there is up to bj objects of each

type available, that is, xj = 1, ..., bj. Following is the IP formulation for the UKP:

Maximize
n∑

j=1

pjxj (UKP)

subject to

n∑
j=1

wjxj ≤ C j = 1, ..., n

xj ≥ 0 and integer, j = 1, ..., n

5

6

Even if knapsack problems (KP’s) look as the simplest IP’s, they are NP-hard

[8]. Thus, KP’s cannot be solved in a time bounded by a polynomial in n [16].

However, they can be solved with pseudo-polynomial algorithms since log2(C) bits

are required to encode the input C.

2.2 Solution approaches

The classic approaches for solving exactly KP’s are branch and bound (B&B) [16]

and dynamic programming (DP) [15, 1, 2]. Here the discussion focuses on DP.

Hybrid approaches combining DP and IP are also mentioned briefly.

2.2.1 DP forward recursion 1

Works in [9] and [16] presented a DP forward recursion (see Eq. 2.1) to compute

fm(ĉ), the total profit (i.e. total value) from loading the most valuable combination

if considering m items and a knapsack capacity ĉ. In this recursion, l represents a

possible number of items to load.

fm(ĉ) = max{fm−1(ĉ− lwm) + lpm}

l integer, 0 ≤ l ≤ ⌊ĉ/wm⌋ (2.1)

where m = 1, 2, ..., n and ĉ = 0, ...C. After the forward recursion step, the optimal

value for the profit function is given by fn(C). A backtracking step permits to

determine the optimal solution (l∗m,m = 1, 2, ..., n) associated to fn(C).

For each m, O(C⌊ĉ/wm⌋) operations are required to find fm(ĉ) and then the

7

overall time complexity is O(C
∑n

m=1⌊ĉ/wm⌋) or O(nC2) in the worst case. The

space complexity is O(nC), since for each item, the vector fm(ĉ) must be stored.

2.2.2 DP forward recursion 2

The work in [6] presented a recursion to the 0/1 knapsack problem which was

extended to the integral case by [11] and parallelized by [17]. Authors in [11]

mention that this recursion (see Eq. 2.2) is more efficient than the one in Eq. 2.1.

The recursion is given by:

fm(ĉ) = max{pm + fm(ĉ− wm), fm−1(ĉ)} (2.2)

m = 1, 2, ..., n and ĉ = 0, ...C. Equation 2.2 selects between loading or not a unit

of product m. This recursion involves less operations than the one in equation 2.1

by a factor of 1/n
∑n

m=1 ⌊(ĉ/wm)⌋ and the resulting time and space complexity are

O(nC). Details about the procedures to find the optimal solution

(l∗m,m = 1, 2, ..., n) associated to fn(C) are in [11] and [12].

For large IKP’s the B&B approach seems more efficient than DP [2]. The

instances that B&B can solve are usually larger than the ones DP can solve.

However, in contrast to B&B algorithms, DP recursions (equations 2.1 and 2.2) are

insensitive to the parameters pi, wi, i = 1, 2, ...,m and therefore they can be good

for non well-behaved problems (i.e. problems with correlated pi and wi values) but

not so good for well-behaved problems (i.e. uncorrelated problems). DP also

exhibits two additional advantages: knowledge of the solution for any capacity lower

8

than the given maximal capacity and ability to reuse the known solutions for

solving larger capacity problems [1].

2.2.3 Hybrid approaches

The work in [20] is the first hybrid approach for solving IKP’s. The algorithm

significantly outperforms all existing algorithms for solving the problem. The

algorithm success comes from embedding B&B into a DP framework, applying

multiple bounds including a new stronger one, and exploiting many IKP properties

such as dominance relations and periodicity.

2.3 Schemes for Reducing the Search Space

The work in [10] introduces the concept of dominance to reduce the size of the

search space (number of states) in the DP approach. Simple dominance (sd) states

that if an object type has a larger weight and smaller profit than another, the

former may never occur in an optimal solution. Thus, object i is simply dominated

by object j when wi >= wj and pi <= pj.

In [16] multiple dominance(md) is introduced. It states that object i is multiple

dominated by object j if and only if ⌊wi/wj⌋ ≥ pi/pj. This dominance relation

means that j dominates i when the profit from all the objects type j that can be

allocated in the space occupied by object i is larger than the profit for i. Refined

dominance relationships such as the collective dominance and threshold dominance

have been proposed and used in [1].

CHAPTER 3

EVALUATING SEQUENTIAL KNAPSACK ALGORITHMS

3.1 Dynamic Programming Algorithms

This research implements the DP forward recursions 1 [9] and 2 [11] provided in

Section 2.2. In the rest of the paper, these two algorithms are referred as classic

and morales. Both algorithms use a two dimensional matrix M of n rows that

represent the items and C columns that represent the knapsack capacities. The

indexes (m, ĉ) will be used to represent any (row, column) pair in the grid. The

knapsack capacity is in terms of weight but it could be any other relevant problem

dimension that needs to be used efficiently such as volume, length, etc. The goal of

the algorithms is to compute the maximum attainable profit (value) from selecting

any item and capacities combination.

From applying any algorithm, entry (m, ĉ) will contain the maximum attainable

profit(value) from using integer quantities of items type 1, 2,m and a knapsack with

capacity ĉ. For example, assume as input parameters 5 items, a knapsack with

maximum capacity 8 kg, and a list of individual profits (pi) and weights (wi) for the

items. The grid for solving the problem consists of 8 columns (total capacity) and 5

rows (total items). The entries at the 1st row contain the maximum attainable

profits if loading only item 1 for different knapsack capacities ĉ, the ones in the 2nd

row contain the maximum attainable profits after loading items 1 and 2 in the

9

10

knapsack, and so on. Thus, entry (4,7) on the grid contains the maximum or

optimal profit attainable after loading items 1, 2, 3 and 4 in a knapsack with

capacity 7 kg. Now assume that 2 units of item 1, 1 unit of items 2 and 3, and 3

units of item 4 are the optimal quantities to select. The maximum attainable profit

for entry (4, 7) is given by :

Maximum profit for entry (4,7) = 2 * (profit of item 1) + 1 * (profit of item 2)

+ 1*(profit of item 3) + 3 * (profit of item 4).

However, since the optimal quantities to load of each item are not known ”a

priori”, the computation above cannot be performed in this straightforward way for

all grid entries. The computation will be based on an iterative procedure where on

item is loaded at a time and the best loading decisions for the item are recorded and

used for taking decisions for the next item to load. The single computations for each

algorithm studied are described below.

3.1.1 Classic Algorithm

rrks2 algorithm This algorithm is based on the forward knapsack dynamic

programming recursion proposed by [9] (equation 2.1 in section 2.2). The algorithm

goes through the grid row by row. For every item m, the maximum number of items

of type m that can be loaded given a knapsack with capacity ĉ is computed as

⌊ĉ/wm⌋ A choice for the number of units of product m to load in the knapsack is

notated as l. Given a choice of l units for product m, a possible profit value for entry

(m, ĉ) is calculated adding the previous maximum attainable profit in row m− 1 and

column ĉ− (wm ∗ l) to the profit from loading l units of product m, that is, l ∗ pm.

11

After repeating this computation for all possible values of l, (l = 0, 1, , ⌊ĉ/wm⌋), the

maximum of these profits denoted as fm(ĉ) is stored in the grid entry (m, ĉ).

The following is an example of the computation steps for rrks2 algorithm.

Compute the maximum attainable profit for row 4 and column 8 of the grid given

item 4 weight= 3 kg, item 4 value= 30, and knapsack capacity ĉ = 8 kg.

- Go to 4th row in the grid which represents the profit from using items 1 to 4.

- For capacity 8, compute the total units possible to load for item 4. Total =

⌊ĉ/w4⌋ = 8/3 = 2

- Perform the following loop from l = 0 to l = 2

for l=0 to 2 do: result = (pm ∗ l) + profit value row [m− 1] column

[ĉ− (wm ∗ l)]

In this example, result = (30*l + profit value row [3] column[8 - (3 * l)]) and

therefore:

- when m=0, result = profit row [3] column [8];

- when m=1, result= 30 + profit row[3] column [8-3]

- when m=2, result= 60 + profit row[3] column [8 - 6]

- Compute the maximum of the results above and store it in the 4th row, 8th

column of the grid. This maximum represents the maximum attainable profit

of using items 1, 2, 3 and 4 in a knapsack with capacity 8 kg.

Fig. 3.1 shows the pseudo code for the algorithm.

12

// n = total number of items
// C = total capacity
// m = item (item/row index in 2D grid M)

// ĉ = capacity (capacity/col index in 2D grid M)

// l = (letter L) , number of items m possible with ĉ

for m: =1 to n do
 for ĉ := 1 to C do

 l:=0
 while (l <= (ĉ/weight[m]))

 if (l equal to 1)
 result = profit[m] * l;
 else

 result = (profit[m] * l) + f[m-1][ĉ - (weight[m] * l)];

 if (result > maxvalue)
 maxvalue := result;

 l++;

 endwhile

 f[m][ĉ]= maxvalue;

 endfor

endfor

Figure 3.1: Pseudo code of the Classic algorithm(rrks2)

Fig. 3.2 illustrates the dependence between entries of the grid for the

computation of the maximum attainable profits.

3.1.2 Morales Algorithm

rrks3 algorithm. This algorithm is based on the forward knapsack dynamic

programming recursion proposed by [11] and parallelized by [17] in a distributed

framework. The algorithm also goes through the grid row by row. To compute a

maximum attainable result for entry (m, ĉ), the algorithm compares the maximum

attainable result(profit) of not using the item m at all, which corresponds to the

13

1 2 … ĉ C

1

m-1

m

n

Figure 3.2: Dependence between entries for Classic Algorithm (rrks2)

value stored in row m− 1 at column ĉ and the value from using one more unit of

current product m which is the sum of the maximum attainable result at entry

(m, ĉ− wm) and the value of item m, pm. The maximum of these two quantities is

recorded entry (m, ĉ).

The following is an example of the computation steps for rrks3

algorithm.Compute the maximum attainable profit for row 4 and column 8 of the

grid given item 4 weight= 3 kg, item 4 value= 30, and knapsack capacity ĉ = 8 kg.

- Go to the 4th row in the grid that represents the value from using items 1 to 4.

- Get result1, the maximum attainable profit in row 3 and column 8.

- Compute result2, by getting the profit in row 4 and column (8− wm) and

adding it to the profit of item m, pm. In the example, result2 = profit row [4]

[8-3] + 30

- Find the maximum of result1 and result2, that is,

finalresult = maxresult1, result2

14

- Store finalresult in row 4 at column 8. This maximum represents the

maximum attainable profit of using items 1, 2, 3 and 4 in a knapsack with

capacity 8 kg.

Fig. 3.3 shows the pseudo code for the algorithm.

// n = total number of items
// C = total capacity
// m = item (item/row index in 2D grid M)

// ĉ = capacity (capacity/col index in 2D grid M)

for ĉ:= 1 to C do
 f[0][ĉ]:= 0;

for m: =1 to n do
 for ĉ := 1 to C do
 if (ĉ < weight[m])
 f[m][c] := f[m-1][ĉ]
 else

 f[m][ĉ] := max {(f[m][ĉ -weight[m]] + profit[m]) , f[m-1][ĉ]};

 endfor

endfor

Figure 3.3: Pseudo code of the Morales Algorithm (rrks3)

Fig. 3.4 illustrates the dependence between entries of the grid for the

computation of the maximum attainable profits.

3.1.3 The use of Dominance

3.1.3.1 Classic Algorithm

rrks2sdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [9] and enhanced with the simple

dominance concept explained in section 2.3 Schemes for reducing the search space.

15

1 2 … ĉ C

1

m-1

m

n

Figure 3.4: Dependence between entries for Morales (rrks3)

The values computed for the item that dominates are stored (copied in the rows of

the non-dominated items) until there is an item that results non-dominated.

For example, if there are three items m, m+ 1 and m+ 2 and item m dominates

item m+ 1 and m+ 2, the maximum values for item m are saved in rows m+ 1 and

m+ 2. Item m will continue being copied until finding another non-dominated item

m′.

Alternatively, the simple dominance concept can be validated in a pre-processing

phase and the recursive algorithm rrks2 can be just run on the non-dominated

items.

rrks2mdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [9] enhanced with the multiple

dominance concept explained in the section 2.3 Schemes for reducing the search

space. The steps and comments in rrks2sdb apply to rrk2mdb just updating the

simple dominance criterion to multiple

16

3.1.3.2 Morales Algorithm

rrks3sdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [11] and parallelized by [17] enhanced

with the simple dominance concept explained in the section 2.3 Schemes for

reducing the search space. The values computed for the item that dominates are

stored (copied in the rows of the non-dominated items) until there is an item that

results non-dominated. Alternatively, the simple dominance concept can be

validated in a pre-processing phase and the recursive algorithm rrks3 can be run

just on the non-dominated items.

rrks3mdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [11] and parallelized by [17] enhanced

with the multiple dominance concept explained in Section 2.3 Schemes for reducing

the search space. The values computed for the item that dominates are stored

(copied in the rows of the non-dominated items) until there is an item that results

non-dominated. Alternatively, the multiple dominance concept can be validated in a

pre-processing phase and the recursive algorithm rrks3 can be run just on the

non-dominated items.

3.2 Data set generation

This research uses the procedure in [19] for generating instances with pseudo

random profits and weights. This procedure permits to generate uncorrelated (UC),

weakly correlated (WC), strongly correlated (SC) or subset-sum knapsack instances

17

(SS) of any size. Next table summarizes the way wj and pj are generated for each

type of instance.

Table 3.1: Procedure to generate pj and cj for IKP instances

Instance type wj pj
UC Random in [1, R] Random in [1, R]
WC Random in [1, R] Random in [wj −R/10, wj +R/10]
SC Random in [1, R] pj = wj + 10
SS Random in [1, R] pj = wj

The main default dataset used was the UC type with random values selected

from 1:R where R=100 for 10000 weights and 10000 profits. The file representing

this dataset was called data.dat. The data in this file is unsorted by default.

3.3 Results of running the dominance optimization on the classic and

morales sequential algorithms

The tests were run on a Core 2 Duo Machine which is described in chapter 5.

There were two compilers that were used to compile separate executions of the

algorithms, the Intel Compiler (ver 10.1) and the G++ compiler (ver 4.1.2).

When reporting execution times only the running time for the algorithm itself in

the application is reported,and thus excluding any overhead associated with calls to

timer routines and file I/O operations. The running time is given in seconds and

minutes.

The main default dataset used was the UC type with random values selected

from 1:R where R=100 for 10000 weights and 10000 profits. The file representing

this dataset was called data.dat. The data in this file is unsorted by default.

18

For many of the tests the dimensions of 10000 items x 10000 capacity was used.

Besides the UC random dataset type, other datasets of WC, SC and SS were

also used. These are described in section 3.2.

For every data set three forms of it were used.

1. Unsorted

2. Sorted by Weight: The dataset was sorted in terms of the items weights in

ascending order with the smallest weight on top going down to the largest

weight at the bottom.

3. Sorted by Profit/Weight : The dataset was sorted in terms of the profit

divided by the weight of each item. The item having the greatest value of

profit/weight was on top , then the next value and so on in a descending order.

3.3.1 Impact of Sorting

The impact of the running times on using the dominance optimization on the

algorithms using the default unsorted dataset is shown in table 3.2.

The Simple dominance greatly reduced the classic (rrks2)algorithm’s running

time and the multiple dominance brought about even more significant improvement.

Even with the Morales (rrks3) algorithm both simple dominance and multiple

dominance reduced running times. Overall the multiple dominance optimizations

gave the best results with both algorithms.

If the same dataset was sorted by weight from before, then the running times of

the classic (rrks2) algorithm with the dominance was greatly reduced. Both the

19

Table 3.2: Run times using Algorithms with dominance

Data set : data.dat : 10000 items x 10000 capacity

Unsorted
Core2 Machine

Sequential Algorithms
Runtime in secs (G++

Compiler)
Runtime in secs (Intel

compiler)

Classic

rrks2 204.167 91.3446

rrks2sdb 25 11.8045

rrks2mdb 6.25 2.85197

Morales

rrks3 1.488 0.453699

rrks3sdb 0.877 0.369372

rrks3mdb 0.81 0.35578

simple and multiple dominance produced equivalent running times. This is shown in

table 3.3. However, without dominance the performance of the classic algorithm

(rrks2) was reduced when using a dataset sorted in this manner. The running time

of algorithm when compiled using g++ increased from 204.167 sec to 250.907 sec.

The Morales algorithm did not seem to be affected much with this sorted dataset.

When the dataset was sorted by the profit/weight theclassic (rrks2) algorithm

was again affected. This is seen in table 3.4. The morales algorithm remained the

same for the most part as before. The running times with simple and multiple

20

Table 3.3: Run times using Algorithms with dominance

Data set : sdata.dat : 10000 items x 10000 capacity , Core2 Machine

Sorted Data Set by Weight

Algorithms Runtime in Secs (G++ Compiler) Runtime in secs (Intel compiler)

Classic

rrks2 250.907 112.229

rrks2sdb 3.02108 1.34349

rrks2mdb 3.02 1.34825

Morales

rrks3 1.48572 0.454638

rrks3sdb 0.808467 0.3556

rrks3mdb 0.808747 0.355684

dominance with the classic(rrsk2) algorithm were reduced further from before in

table 3.3. Both had similar running times. Without dominance the result with the

two compilers was somewhat different. With the g++ compiled version of rrks2 the

running time was reduced to 184 sec from 204 sec (unsorted dataset) while the Intel

compiler version had an increased running time of 108.887 sec from 91.34 sec

(unsorted dataset).

The running times of the algorithms due to dominance were reduced because

there were lesser data items to deal with in the n (items) x C (total capacity)

matrix. If an item was dominated by another, then instead of computing the entire

row, the row would simply be copied from the dominant item row. This was

measured by counting the number of rows skipped (from full computation) or copied

from the dominant item. Another way for the rows to be simply copied over and

skipped from computation is when the item weight is greater than the capacity and

21

Table 3.4: Run times using Algorithms with dominance

Data set : sdatavdw.dat : 10000 items x 10000 capacity , Core2 Machine

Sorted Data Set by Profit/Weight

Algorithms Runtime in Secs (G++ Compiler) Runtime in secs (Intel compiler)

Classic

rrks2 184.913 108.887

rrks2sdb 1.8611 0.908475

rrks2mdb 1.86115 0.910027

Morales

rrks3 1.49148 0.454513

rrks3sdb 0.807288 0.35678

rrks3mdb 0.806284 0.355291

this is already part of the original algorithm without dominance. This form of row

skipping was not measured. Only the rows skipped due to dominance were recorded.

Table 3.5 shows the reduction in the data set search space by using the

dominance optimization by showing the number of rows skipped in computation.

The data.dat dataset was used.

From the results in table 3.5 it can be seen that the number of rows skipped in

computation are the same for classic and morales. This is because the same

optimization was applied identically to both algorithms. The reason for the running

times being the same for simple dominance and multiple dominance, when the

dataset is sorted (by weight, by profit/weight) can be explained by table 3.5. The

running times of both rrks2sdb (simple dominance) and rrks2mdb (multiple

dominance) were the same because the number of rows skipped by the optimizations

22

Table 3.5: Number of rows skipped in computation using Algorithms with dominance

Number of Rows Skipped in Computation

Data set : data.dat : 10000 items x 10000 capacity

Unsorted , UC (Uncorrelated)

G++ Compiled code

Sequential Algorithm
Sorted by

weight

Sorted by

profit/weight Unsorted

Classic

rrks2sdb 9994 9999 9035

rrks2mdb 9994 9999 9964

Morales

rrks3sdb 9994 9999 9035

rrks3mdb 9994 9999 9964

was the same. This can now clearly be seen from table 3.5. The same conclusion is

for the morales algorithm.

Theoretically however multiple dominance should skip more rows than simple

dominance, as it does a more thorough comparison than simple dominance. This is

proven from the results in the next of figures starting from Fig. 3.6 .

3.3.2 Using Different types of datasets and Sizes with sorting

The figures starting from table 3.6 show additional results of using dominance with

datasets of the UC, WC, SC and SS type. Different datasets of 10000 items with

10000 capacity and 5000 items with 5000 capacity were used. The value of R for

these datasets was changed to 30000. So for example, in the UC type dataset the

items and profits would be randomly selected from a range 1:30000. The number of

rows skipped in computation in the dataset for each algorithm were recorded.

23

Table 3.6: Number of rows skipped in computation using Algorithms with dominance

Data set: 5000 items x 5000 capacity

R: 30000

G++ Compiled code

UC: Uncorrelated

Sequential

Algorithm

Sorted by

weight

Sorted by

profit/weight Unsorted

Classic

rrks2sdb 4992 18 2459

rrks2mdb 4998 51 4977

Morales

rrks3sdb 4992 18 2459

rrks3mdb 4998 51 4977

The figures starting from Fig. 3.13 show the results of 4 different randomly

generated datasets in one table. Each dataset had 10000 items with 10000 capacity

and R=30000.

3.3.3 Summary

One can see that sorting had a big impact in increasing the number of rows being

skipped. For Simple dominance Sorting by weight seemed a lot more effective than

Sorting by Profit/Weight. Except for table 3.5, in most of all the other figures it

decreased the number of rows being skipped with the UC and WC dataset type. It

was only in mostly the SC dataset type that it increased the number of skipped

rows. For the SS dataset type Sorting by Profit/Weight could not be done because

in the dataset the weight was equal to the profit of each item and so it was not

24

shown in the results in all the figures.

For Multiple dominance Sorting by weight overall seemed a lot more effective for

the different datasets. With the UC dataset type in some cases the Sorting by

Profit/Weight gave better optimization than Sorting by Weight and in some cases it

gave a lower reduction of the rows being skipped.

The dataset type (UC, WC,SC,SS) gave different results of the rows being

skipped. For Multiple dominance overall the SC dataset type had the least of the

numbers of rows being skipped. Next were WC and then UC. The SS dataset type

would sometimes be equal to SC or UC. For Simple dominance the SC and SS

dataset had the least number of rows being skipped, next were WC and then UC.

So overall for both dominances the SC dataset type showed the least number of

rows being skipped.

Also again one can see that Multiple dominance is a better optimization than

simple dominance.

25

Table 3.7: Number of rows skipped in computation using Algorithms with dominance

Data set: 5000 items x 5000 capacity

R: 30000

G++ Compiled code

WC: Weakly correlated

Sequential

Algorithm

Sorted by

weight

Sorted by

profit/weight Unsorted

Classic

rrks2sdb 4822 137 175

rrks2mdb 4997 4999 4992

Morales

rrks3sdb 4822 137 175

rrks3mdb 4997 4999 4992

Data set: 5000 items x 5000 capacity

R: 30000

G++ Compiled code

SC: Strongly correlated

Sequential

Algorithm

Sorted by

weight

Sorted by

profit/weight Unsorted

Classic

rrks2sdb 587 587 1

rrks2mdb 587 587 1

Morales

rrks3sdb 587 587 1

rrks3mdb 587 587 1

I
I

26

Table 3.8: Number of rows skipped in computation using Algorithms with dominance

Data set: 5000 items x 5000 capacity

R: 30000

G++ Compiled code

SS: P=W (profit=weight)

Sequential

Algorithm

Sorted by

weight Unsorted

Classic

rrks2sdb 587 1

rrks2mdb 4999 3196

Morales

rrks3sdb 587 1

rrks3mdb 4999 3196

Table 3.9: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity

R: 30000

G++ Compiled code

UC: Uncorrelated

Sequential

Algorithm

Sorted by

weight

Sorted by

profit/weight Unsorted

Classic

rrks2sdb 9989 29 4961

rrks2mdb 9999 9999 9975

Morales

rrks3sdb 9989 29 4961

rrks3mdb 9999 9999 9975

I

27

Table 3.10: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity

R: 30000

G++ Compiled code

WC: Weakly Uncorrelated

Sequential

Algorithm

Sorted by

weight Sorted by profit/weight Unsorted

Classic

rrks2sdb 9729 291 346

rrks2mdb 9993 9999 9986

Morales

rrks3sdb 9729 291 346

rrks3mdb 9993 9999 9986

28

Table 3.11: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity

R: 30000

G++ Compiled code

SC: Strongly Uncorrelated

Sequential

Algorithm

Sorted by

weight Sorted by profit/weight Unsorted

Classic

rrks2sdb 1445 1445 0

rrks2mdb 1445 1445 0

Morales

rrks3sdb 1445 1445 0

rrks3mdb 1445 1445 0

29

Table 3.12: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity

R: 30000

G++ Compiled code

SS: P=W (profit=weight)

Sequential

Algorithm

Sorted by

weight Unsorted

Classic

rrks2sdb 1445 0

rrks2mdb 1445 1

Morales

rrks3sdb 1445 0

rrks3mdb 1445 1

30

T
ab

le
3.
13
:
N
u
m
b
er

of
ro
w
s
sk
ip
p
ed

in
co
m
p
u
ta
ti
on

u
si
n
g
A
lg
or
it
h
m
s
w
it
h
d
om

in
an

ce

T
h

e
r
e

 a
r
e

 4
 d

if
fe

r
e

n
t

r
a

n
d

o
m

ly
 g

e
n

e
r
a

te
d

 d
a

ta
s

e
ts

 e
a

c
h

 h
a

v
in

g
:

1
0

0
0
0

 i
te

m
s

 x
 1

0
0

0
0

 c
a

p
a

c
it

y

R
:

3
0
0

0
0

G
+

+
 C

o
m

p
il
e

d
 c

o
d

e

U
C

:
U

n
c

o
r
r
e
la

te
d

S
e

q
u

e
n

ti
a

l

A
lg

o
r
it

h
m

S

o
r
te

d
 b

y
 w

e
ig

h
t

S
o

r
te

d
 b

y
 p

/w

U
n

s
o

r
te

d

D

a
ta

s
e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

D
a

ta
s

e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

D
a

ta
s

e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

C
la

s
s

ic

rr
k
s
2

s
d

b

9
9

8
7

9

9
9

1

9
9

9
8

9

9
9

5

2
4

1

8

3
6

7

5
1

4

8
2

0

4
7

3
2

4

9
7

7

4
8

6
3

rr
k
s
2

m
d

b

9
9

9
8

9

9
9

8

9
9

9
9

9

9
9

9

9
9

9
9

9

9
9

8

9
9

9
9

9

9
9

9

9
9

8
1

9

9
8

3

9
9

8
2

9

9
8

1

M
o

r
a

le
s

rr
k
s
3

s
d

b

9
9

8
7

9

9
9

1

9
9

9
8

9

9
9

5

2
4

1

8

3
6

7

5
1

4

8
2

0

4
7

3
2

4

9
7

7

4
8

6
3

rr
k
s
3

m
d

b

9
9

9
8

9

9
9

8

9
9

9
9

9

9
9

9

9
9

9
9

9

9
9

8

9
9

9
9

9

9
9

9

9
9

8
1

9

9
8

3

9
9

8
2

9

9
8

1

31

T
ab

le
3.
14
:
N
u
m
b
er

of
ro
w
s
sk
ip
p
ed

in
co
m
p
u
ta
ti
on

u
si
n
g
A
lg
or
it
h
m
s
w
it
h
d
om

in
an

ce

T
h

e
r
e

 a
r
e

 4
 d

if
fe

r
e

n
t

r
a

n
d

o
m

ly
 g

e
n

e
r
a

te
d

 d
a

ta
s

e
ts

 e
a

c
h

 h
a

v
in

g
:

1
0

0
0
0

 i
te

m
s

 x
 1

0
0

0
0

 c
a

p
a

c
it

y

R
:

3
0
0

0
0

G
+

+
 C

o
m

p
il
e

d
 c

o
d

e

W
C

:
W

e
a

k
ly

 U
n

c
o

r
r
e

la
te

d

S
e

q
u

e
n

ti
a

l

A
lg

o
r
it

h
m

S

o
r
te

d
 b

y
 w

e
ig

h
t

S
o

r
te

d
 b

y
 p

/w

U
n

s
o

r
te

d

D

a
ta

s
e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

D
a

ta
s

e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

D
a

ta
s

e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

C
la

s
s

ic

rr
k
s
2

s
d

b

9

9
9

8

9
9

9
2

9

9
9

5

9
9

9
4

9

9
9

9

3
1

9
2

4

2
6

1

2
4

9
2

7

8
4

9

4
4

0

1
8

1
0

1

2
4

2

rr
k
s
2

m
d

b

9

9
9

8

9
9

9
4

9

9
9

7

9
9

9
7

9

9
9

9

9
9

9
9

9

9
9

9

9
9

9
9

9

9
7

3

9
9

9
2

9

9
7

1

9
9

9
5

 M
o

r
a

le
s

rr
k
s
3

s
d

b

9

9
9

8

9
9

9
2

9

9
9

5

9
9

9
4

9

9
9

9

3
1

9
2

4

2
6

1

2
4

9
2

7

8
4

9

4
4

0

1
8

1
0

1

2
4

2

rr
k
s
3

m
d

b

9

9
9

8

9
9

9
4

9

9
9

7

9
9

9
7

9

9
9

9

9
9

9
9

9

9
9

9

9
9

9
9

9

9
7

3

9
9

9
2

9

9
7

1

9
9

9
5

32

T
ab

le
3.
15
:
N
u
m
b
er

of
ro
w
s
sk
ip
p
ed

in
co
m
p
u
ta
ti
on

u
si
n
g
A
lg
or
it
h
m
s
w
it
h
d
om

in
an

ce

T
h

e
r
e

 a
r
e

 4
 d

if
fe

r
e

n
t

r
a

n
d

o
m

ly
 g

e
n

e
r
a

te
d

 d
a

ta
s

e
ts

 e
a

c
h

 h
a

v
in

g
:

1
0

0
0
0

 i
te

m
s

 x
 1

0
0

0
0

 c
a

p
a

c
it

y

R
:

3
0
0

0
0

G
+

+
 C

o
m

p
il
e

d
 c

o
d

e

S
C

:
S

tr
o

n
g

ly
 U

n
c

o
r
r
e

la
te

d

S
e

q
u

e
n

ti
a

l

A
lg

o
r
it

h
m

S

o
r
te

d
 b

y
 w

e
ig

h
t

S
o

r
te

d
 b

y
 p

/w

U
n

s
o

r
te

d

D

a
ta

s
e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

D
a

ta
s

e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

D
a

ta
s

e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

C
la

s
s

ic

rr
k
s
2

s
d

b

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

0

1

0

0

rr
k
s
2

m
d

b

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

0

1

0

0

 M
o

r
a

le
s

rr
k
s
3

s
d

b

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

0

1

0

0

rr
k
s
3

m
d

b

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

0

1

0

0

33

T
ab

le
3.
16
:
N
u
m
b
er

of
ro
w
s
sk
ip
p
ed

in
co
m
p
u
ta
ti
on

u
si
n
g
A
lg
or
it
h
m
s
w
it
h
d
om

in
an

ce

1
0

0
0
0

 i
te

m
s

 x
 1

0
0

0
0

 c
a

p
a

c
it

y

R
:

3
0
0

0
0

G
+

+
 C

o
m

p
il
e

d
 c

o
d

e

S
S

:
P

=
W

 (
p

r
o

fi
t=

w
e
ig

h
t)

 S
e

q
u

e
n

ti
a

l

A
lg

o
r
it

h
m

S

o
r
te

d
 b

y
 w

e
ig

h
t

U
n

s
o

r
te

d

D

a
ta

s
e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

D
a

ta
s

e
t

1

D
a

ta
s

e
t

2

D
a

ta
s

e
t

3

D
a

te
s

e
t

4

C
la

s
s

ic

rr
k
s
2

s
d

b

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

0

1

0

0

rr
k
s
2

m
d

b

1

4
7

8

1
4

6
8

1

4
9

7

9
9

9
9

3

3

2

6

8
7

4

 M
o

r
a

le
s

rr
k
s
3

s
d

b

1

4
7

6

1
4

6
8

1

4
9

4

1
5

1
5

0

1

0

0

rr
k
s
3

m
d

b

1

4
7

8

1
4

6
8

1

4
9

7

9
9

9
9

3

3

2

6

8
7

4

CHAPTER 4

PARALLELIZATION OF KNAPSACK ALGORITHMS

4.1 Morales Parallel Algorithm

All algorithms were written in C++ and compiled using gcc 4.1.2.

4.1.1 The Sequential algorithms used for Parallelization

The sequential algorithms with dominance described in chapter 3 were not used for

parallelization. Only the original algorithms classic (rrks2) and morales (rrks3)

were used. The reason being is that the dominance optimization reduces the Search

space or dataset size. So essentially a smaller dataset is worked on by the algorithm.

Larger datasets are needed to better assess the performance of the parallel

algorithms.If the parallel algorithms give better performance with larger datasets

compared to their sequential equivalents, then they would perform well with smaller

datasets as well. When the dominance optimization is applied to both sequential

and parallel algorithms both their running times would be reduced , since they are

working on a smaller dataset. So if the parallel algorithms out perform their

sequential equivalents with larger datasets then they should out perform them when

dominance is applied as well.

34

35

4.1.2 Naive Parallelization

Since the dependency of the sequential morales algorithm was from the previous

row and from the previous elements of the current row a diagonal loop approach

was considered. Any element of the 2 dim array at a certain time depended on a

single element right above it from the previous row and one to the left of it from the

current row. So if the loop was run diagonally instead of row by row then these

previous elements would always be available(computed and ready from before)

whenever the current element is reached.

A for loop was written can goes row by row and translates the row indexes and

col indexes to the respective diagonal as it runs through the loop. So a loop was

created in this way to traverse the diagonals. Each diagonal was split equally

between the threads, both working on it at the same time. Once all the threads

were completed with the diagonal the loop would move on to the next diagonal and

the process would be repeated. Hence the parellization occurred at the diagonals.

This is illustrated in figure 4.1.

The maximum parallelism achieved by the algorithm would be the longest center

diagonal. The algorithm was called rrks3-p1 and it’s running times were slower than

the sequential morales (rrks3). Table 4.1 shows the comparison. These times are

from running the algorithm on the Core2 machine which is described in the

experimental results chapter 5. The dataset used was the default data.dat. It was a

UC type dataset with 10000 items and 10000 total capacity. This could have been

because of the overhead of computing the diagonal indexes and that maximum

36

Items

m=1 to n

Capacities ĉ =1 to C

Thread 1

Thread 2

Assuming #threads= 2 , C=8 and n=4

Figure 4.1: Parallelization of the Morales Sequential Algorithm using a Diagonal
Approach

parallelism was achieved only at the center diagonal. Because this algorithm ran

slower ,attempts were then made to some how implement and adapt the simple

pipeline algorithm (SPA) presented in [17] which had proven to be faster than the

sequential morales for multicore architectures. Later on in the research a parallel

implementation of the morales algorithm, with the help of this SPA algorithm

proved to be faster than the sequential morales algorithm and was made the

default algorithm for experimentation.

4.1.3 Adapting the SPA algorithm

The Simple Pipeline Algorithm (SPA) from the paper [17] was used to come up

with a parallel implementation of the sequential morales algorithm. The SPA

algorithm was written for a distributed system. It was modified to work on a shared

(

rr--- _A ..

...
. ~ ... ~. .,/

.//

-~. \

--,>

37

Table 4.1: Running times of the Parallel Morales Diagonal Algorithm

Core2 Machine

data.dat :

10000 items x 10000 capacity

No of

Threads rrks3 Rrks3-p1

1 1.644s 3.83 s

2 2.165 s

4 2.620 s

8 3.061s

10 3.109s

memory architecture.

The SPA algorithm broke the problem set of the items into stages and within

each stage it divided the items to calculate among each of the processors (of the

distributed system). In our case threads were used to do the same job as the

processors. The outline of the algorithm can be seen in Figure 4.3. The problem

consists of a total of n items and a total vessel capacity of C.

In the algorithm m is the index for the items in the two dimensional array of n

items and C capacities. The two dimensional array is f[n][C]. This array is shared

and accessible by all threads.

The formula to calculate m takes the stage, numthreads and threaded. The

threadID is the id of the thread used by the system and it starts from 1 onwards,

not zero. The arrays weight and profit contain the weight and profit of the

38

Thread 2

Thread 1

Items

m=1 to 4

Capacities ĉ =1 to 8

Assuming C=8 and n=4 , #threads=2

Then num Stages = 2.

Stage= 1

Stage= 2

Thread 1

Thread 1

Thread 2

Thread 2

m=3

m=4

This arrow shows dependency

m=2 from stage 1

Figure 4.2: The way the SPA Algorithm runs

respective items.

E.g if n=4 , C=8 , numthreads=2. Then the number of stages will be

n/numthreads = 4/2 = 2. The threadIDs will be 1 and 2. So in stage 1 , thread 1

will get the item m= 0 * 2 + 1= 1 and thread 2 will get item m=2. In stage 2

thread 1 will get b=3 and thread 2 will get m=4.

As seen earlier there is a dependency in the morales sequential algorithm. In

order to calculate a value of f[m][ĉ] of the two dimensional grid, the values of

f[m-1][ĉ] and f[m][ĉ-weight[m]] must be present. So there is dependency from the

previous row and with in the current row itself.

The SPA algorithm states that if the values f[m][ĉ] are computed in increasing

order of ĉ, as soon as f[m-1][ĉ] is available, f[m][ĉ - weight[m]] is available too [17].

In the SPA algorithm a processor (or thread in our case) covers one item m.

This item would be a row m in the two dimensional grid. Since the thread computes

the values of the m item row it stores the values computed of f[m][ĉ] locally. So the

•
,

I I I I I r--
•

•

•

I '
•
,

1

] "

r:::] III ~~"IIII
, , ,

'V

39

 // n = total number of items
// C = total capacity
// m = item (item/row index in 2D grid M)

// ĉ = capacity (capacity/col index in 2D grid M)

// f.aux[ĉ] = f[m][ĉ - weight[m]] + profit[m]

for stage := 1 to (n/NUM_THREADS) do

begin

m:=(stage-l) * NUM_THREADS + threadID

 if (weight[m] <= C)

f.aux[weight[m]] := profit[m];

for ĉ:=1 to C do

begin

// getting input ? f[m-l][ĉ];

 if ĉ >= weight[m] then

 f[m][ĉ] := max { (f[m-l][x], f.aux[ĉ] };

else
 f[m][ĉ] := f[m-l][x];

 if(ĉ + weight[m]]<= C) then
 f.aux[ĉ +weight[m]] := f[m][ĉ] + profit[m];

 // sending output? f[m][ĉ];

 end inner for;

end outer for;

Figure 4.3: The Pseudo code of the SPA Algorithm

40

part f[m][ĉ - weight[m]] + profit[b] required by the sequential algorithm is stored

locally by the thread working on item or row m. This is stored in the f.aux array.

An element of the f.aux array represents the value of the f[m][ĉ - weight[m]] +

profit[m] equation.

e.g weight[2]=3 , profit[2]=10 , m=2, ĉ=6

- for f[2][6]= max (f[1][6], f.aux[6])

- f.aux[6]= f.aux[3+weight[2]]=f[2][3]+profit[2];

- so f[2][6]= max (f[1][6], f[2][3] + profit[2]) ,when replaced by symbols

- f[m][ĉ]= max (f[m-1][ĉ], f[m][ĉ-weight[m]]+ profit[m])

To get the value of f[m-1][ĉ] the thread would need values from the previous row

or item m− 1. It receives this from another thread working on item or row m− 1.

So the communication and synchronization that occurs between the threads is

between adjacent rows.

4.1.4 Handling communication between threads

In the algorithm a thread is both a consumer and producer. The thread to compute

or produce the value f[m][ĉ] needs to consume the value f[m-1][ĉ]. It can only

consume the value of f[m-1][ĉ] once it has been computed by the thread responsible

for it. Until then the thread in charge of row m would have to wait for a signal from

the thread of row m− 1. Once the thread in charge of the row m− 1 has finished

computing the value of f[m-1][ĉ] it sends a signal to the waiting thread. In the

41

original SPA algorithm the data value of f[m][ĉ] was itself sent to the respective

waiting processor. A ring topology was used where processor a was connected to

processor a+1 , processor a + 1 was connected to processor a+ 2 and so on. The

last processor would be connected via the root processor to the first processor. The

root processor would manage the queue of the data messages [17].

In this case it is controlling access to the shared array by the threads. The goal

is to simulate a non-blocking sender and a receiver that blocks.

Initial attempts to simulate the SPA algorithm’s non-blocking sender and

blocking receiver were quite unsuccessful. All initial algorithms gave the same

correct optimal results as the sequential morales version but their running times

were too slow.

The first attempt to simulate this was done using OpenMP flush mechanism.

What would happen would be that one thread that was waiting for a result would

be constantly polling the shared array using flush and refreshing it’s view of the

main memory. The algorithm ran slowly for 2 threads but when the number of

threads increased the performance dropped significantly and became a lot slower.

This could be because they were now more threads polling the shared array,

increasing the CPU cycles. This algorithm was called rrkspmor2. The second

attempt was made with Pthreads and locks. All of the shared array was locked. So

basically they were n items x C total capacity locks. Every [row,col] element of the

array had a separate associated lock with it. The initial row would be unlocked to

start the algorithm. There would then be a sequence of one thread unlocking the

element of the next row when it was done computing it while the other thread

42

would be waiting on a lock for this element. The only way the other thread could

get a lock on the element was if the previous associated thread (that computed the

element) unlocked the element for it. This algorithm was called rrkspmor-pth4.

An openmp version of this algorithm was made and it was called rrkspmor4. Both

of these algorithms were extremely slow mainly most of the overuse of an equal

number of locks to the elements of the shared array. Another attempt was made

using condition variables in pthreads. Instead of every element of the shared array

having a lock associated with it , it has a condition variable instead. In pthreads

every condition variable needs a lock associated with it so this algorithm took a lot

more memory than the previous ones. This algorithm was called rrkspmor-pth3.

Apart from memory issues it was very slow as well. It took 2m27.452s with 2

threads to solve a dataset of size 2500 items with 10000 capacity. The sequential

morales (rrks3) solved it in 0.437s.

Table 4.2 shows the running times of these initial algorithms. The dataset used

was called d10.dat. It was a UC type dataset with 10000 items and 10000 total

capacity. The sequential morales (rrks3) is also included as a comparision.

4.1.5 Improving Synchronization Cost

The final implementation of the SPA algorithm that gave the best running times is

shown in Fig. 4.4. This algorithm ran faster and was called testpth7 and became

the default morales parallel algorithm for experimentation. For the rest of this

thesis this algorithm will be known as the morales parallel algorithm. Learning

from the previous attempts a new strategy was devised for the threads to

43

Table 4.2: The running times of the initial algorithms to implement the SPA
Algorithm

Core2 Machine

d10.dat : 10000 items x 10000 capacity

No of
Threads

rrkspmor2 rrkspmor3 rrkspmor4
rrkspmo

r-pth3
rrkspmor-

pth4
rrks3

1 21.934s 7m39.750s 11m18.413s
run out of

memory
7m18.427s 1.644s

2 18.510s 9m8.444s 13m8.747s
same as

above
 9m44.002s

4 1m47.588s 13m4.767s 18m51.604s
same as

above
12m28.804s

8 2m57.521s 14m40.935s 22m13.394s
same as

above
 14m5.755s

10 2m57.390s 14m45.516s 22m57.585s
same as

above
 14m19.031s

communicate with each other with the least overhead of synchronization and

communication. This is how it was implemented.

The threads communicate to each other about the status of the two dimensional

array by setting a two dimensional boolean array called consume. The row index of

the consume array denotes the threadID and the second column index denotes the

capacity ĉ. A single thread will communicate to it’s adjacent thread. Pthreads is

used to implement the threads. Condition variables are used for signaling and

waiting. Locks are used with each condition variable and also at the same time used

to secure single access at a time to the consume array. Every thread has one

condition variable to use and one lock. Single dimensional arrays consumec and

cdlock represent this with threadID as their index.

e.g if you have threads 1, 2 and 3 then 1◃ 2◃ 3 and 3◃ 1.

44

So the same ring style topology is used. In the code in figure 4.4 this is shown as

the statements to compute nextthread.

Lets give an example between two threads. The consume array will be of size

row index of 2 elements (2 threads) and col index of the size of the capacity ĉ:1 to

C. The consumec and cdlock array will be of size 2 each.

The two dimensional consume array is set to false. For the first row or item

thread 1 only produces since the starting values are zero. So the consume[1][ĉ:1 to

C] array is set to true. If thread 1 is working on row m− 1 then thread 2 would be

working on row m.

When thread 1 starts it acquires the lock cdlock[1] and checks to see if

consume[1][ĉ] is set to true for the f[m-1][ĉ] element. It is true so it sets it to false

and unlocks cdlock[1]. It moves on and computes f[m-1][ĉ] and Thread 2 acquires

the lock cdlock[2] and checks if consume[2][ĉ] is set to true. It is not and It goes to

wait for consumec[2] and unlocks cdlock[2].

Whenever thread 1 is done with computing the element f[m-1][ĉ] it acquires a

lock cdlock[2] and writes the consume[2][ĉ] element to true. It then signals with a

condition variable consumec[2] and unlocks cdlock[2]. Thread 1 moves on in the for

loop to the next element ĉ+1 or if it is done with the row m-1 then it moves on to

row m+1.

Thread 2 gets the signal consumec[2] , gets out of the wait state and locks

cdlock[2]. It sets consume[2][ĉ] to false and unlocks cdlock[2] and proceeds to

compute the value of f[m][ĉ]. It then sets to lock cdlock[1] and sets consume[1][ĉ] to

true (remember it was set to false by thread 1). It then signals with consumec[1]

45

and unlocks cdlock[1].

At a time two adjacent threads will be working on one row each and the

consume array is reused every time and reset by the threads respectively. The order

of setting the consume array from true to false with respective to the capacity ĉ is

important and the fact that it has to be locked whenever changes to it are made.

4.1.6 Blocking

The threads in the algorithm in figure 4.4 are communication and synchronizing one

element at a time. The computation done by each thread for the element f[m][ĉ] is

not much however. What ends up happening is that the algorithm runs slower than

the sequential counterpart. This is because the synchronization costs are more than

the computation. In order to remove this problem blocking was used. Now instead

of the thread computing just one element at a time , it is set to compute a block or

set of elements. This is intended to increase the computation work load for each

thread and balance out the synchronization over head. The modified algorithm with

blocking is not shown but is essentially the same except that now a block of elements

are computed at a time. If the block size was 10 then thread 1 would compute 10

elements and after that signal thread 2. Thread 2 would now be waiting for 10

elements of the m− 1 row to be computed. Once all the 10 elements have been

computed then Thread 2 is signaled and gets out of wait and computes 10 elements

before it signals the next adjacent thread. The total capacity C is divided by the

block size to determine the number of blocks. This is illustrated in fig. 4.5. As

chapter 5 shows, block size has a significant impact on the performance of morales.

46

// n = total number of items
// C = total capacity
// m = item (item/row index in 2D grid M)
// ĉ = capacity (capacity/col index in 2D grid M)
// f.aux[ĉ] ≈ f[m][ĉ - weight[m]] + profit[m]

for stage = 1 to (n/NUM THREADS) do
m = (stage-l) * NUM THREADS + threadID
if (weight[m] ≤ C) then

f.aux[weight[m]] := profit[m]
end if
for ĉ = 1 to C do do

// getting input? f[m-l][ĉ]
lock(cdlock[threadID])
if (consume[threadID][ĉ] ! = true) then

wait(consume[threadID], cdlock[threadID])
end if
consume[threadID][ĉ]=false
unlock(cdlock[threadID])
if (ĉ ≥ weight[m]) then

f[m][ĉ] = MAX(f[m-l][ĉ], f.aux[ĉ])
else

f[m][ĉ] = f[m-l][ĉ]
end if
if (m + weight[m]] ≤ C) then

f.aux[ĉ +weight[m]] := f[m][ĉ] + profit[m]
end if
// sending output? f[m][ĉ]
int nextthread=0
if (threadID == (NUM THREADS-1)) then

nextthread=0
else

nextthread=threadID+1
end if
lock(cdlock[nextthread])
consume[nextthread][ĉ]=true
signal(consumec[nextthread])
unlock(cdlock[nextthread])

end for
end for

Figure 4.4: Final Parallel implementation of morales using SPA

47

Items

m=1 to 4

Capacities ĉ =1 to 8

Assuming C=8 and n=4 , #threads=2

Then num Stages = 2 , block size=4.

Stage= 1

Stage= 2

Thread 1

Thread 2

This arrow shows dependency

In this case a whole block

depends on the block of the

previous row

Figure 4.5: The implementation of Blocking in the Morales Parallel Algorithm

4.2 Classic Parallel Algorithm

The same two dimensional grid is used with n items and a total capacity of C. And

index of an item or row in the array is denoted with m and a capacity or col in the

array is denoted with ĉ . Threads are again used with a shared memory model. The

two dimensional array is shared in memory and accessible by all threads. Openmp

is used to parallelize the algorithm instead of pthreads.

The dependency in the classic sequential code is only between the different

rows. That is f[m][ĉ] depends on values f[m-1][ĉ] and f[m-1][ĉ-1],

f[m-1][ĉ-2]....f[m-1][0]. There is no dependency within the same row. That is f[m][ĉ]

does not depend on f[m][ĉ-1], f[m][ĉ-2]....f[m][0]. This makes the parallelization of

the algorithm easier to accomplish on a row by row basis.

The row m of the two dimensional grid is divided among the number of threads

48

equally into different sections. At a time each thread is working on it’s own section

of the row and filling up the row with computed values of f[m][ĉ]. When all the

threads have completed their sections (that is when the row b has been computed

completely) then the row is changed to m+1. So the synchronization barrier is at

the end of the row.

The process is repeated till the two dimensional grid has been computed

completely. This would be a parallelization on the capacities or columns.

e.g They are 2 threads, n=4 and C=10.

At index m=1 , the row 1 is divded into 2 sections of size 5 each. Thread 1 will

get the first five elements f[m][1]...f[m][5] to compute and Thread 2 will get the next

five elements f[m][5]...f[m][10]. It is possible that Thread 1 might complete sooner

than Thread 2. But in this case Thread 1 still has to wait for Thread 2 to finish,

that is for the entire row to be completed before moving on to the next row. Fig. 4.6

illustrates this.

Items

m=1 to n

Capacities ĉ =1 to C

Thread 1

Thread 2

Assuming #threads= 2 , C=8 and n=4

Figure 4.6: The way the Classic Parallel Algorithm works

The c++ code in Figure 4.7 shows the section of the classic sequential

49

algorithm that is parallelized. The inner for loop with the capacities is the section

that is parallelized. A single OpenMP statement pragmaompparallelfor is used

right before the for loop to parallelize the algorithm.

 for (int m = 1; m <= n(number items); m++)
{
 int valueitem= value[m];
 int weightitem= weight[m];
 int vcdw=vessel_cap/weightitem;

// The inner for loop of capacities is parallelized
//---

 for (int ĉ=0; ĉ < = C (total capacity); ĉ++)
 {
 l=0;
 while ((l <= ĉ/weightitem)
 {

 if (m == 1)
 {
 result = valueitem * l;
 }
 else
 {
 result = (valueitem * l) + f[m-1][ĉ - (weightitem * l)];
 }

 if (result > jopt)
 {
 jopt = result;
 }

 l++;

 } //end while

 f[m][ĉ]= jopt;

 }// end inner for
//--

} // end outer for

Parallel

Section

Figure 4.7: The Code of the Classic Parallel Algorithm

4.2.1 Blocking

Blocking has been added to the classic parallel algorithm. The number of blocks

are determined by dividing the total capacity C with the block size. The two

<
, ,
, ,

, ,

, ,

50

dimensional grid is divided into equal size blocks of capacities or columns. The first

block would be ĉ=1 to ĉ=block, the second would ĉ=block+1 to ĉ=2*block , the

third would be ĉ=(2*block) +1 to ĉ=3*block and so on. For every block all the

items or rows are traversed from row 1 to row n(number of items). Within a block

the parallel algorithm is the same as explained earlier without blocking. The only

difference is that the inner for loop of capacities starts from and ends with a ĉ index

that is respective to the block it is in. So it is more like splitting the two

dimensional grid into different smaller two dimensional arrays with the same

number of items of rows as before with the number of the cols or capacities equal to

the block size. This is demonstrated in Fig. 4.8.

e.g blocksize=2 , n=4, C=6, num of threads=2

So number of blocks = 6/2 = 3. The two dimensional array of 4 rows and 6 cols

is thus divided into 3 two dimensional separate arrays or blocks.

- The first block has the same 4 rows (m=1 to 4) and cols ĉ=1 to ĉ=2

- The second block has the same 4 rows (m=1 to 4) and cols ĉ=3 to ĉ=4

- The third block has the same 4 rows (m=1 to 4) and cols ĉ=5 to ĉ=6

The first block is completed computed using the two threads the same way as

explained earlier with the classic parallel algorithm without blocking. The row m=1

will split among the two threads. Thread 1 will get f[1][1] and Thread 2 will get

f[1][2]. Then after the row m=1 has been completed the next row m=2 is started.

Thread 1 will get f[2][1] and thread 2 will get f[2][2] and process repeats till all the

rows are completed. Once all the rows are completed the first block is done.

51

After the first block is calculated the second block is started. As before the block

will start with row m=1 to m=4. This time when row m=1 , thread 1 will get f[1][3]

and thread 2 will get f[1][4]. The process is repeated similarly till all the rows are

computed.

Then finally the last or third block is computed in the same manner as the

previous blocks. At row m=1 , thread 1 will get f[1][5] and thread 2 will get f[1][6].

ĉ=1 ĉ=2 ĉ=3 ĉ=4 ĉ=5 ĉ=6

Items

m=1 to 4

1
st
 Block 2

nd
 Block 3

rd
 Block

Capacities ĉ=1 to 6

ĉ=0 ĉ=block size

 1
st
 Block

Items

m=1 to 4

Capacities ĉ=1 to block

Thread 1 Thread 2

Figure 4.8: Blocking in the Classic Parallel Algorithm

CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Experimental Framework

Each parallel variant is evaluated on three platforms:

1. 2.33 GHz Intel Core 2 Duo E6550 (Core2, dual core). Core2 contains 2

physical cores. It has a 4 MB L2 Cache shared by the two cores. The system

has 2 GB of RAM.

2. 2.40 GHz Intel Core 2 Quad Q6600 (Quad, 4-core) system. The Quad has 4

physical cores. It has two 4MB L2 caches. Each of the L2 cache is shared

between two cores in each socket. The system has 4 GB of RAM.

3. For our scalability study, we also run experiments on an 8 logical core system

(8-core). The system has a Xeon 2.53 Ghz E5540 processor with Hyper

threading (HT) enabled. It consists of 4 physical cores with HT enabled giving

it a total of 8 logical cores. It has a smart cache of 8 MB. The system has 24

GB of RAM.

The classic parallel algorithm is implemented using OpenMP, while the morales

version is implemented with pthreads as stated earlier.

Both variants are compiled with GCC version 4.1.2, with the default (-O2)

optimization settings. The 2.5 version of Opemmp is used which is already present

52

53

with gcc 4.1.2 just like pthreads.

To avoid system jitter, each experimental run is replicated five times and only

the consistent lowest values are considered. In some cases, we exclude outlier values,

when it is obvious that the extra long running time is due to operating system

interference. Wall clock time (in secs, mins) is measured by embedding calls to

openmp timer routines within the source code. When reporting execution times

only the running time for the algorithm itself in the application is reported, and

thus excluding any overhead associated with calls to timer routines and file I/O

operations.

For each implementation number of concurrent threads was limited to the

number of available cores on the target machine.

The HPCToolkit profiler with Hardware PAPI counters was used to measure the

CPU cycles, L1, L2 cache misses and instructions completed when running the

algorithms. Measuring these parameters increases the wall clock time of running the

algorithm by a small amount. Also all of the four parameters cannot be measured

at once but only two at a time. This means that one can measure L1, L2 misses in

one run and CPU cycles and instructions completed in another run.

Each parallel variant is run with two data sets :

1. The default data.dat dataset. It is the UC type with random values selected

from 1:R where R=100 for 10000 item weights and 10000 item profits. The

data in this file is unsorted. A dimension of 10000 items x 10000 capacity is

used.

54

2. The ds60-30k.dat dataset. It is the UC type with random values selected

from 1:R where R=30000 for 60000 item weights and 60000 item profits. The

data is unsorted. A dimension of 30000 items x 30000 capacity is used. Since

they are 60000 items in the set only the first 30000 items are used.

5.2 Speedup and Scalability

Table 5.1: Performance improvement with increasing number of cores

Data set : data.dat : 10000 items x 10000

capacity

Parallel Algorithms Speed up over

Sequential Counterparts

#Cores Machines with same

#Threads
Classic Morales

2 1.803597056 1.608285012

4 3.05874578 2.397716988

8 6.923402524 4.921166928

0

1

2

3

4

5

6

7

8

2 4 8

S
p

e
e

d
 u

p
 o

v
e

r
S

e
q

u
e

n
!

a
l

Number of Cores

Classic

Morales

Figure 5.1: Performance improvement with increasing number of cores, Graph from
Table 5.1

Table 5.1 and Fig. 5.1 show speedup obtained over the sequential version, for

both classic and morales for 2, 4 and 8 cores.. The data set used was data.dat

with 10000 item x 10000 capacity. This chart reveals that both parallel variants

obtain significant speedup over their sequential counterparts. However,classic

55

yields higher speedup than morales.

5.3 Impact of Blocking Factor and Granularity

The following figures show the running times of both parallel classic and morales

with the variation in block sizes for each of the three machines.

5.3.1 Using the Data set : data.dat : 10000 items x 10000 capacity.

5.3.1.1 Core2 with 2 threads:

Running times and Speed up with varying block sizes

Figures. 5.2 to 5.3 show the impact of the running times and speed up when

varying the block sizes, using the data.dat dataset.

Table 5.2: Impact of block size on performance of parallel classic on Core2 using
data.dat : 10000 items x 10000 capacity.

Core2 : 2 threads

data.dat : 10000 items x 10000 capacity

Classic

Block size
Parallel Running

time in Seconds

Sequential running

time in seconds
Speed up

 178.963

2 463.221 0.386345

10 194.208 0.921502

50 118.467 1.510657

100 107.636 1.662669

200 102.153 1.751911

250 100.672 1.777684

500 99.2256 1.803597

1000 100.228 1.785559

2000 104.258 1.71654

2500 106.429 1.681525

5000 117.904 1.51787

10000 140.847 1.27062

56

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

("%#

("&#

("'#

$"!#

$# (!#)!# (!!# $!!# $)!#)!!# (!!!# $!!!# $)!!#)*# (!*#

!
"
#
#
$
%
"
&'
(
#
)&
*#
+
%
#
,
-
.
/&

0/'12&!34#&

Figure 5.2: Impact of block size on performance of parallel classic on Core2 using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.2

Table 5.3: Impact of block size on performance of parallel morales on Core2 using
data.dat : 10000 items x 10000 capacity

Core2 : 2 threads

data.dat : 10000 items x 10000 capacity

Morales

Block size

Parallel Running

time in Seconds

Sequential running

time in seconds Speed up

 1.475

2 16.3163 0.0904

10 4.34781 0.339251

50 1.318 1.11912

100 1.08978 1.353484

200 1.00122 1.473203

250 0.982552 1.501193

500 0.949565 1.553343

1000 0.928422 1.588717

2000 0.918092 1.606593

2500 0.917126 1.608285

5000 0.946239 1.558803

10000 1.83768 0.802642

57

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

(#&"

(#'"

$" (!")!" (!!" $!!" $)!")!!" (!!!" $!!!" $)!!")*" (!*"

!
"
#
#
$
%
"
&'
(
#
)&
*#
+
%
#
,
-
.
/&

0/'12&!34#&

Figure 5.3: Impact of block size on performance of parallel morales on Core2 using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.3

\
/ \ r \

/ \
/

/
/

r"

58

Classic parallel algorithm analysis for Core2 with the data.dat (10000

x10000) dataset using 2 threads:

Figures. 5.4 to 5.11 show the L1,L2 cache misses, CPU cycles and Instructions

completed for the classic parallel algorithm. A breakdown of the results for each

individual thread are shown as well.

Table 5.4: Thread 1 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block size L1 Misses L2 Misses

Running !me of

classic parallel

algorithm

10 2920000000 578000000 208.303

50 1470000000 188000000 121.808

100 1280000000 123000000 109.507

200 1130000000 54185418 103.371

250 1060000000 47794779 101.887

500 975000000 27652765 100.16

1000 854000000 15851585 101.038

2000 614000000 9250925 105.048

2500 420000000 8030803 107.449

5000 154000000 4920492 118.939

10000 31793179 3080308 141.828

Table 5.5: Thread 2 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block size L1 Misses L2 Misses

10 2580000000 1710000000

50 1420000000 400000000

100 1250000000 185000000

200 1160000000 105000000

250 1130000000 80958095

500 1130000000 39853985

1000 1180000000 19691969

2000 1370000000 10121012

2500 1550000000 8070807

5000 1780000000 4630463

10000 1950000000 3210321

59

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

 M
is

se
s

Block Size

Thread 1 L1 Misses

0

100000000

200000000

300000000

400000000

500000000

600000000

700000000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
2

 M
is

se
s

Block size

Thread 1 L2 Misses

Figure 5.4: Thread 1 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.4

Table 5.6: Thread 1, Thread 2 Instructions completed on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity

Block

size Thread 1 INS Thread 2 INS

Total Instruc!ons

Completed

10 5.19E+10 43600000000 9.55E+10

50 4.06E+10 42900000000 8.35E+10

100 3.78E+10 30200000000 6.80E+10

200 3.50E+10 31700000000 6.67E+10

250 3.39E+10 28200000000 6.21E+10

500 3.32E+10 28400000000 6.16E+10

1000 3.67E+10 33200000000 6.99E+10

2000 3.97E+10 38700000000 7.84E+10

2500 3.91E+10 43600000000 8.27E+10

5000 3.61E+10 50800000000 8.69E+10

10000 3.43E+10 39700000000 7.40E+10

\
\
\ -- ~

~

\
\
\
\
-........

60

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

 M
is

se
s

Block Size

Thread 2 L1 Misses

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
2

 M
is

se
s

Block Size

Thread 2 L2 Misses

Figure 5.5: Thread 2 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.5

Table 5.7: Thread 1, Thread 2 CPU Cycles on Core2 with Classic parallel algorithm
using data.dat : 10000 items x 10000 capacity

Block

size

Running !me of

classic parallel

algorithm

Thread 1 Cpu

Cycles Thread 2 Cpu Cycles Total Cycles

10 211.366 7.41E+10 6.32E+10 1.37E+11

50 124.374 4.79E+10 4.39E+10 9.18E+10

100 111.646 4.21E+10 4.53E+10 8.74E+10

200 105.404 4.32E+10 4.29E+10 8.61E+10

250 103.949 4.15E+10 4.18E+10 8.33E+10

500 102.094 3.66E+10 4.65E+10 8.31E+10

1000 104.82 3.43E+10 3.80E+10 7.23E+10

2000 107.081 3.11E+10 4.42E+10 7.53E+10

2500 109.383 2.53E+10 4.54E+10 7.07E+10

5000 120.989 4.93E+10 4.23E+10 9.16E+10

10000 144.558 2.96E+10 4.91E+10 7.87E+10

•
\
\ --------- --

• \
\
\
\
\
\.

"

61

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

10 50 100 200 250 500 1000 2000 2500 5000 10000

In
st

ru
c�

o
n

s
co

m
p

le
te

d

Block Size

Thread 1 INS

0

1E+10

2E+10

3E+10

4E+10

5E+10

6E+10

10 50 100 200 250 500 1000 2000 2500 5000 10000

In
st

ru
c�

o
n

s
co

m
p

le
te

d

Block size

Thread 2 INS

Figure 5.6: Thread 1, Thread 2 Instructions completed on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity, Graph from Table 5.6

•

"" - --- ---

.. - / "" " ~ ~

62

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

7.00E+10

8.00E+10

10 50 100 200 250 500 1000 2000 2500 5000 10000

C
P

U
 c

y
cl

e
s

Block size

Thread 1 CPU Cycles

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

5.00E+10

6.00E+10

7.00E+10

10 50 100 200 250 500 1000 2000 2500 5000 10000

C
P

U
 c

y
cl

e
s

Block size

Thread 2 CPU Cycles

Figure 5.7: Thread 1, Thread 2 CPU Cycles on Core2 with Classic parallel algorithm
using data.dat : 10000 items x 10000 capacity, Graph from Table 5.7

...
\

\
.......... /\.

/ '\.

"I.

\.
" ---.... ./ -

63

Table 5.8: Total L1, L2 misses, CPU cycles and Instruction completed including all
Threads on Core2 with Classic parallel algorithm using data.dat : 10000 items x
10000 capacity

ock size

Algorithm

running

Time for

l1,l2, Instr in

sec

Algorithm

Running

!me for

CPU Cycles

in sec

Total L1

Misses

Total L2

Misses :

Total Instr

completed

Total Cpu

Cycles

10 208.303 211.366 5.50E+09 2288000000 9.55E+10 1.37E+11

50 121.808 124.374 2.89E+09 588000000 8.35E+10 9.18E+10

100 109.507 111.646 2.53E+09 308000000 6.80E+10 8.74E+10

200 103.371 105.404 2.29E+09 159185418 6.67E+10 8.61E+10

250 101.887 103.949 2.19E+09 128752874 6.21E+10 8.33E+10

500 100.16 102.094 2.11E+09 67506750 6.16E+10 8.31E+10

1000 101.038 104.82 2.03E+09 35543554 6.99E+10 7.23E+10

2000 105.048 107.081 1.98E+09 19371937 7.84E+10 7.53E+10

2500 107.449 109.383 1.97E+09 16101610 8.27E+10 7.07E+10

5000 118.939 120.989 1.93E+09 9550955 8.69E+10 9.16E+10

10000 141.828 144.558 1.98E+09 6290629 7.4E+10 7.87E+10

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

,L
2

 M
is

se
s

Block size

Total L1, L2 Misses

Total L1 Misses

Total L2 Misses

Figure 5.8: Total L1, L2 misses including all Threads on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity, Graph from Table 5.8

,
\
\

64

0.00E+00

2.00E+10

4.00E+10

6.00E+10

8.00E+10

1.00E+11

1.20E+11

1.40E+11

1.60E+11

10 50 100 200 250 500 1000 2000 2500 5000 10000

C
P

U
 C

y
cl

e
s

a
n

d
 I

n
st

ru
c!

o
n

s
co

m
p

le
te

d

Block size

Cpu cycles with Instr

Total Instr completed

Total Cpu Cycles

Figure 5.9: Total CPU cycles and Instruction completed including all Threads on
Core2 with Classic parallel algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.8

Table 5.9: Total L1, L2 Miss Rates per 1000 ins for all Threads on Core2 with Classic
parallel algorithm using data.dat : 10000 items x 10000 capacity

ck

e

Total

Instruc!ons

Completed Total L1 Total L2

L1 Miss Rate

per INStr

L1 Miss

Rates

per 1000

INStr

L2 Miss

Rate per

INStr

L2 Miss

Rates

per 1000

INStr

10 95500000000 5500000000 2288000000 0.057591623 57.59162 0.023958 23.95812

50 83500000000 2890000000 588000000 0.034610778 34.61078 0.007042 7.041916

100 68000000000 2530000000 308000000 0.037205882 37.20588 0.004529 4.529412

200 66700000000 2290000000 159185418 0.034332834 34.33283 0.002387 2.386588

250 62100000000 2190000000 128752874 0.0352657 35.2657 0.002073 2.073315

500 61600000000 2105000000 67506750 0.034172078 34.17208 0.001096 1.095889

1000 69900000000 2034000000 35543554 0.029098712 29.09871 0.000508 0.508491

2000 78400000000 1984000000 19371937 0.025306122 25.30612 0.000247 0.247091

2500 82700000000 1970000000 16101610 0.02382104 23.82104 0.000195 0.194699

5000 86900000000 1934000000 9550955 0.022255466 22.25547 0.00011 0.109907

10000 74000000000 1981793179 6290629 0.026780989 26.78099 8.5E-05 0.085009

\
\
~ ~

.......... ..,.., ./ "iii ----

65

0

10

20

30

40

50

60

70

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

 M
is

s
R

a
te

s
p

e
r

1
0

0
0

 in
st

ru
c!

o
n

s

Block size

L1 Miss Rates per 1000 INStr

Figure 5.10: Total L1 Miss Rates per 1000 ins for all Threads on Core2 with Clas-
sic parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from
Table 5.9

0

5

10

15

20

25

30

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
2

 M
is

s
R

a
te

s
p

e
r

1
0

0
0

 in
st

ru
c!

o
n

s

Block size

L2 Miss Rates per 1000 INStr

Figure 5.11: Total L2 Miss Rates per 1000 ins for all Threads on Core2 with Clas-
sic parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from
Table 5.9

66

Morales parallel algorithm analysis for Core2 with the data.dat (10000

x10000) dataset using 2 threads:

Figures. 5.12 to 5.20 show the L1,L2 cache misses, CPU cycles and Instructions

completed for the classic parallel algorithm. A breakdown of the results for each

individual thread are shown as well. The morales parallel algorithm had been

implemented using pthreads. One main thread was used to create and run the

worker threads and then wait for them to finish and then end the program. So when

2 threads for morales are mentioned, these are the two worker threads excluding the

main thread. So in total they are three threads running. Similarly for 4 threads with

the Quad they are 5 threads in total running and with the 8-core including the main

thread they are 9 threads in total. So the data for three threads are shown in the

figures 5.12 to 5.20 for the morales parallel algorithm for the Core2 with 2 threads.

Thread 1 is the main thread and Thread 2 and Thread 3 are the worker threads.

Table 5.10: Thread 1 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block Size L1 Misses L2 Misses

Running !me of

Morales parallel

algorithm

10 1320132 10001 4.44827

50 1330133 10001 1.53626

100 1350135 10001 1.3119

200 1330133 10001 1.22364

250 1310131 10001 1.20865

500 1320132 10001 1.16916

1000 1280128 10001 1.14916

2000 1340134 10001 1.14085

2500 1310131 10001 1.13936

5000 1300130 10001 1.178

10000 1300130 10001 2.07549

67

1240000

1260000

1280000

1300000

1320000

1340000

1360000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

 M
is

se
s

Block Size

Thread 1 L1 Misses

0

2000

4000

6000

8000

10000

12000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
2

 M
is

se
s

Block size

Thread 1 L2 Misses

Figure 5.12: Thread 1 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.10

Table 5.11: Thread 2 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block Size L1 Misses L2 Misses

10 48374837 3070307

50 14501450 3130313

100 11911191 3130313

200 10861086 3130313

250 10671067 3130313

500 10151015 3130313

1000 9770977 3130313

2000 9670967 3130313

2500 9710971 3130313

5000 9860986 3130313

10000 9820982 3130313

A
/ "- !\.

~/ "'-.....
V

68

0

10000000

20000000

30000000

40000000

50000000

60000000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

 M
is

se
s

Block Size

Thread 2 L1 Misses

3040000

3050000

3060000

3070000

3080000

3090000

3100000

3110000

3120000

3130000

3140000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
2

 M
is

se
s

Block Size

Thread 2 L2 Misses

Figure 5.13: Thread 2 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.11

Table 5.12: Thread 3 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block Size L1 Misses L2 Misses

10 49774977 3190319

50 14581458 3140314

100 11941194 3140314

200 10861086 3130313

250 10671067 3140314

500 10171017 3130313

1000 9800980 3140314

2000 9690969 3130313

2500 9740974 3130313

5000 9900990 3130313

10000 9870987 3130313

\
\
\
~

I
I

I
I

I
J

69

0

10000000

20000000

30000000

40000000

50000000

60000000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

 M
is

se
s

Block Size

Thread 3 L1 Misses

3100000

3110000

3120000

3130000

3140000

3150000

3160000

3170000

3180000

3190000

3200000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
2

 M
is

se
s

Block Size

Thread 3 L2 Misses

Figure 5.14: Thread 3 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.12

Table 5.13: Thread 1, Thread 2, Thread 3 Instructions completed on Core2 with
Morales parallel algorithm using data.dat : 10000 items x 10000 capacity

Block Size Thread 1 INS
Thread 2

INS
Thread 3 INS

Total

Instruc!ons

Completed

10 1530000000 5.48E+09 5490000000 1.25E+10

50 1530000000 3.92E+09 3920000000 9370000000

100 1530000000 3.73E+09 3730000000 8990000000

200 1530000000 3.63E+09 3630000000 8790000000

250 1530000000 3.61E+09 3610000000 8750000000

500 1530000000 3.58E+09 3580000000 8690000000

1000 1530000000 3.56E+09 3560000000 8650000000

2000 1530000000 3.55E+09 3550000000 8630000000

2500 1530000000 3.55E+09 3550000000 8630000000

5000 1530000000 3.54E+09 3540000000 8610000000

10000 1530000000 3.54E+09 3540000000 8610000000

\
\
\
k

"\
\
\
\
\.

............. / /""

70

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

In
st

ru
c

o
n

s
co

m
p

le
te

d

Block Size

Thread 1 INS

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

In
st

ru
c

o
n

s
co

m
p

le
te

d

Block size

Thread 2 INS

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

In
st

ru
c

o
n

s
co

m
p

le
te

d

Block Size

Thread 3 INS

Figure 5.15: Thread 1, Thread 2, Thread 3 Instructions completed on Core2 with
Morales parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph
from Table 5.13

• • • • • • • • • • •

'\

"-

'\

"-

71

Table 5.14: Thread 1, Thread 2, Thread 3 CPU Cycles on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity

Block Size

Running !me

of Morales

parallel

algorithm

Thread 1

Cpu Cycles

Thread 2

Cpu Cycles

Thread 3

Cpu Cycles

Total

CPU Cycles

10 4.63877 1.23E+09 6900000000 6900000000 1.5E+10

50 1.56791 9.34E+08 2930000000 2940000000 6.8E+09

100 1.33757 9.82E+08 2510000000 2520000000 6.01E+09

200 1.24879 1.12E+09 2310000000 2320000000 5.75E+09

250 1.23046 1.05E+09 2270000000 2270000000 5.59E+09

500 1.1882 1.34E+09 2190000000 2190000000 5.72E+09

1000 1.16864 1.22E+09 2150000000 2150000000 5.52E+09

2000 1.16424 1.14E+09 2130000000 2130000000 5.4E+09

2500 1.15788 1.29E+09 2130000000 2130000000 5.55E+09

5000 1.20013 1.26E+09 2130000000 2130000000 5.52E+09

10000 2.10711 1.14E+09 2120000000 2120000000 5.38E+09

Table 5.15: Total L1, L2 misses, CPU cycles and Instruction completed including all
Threads on Core2 with Morales parallel algorithm using data.dat : 10000 items x
10000 capacity

Block size

Total L1

Misses

Total L2

Misses

Total

Instruc!ons

Completed

Total CPU

Cycles

Algorithm

Running

Times for

INS and

Cycles in

Sec

Algorithm

Running

Time for L1

, L2 in Sec

10 99469946 6270627 12500000000 15030000000 4.63877 4.44827

50 30413041 6280628 9370000000 6804000000 1.56791 1.53626

100 25202520 6280628 8990000000 6012000000 1.33757 1.3119

200 23052305 6270627 8790000000 5750000000 1.24879 1.22364

250 22652265 6280628 8750000000 5590000000 1.23046 1.20865

500 21642164 6270627 8690000000 5720000000 1.1882 1.16916

1000 20852085 6280628 8650000000 5520000000 1.16864 1.14916

2000 20702070 6270627 8630000000 5400000000 1.16424 1.14085

2500 20762076 6270627 8630000000 5550000000 1.15788 1.13936

5000 21062106 6270627 8610000000 5520000000 1.20013 1.178

10000 20992099 6270627 8610000000 5380000000 2.10711 2.07549

72

0

200000000

400000000

600000000

800000000

1E+09

1.2E+09

1.4E+09

1.6E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

C
P

U
 c

y
cl

e
s

Block size

Thread 1 CPU Cycles

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

C
P

U
 c

y
cl

e
s

Block size

Thread 2 CPU Cycles

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

10 50 100 200 250 500 1000 2000 2500 5000 10000

C
P

U
 c

y
cl

e
s

Block size

Thread 3 CPU Cycles

Figure 5.16: Thread 1, Thread 2, Thread 3 CPU Cycles on Core2 with Morales par-
allel algorithm using data.dat : 10000 items x 10000 capacity. Graph from Table 5.14

• ~ -
'"/ -.-

~

\
\
\
\

\
\
\
\ -

73

0

20000000

40000000

60000000

80000000

100000000

120000000

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

,L
2

 M
is

se
s

Block size

Total L1, L2 Misses

Total L1 Misses

Total L2 Misses

Figure 5.17: Total L1, L2 misses including all Threads on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity, Graph from Table 5.15

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

10 50 100 200 250 500 1000 2000 2500 5000 10000

C
P

U
 C

y
cl

e
s

a
n

d
 I

n
st

ru
c!

o
n

s
co

m
p

le
te

d

Block size

Cpu cycles with Instr

Total Instr completed

Total Cpu Cycles

Figure 5.18: Total CPU cycles and Instruction completed including all Threads on
Core2 with Morales parallel algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.15

"' \
\
\
~

• • •

"' Ill'
\

\ k.

~

• • • • • • • •

~

...... -

......

......

74

Table 5.16: Total L1, L2 Miss Rates per 1000 ins for all Threads on Core2 with
Morales parallel algorithm using data.dat : 10000 items x 10000 capacity

Block

Size

Total

Instruc!ons

Completed

Total L1

Misses

Total L2

Misses

L1 Miss Rate

per INStr

L1 Miss Rates

per 1000

INStr

L2 Miss Rate

per INStr

L2 Miss

Rates per

1000 INStr

10 12500000000 99469946 6270627 0.007957596 7.95759568 0.00050165 0.50165016

50 9370000000 30413041 6280628 0.003245789 3.245788794 0.000670291 0.670291142

100 8990000000 25202520 6280628 0.002803395 2.803394883 0.000698624 0.698623804

200 8790000000 23052305 6270627 0.00262256 2.622560296 0.000713382 0.713381911

250 8750000000 22652265 6280628 0.00258883 2.588830286 0.000717786 0.717786057

500 8690000000 21642164 6270627 0.002490468 2.490467664 0.000721591 0.721591139

1000 8650000000 20852085 6280628 0.002410646 2.410645665 0.000726084 0.726084162

2000 8630000000 20702070 6270627 0.002398849 2.398849363 0.000726608 0.726607995

2500 8630000000 20762076 6270627 0.002405803 2.405802549 0.000726608 0.726607995

5000 8610000000 21062106 6270627 0.002446238 2.446237631 0.000728296 0.728295819

10000 8610000000 20992099 6270627 0.002438107 2.438106736 0.000728296 0.728295819

0

1

2

3

4

5

6

7

8

9

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
1

 M
is

s
R

a
te

 p
e

r
1

0
0

0
 in

st
ru

c�
o

n
s

Block Size

L1 Miss Rates per 1000 INStr

Figure 5.19: Total L1 Miss Rates per 1000 ins for all Threads on Core2 with Morales
parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from Ta-
ble 5.16

,
\
\
\
\..

75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 50 100 200 250 500 1000 2000 2500 5000 10000

L
2

 M
is

s
R

a
te

 p
e

r
1

0
0

0
 in

st
ru

c!
o

n
s

Block Size

L2 Miss Rates per 1000 INStr

Figure 5.20: Total L2 Miss Rates per 1000 ins for all Threads on Core2 with Morales
parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from Ta-
ble 5.16

76

Summary of results for Core2 with the data.dat (10000 x10000) dataset

using 2 threads:

The blocking factor controls both the granularity of parallelism and the data

locality among concurrent threads. A series of experiments is conducted to evaluate

the performance impact of blocking factors for both parallel variants. The results of

these experiments are summarized in fig. 5.2 and fig. 5.3. These figures show

performance of classic and morales on Core2, as the block sizes are varied. One

observes a clear performance trend for both classic and morales. The

performance drops significantly for smaller block sizes, picks up as we increase the

block size and then drops again when we increase the block size beyond 5K.

The poor performance for smaller block sizes is speculated to be due to a result

of poor granularity. When block sizes are ≤ 48, concurrent threads are not assigned

enough computation to offset the overhead of thread creation and synchronization.

In the overall L1,L2 Cache misses of the classic algorithm in table 5.8,fig. 5.8,

table 5.9, fig. 5.10 and fig. 5.11 one can see that both the L1 , L2 misses decrease

and became fairly constant after block size 1000. The CPU cycles for the classic

algorithm in fig. 5.9 and table 5.8 constantly decrease till they hit block size 1000

and then start to increase after block size 2500. The instructions completed from

fig. 5.9 and table 5.8 also increase after block size 1000. The fact that the L1, L2

misses are higher before block size 48 do account for the lower performance. The

same goes for the CPU cycles and instructions completed when the block size is less

than 48. This goes hand in hand with the values from fig. 5.2. Looking at the

individual thread figures 5.4 to 5.7 a similar pattern is seen.

77

Looking at the overall L1 cache misses of the morales algorithm in table 5.15

and fig. 5.17 one see that they start high and decrease after block size 50k and

became somewhat constant. The L2 cache misses in these figures remains fairly

constant and unchanged. The CPU cycles and Instructions completed of the

morales algorithm in table 5.15 and fig. 5.18 also follow a similar trend like the L1

misses. So they are higher CPU cycles, L1 misses and Instructions completed when

the block size is less than 48. These results follow a similar trend like that in fig. 5.3

when the block size is less than 48. Looking at the individual thread figures 5.12

to 5.16 a similar pattern is seen.

On the other hand, when the block size to is greater than 5K, the speed up is

decreased. In the classic parallel algorithm when the block size is greater than 5K,

one sees that both the CPU cycles from fig. 5.9 and table 5.8 and the Instructions

completed increase. The L1, L2 misses (table 5.8,fig. 5.8, table 5.9, fig. 5.10 and

fig. 5.11) stay fairly constant beyond this point. So one reason for the lower

performance of the classic parallel algorithm beyond this point of 5K can be

explained with the increase in the CPU cycles and Instructions completed. Also in

fig. 5.5 the L1 misses of Thread 2 go up after a block size of 500. The instructions

completed of Thread 2 in fig. 5.6 also go up after 500. With Thread 1 in fig. 5.6 the

instructions completed go up slightly after 500. In CPU cycles Thread 2 in fig. 5.7

goes up slightly after 1000 while Thread 1 gets a sharp increase after the block size

of 2500. The maximum speed up with the parallel classic was around the block size

of 500. After that the speed up drops and these individual thread figures show that.

The individual thread figures show similar results to those of the overall total CPU

78

cycles and Instructions completed of the algorithm. But they also give an

interesting insight with the L1,L2 misses. Looking at the individual threads , it is

seen that although the L1,L2 misses in total are dropping but with Thread 2 the L1

misses increase after the block size of 500. So apart from the increase in CPU cycles

and the Instructions completed of the classic parallel algorithm, This could be

another reason for the decrease in its speed up.

Looking at the L1,L2 cache misses,CPU cycles and Instructions completed of the

morales parallel algorithm from table 5.15, and figures 5.17 and 5.18, one sees that

after block size 5K everything is mostly constant. This does not tell much as to why

after 5K the speed up is decreased with the morales algorithm, unlike the classic

algorithm where the CPU cycles and Instructions completed did show an increase

in activity beyond this point, along with Thread 2’s L1 cache misses. In the

morales parallel algorithm Thread 1’s L1 misses in fig 5.12 increase after the block

size of 1000 and Thread 1’s CPU cycles in fig 5.16 are steadily increasing. The

Threads 2 and 3 either become constant at some point or have decreasing numbers.

So it is possible that apart from Thread 1, something else is happening with

Thread 2 and 3 in the morales parallel algorithm beyond this point. It is possible

that the L1,L2 misses could be resulting in page faults increasing the running time

of the algorithm. So although the misses are constant , after the 5K mark they

could be leading to page faults instead.

79

5.3.1.2 Quad with 4 threads:

Table 5.17: Impact of block size on performance of parallel classic on Quad using
data.dat : 10000 items x 10000 capacity

Quad : 4 threads

data.dat : 10000 items x 10000 capacity

Classic

Block size
Parallel Running

time in Seconds

Sequential running

time in seconds
Speed up

 174.952

2 (very long)

10 556.253 0.314519

50 163.192 1.072062

100 108.679 1.609805

200 80.0991 2.184194

250 72.75 2.404838

500 61.9131 2.825767

1000 57.1973 3.058746

2000 58.0052 3.016143

2500 59.7216 2.929459

5000 70.6995 2.474586

10000 89.6722 1.951017

Running times and Speed up with varying block sizes

Figs. 5.21 and 5.22 present performance results for varying block sizes on Quad.

One thing to note that both graphs of the respective algorithms achieve higher speed

ups than the Core2. An identical performance pattern is observed on this platform

with the morales parallel algorithm compared to the Core2 from before. Any block

size smaller than 48 or larger than 5K turns out to be a poor choice. With a block

size of less than 48 the classic parallel algorithm shows similar results to the

Core2 as well. When the block size is larger than 5K the classic parallel algorithm

still shows speed up, even with the largest block size of 10000. However the pattern

of the speed up overall is similar to the one before with the Core2.

80

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

%!" $!" %!!" &!!" &$!" $!!" %!!!" &!!!" &$!!" $(" %!("

!
"
#
#
$
%
"
&'
(
#
)&
*#
+
%
#
,
-
.
/&

0/'12&!34#&

Figure 5.21: Impact of block size on performance of parallel classic on Quad using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.17

!"

!#$"

%"

%#$"

&"

&#$"

'"

&" %!" $!" %!!" &!!" &$!" $!!" %!!!" &!!!" &$!!" $(" %!("

!
"
#
#
$
%
"
&'
(
#
)&
*#
+
%
#
,
-
.
/&

0/'12&!34#&

Figure 5.22: Impact of block size on performance of parallel morales on Quad using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.18

It should be noted, that although total cache capacity on Quad is larger than

Core2, the available cache per socket is still the same, and thus, the range of good

tile sizes appears to be the same for both platforms. The range of good tile sizes are

likely to be different for architectures that have cache configurations that are

significantly different from Core2 or Quad.

/ ~
~ ~

/ •

./
/

.'

\
/

/

81

Table 5.18: Impact of block size on performance of parallel morales on Quad using
data.dat : 10000 items x 10000 capacity

Quad : 4 threads

data.dat : 10000 items x 10000 capacity

Morales

Block size
Parallel Running

time in Seconds

Sequential running

time in seconds
Speed up

 1.42791

2 23.8235 0.059937

10 5.19119 0.275064

50 1.40146 1.018873

100 0.929053 1.536952

200 0.786962 1.814459

250 0.735538 1.941314

500 0.635935 2.245371

1000 0.655799 2.177359

2000 0.662451 2.155495

2500 0.595529 2.397717

5000 0.974834 1.464772

10000 1.85246 0.770818

82

5.3.1.3 8-core with 8 threads:

Table 5.19: Impact of block size on performance of parallel classic on 8-core using
data.dat : 10000 items x 10000 capacity

8-core : 8 threads

data.dat : 10000 items x 10000 capacity

Classic

Block size
Parallel Running time in

Seconds

Sequential running time in

seconds

Speed

up

 168.472

10 89.3494 1.885541

50 37.5553 4.485971

100 30.5213 5.519817

200 25.5953 6.582146

250 25.5377 6.596992

500 24.3337 6.923403

1000 24.7436 6.80871

2000 25.831 6.522086

2500 26.016 6.475707

5000 29.9237 5.630052

10000 38.7219 4.35082

Running times and Speed up with varying block sizes

Figs. 5.23 and 5.24 present performance results for varying block sizes on

8-core.One thing to note that both graphs of the respective algorithms achieve

higher speed ups than the Quad.In the classic algorithm even with smaller block

sizes there is still speed up. The pattern of the speed up of the algorithm is similar

to the ones (of the classic algorithm) seen before. In the morales algorithm there is

no speed up when the block size is less than 10. The behaviour of having block sizes

greater than 5K is the same. The speed up is lost when the block sizes are less than

10 and greater than 5K. Since the speed up overall is greater than the Quad with

similar behaviours the graph is more steeper than the ones seen from before. In all

83

0

1

2

3

4

5

6

7

8

10 50 100 200 250 500 1000 2000 2500 5000 10000

S
p

e
e
d

 u
p

 o
v
e
r

c
la

s
s
ic

s
e
q

u
e
n

ti
a
l

Block Size

8 Core with 8 Threads : Classic Parallel

Figure 5.23: Impact of block size on performance of parallel classic on 8-core using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.19

of these graphs of both the algorithms with the different machines a similar bell

type shape block size pattern is observed.

84

Table 5.20: Impact of block size on performance of parallel morales on 8-core using
data.dat : 10000 items x 10000 capacity

8-core : 8 threads

data.dat : 10000 items x 10000 capacity

Morales

Block size
Parallel Running

time in Seconds

Sequential running

time in seconds
Speed up

 1.2407

2 9.57458 0.129583

10 2.25421 0.550392

50 0.632238 1.962394

100 0.378743 3.275836

200 0.281235 4.411613

250 0.252115 4.921167

500 0.270831 4.581086

1000 0.2825 4.391858

2000 0.645026 1.923488

2500 0.697792 1.778037

5000 1.2279 1.010424

10000 1.89505 0.654706

0

1

2

3

4

5

6

2 10 50 100 200 250 500 1000 2000 2500 5000 10000

S
p

e
e
d

 u
p

 o
v
e
r

m

o
r
a
le

s

s
e
q

u
e
n

ti
a
l

Block Size

8 Core with 8 Threads : Morales Parallel

Figure 5.24: Impact of block size on performance of parallel morales on 8-core using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.20

r ""l

/ \
./ \

/ "" -

85

5.4 Impact of Data Set Size and Range of Values

The following figures show the running times of both parallel classic and morales

with the variation in block sizes with larger datasets and different values of R.

5.4.1 Using the Data set : ds60-30k.dat : 30000 items x 30000

capacity.

One thing to note in this test is that the dataset’s R value is 30000. The classic

sequential algorithm overall has a better running time with this dataset. It is better

than the smaller data.dat (R=100 ,10000 x10000) dataset even though the size of

30000 items x 30000 capacity is larger. One reason for this could be the iterations of

the inner while loop (0 ¡ l ¡ ĉ/weightitem) in the algorithm. When R=100 this

means that the dataset has smaller values 1:100 and therefore more combinations.

When R=30000 this means that the values are larger and hence lesser combinations

and so lesser iterations of the while loop. This is proved when another dataset

(ds30-300.dat) is used of the same size 30000 items x 30000 capacity with R=300.

The fig 5.25 and table 5.21 shows the results. The classic sequential and parallel

algorithm were run on the 8-core machine with 8 threads.

From the table 5.21 one see the large running times required from the classic

sequential to run such a dataset with smaller R values and larger sizes of items and

capacity.

The Core2 machine could not be used for this test because it would run out of

memory when running a dataset of this size and the data.dat (10000 x10000)

86

Table 5.21: Classic parallel on 8-core using ds30-300.dat (R:300, 30000 items x
30000 capacity)

8-core : 8 threads

ds30-300.dat : 30000 items x 30000 capacity

R:300

Classic

Block

size

Parallel Running !me in

Seconds

Sequen!al running !me in

seconds

Speed up over

sequen!al

 2068

2500 1333.56 1.550736375

5000 324.15 6.379762456

10000 365.037 5.665179146

15000 402.707 5.135247214

30000 522.072 3.96113946

0

1

2

3

4

5

6

7

2500 5000 10000 15000 30000

S
p

e
e

d
 u

p
 o

v
e

r
se

q
u

e
n

!
a

l

Block size

Classic Parallel :8-core with 8 threads (R:300, 30000

items x 30000 capacity)

Figure 5.25: Classic parallel on 8-core using ds30-300.dat (R:300, 30000 items x
30000 capacity), Graph from Table 5.21

dataset was among the maximum it could take.

5.4.1.1 Overall Speed up of Quad and 8-core compared

Table 5.22 and Fig. 5.26 show speedup obtained over the sequential version, for

both classic and morales for 4 and 8 cores. The data set used was ds60-30k.dat

with 30000 item x 30000 capacity and R=30000. This chart reveals that both

parallel variants obtain significant speedup over their sequential counterparts. A

-" --

87

Table 5.22: Performance improvement with increasing number of cores with ds60-
30k.dat dataset (R:30000, 30000 items x 30000 capacity)

Parallel Algorithms Speed up over Sequential Counterparts

#Cores Machines with same #Threads Classic Morales

4 2.256168 2.648065

8 5.78876 5.145088

0

1

2

3

4

5

6

7

4 8

S
p

e
e

d
 u

p
 o

v
e

r
S

e
q

u
e

n
!

a
l

Number of Cores

Classic

Morales

Figure 5.26: Performance improvement with increasing number of cores with ds30-
60k.dat dataset (R:30000, 30000 items x 30000 capacity), Graph from Table 5.22

more detailed view of the block size pattern is shown for both the Quad and 8-core

in the following sections.

5.4.1.2 Quad with 4 threads:

Running times and Speed up with varying block sizes

In figure 5.27 we see an increasing pattern of speed up of the classic parallel

algorithm starting from a block size of 1000 up to a block size of 15k. Before the

block size 1000 the speed up is not present but starting from 50 the performance

does continue to increase. After the block size of 15k the performance decreases but

there is still speed up. In the fig 5.28 of the morales parallel algorithm we see a

more familiar bell shape type pattern of the speed up. The behavior seems similar

88

Table 5.23: Impact of block size on performance of parallel classic on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

Core 4 Quad : 4 threads

ds60-30k.dat : 30000 x 30000

Classic

Block

size

Parallel Algrthm

Running time in

secs

Sequential

Algrthm

Running

time in secs

Speed up

over

sequential

 48.6784

50 873.953 0.055699

100 447.178 0.108857

200 230.647 0.211052

250 189.382 0.257038

500 104.839 0.464316

1000 61.4949 0.791584

2000 39.6362 1.22813

2500 35.4272 1.37404

5000 26.6018 1.829891

10000 22.5772 2.156087

15000 21.5757 2.256168

30000 24.2907 2.003993

to the one with the data.dat dataset from before. Before the block size 50 there is

no speed up and after block size 30k there is no speed up. The performance

increases till it reaches 5K and then decreases afterwards.

89

0

0.5

1

1.5

2

2.5

50 100 200 250 500 1000 2000 2500 5k 10k 15k 30k

S
p

e
e
d

 u
p

 o
v
e
r

c
la

s
s
ic

s
e
q

u
e
n

ti
a
l

Block Size

Quad Core with 4 Threads : Classic Parallel (30000 items x 30000

capacity , R:30000)

Figure 5.27: Impact of block size on performance of parallel classic on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.23

Table 5.24: Impact of block size on performance of parallel morales on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

Core 4 Quad : 4 threads

ds60-30k.dat : 30000 x 30000

Morales

Block

size

Parallel

running

time in

Secs

Sequential

running

time in

secs

Speed up

over

sequential

 10.5049

10 44.39 0.23665

50 11.6418 0.902343

100 7.33079 1.432983

200 5.49236 1.912639

250 5.28358 1.988216

500 4.96281 2.116724

1000 5.10009 2.059748

2000 4.91814 2.13595

2500 4.73286 2.219567

5000 3.96701 2.648065

10000 5.46396 1.92258

15000 7.90661 1.328623

30000 12.6438 0.830834

...
~

/'
~

,,/
./'

90

0

0.5

1

1.5

2

2.5

3

10 50 100 200 250 500 1000 2000 2500 5k 10k 15k 30k

S
p

e
e
d

 u
p

 o
v
e
r

m

o
r
a
le

s

s
e
q

u
e
n

ti
a
l

Block Size

Quad Core with 4 Threads : Morales Parallel (30000 items x 30000

capacity, R: 30000)

Figure 5.28: Impact of block size on performance of parallel morales on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.24

A

-*"'\.
./ " /' ,

/ ~

~

91

5.4.1.3 8-core with 8 threads:

Table 5.25: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

8-Core : 8 threads

ds60-30k.dat : 30000 x 30000

Classic

Block size

Parallel algorithm

Running time in secs

Sequential

algorithm

Running time

in secs

Speed up

over

sequential

 43.6777

10 290.246 0.150485

50 67.143 0.650518

100 36.073 1.210814

200 21.9986 1.985476

250 20.4762 2.133096

500 13.6401 3.202154

1000 10.5676 4.133171

2000 8.74639 4.993797

2500 8.08234 5.404091

5000 7.54526 5.78876

10000 7.73978 5.643274

15000 8.21835 5.314656

30000 9.97752 4.377611

Running times and Speed up with varying block sizes

In fig. 5.29 we see a similar pattern of the classic parallel algorithm to the one

seen before with the same dataset on the Quad. The graph achieves higher speed up

than the Quad. It gains speed up after a smaller block size of 100 and continues to

have a speed up with the largest block size of 30000. In this case the maximum

speed up is reached sooner with a lower block size of 5000 , after which the

performance decreases. In fig. 5.30 we again see the bell type shape pattern of the

morales parallel algorithm. The speed up is a lot more than the Quad. The speed

up starts from a smaller block size of around 20 and ends after the block size of 15k.

92

0

1

2

3

4

5

6

7

10 50 100 200 250 500 1000 2000 2500 5K 10K 15K 30K

S
p

e
e

d
 u

p
 o

v
e

r
se

q
u

e
n

�
a

l
cl

a
ss

ic

Block size

8 cores with 8 threads : Classic Parallel (30000 items x 30000 capacity ,

R:30000)

Figure 5.29: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.25

5.4.2 Using the Data set : ds60-30k.dat : 60000 items x 60000

capacity.

The same dataset set ds60-30k.dat was used again in this test with the R:30000.

The only change was that the items and capacity were both increased to 60000

items and 60000 total capacity. The Quad and Core2 machines could not be used

for this test because both of them would run out of memory.

5.4.2.1 Overall Speed up 8-core

Table 5.27 and Fig. 5.31 show speedup obtained over the sequential version, for both

classic and morales for 8 cores. The data set used was ds60-30k.dat with 60000

item x 60000 capacity and R=30000. This chart reveals that both parallel variants

obtain significant speedup over their sequential counterparts. A more detailed view

of the block size pattern is shown for the 8-core in the following sections.

93

Table 5.26: Impact of block size on performance of parallel morales on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

8-Core : 8 threads

ds60-30k.dat : 30000 x 30000

Morales

Block size

Parallel

algorithm

Running time

in secs

Sequential

algorithm

Running time in

secs

Speed up over

sequential

 8.54347

2 89.1302 0.095854

10 19.548 0.437051

50 5.15533 1.657211

100 3.08486 2.769484

200 2.22153 3.845759

250 2.03502 4.198224

500 1.80226 4.74042

1000 1.71406 4.984347

2000 1.66051 5.145088

2500 1.68942 5.057043

5000 2.58473 3.305363

10000 5.36337 1.592929

15000 7.80193 1.095046

30000 12.0662 0.70805

5.4.2.2 8-core with 8 threads:

Running times and Speed up with varying block sizes

In fig. 5.32 we see a similar pattern of the classic parallel algorithm to the one

seen before with the same dataset with 30000 items and 30000 capacity. It gains

speed up after a smaller block size of 50 and continues to have a speed up with the

largest block size of 60000. The maximum speed up is reached with between a block

size of 6000 and 10000 , after which the performance decreases. In fig. 5.33 we again

see the bell type shape pattern of the morales parallel algorithm.The speed up

starts from a smaller block size of around 20 and ends after the block size of 30k.

94

0

1

2

3

4

5

6

2 10 50 100 200 250 500 1000 2000 2500 5k 10k 15k 30k

S
p

e
e

d
 u

p
 o

v
e

r
m

o
ra

le
s

se
q

u
e

n
!

a
l

Block size

8 Core with 8 Threads : Morales Parallel (30000 items x 30000 capacity ,

R:30000)

Figure 5.30: Impact of block size on performance of parallel morales on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.26

Table 5.27: Performance improvement with increasing number of cores with ds60-
30k.dat dataset: 60000 items x 60000 capacity

Data set : ds60-30k.dat : 60000 items x

60000 capacity

Parallel Algorithms Speed up over

Sequential Counterparts

#Cores Machines with same

#Threads
Classic Morales

8 5.924733 5.877096

5.85

5.86

5.87

5.88

5.89

5.9

5.91

5.92

5.93

8

Number of Cores

S
p

e
e

d
 u

p
 o

v
e

r
S

e
q

u
e

n
!

a
l

Classic

Morales

Figure 5.31: Performance improvement with increasing number of cores with ds30-
60k.dat dataset: 60000 items x 60000 capacity, Graph from Table 5.27

I

• ---- .

-

95

Table 5.28: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 60000 items x 60000 capacity)

8-Core : 8 threads

ds60-30k.dat : 60000 x 60000

Classic

Block Size

Parallel algorithm

Running time in

secs

Sequential algorithm

Running time in secs
Speed up over

sequential

 297.549

10 1248.31 0.238361

50 294.24 1.011246

100 170.853 1.74155

200 114.157 2.606489

250 104.328 2.852053

300 94.5814 3.145957

500 77.9818 3.815621

1000 67.0304 4.439016

2000 58.2024 5.112315

2500 55.7891 5.333461

3000 54.0621 5.503837

5000 51.1151 5.821157

6000 50.2367 5.922941

10000 50.2215 5.924733

12000 50.6974 5.869118

15000 51.7351 5.751395

20000 53.7819 5.532512

30000 58.4627 5.089553

60000 73.5006 4.048253

96

0

1

2

3

4

5

6

7

10 50 100 200 250 300 500 1k 2k 2.5k 3k 5K 6k 10K 12k 15K 20k 30K 60k

S
p

e
e

d
 u

p
 o

v
e

r
se

q
u

e
n

!
a

l
cl

a
ss

ic

Block size

8 cores with 8 threads : Classic Parallel (60000 items x 60000 capacity ,

R:30000)

Figure 5.32: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 60000 items x 60000 capacity), Graph from Table 5.28

0

1

2

3

4

5

6

7

2 10 50 100 200 250 300 500 1k 2k 2.5k 3k 5k 6k 10k 12k 15k 20k 30k 60k

S
p

e
e

d
 u

p
 o

v
e

r
m

o
ra

le
s

se
q

u
e

n
!

a
l

Block size

8 Core with 8 Threads : Morales Parallel (60000 items x 60000 capacity ,

R:30000)

Figure 5.33: Impact of block size on performance of parallel morales on 8-core using
ds60-30k.dat (R:30000, 60000 items x 60000 capacity), Graph from Table 5.29

~ ~
/ \.

./
/

/
/

97

Table 5.29: Impact of block size on performance of parallel morales on 8-core using
ds60-30k.dat (R:30000, 60000 items x 60000 capacity)

8-Core : 8 threads

ds60-30k.dat : 60000 x 60000

Morales

Block

Size

Parallel algorithm

Running time in secs

Sequential algorithm

Running time in secs

Speed up over

sequential

 39.5468

2 356.845 0.110823

10 79.4656 0.497659

50 20.0876 1.968717

100 11.9872 3.299086

200 8.59146 4.603036

250 8.11221 4.874972

300 7.7104 5.129021

500 7.30286 5.415248

1000 6.93928 5.698977

2000 6.72897 5.877096

2500 6.76225 5.848172

3000 6.81423 5.803561

5000 6.84038 5.781375

6000 6.86945 5.756909

10000 10.2732 3.849511

12000 14.0776 2.8092

15000 16.2578 2.432482

20000 20.9384 1.888721

30000 29.4532 1.3427

60000 51.8065 0.763356

CHAPTER 6

RELATED WORK

6.1 Parallelization on Multi-core Architecture

[23]Tan et al. discussed a parallel programming algorithm for a multi-core

architecture. They presented a scheme to exploit fine grain parallelism and locality

of a dynamic programming algorithm with non-uniform dependence on a multi-core

architecture. The multi-core architecture they tested their algorithm on was the

IBM Cyclops64 simulator. They proposed that, since this architecture model was an

extension conventional out-of-core model, their algorithm solution can be adapted

to achieve high performance on a conventional out-of-core model. [13]Holzmann

described a stack slicing algorithm whose application was for multi-core model

checking. The Stack slicing algorithm tried to achieve an even distribution of work

across the available CPUs(load balancing) , maximal independence between the

work done on different CPUs and minimal communication overhead. The focus was

primarily on shared memory systems but could be easily extended to use on cluster

computers. The algorithm was a modified and parallelized depth-first search and

was compared to the classic depth-first search and proved that an inherently

sequential process can be parallelized. [25]Villa et al. discuss the challenges and

design choices involved in parallelizing a breadth-first search algorithm on the Cell

Broadband Engine multi-core processor. The Cell BE is meant for high performance

98

99

clusters and supercomputers and it’s memory hierarchy is explicitly managed at

software level. They described how they parallelized the Breadh-first search

algorithm and by experimentation proved that their method achieved a high level of

performance on the Cell BE processor. [21]Scarpazza, Villa et al. wrote another

paper that looked deeper into the parallelization of the Breadth first search

algorithm on the Cell BE processor. The paper was a bit similar to the one

mentioned before but included more details and experimental results. With the

Breadth-first search graph exploration ,they proved that it is possible to tame the

algorithmic and software development process and achieve, at the same time , an

impressive level of performance. They mentioned that explicit management of the

memory hierarchy, with emphasis on the local memories of the multiple cores, is a

fundamental aspect that needs to be captured by the high level algorithmic design

to guarantee portability of performance across existing and future multicore

architectures. They also added that the major strength of the Cell BE processor was

the possibility of overcoming the memory wall: the user can explicitly orchestrate

the memory traffic by pipelining multiple DMA requests to the main memory. This

is a unique feature that is not available on other commodity multi-processors, which

cannot efficiently handle working sets that overflow the cache memory.

6.2 Previous Work on the Parallelization of the IKP

There is fewer literature on parallelizing the IKP than on parallelizing the 0/1 KP.

The related work closest to the one in this paper is in [17]. These authors present

multiple strategies for parallelizing the DP recursion 2.2 proposed by [11] for the

100

IKP. The results are tested in a distributed framework for transputer and LAN

networks using occam and PVM, respectively. The first algorithm is a simple

pipeline algorithm (SPA) that performs a parallelization on the objects. The

implementation is on a one-way ring topology with a root processor to facilitate

synchronization and administration of the queue of messages (computed f values).

Authors in [17] do not consider blocking as an alternative to improve the

performance of SPA but they implemented SPA with single dominancy [10] to

reduce the high communication cost between processors. The new algorithm is

named pipelined algorithm with dominancy (PAD). Only non dominated solutions

from a previous row are sent to the next processor to compute 2.2. A future study

may consider to combine dominance and the blocking concept proposed in this

research to improve performance for morales algorithm.

Paper in [17] also implemented a pipelined algorithm with parallelization on the

capacities (PAPC). For a particular knapsack item, each processor computes the f

values for a range of capacities of fixed length r. Dependency may occur among

non-adjacent processors and therefore a particular processor may wait for values

sent by a processor different to its predecessor. The knapsack items are associated

with the iterations or steps of the algorithm. Only after a row of the matrix M is

completely computed, the algorithm proceeds with the computations for the next

item (row).

Authors in [2] present a parallel pipelined algorithm for the IKP with time

complexity equal to the one in [17], that is, O(nC/q + n) where q is the number of

processors. The algorithm was implemented on a ring topology and the speedup

101

resulted asymptotically linear on q. Authors also present a new procedure for the

backtracking phase with a time complexity O(n), an improvement to O(mc),the

time complexity of usual strategies.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This paper explored the issue of algorithmic choice in the context of the IKP by

comparing the performance of two parallel variants on multicore platforms. The

results reveal that although a row-by-row problem decomposition does not fare well

when run sequentially, it exhibits good scalability when run in parallel. Another key

finding of this study is that blocking factors have significant impact on performance

of each parallel variant. Therefore, to achieve improved performance, it is necessary

to select blocking factors through careful analysis. One point to note is that the

classic parallel variant was alot simpler to parallelize and was implemented using

OpenMP. Transforming a sequential program to a parallel one using OpenMP

usually requires minimal code structure changes compared to other methods like

pthreads. If one were to compare the ease of parallelizing an algorithm along with

the performance gain for a multi-core architecture then the classic parallel variant

would be an ideal example. As this demonstrates a generic method in transforming

a sequential algorithm with minimal effort and huge performance gains when run on

a multi-core system.

The impact of dominance optimization on the sequential IKP was also explored.

Dominance significantly reduced the search space of large datasets and improved

running times. This improvement in reducing the search space to smaller datasets

102

103

would increase the performance of the parallel variants even further. Future

research will explore effects on performance of the parallel variants to changes in

data set sizes. The data locality aspects of performance will also be examined in

more depth.

BffiLIOGRAPHY

[1] R. Andonov, V. Poirriez, and S. Rajopadhye. Unbounded knapsack problem:
Dynamic programming revisited. European J oumal of Operational Research,
123:394-407, 2000.

[2] R. Andonov, F. Raimbault, and P. Quinton. Dynamic programming parallel
implementations for the knapsack problem. Technical Report 2037, INRIA
Institut National de Recherche en Informatique et en Automatique, France,
1993.

[3] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46:316-329, 1998.

[4] R. Bellman and S. E. Dreyfus. Applied Dynamic Programming. University
Press, Princeton, NY, 1962.

[5] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. Quintana-Orti, and R. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM
Transactions on Mathematical Software, 31(1):1-26, March 2005.

[6] G. B. Dantzig. Discrete-variable extremum problems. Operations Research,
5:266-288, 1957.

[7] M. Frigo. A fast Fourier transform compiler. In Proceedings of the SIGPLAN
'98 Conference on Programming Language Design and Implementation,
Montreal, Canada, June 1998.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the
Theory of NP-Completeness. Freeman, San Francisco, NY, 1979.

104

[9] P. C. Gilmore and R. E. Gomory. A linear programming approach to the
cutting stock problem. Operations Research, 13:94-120, 1961.

[10] P. C. Gilmore and R. E. Gomory. A linear programming approach to the
cutting stock problem - part ii. Operations Research, 11:863-888, 1963.

105

[11] P. C. Gilmore and R. E. Gomory. Multistage cutting stock problems of two and
more dimensions. Operations Research, 13:94-120, 1964.

[12] A. Goldman and D. Trystram. An efficient parallel algorithm for solving the
knapsack problem on hypercubes. Journal of Parallel and Distributed
Computing, 64(11):1213-1222, 2004.

[13] G. J. Holzmann. A stack-slicing algorithm for multi-core model checking.
Electron. Notes Theor. Comput. Sci., 198(1):3-16, 2008.

[14] A. Kleywegt and J. Papastavrou. The dynamic and stochastic knapsack
problem with random sized items. Operations Research, 46(1):17-35, 2001.

[15] S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms for the
0-1 knapsack problem. Technical Report 97/10, DEIS, University of Bologna,
DIKU, University of Copenhagen, Copenhagen, Denmark, 1997.

[16] S. Martello and P. Toth. Knapsack Problems Algorithms and Computer
Implementations. Wiley-Interscience, New York, NY, 1990.

[17] D. Morales, J. Roda, F. Almeida, C. Rodriguez, and F. Garcia. Integral
knapsack problems: Parallel algorithms and their implementations on
distributed systems. In Proceedings of the 9th International Conference on
Supercomputing, pages 218-226, Barcelona, Spain, 1995.

[18] J. Papastavrou, S. Rajagopalan, and A. Kleywegt. The dynamic and stochastic
knapsack problem with deadlines. Management Science, 42:17061718.

106

[19] D. Pisinger. Core problems in knapsack algorithms. Technical Report 94/26,
Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark, 1994.

[20] V. Poirriez, N. Yanev, and R. Andonov. A hybrid algorithm for the unbounded
knapsack problem. Discrete Optimization, 6: 110-124, 2009.

[21] D. Scarpazza, O. Villa, and F. Petrini. Efficient breadth-first search on the
cell/be processor. Parallel and Distributed Systems) IEEE Transactions on,
19(10):1381 -1395, oct. 2008.

[22] H. Taha. Operations Research An Introduction. Pearson, Upper Saddle River,
NJ, 2007.

[23] G. Tan, N. Sun, and G. Gao. A parallel dynamic programming algorithm on a
multi-core architecture. In Proceedings of the 19th ACM Symposium on
Parallelism in Algorithms and Architectures (SPA A) , pages 135-144, San
Diego, California, 2007.

[24] S. N. Vadlamani and S. F. Jenks. The synchronized pipelined parallelism
model. In The 16th lASTED International Conference on Parallel and
Distributed Computing and Systems, 2004.

[25] O. Villa, D. Scarpazza, F. Petrini, and J. Peinador. Challenges in mapping
graph exploration algorithms on advanced multi-core processors. In Parallel
and Distributed Processing Symposium) 2007. IPDPS 2007. IEEE
International, pages 1 -10, 26-30 2007.

[26] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language and
Compiler for DSP algorithms. In Proceedings of the SIGPLAN)01 Conference
on Programming Language Design and Implementation, Snowbird, Utah, June
2001.

VITA

Hammad A. Rashid was born in Greenwich, England on April 6th, 1982, the son

of Rashidullah and Nasra Rana. After completing his high school at St Patricks

High School in Karachi, Pakistan, he entered Austin Community College. In the fall

of 2002, he transferred to the University of Minnesota, Duluth. In the fall of 2003 he

transferred to the University of Texas, Austin and received the degree of Bachelor of

Science from the University of Texas, Austin in August 2006. He later worked at

ClearCube, Austin, TX until August 2007. In spring 2008, he entered the Graduate

College of Texas State University-San Marcos. He intends to graduate in the

summer of 2010, with the degree of Master of Science.

Permanent Address: 606 W 17th st Apt 310

Austin, Texas 78701

This thesis was typed by Hammad A. Rashid.

