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ABSTRACT

PARALLEL KNAPSACK ALGORITHMS ON MULTICORE ARCHITECTURES

by

Hammad A. Rashid

Texas State University-San Marcos

May 2010

SUPERVISING PROFESSOR: APAN QASEM

Emergence of chip multiprocessor systems has dramatically increased the

performance potential of computer systems. Since the amount of exploited

parallelism is directly influenced by the selection of the algorithm, algorithmic

choice also plays a critical role in achieving high performance on modern

architectures. Hence, in the era of multicore computing, it is important to

re-evaluate algorithms efficiency for key problem domains. This paper investigates

the impact of algorithmic choice on the performance of parallel implementations of

the integral knapsack problem on multicore architectures. The study considers two

algorithms and their parallel implementations, and examines several aspects of

performance including speedup and scalability.
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CHAPTER 1

INTRODUCTION

It is widely agreed, that the trend of packing more and more cores on a single chip,

brought on by the advent of multicore technology, is likely to continue for the next

couple of years - perhaps decades. This fundamental shift in processor design

technology implies that software plays a key role in harnessing the true potential of

any computer system. In particular, compilers need to uncover parallelism at

different levels and transform code for parallel execution. Also, run-time systems

need to schedule concurrent threads for efficient utilization of underlying

architectural resources. For many problem domains, however, advances in

performance optimizing software will not be sufficient. To a great extent, the

parallelism that can be extracted by the compiler is determined by the initial choice

of the algorithm. For example, in the combinatorial optimization field dynamic

programming and branch-and-bound algorithms are used to solve optimization

problems but these algorithms have different degrees of parallelism and therefore,

lead to widely varying performance. Thus, it is important to consider algorithmic

choice when implementing parallel solutions on current chip multiprocessor (CMP)

architectures.

Finding the most suitable algorithm that will deliver high-performance across

different architectures and problem sizes has always been a significant challenge,

1
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researched over years. In particular, approaches based on automatic tuning have

been quite successful for automating the selection of the optimal (or near optimal)

algorithmic variant for specific domains [7, 26, 5]. However, the emergence of CMP

systems adds a new level of complexity. CMP architectures contain one or more

levels of cache shared among multiple processing cores. A shared-cache (or memory,

in general) poses an inherent trade-off between data locality and parallelism [24].

On one hand, any parallel decomposition will inevitably influence the data access

patterns from concurrent threads and consequently affect locality. On the other

hand, any transformation for improving locality will impose constraints on

parallelism that will affect performance. Thus, when parallelizing an application for

CMP architectures, it is imperative to find the right balance between data locality

and parallelism. Since algorithmic choice dictates the amount of exploited

parallelism and data locality, it plays a key role in obtaining high-performance on

CMP systems.

This research studies the impact of algorithmic choice on the performance of

parallel algorithms for solving the integral knapsack problem (IKP) under a

dynamic programming (DP) approach. Two different DP algorithms are studied.

IKP is very relevant in combinatorial optimization because it directly models

practical situations such as capital budgeting [22], cutting stock [9, 10] cargo

loading problems [4, 14] and scheduling of batch processors [18]. Furthermore, IKP’s

appear as sub-problems in set-partitioning formulations for multi-dimensional

cutting stock [11], crew scheduling and generalized assignment problems [3]. IKP’s

have also contributed to the generation of minimal cover induced constraints and in
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the development of coefficient reduction procedures for strengthening bounds for

general integer programming (IP) problems [16]. This relationship between IKP’s

and other IP’s has motivated great interest for developing efficient IKP algorithms.

Several factors make IKP a suitable target for evaluating the impact of

algorithm choice. IKP algorithms under a DP approach are amenable to different

types of parallelism. For example, some IKP algorithms can be parallelized in a

pipelined fashion [2] and in other algorithms the central loop lends itself to a data

parallel decomposition. Also most implementations of IKP exhibit data locality that

can be exploited through compiler transformations.

The primary goal of this study is to understand the performance trade-offs from

choosing a particular type of DP algorithm for solving an IKP instance. Specifically

this research makes the following contributions:

- a quantitative analysis of performance for two DP algorithms is presented. To

the best of our knowledge, no previous work has looked at performance issues

for IKP algorithms on multicore architectures.

- a key tunable parameter is identified which can be used to significantly

enhance performance of both parallel algorithms.

The rest of this document is organized as follows: chapter 2 provides background

on the IKP; chapter 3 describes the sequential algorithms used and also discusses

optimizing them with dominance; chapter 4 disscusses the parallel implementations

of the sequential algorithms; chapter 5 presents experimental results and analysis;
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chapter 6 discusses related work on parallelization of IKP; and finally, chapter 7

provides conclusions.



CHAPTER 2

BACKGROUND

2.1 The Integral Knapsack Problem

IKP can be formulated as follows: Given a knapsack of capacity C and a set of n

different objects (items) each one of them with profit pj and weight wj, find

non-negative integers x1, ..., xn, where xj represents the number of jth type objects,

such that the total weight of the objects does not exceed the knapsack capacity and

the total profit is maximized. In the IKP, wj, pj, n, and C are all positive integers.

If xi ∈ 0, 1 the problem reduces to the 0/1 knapsack problem.

Some authors refer to the IKP as unbounded knapsack problem (UKP) [16]. The

UKP assumes that an infinite number of objects of each kind are available while the

bounded knapsack problem (BKP) assumes that there is up to bj objects of each

type available, that is, xj = 1, ..., bj. Following is the IP formulation for the UKP:

Maximize
n∑

j=1

pjxj (UKP)

subject to

n∑
j=1

wjxj ≤ C j = 1, ..., n

xj ≥ 0 and integer, j = 1, ..., n

5
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Even if knapsack problems (KP’s) look as the simplest IP’s, they are NP-hard

[8]. Thus, KP’s cannot be solved in a time bounded by a polynomial in n [16].

However, they can be solved with pseudo-polynomial algorithms since log2(C) bits

are required to encode the input C.

2.2 Solution approaches

The classic approaches for solving exactly KP’s are branch and bound (B&B) [16]

and dynamic programming (DP) [15, 1, 2]. Here the discussion focuses on DP.

Hybrid approaches combining DP and IP are also mentioned briefly.

2.2.1 DP forward recursion 1

Works in [9] and [16] presented a DP forward recursion (see Eq. 2.1) to compute

fm(ĉ), the total profit (i.e. total value) from loading the most valuable combination

if considering m items and a knapsack capacity ĉ. In this recursion, l represents a

possible number of items to load.

fm(ĉ) = max{fm−1(ĉ− lwm) + lpm}

l integer, 0 ≤ l ≤ ⌊ĉ/wm⌋ (2.1)

where m = 1, 2, ..., n and ĉ = 0, ...C. After the forward recursion step, the optimal

value for the profit function is given by fn(C). A backtracking step permits to

determine the optimal solution (l∗m,m = 1, 2, ..., n) associated to fn(C).

For each m, O(C⌊ĉ/wm⌋) operations are required to find fm(ĉ) and then the
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overall time complexity is O(C
∑n

m=1⌊ĉ/wm⌋) or O(nC2) in the worst case. The

space complexity is O(nC), since for each item, the vector fm(ĉ) must be stored.

2.2.2 DP forward recursion 2

The work in [6] presented a recursion to the 0/1 knapsack problem which was

extended to the integral case by [11] and parallelized by [17]. Authors in [11]

mention that this recursion (see Eq. 2.2) is more efficient than the one in Eq. 2.1.

The recursion is given by:

fm(ĉ) = max{pm + fm(ĉ− wm), fm−1(ĉ)} (2.2)

m = 1, 2, ..., n and ĉ = 0, ...C. Equation 2.2 selects between loading or not a unit

of product m. This recursion involves less operations than the one in equation 2.1

by a factor of 1/n
∑n

m=1 ⌊(ĉ/wm)⌋ and the resulting time and space complexity are

O(nC). Details about the procedures to find the optimal solution

(l∗m,m = 1, 2, ..., n) associated to fn(C) are in [11] and [12].

For large IKP’s the B&B approach seems more efficient than DP [2]. The

instances that B&B can solve are usually larger than the ones DP can solve.

However, in contrast to B&B algorithms, DP recursions (equations 2.1 and 2.2) are

insensitive to the parameters pi, wi, i = 1, 2, ...,m and therefore they can be good

for non well-behaved problems (i.e. problems with correlated pi and wi values) but

not so good for well-behaved problems (i.e. uncorrelated problems). DP also

exhibits two additional advantages: knowledge of the solution for any capacity lower
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than the given maximal capacity and ability to reuse the known solutions for

solving larger capacity problems [1].

2.2.3 Hybrid approaches

The work in [20] is the first hybrid approach for solving IKP’s. The algorithm

significantly outperforms all existing algorithms for solving the problem. The

algorithm success comes from embedding B&B into a DP framework, applying

multiple bounds including a new stronger one, and exploiting many IKP properties

such as dominance relations and periodicity.

2.3 Schemes for Reducing the Search Space

The work in [10] introduces the concept of dominance to reduce the size of the

search space (number of states) in the DP approach. Simple dominance (sd) states

that if an object type has a larger weight and smaller profit than another, the

former may never occur in an optimal solution. Thus, object i is simply dominated

by object j when wi >= wj and pi <= pj.

In [16] multiple dominance(md) is introduced. It states that object i is multiple

dominated by object j if and only if ⌊wi/wj⌋ ≥ pi/pj. This dominance relation

means that j dominates i when the profit from all the objects type j that can be

allocated in the space occupied by object i is larger than the profit for i. Refined

dominance relationships such as the collective dominance and threshold dominance

have been proposed and used in [1].



CHAPTER 3

EVALUATING SEQUENTIAL KNAPSACK ALGORITHMS

3.1 Dynamic Programming Algorithms

This research implements the DP forward recursions 1 [9] and 2 [11] provided in

Section 2.2. In the rest of the paper, these two algorithms are referred as classic

and morales. Both algorithms use a two dimensional matrix M of n rows that

represent the items and C columns that represent the knapsack capacities. The

indexes (m, ĉ) will be used to represent any (row, column) pair in the grid. The

knapsack capacity is in terms of weight but it could be any other relevant problem

dimension that needs to be used efficiently such as volume, length, etc. The goal of

the algorithms is to compute the maximum attainable profit (value) from selecting

any item and capacities combination.

From applying any algorithm, entry (m, ĉ) will contain the maximum attainable

profit(value) from using integer quantities of items type 1, 2,m and a knapsack with

capacity ĉ. For example, assume as input parameters 5 items, a knapsack with

maximum capacity 8 kg, and a list of individual profits (pi) and weights (wi) for the

items. The grid for solving the problem consists of 8 columns (total capacity) and 5

rows (total items). The entries at the 1st row contain the maximum attainable

profits if loading only item 1 for different knapsack capacities ĉ, the ones in the 2nd

row contain the maximum attainable profits after loading items 1 and 2 in the

9



10

knapsack, and so on. Thus, entry (4,7) on the grid contains the maximum or

optimal profit attainable after loading items 1, 2, 3 and 4 in a knapsack with

capacity 7 kg. Now assume that 2 units of item 1, 1 unit of items 2 and 3, and 3

units of item 4 are the optimal quantities to select. The maximum attainable profit

for entry (4, 7) is given by :

Maximum profit for entry (4,7) = 2 * (profit of item 1) + 1 * (profit of item 2)

+ 1*(profit of item 3) + 3 * (profit of item 4).

However, since the optimal quantities to load of each item are not known ”a

priori”, the computation above cannot be performed in this straightforward way for

all grid entries. The computation will be based on an iterative procedure where on

item is loaded at a time and the best loading decisions for the item are recorded and

used for taking decisions for the next item to load. The single computations for each

algorithm studied are described below.

3.1.1 Classic Algorithm

rrks2 algorithm This algorithm is based on the forward knapsack dynamic

programming recursion proposed by [9] (equation 2.1 in section 2.2). The algorithm

goes through the grid row by row. For every item m, the maximum number of items

of type m that can be loaded given a knapsack with capacity ĉ is computed as

⌊ĉ/wm⌋ A choice for the number of units of product m to load in the knapsack is

notated as l. Given a choice of l units for product m, a possible profit value for entry

(m, ĉ) is calculated adding the previous maximum attainable profit in row m− 1 and

column ĉ− (wm ∗ l) to the profit from loading l units of product m, that is, l ∗ pm.



11

After repeating this computation for all possible values of l, (l = 0, 1, , ⌊ĉ/wm⌋), the

maximum of these profits denoted as fm(ĉ) is stored in the grid entry (m, ĉ).

The following is an example of the computation steps for rrks2 algorithm.

Compute the maximum attainable profit for row 4 and column 8 of the grid given

item 4 weight= 3 kg, item 4 value= 30, and knapsack capacity ĉ = 8 kg.

- Go to 4th row in the grid which represents the profit from using items 1 to 4.

- For capacity 8, compute the total units possible to load for item 4. Total =

⌊ĉ/w4⌋ = 8/3 = 2

- Perform the following loop from l = 0 to l = 2

for l=0 to 2 do: result = (pm ∗ l) + profit value row [m− 1] column

[ĉ− (wm ∗ l)]

In this example, result = (30*l + profit value row [3] column[8 - (3 * l)]) and

therefore:

- when m=0, result = profit row [3] column [8];

- when m=1, result= 30 + profit row[3] column [8-3]

- when m=2, result= 60 + profit row[3] column [8 - 6]

- Compute the maximum of the results above and store it in the 4th row, 8th

column of the grid. This maximum represents the maximum attainable profit

of using items 1, 2, 3 and 4 in a knapsack with capacity 8 kg.

Fig. 3.1 shows the pseudo code for the algorithm.
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// n = total number of items 
// C = total capacity 
// m = item (item/row index in 2D grid M) 

// ĉ = capacity (capacity/col index in 2D grid M) 

// l =  (letter L ) , number of items m possible with ĉ 

 
for m: =1 to n do 
     for ĉ := 1 to C do 
        
              l:=0 
              while (l <= (ĉ/weight[m]))  
                      
              if (l equal to 1)  
       result = profit[m] * l; 
              else 

                    result = (profit[m] * l) + f[m-1][ ĉ - (weight[m] * l)]; 
     
   if (result > maxvalue) 
          maxvalue := result; 
      
         l++; 
 
               endwhile  

       
               f[m][ĉ]= maxvalue; 
             
    endfor 

endfor  

Figure 3.1: Pseudo code of the Classic algorithm(rrks2)

Fig. 3.2 illustrates the dependence between entries of the grid for the

computation of the maximum attainable profits.

3.1.2 Morales Algorithm

rrks3 algorithm. This algorithm is based on the forward knapsack dynamic

programming recursion proposed by [11] and parallelized by [17] in a distributed

framework. The algorithm also goes through the grid row by row. To compute a

maximum attainable result for entry (m, ĉ), the algorithm compares the maximum

attainable result(profit) of not using the item m at all, which corresponds to the
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1 2 …     ĉ C 

1          

m-1 
         

m 
         

 
         

n 
         

 

Figure 3.2: Dependence between entries for Classic Algorithm (rrks2)

value stored in row m− 1 at column ĉ and the value from using one more unit of

current product m which is the sum of the maximum attainable result at entry

(m, ĉ− wm) and the value of item m, pm. The maximum of these two quantities is

recorded entry (m, ĉ).

The following is an example of the computation steps for rrks3

algorithm.Compute the maximum attainable profit for row 4 and column 8 of the

grid given item 4 weight= 3 kg, item 4 value= 30, and knapsack capacity ĉ = 8 kg.

- Go to the 4th row in the grid that represents the value from using items 1 to 4.

- Get result1, the maximum attainable profit in row 3 and column 8.

- Compute result2, by getting the profit in row 4 and column (8− wm) and

adding it to the profit of item m, pm. In the example, result2 = profit row [4]

[8-3] + 30

- Find the maximum of result1 and result2, that is,

finalresult = maxresult1, result2
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- Store finalresult in row 4 at column 8. This maximum represents the

maximum attainable profit of using items 1, 2, 3 and 4 in a knapsack with

capacity 8 kg.

Fig. 3.3 shows the pseudo code for the algorithm.

 

// n = total number of items 
// C = total capacity 
// m = item (item/row index in 2D grid M) 

// ĉ = capacity (capacity/col index in 2D grid M) 

 

 
for ĉ:= 1 to C do 
         f[0][ĉ]:= 0; 
 
for m: =1 to n do 
     for ĉ := 1 to C do 
            if  (ĉ < weight[m]) 
                 f[m][c] := f[m-1][ ĉ] 
            else 

                 f[m][ĉ] := max {(f[m][ĉ -weight[m]] + profit[m]) , f[m-1][ĉ]}; 
 

     endfor 

endfor 

 

Figure 3.3: Pseudo code of the Morales Algorithm (rrks3)

Fig. 3.4 illustrates the dependence between entries of the grid for the

computation of the maximum attainable profits.

3.1.3 The use of Dominance

3.1.3.1 Classic Algorithm

rrks2sdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [9] and enhanced with the simple

dominance concept explained in section 2.3 Schemes for reducing the search space.
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1 2 …     ĉ C 
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m-1 
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Figure 3.4: Dependence between entries for Morales (rrks3)

The values computed for the item that dominates are stored (copied in the rows of

the non-dominated items) until there is an item that results non-dominated.

For example, if there are three items m, m+ 1 and m+ 2 and item m dominates

item m+ 1 and m+ 2, the maximum values for item m are saved in rows m+ 1 and

m+ 2. Item m will continue being copied until finding another non-dominated item

m′.

Alternatively, the simple dominance concept can be validated in a pre-processing

phase and the recursive algorithm rrks2 can be just run on the non-dominated

items.

rrks2mdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [9] enhanced with the multiple

dominance concept explained in the section 2.3 Schemes for reducing the search

space. The steps and comments in rrks2sdb apply to rrk2mdb just updating the

simple dominance criterion to multiple
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3.1.3.2 Morales Algorithm

rrks3sdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [11] and parallelized by [17] enhanced

with the simple dominance concept explained in the section 2.3 Schemes for

reducing the search space. The values computed for the item that dominates are

stored (copied in the rows of the non-dominated items) until there is an item that

results non-dominated. Alternatively, the simple dominance concept can be

validated in a pre-processing phase and the recursive algorithm rrks3 can be run

just on the non-dominated items.

rrks3mdb algorithm. This is the algorithm based on the forward knapsack

dynamic programming recursion proposed by [11] and parallelized by [17] enhanced

with the multiple dominance concept explained in Section 2.3 Schemes for reducing

the search space. The values computed for the item that dominates are stored

(copied in the rows of the non-dominated items) until there is an item that results

non-dominated. Alternatively, the multiple dominance concept can be validated in a

pre-processing phase and the recursive algorithm rrks3 can be run just on the

non-dominated items.

3.2 Data set generation

This research uses the procedure in [19] for generating instances with pseudo

random profits and weights. This procedure permits to generate uncorrelated (UC),

weakly correlated (WC), strongly correlated (SC) or subset-sum knapsack instances
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(SS) of any size. Next table summarizes the way wj and pj are generated for each

type of instance.

Table 3.1: Procedure to generate pj and cj for IKP instances

Instance type wj pj
UC Random in [1, R] Random in [1, R]
WC Random in [1, R] Random in [wj −R/10, wj +R/10]
SC Random in [1, R] pj = wj + 10
SS Random in [1, R] pj = wj

The main default dataset used was the UC type with random values selected

from 1:R where R=100 for 10000 weights and 10000 profits. The file representing

this dataset was called data.dat. The data in this file is unsorted by default.

3.3 Results of running the dominance optimization on the classic and

morales sequential algorithms

The tests were run on a Core 2 Duo Machine which is described in chapter 5.

There were two compilers that were used to compile separate executions of the

algorithms, the Intel Compiler (ver 10.1) and the G++ compiler (ver 4.1.2).

When reporting execution times only the running time for the algorithm itself in

the application is reported,and thus excluding any overhead associated with calls to

timer routines and file I/O operations. The running time is given in seconds and

minutes.

The main default dataset used was the UC type with random values selected

from 1:R where R=100 for 10000 weights and 10000 profits. The file representing

this dataset was called data.dat. The data in this file is unsorted by default.
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For many of the tests the dimensions of 10000 items x 10000 capacity was used.

Besides the UC random dataset type, other datasets of WC, SC and SS were

also used. These are described in section 3.2.

For every data set three forms of it were used.

1. Unsorted

2. Sorted by Weight: The dataset was sorted in terms of the items weights in

ascending order with the smallest weight on top going down to the largest

weight at the bottom.

3. Sorted by Profit/Weight : The dataset was sorted in terms of the profit

divided by the weight of each item. The item having the greatest value of

profit/weight was on top , then the next value and so on in a descending order.

3.3.1 Impact of Sorting

The impact of the running times on using the dominance optimization on the

algorithms using the default unsorted dataset is shown in table 3.2.

The Simple dominance greatly reduced the classic (rrks2)algorithm’s running

time and the multiple dominance brought about even more significant improvement.

Even with the Morales (rrks3) algorithm both simple dominance and multiple

dominance reduced running times. Overall the multiple dominance optimizations

gave the best results with both algorithms.

If the same dataset was sorted by weight from before, then the running times of

the classic (rrks2) algorithm with the dominance was greatly reduced. Both the
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Table 3.2: Run times using Algorithms with dominance

Data set : data.dat : 10000 items x 10000 capacity  

Unsorted  
Core2 Machine 

Sequential Algorithms 
Runtime in secs (G++ 

Compiler) 
Runtime in secs (Intel 

compiler) 

      

Classic      

rrks2 204.167 91.3446 

rrks2sdb 25 11.8045 

rrks2mdb 6.25 2.85197 

      

Morales      

rrks3 1.488 0.453699 

rrks3sdb 0.877 0.369372 

rrks3mdb 0.81 0.35578 

      

 

simple and multiple dominance produced equivalent running times. This is shown in

table 3.3. However, without dominance the performance of the classic algorithm

(rrks2) was reduced when using a dataset sorted in this manner. The running time

of algorithm when compiled using g++ increased from 204.167 sec to 250.907 sec.

The Morales algorithm did not seem to be affected much with this sorted dataset.

When the dataset was sorted by the profit/weight theclassic (rrks2) algorithm

was again affected. This is seen in table 3.4. The morales algorithm remained the

same for the most part as before. The running times with simple and multiple
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Table 3.3: Run times using Algorithms with dominance

Data set : sdata.dat : 10000 items x 10000 capacity , Core2 Machine 

Sorted Data Set by Weight 

Algorithms   Runtime in Secs (G++ Compiler) Runtime in secs (Intel compiler) 

      

Classic      

rrks2 250.907 112.229 

rrks2sdb 3.02108 1.34349 

rrks2mdb 3.02 1.34825 

      

Morales      

rrks3 1.48572 0.454638 

rrks3sdb 0.808467 0.3556 

rrks3mdb 0.808747 0.355684 

      

 

dominance with the classic(rrsk2) algorithm were reduced further from before in

table 3.3. Both had similar running times. Without dominance the result with the

two compilers was somewhat different. With the g++ compiled version of rrks2 the

running time was reduced to 184 sec from 204 sec (unsorted dataset) while the Intel

compiler version had an increased running time of 108.887 sec from 91.34 sec

(unsorted dataset).

The running times of the algorithms due to dominance were reduced because

there were lesser data items to deal with in the n (items) x C (total capacity)

matrix. If an item was dominated by another, then instead of computing the entire

row, the row would simply be copied from the dominant item row. This was

measured by counting the number of rows skipped (from full computation) or copied

from the dominant item. Another way for the rows to be simply copied over and

skipped from computation is when the item weight is greater than the capacity and
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Table 3.4: Run times using Algorithms with dominance

Data set : sdatavdw.dat : 10000 items x 10000 capacity , Core2 Machine 

Sorted Data Set by Profit/Weight 

Algorithms   Runtime in Secs (G++ Compiler) Runtime in secs (Intel compiler) 

      

Classic      

rrks2 184.913 108.887 

rrks2sdb 1.8611 0.908475 

rrks2mdb 1.86115 0.910027 

      

Morales      

rrks3 1.49148 0.454513 

rrks3sdb 0.807288 0.35678 

rrks3mdb 0.806284 0.355291 

      

 

this is already part of the original algorithm without dominance. This form of row

skipping was not measured. Only the rows skipped due to dominance were recorded.

Table 3.5 shows the reduction in the data set search space by using the

dominance optimization by showing the number of rows skipped in computation.

The data.dat dataset was used.

From the results in table 3.5 it can be seen that the number of rows skipped in

computation are the same for classic and morales. This is because the same

optimization was applied identically to both algorithms. The reason for the running

times being the same for simple dominance and multiple dominance, when the

dataset is sorted (by weight, by profit/weight) can be explained by table 3.5. The

running times of both rrks2sdb (simple dominance) and rrks2mdb (multiple

dominance) were the same because the number of rows skipped by the optimizations
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Table 3.5: Number of rows skipped in computation using Algorithms with dominance

Number of Rows Skipped in Computation 

Data set : data.dat : 10000 items x 10000 capacity 

Unsorted , UC (Uncorrelated) 

G++ Compiled code 

Sequential Algorithm  
Sorted by 

weight 

Sorted by 

profit/weight Unsorted  

Classic    

rrks2sdb 9994 9999 9035 

rrks2mdb 9994 9999 9964 

Morales    

rrks3sdb 9994 9999 9035 

rrks3mdb 9994 9999 9964 

 

was the same. This can now clearly be seen from table 3.5. The same conclusion is

for the morales algorithm.

Theoretically however multiple dominance should skip more rows than simple

dominance, as it does a more thorough comparison than simple dominance. This is

proven from the results in the next of figures starting from Fig. 3.6 .

3.3.2 Using Different types of datasets and Sizes with sorting

The figures starting from table 3.6 show additional results of using dominance with

datasets of the UC, WC, SC and SS type. Different datasets of 10000 items with

10000 capacity and 5000 items with 5000 capacity were used. The value of R for

these datasets was changed to 30000. So for example, in the UC type dataset the

items and profits would be randomly selected from a range 1:30000. The number of

rows skipped in computation in the dataset for each algorithm were recorded.
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Table 3.6: Number of rows skipped in computation using Algorithms with dominance

Data set: 5000 items x 5000 capacity 

R: 30000 

G++ Compiled code  

UC: Uncorrelated 

Sequential 

Algorithm 

Sorted by 

weight 

Sorted by 

profit/weight Unsorted  

    

Classic    

rrks2sdb 4992 18 2459 

rrks2mdb 4998 51 4977 

 

Morales    

rrks3sdb 4992 18 2459 

rrks3mdb 4998 51 4977 

 

The figures starting from Fig. 3.13 show the results of 4 different randomly

generated datasets in one table. Each dataset had 10000 items with 10000 capacity

and R=30000.

3.3.3 Summary

One can see that sorting had a big impact in increasing the number of rows being

skipped. For Simple dominance Sorting by weight seemed a lot more effective than

Sorting by Profit/Weight. Except for table 3.5, in most of all the other figures it

decreased the number of rows being skipped with the UC and WC dataset type. It

was only in mostly the SC dataset type that it increased the number of skipped

rows. For the SS dataset type Sorting by Profit/Weight could not be done because

in the dataset the weight was equal to the profit of each item and so it was not
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shown in the results in all the figures.

For Multiple dominance Sorting by weight overall seemed a lot more effective for

the different datasets. With the UC dataset type in some cases the Sorting by

Profit/Weight gave better optimization than Sorting by Weight and in some cases it

gave a lower reduction of the rows being skipped.

The dataset type (UC, WC,SC,SS) gave different results of the rows being

skipped. For Multiple dominance overall the SC dataset type had the least of the

numbers of rows being skipped. Next were WC and then UC. The SS dataset type

would sometimes be equal to SC or UC. For Simple dominance the SC and SS

dataset had the least number of rows being skipped, next were WC and then UC.

So overall for both dominances the SC dataset type showed the least number of

rows being skipped.

Also again one can see that Multiple dominance is a better optimization than

simple dominance.
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Table 3.7: Number of rows skipped in computation using Algorithms with dominance

Data set: 5000 items x 5000 capacity 

R: 30000 

G++ Compiled code  

WC: Weakly correlated 

Sequential 

Algorithm 

Sorted by 

weight 

Sorted by 

profit/weight Unsorted  

    

Classic    

rrks2sdb 4822 137 175 

rrks2mdb 4997 4999 4992 

 

Morales    

rrks3sdb 4822 137 175 

rrks3mdb 4997 4999 4992 

Data set: 5000 items x 5000 capacity 

R: 30000 

G++ Compiled code  

SC: Strongly correlated 

Sequential 

Algorithm 

Sorted by 

weight 

Sorted by 

profit/weight Unsorted  

    

Classic    

rrks2sdb 587 587 1 

rrks2mdb 587 587 1 

 

Morales    

rrks3sdb 587 587 1 

rrks3mdb 587 587 1 

 

I 
I 
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Table 3.8: Number of rows skipped in computation using Algorithms with dominance

Data set: 5000 items x 5000 capacity 

R: 30000 

G++ Compiled code  

SS: P=W (profit=weight) 

Sequential 

Algorithm 

Sorted by 

weight Unsorted  

   

Classic   

rrks2sdb 587 1 

rrks2mdb 4999 3196 

 

Morales   

rrks3sdb 587 1 

rrks3mdb 4999 3196 

 

Table 3.9: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity  

R: 30000 

G++ Compiled code  

UC: Uncorrelated 

Sequential 

Algorithm 

Sorted by 

weight 

Sorted by 

profit/weight Unsorted  

    

Classic    

rrks2sdb 9989 29 4961 

rrks2mdb 9999 9999 9975 

 

Morales    

rrks3sdb 9989 29 4961 

rrks3mdb 9999 9999 9975 

    

 

I 
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Table 3.10: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity 

R: 30000 

G++ Compiled code  

WC: Weakly Uncorrelated 

Sequential 

Algorithm 

Sorted by 

weight Sorted by profit/weight Unsorted  

    

Classic    

rrks2sdb 9729 291 346 

rrks2mdb 9993 9999 9986 

 

Morales    

rrks3sdb 9729 291 346 

rrks3mdb 9993 9999 9986 
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Table 3.11: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity 

R: 30000 

G++ Compiled code  

SC: Strongly Uncorrelated 

Sequential 

Algorithm 

Sorted by 

weight Sorted by profit/weight Unsorted  

    

Classic    

rrks2sdb 1445 1445 0 

rrks2mdb 1445 1445 0 

 

Morales    

rrks3sdb 1445 1445 0 

rrks3mdb 1445 1445 0 
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Table 3.12: Number of rows skipped in computation using Algorithms with dominance

Data set: 10000 items x 10000 capacity 

R: 30000 

G++ Compiled code  

SS: P=W (profit=weight) 

Sequential 

Algorithm 

Sorted by 

weight Unsorted  

   

Classic   

rrks2sdb 1445 0 

rrks2mdb 1445 1 

 

Morales   

rrks3sdb 1445 0 

rrks3mdb 1445 1 
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CHAPTER 4

PARALLELIZATION OF KNAPSACK ALGORITHMS

4.1 Morales Parallel Algorithm

All algorithms were written in C++ and compiled using gcc 4.1.2.

4.1.1 The Sequential algorithms used for Parallelization

The sequential algorithms with dominance described in chapter 3 were not used for

parallelization. Only the original algorithms classic (rrks2) and morales (rrks3)

were used. The reason being is that the dominance optimization reduces the Search

space or dataset size. So essentially a smaller dataset is worked on by the algorithm.

Larger datasets are needed to better assess the performance of the parallel

algorithms.If the parallel algorithms give better performance with larger datasets

compared to their sequential equivalents, then they would perform well with smaller

datasets as well. When the dominance optimization is applied to both sequential

and parallel algorithms both their running times would be reduced , since they are

working on a smaller dataset. So if the parallel algorithms out perform their

sequential equivalents with larger datasets then they should out perform them when

dominance is applied as well.

34
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4.1.2 Naive Parallelization

Since the dependency of the sequential morales algorithm was from the previous

row and from the previous elements of the current row a diagonal loop approach

was considered. Any element of the 2 dim array at a certain time depended on a

single element right above it from the previous row and one to the left of it from the

current row. So if the loop was run diagonally instead of row by row then these

previous elements would always be available(computed and ready from before)

whenever the current element is reached.

A for loop was written can goes row by row and translates the row indexes and

col indexes to the respective diagonal as it runs through the loop. So a loop was

created in this way to traverse the diagonals. Each diagonal was split equally

between the threads, both working on it at the same time. Once all the threads

were completed with the diagonal the loop would move on to the next diagonal and

the process would be repeated. Hence the parellization occurred at the diagonals.

This is illustrated in figure 4.1.

The maximum parallelism achieved by the algorithm would be the longest center

diagonal. The algorithm was called rrks3-p1 and it’s running times were slower than

the sequential morales (rrks3). Table 4.1 shows the comparison. These times are

from running the algorithm on the Core2 machine which is described in the

experimental results chapter 5. The dataset used was the default data.dat. It was a

UC type dataset with 10000 items and 10000 total capacity. This could have been

because of the overhead of computing the diagonal indexes and that maximum
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Items  

m=1 to n 

 

 

 

 

Capacities ĉ =1 to C 

Thread 1 

Thread 2 

Assuming  #threads= 2 , C=8 and n=4 

Figure 4.1: Parallelization of the Morales Sequential Algorithm using a Diagonal
Approach

parallelism was achieved only at the center diagonal. Because this algorithm ran

slower ,attempts were then made to some how implement and adapt the simple

pipeline algorithm (SPA) presented in [17] which had proven to be faster than the

sequential morales for multicore architectures. Later on in the research a parallel

implementation of the morales algorithm, with the help of this SPA algorithm

proved to be faster than the sequential morales algorithm and was made the

default algorithm for experimentation.

4.1.3 Adapting the SPA algorithm

The Simple Pipeline Algorithm (SPA) from the paper [17] was used to come up

with a parallel implementation of the sequential morales algorithm. The SPA

algorithm was written for a distributed system. It was modified to work on a shared
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Table 4.1: Running times of the Parallel Morales Diagonal Algorithm

Core2 Machine 

data.dat : 

10000 items x 10000 capacity 

No of 

Threads rrks3 Rrks3-p1 

1 1.644s 3.83 s 

2  2.165 s 

4  2.620 s 

8  3.061s 

10  3.109s 

 

memory architecture.

The SPA algorithm broke the problem set of the items into stages and within

each stage it divided the items to calculate among each of the processors (of the

distributed system). In our case threads were used to do the same job as the

processors. The outline of the algorithm can be seen in Figure 4.3. The problem

consists of a total of n items and a total vessel capacity of C.

In the algorithm m is the index for the items in the two dimensional array of n

items and C capacities. The two dimensional array is f[n][C]. This array is shared

and accessible by all threads.

The formula to calculate m takes the stage, numthreads and threaded. The

threadID is the id of the thread used by the system and it starts from 1 onwards,

not zero. The arrays weight and profit contain the weight and profit of the
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Thread 2 

Thread 1 

        

    
      

        

        

 

Items  

m=1 to 4 

Capacities ĉ =1 to 8 

Assuming  C=8 and n=4 , #threads=2 

Then num Stages = 2. 

Stage= 1 

Stage= 2 

Thread 1 

Thread 1 

Thread 2 

Thread 2 

m=3        

m=4        

This arrow shows dependency 

m=2 from stage 1 

Figure 4.2: The way the SPA Algorithm runs

respective items.

E.g if n=4 , C=8 , numthreads=2. Then the number of stages will be

n/numthreads = 4/2 = 2. The threadIDs will be 1 and 2. So in stage 1 , thread 1

will get the item m= 0 * 2 + 1= 1 and thread 2 will get item m=2. In stage 2

thread 1 will get b=3 and thread 2 will get m=4.

As seen earlier there is a dependency in the morales sequential algorithm. In

order to calculate a value of f[m][ĉ] of the two dimensional grid, the values of

f[m-1][ĉ] and f[m][ĉ-weight[m]] must be present. So there is dependency from the

previous row and with in the current row itself.

The SPA algorithm states that if the values f[m][ĉ] are computed in increasing

order of ĉ, as soon as f[m-1][ĉ] is available, f[m][ĉ - weight[m]] is available too [17].

In the SPA algorithm a processor (or thread in our case) covers one item m.

This item would be a row m in the two dimensional grid. Since the thread computes

the values of the m item row it stores the values computed of f[m][ĉ] locally. So the
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 // n = total number of items 
// C = total capacity 
// m = item (item/row index in 2D grid M) 

// ĉ = capacity (capacity/col index in 2D grid M) 

// f.aux[ĉ] =  f[m][ ĉ - weight[m]] + profit[m] 
 

 

for stage := 1 to (n/NUM_THREADS) do 
 

begin 
 

m:=(stage-l) * NUM_THREADS + threadID 
 
             if (weight[m] <= C)   

f.aux[weight[m]] := profit[m]; 
 

for ĉ:=1 to C do 
 

begin 
 

// getting input ? f[m-l][ĉ]; 
 
  
------------------------------------   

 
 if ĉ >= weight[m] then 

                     
                        f[m][ĉ] := max { (f[m-l][x], f.aux[ĉ] }; 

else 
                       f[m][ĉ] := f[m-l][x]; 
                     
              if(ĉ + weight[m]]<= C) then 
                        f.aux[ĉ +weight[m]] := f[m][ĉ] + profit[m]; 
 
            --------------------------------------- 

 

            // sending  output? f[m][ĉ]; 
 
                   
      end inner for; 
 
end outer for; 

 

Figure 4.3: The Pseudo code of the SPA Algorithm
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part f[m][ĉ - weight[m]] + profit[b] required by the sequential algorithm is stored

locally by the thread working on item or row m. This is stored in the f.aux array.

An element of the f.aux array represents the value of the f[m][ĉ - weight[m]] +

profit[m] equation.

e.g weight[2]=3 , profit[2]=10 , m=2, ĉ=6

- for f[2][6]= max (f[1][6], f.aux[6])

- f.aux[6]= f.aux[3+weight[2]]=f[2][3]+profit[2];

- so f[2][6]= max (f[1][6], f[2][3] + profit[2]) ,when replaced by symbols

- f[m][ĉ]= max (f[m-1][ĉ], f[m][ĉ-weight[m] ]+ profit[m])

To get the value of f[m-1][ĉ] the thread would need values from the previous row

or item m− 1. It receives this from another thread working on item or row m− 1.

So the communication and synchronization that occurs between the threads is

between adjacent rows.

4.1.4 Handling communication between threads

In the algorithm a thread is both a consumer and producer. The thread to compute

or produce the value f[m][ĉ] needs to consume the value f[m-1][ĉ]. It can only

consume the value of f[m-1][ĉ] once it has been computed by the thread responsible

for it. Until then the thread in charge of row m would have to wait for a signal from

the thread of row m− 1. Once the thread in charge of the row m− 1 has finished

computing the value of f[m-1][ĉ] it sends a signal to the waiting thread. In the
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original SPA algorithm the data value of f[m][ĉ] was itself sent to the respective

waiting processor. A ring topology was used where processor a was connected to

processor a+1 , processor a + 1 was connected to processor a+ 2 and so on. The

last processor would be connected via the root processor to the first processor. The

root processor would manage the queue of the data messages [17].

In this case it is controlling access to the shared array by the threads. The goal

is to simulate a non-blocking sender and a receiver that blocks.

Initial attempts to simulate the SPA algorithm’s non-blocking sender and

blocking receiver were quite unsuccessful. All initial algorithms gave the same

correct optimal results as the sequential morales version but their running times

were too slow.

The first attempt to simulate this was done using OpenMP flush mechanism.

What would happen would be that one thread that was waiting for a result would

be constantly polling the shared array using flush and refreshing it’s view of the

main memory. The algorithm ran slowly for 2 threads but when the number of

threads increased the performance dropped significantly and became a lot slower.

This could be because they were now more threads polling the shared array,

increasing the CPU cycles. This algorithm was called rrkspmor2. The second

attempt was made with Pthreads and locks. All of the shared array was locked. So

basically they were n items x C total capacity locks. Every [row,col] element of the

array had a separate associated lock with it. The initial row would be unlocked to

start the algorithm. There would then be a sequence of one thread unlocking the

element of the next row when it was done computing it while the other thread
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would be waiting on a lock for this element. The only way the other thread could

get a lock on the element was if the previous associated thread (that computed the

element) unlocked the element for it. This algorithm was called rrkspmor-pth4.

An openmp version of this algorithm was made and it was called rrkspmor4. Both

of these algorithms were extremely slow mainly most of the overuse of an equal

number of locks to the elements of the shared array. Another attempt was made

using condition variables in pthreads. Instead of every element of the shared array

having a lock associated with it , it has a condition variable instead. In pthreads

every condition variable needs a lock associated with it so this algorithm took a lot

more memory than the previous ones. This algorithm was called rrkspmor-pth3.

Apart from memory issues it was very slow as well. It took 2m27.452s with 2

threads to solve a dataset of size 2500 items with 10000 capacity. The sequential

morales (rrks3) solved it in 0.437s.

Table 4.2 shows the running times of these initial algorithms. The dataset used

was called d10.dat. It was a UC type dataset with 10000 items and 10000 total

capacity. The sequential morales (rrks3) is also included as a comparision.

4.1.5 Improving Synchronization Cost

The final implementation of the SPA algorithm that gave the best running times is

shown in Fig. 4.4. This algorithm ran faster and was called testpth7 and became

the default morales parallel algorithm for experimentation. For the rest of this

thesis this algorithm will be known as the morales parallel algorithm. Learning

from the previous attempts a new strategy was devised for the threads to
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Table 4.2: The running times of the initial algorithms to implement the SPA
Algorithm

Core2 Machine 

d10.dat : 10000 items x 10000 capacity 

No of 
Threads 

rrkspmor2 rrkspmor3 rrkspmor4 
rrkspmo

r-pth3 
rrkspmor-

pth4 
rrks3 

1 21.934s 7m39.750s 11m18.413s 
run out of 

memory 
7m18.427s 1.644s 

2 18.510s 9m8.444s 13m8.747s 
same as 

above 
 9m44.002s  

4 1m47.588s 13m4.767s  18m51.604s 
same as 

above 
12m28.804s  

8 2m57.521s 14m40.935s 22m13.394s 
same as 

above 
 14m5.755s  

10 2m57.390s  14m45.516s 22m57.585s 
same as 

above 
 14m19.031s  

 

communicate with each other with the least overhead of synchronization and

communication. This is how it was implemented.

The threads communicate to each other about the status of the two dimensional

array by setting a two dimensional boolean array called consume. The row index of

the consume array denotes the threadID and the second column index denotes the

capacity ĉ. A single thread will communicate to it’s adjacent thread. Pthreads is

used to implement the threads. Condition variables are used for signaling and

waiting. Locks are used with each condition variable and also at the same time used

to secure single access at a time to the consume array. Every thread has one

condition variable to use and one lock. Single dimensional arrays consumec and

cdlock represent this with threadID as their index.

e.g if you have threads 1, 2 and 3 then 1◃ 2◃ 3 and 3◃ 1.
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So the same ring style topology is used. In the code in figure 4.4 this is shown as

the statements to compute nextthread.

Lets give an example between two threads. The consume array will be of size

row index of 2 elements (2 threads) and col index of the size of the capacity ĉ:1 to

C. The consumec and cdlock array will be of size 2 each.

The two dimensional consume array is set to false. For the first row or item

thread 1 only produces since the starting values are zero. So the consume[1][ĉ:1 to

C] array is set to true. If thread 1 is working on row m− 1 then thread 2 would be

working on row m.

When thread 1 starts it acquires the lock cdlock[1] and checks to see if

consume[1][ĉ] is set to true for the f[m-1][ĉ] element. It is true so it sets it to false

and unlocks cdlock[1]. It moves on and computes f[m-1][ĉ] and Thread 2 acquires

the lock cdlock[2] and checks if consume[2][ĉ] is set to true. It is not and It goes to

wait for consumec[2] and unlocks cdlock[2].

Whenever thread 1 is done with computing the element f[m-1][ĉ] it acquires a

lock cdlock[2] and writes the consume[2][ĉ] element to true. It then signals with a

condition variable consumec[2] and unlocks cdlock[2]. Thread 1 moves on in the for

loop to the next element ĉ+1 or if it is done with the row m-1 then it moves on to

row m+1.

Thread 2 gets the signal consumec[2] , gets out of the wait state and locks

cdlock[2]. It sets consume[2][ĉ] to false and unlocks cdlock[2] and proceeds to

compute the value of f[m][ĉ]. It then sets to lock cdlock[1] and sets consume[1][ĉ] to

true (remember it was set to false by thread 1). It then signals with consumec[1]
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and unlocks cdlock[1].

At a time two adjacent threads will be working on one row each and the

consume array is reused every time and reset by the threads respectively. The order

of setting the consume array from true to false with respective to the capacity ĉ is

important and the fact that it has to be locked whenever changes to it are made.

4.1.6 Blocking

The threads in the algorithm in figure 4.4 are communication and synchronizing one

element at a time. The computation done by each thread for the element f[m][ĉ] is

not much however. What ends up happening is that the algorithm runs slower than

the sequential counterpart. This is because the synchronization costs are more than

the computation. In order to remove this problem blocking was used. Now instead

of the thread computing just one element at a time , it is set to compute a block or

set of elements. This is intended to increase the computation work load for each

thread and balance out the synchronization over head. The modified algorithm with

blocking is not shown but is essentially the same except that now a block of elements

are computed at a time. If the block size was 10 then thread 1 would compute 10

elements and after that signal thread 2. Thread 2 would now be waiting for 10

elements of the m− 1 row to be computed. Once all the 10 elements have been

computed then Thread 2 is signaled and gets out of wait and computes 10 elements

before it signals the next adjacent thread. The total capacity C is divided by the

block size to determine the number of blocks. This is illustrated in fig. 4.5. As

chapter 5 shows, block size has a significant impact on the performance of morales.
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// n = total number of items
// C = total capacity
// m = item (item/row index in 2D grid M)
// ĉ = capacity (capacity/col index in 2D grid M)
// f.aux[ĉ] ≈ f[m][ĉ - weight[m]] + profit[m]

for stage = 1 to (n/NUM THREADS) do
m = (stage-l) * NUM THREADS + threadID
if (weight[m] ≤ C) then

f.aux[weight[m]] := profit[m]
end if
for ĉ = 1 to C do do

// getting input? f[m-l][ĉ]
lock(cdlock[threadID])
if (consume[threadID][ĉ] ! = true) then

wait(consume[threadID], cdlock[threadID])
end if
consume[threadID][ĉ]=false
unlock(cdlock[threadID])
if (ĉ ≥ weight[m]) then

f[m][ĉ] = MAX(f[m-l][ĉ], f.aux[ĉ])
else

f[m][ĉ] = f[m-l][ĉ]
end if
if (m + weight[m]] ≤ C) then

f.aux[ĉ +weight[m]] := f[m][ĉ] + profit[m]
end if
// sending output? f[m][ĉ]
int nextthread=0
if (threadID == (NUM THREADS-1)) then

nextthread=0
else

nextthread=threadID+1
end if
lock(cdlock[nextthread])
consume[nextthread][ĉ]=true
signal(consumec[nextthread])
unlock(cdlock[nextthread])

end for
end for

Figure 4.4: Final Parallel implementation of morales using SPA
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depends on the block of the 

previous row 

Figure 4.5: The implementation of Blocking in the Morales Parallel Algorithm

4.2 Classic Parallel Algorithm

The same two dimensional grid is used with n items and a total capacity of C. And

index of an item or row in the array is denoted with m and a capacity or col in the

array is denoted with ĉ . Threads are again used with a shared memory model. The

two dimensional array is shared in memory and accessible by all threads. Openmp

is used to parallelize the algorithm instead of pthreads.

The dependency in the classic sequential code is only between the different

rows. That is f[m][ĉ] depends on values f[m-1][ĉ] and f[m-1][ĉ-1],

f[m-1][ĉ-2]....f[m-1][0]. There is no dependency within the same row. That is f[m][ĉ]

does not depend on f[m][ĉ-1], f[m][ĉ-2]....f[m][0]. This makes the parallelization of

the algorithm easier to accomplish on a row by row basis.

The row m of the two dimensional grid is divided among the number of threads
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equally into different sections. At a time each thread is working on it’s own section

of the row and filling up the row with computed values of f[m][ĉ]. When all the

threads have completed their sections (that is when the row b has been computed

completely) then the row is changed to m+1. So the synchronization barrier is at

the end of the row.

The process is repeated till the two dimensional grid has been computed

completely. This would be a parallelization on the capacities or columns.

e.g They are 2 threads, n=4 and C=10.

At index m=1 , the row 1 is divded into 2 sections of size 5 each. Thread 1 will

get the first five elements f[m][1]...f[m][5] to compute and Thread 2 will get the next

five elements f[m][5]...f[m][10]. It is possible that Thread 1 might complete sooner

than Thread 2. But in this case Thread 1 still has to wait for Thread 2 to finish,

that is for the entire row to be completed before moving on to the next row. Fig. 4.6

illustrates this.

 

        

        

        

        

 

Items  

m=1 to n 

        

Capacities ĉ =1 to C 

Thread 1 

Thread 2 

Assuming  #threads= 2 , C=8 and n=4 

Figure 4.6: The way the Classic Parallel Algorithm works

The c++ code in Figure 4.7 shows the section of the classic sequential
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algorithm that is parallelized. The inner for loop with the capacities is the section

that is parallelized. A single OpenMP statement pragmaompparallelfor is used

right before the for loop to parallelize the algorithm.

 for (int m = 1; m <= n(number items); m++) 
{     
     int valueitem= value[m]; 
     int weightitem= weight[m]; 
     int vcdw=vessel_cap/weightitem; 
    
// The inner for loop of capacities is parallelized  
//--------------------------------------------------------- 
     
  for (int ĉ=0; ĉ < = C (total capacity); ĉ++)  
              { 
                     l=0;   
         while ((l <= ĉ/weightitem)  
                     { 
   
                             if (m == 1)  
                 { 
                    result = valueitem * l; 
                 } 
                 else 
                  {       
        result = (valueitem * l) + f[m-1][ĉ - (weightitem * l)]; 
                  } 
    
                              if (result > jopt)  
                              { 
                        jopt = result; 
                  } 
             
                              l++; 
             
                        } //end while 
   
                        f[m][ĉ]= jopt; 
            
   
     }// end inner for 
//-------------------------------------------------------------- 
 
} // end outer for 

Parallel 

Section 

Figure 4.7: The Code of the Classic Parallel Algorithm

4.2.1 Blocking

Blocking has been added to the classic parallel algorithm. The number of blocks

are determined by dividing the total capacity C with the block size. The two

< 
, , 
, , 

, , 

, , 
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dimensional grid is divided into equal size blocks of capacities or columns. The first

block would be ĉ=1 to ĉ=block, the second would ĉ=block+1 to ĉ=2*block , the

third would be ĉ=(2*block) +1 to ĉ=3*block and so on. For every block all the

items or rows are traversed from row 1 to row n(number of items). Within a block

the parallel algorithm is the same as explained earlier without blocking. The only

difference is that the inner for loop of capacities starts from and ends with a ĉ index

that is respective to the block it is in. So it is more like splitting the two

dimensional grid into different smaller two dimensional arrays with the same

number of items of rows as before with the number of the cols or capacities equal to

the block size. This is demonstrated in Fig. 4.8.

e.g blocksize=2 , n=4, C=6, num of threads=2

So number of blocks = 6/2 = 3. The two dimensional array of 4 rows and 6 cols

is thus divided into 3 two dimensional separate arrays or blocks.

- The first block has the same 4 rows (m=1 to 4) and cols ĉ=1 to ĉ=2

- The second block has the same 4 rows (m=1 to 4) and cols ĉ=3 to ĉ=4

- The third block has the same 4 rows (m=1 to 4) and cols ĉ=5 to ĉ=6

The first block is completed computed using the two threads the same way as

explained earlier with the classic parallel algorithm without blocking. The row m=1

will split among the two threads. Thread 1 will get f[1][1] and Thread 2 will get

f[1][2]. Then after the row m=1 has been completed the next row m=2 is started.

Thread 1 will get f[2][1] and thread 2 will get f[2][2] and process repeats till all the

rows are completed. Once all the rows are completed the first block is done.



51

After the first block is calculated the second block is started. As before the block

will start with row m=1 to m=4. This time when row m=1 , thread 1 will get f[1][3]

and thread 2 will get f[1][4]. The process is repeated similarly till all the rows are

computed.

Then finally the last or third block is computed in the same manner as the

previous blocks. At row m=1 , thread 1 will get f[1][5] and thread 2 will get f[1][6].
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Figure 4.8: Blocking in the Classic Parallel Algorithm



CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Experimental Framework

Each parallel variant is evaluated on three platforms:

1. 2.33 GHz Intel Core 2 Duo E6550 (Core2, dual core). Core2 contains 2

physical cores. It has a 4 MB L2 Cache shared by the two cores. The system

has 2 GB of RAM.

2. 2.40 GHz Intel Core 2 Quad Q6600 (Quad, 4-core) system. The Quad has 4

physical cores. It has two 4MB L2 caches. Each of the L2 cache is shared

between two cores in each socket. The system has 4 GB of RAM.

3. For our scalability study, we also run experiments on an 8 logical core system

(8-core). The system has a Xeon 2.53 Ghz E5540 processor with Hyper

threading (HT) enabled. It consists of 4 physical cores with HT enabled giving

it a total of 8 logical cores. It has a smart cache of 8 MB. The system has 24

GB of RAM.

The classic parallel algorithm is implemented using OpenMP, while the morales

version is implemented with pthreads as stated earlier.

Both variants are compiled with GCC version 4.1.2, with the default (-O2)

optimization settings. The 2.5 version of Opemmp is used which is already present

52
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with gcc 4.1.2 just like pthreads.

To avoid system jitter, each experimental run is replicated five times and only

the consistent lowest values are considered. In some cases, we exclude outlier values,

when it is obvious that the extra long running time is due to operating system

interference. Wall clock time (in secs, mins) is measured by embedding calls to

openmp timer routines within the source code. When reporting execution times

only the running time for the algorithm itself in the application is reported, and

thus excluding any overhead associated with calls to timer routines and file I/O

operations.

For each implementation number of concurrent threads was limited to the

number of available cores on the target machine.

The HPCToolkit profiler with Hardware PAPI counters was used to measure the

CPU cycles, L1, L2 cache misses and instructions completed when running the

algorithms. Measuring these parameters increases the wall clock time of running the

algorithm by a small amount. Also all of the four parameters cannot be measured

at once but only two at a time. This means that one can measure L1, L2 misses in

one run and CPU cycles and instructions completed in another run.

Each parallel variant is run with two data sets :

1. The default data.dat dataset. It is the UC type with random values selected

from 1:R where R=100 for 10000 item weights and 10000 item profits. The

data in this file is unsorted. A dimension of 10000 items x 10000 capacity is

used.
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2. The ds60-30k.dat dataset. It is the UC type with random values selected

from 1:R where R=30000 for 60000 item weights and 60000 item profits. The

data is unsorted. A dimension of 30000 items x 30000 capacity is used. Since

they are 60000 items in the set only the first 30000 items are used.

5.2 Speedup and Scalability

Table 5.1: Performance improvement with increasing number of cores

Data set : data.dat : 10000 items x 10000 

capacity 

Parallel Algorithms Speed up over 

Sequential Counterparts 

#Cores Machines with same 

#Threads 
Classic Morales 

2 1.803597056 1.608285012 

4 3.05874578 2.397716988 

8 6.923402524 4.921166928 
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Figure 5.1: Performance improvement with increasing number of cores, Graph from
Table 5.1

Table 5.1 and Fig. 5.1 show speedup obtained over the sequential version, for

both classic and morales for 2, 4 and 8 cores.. The data set used was data.dat

with 10000 item x 10000 capacity. This chart reveals that both parallel variants

obtain significant speedup over their sequential counterparts. However,classic
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yields higher speedup than morales.

5.3 Impact of Blocking Factor and Granularity

The following figures show the running times of both parallel classic and morales

with the variation in block sizes for each of the three machines.

5.3.1 Using the Data set : data.dat : 10000 items x 10000 capacity.

5.3.1.1 Core2 with 2 threads:

Running times and Speed up with varying block sizes

Figures. 5.2 to 5.3 show the impact of the running times and speed up when

varying the block sizes, using the data.dat dataset.

Table 5.2: Impact of block size on performance of parallel classic on Core2 using
data.dat : 10000 items x 10000 capacity.

Core2  : 2 threads 

data.dat : 10000 items x 10000 capacity 

Classic  

Block size 
Parallel Running 

time in Seconds 

Sequential running 

time in seconds 
Speed up 

  178.963  

    

2 463.221  0.386345 

10 194.208  0.921502 

50 118.467  1.510657 

100 107.636  1.662669 

200 102.153  1.751911 

250 100.672  1.777684 

500 99.2256  1.803597 

1000 100.228  1.785559 

2000 104.258  1.71654 

2500 106.429  1.681525 

5000 117.904  1.51787 

10000 140.847  1.27062 
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Figure 5.2: Impact of block size on performance of parallel classic on Core2 using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.2

Table 5.3: Impact of block size on performance of parallel morales on Core2 using
data.dat : 10000 items x 10000 capacity

Core2  : 2 threads 

data.dat : 10000 items x 10000 capacity 

Morales  

Block size  

Parallel Running 

time in Seconds  

Sequential running 

time in seconds  Speed up 

    

  1.475  

2 16.3163  0.0904 

10 4.34781  0.339251 

50 1.318  1.11912 

100 1.08978  1.353484 

200 1.00122  1.473203 

250 0.982552  1.501193 

500 0.949565  1.553343 

1000 0.928422  1.588717 

2000 0.918092  1.606593 

2500 0.917126  1.608285 

5000 0.946239  1.558803 

10000 1.83768  0.802642 
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Figure 5.3: Impact of block size on performance of parallel morales on Core2 using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.3
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Classic parallel algorithm analysis for Core2 with the data.dat (10000

x10000) dataset using 2 threads:

Figures. 5.4 to 5.11 show the L1,L2 cache misses, CPU cycles and Instructions

completed for the classic parallel algorithm. A breakdown of the results for each

individual thread are shown as well.

Table 5.4: Thread 1 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block size L1 Misses L2 Misses 

Running !me of 

classic parallel 

algorithm 

10 2920000000 578000000 208.303 

50 1470000000 188000000 121.808 

100 1280000000 123000000 109.507 

200 1130000000 54185418 103.371 

250 1060000000 47794779 101.887 

500 975000000 27652765 100.16 

1000 854000000 15851585 101.038 

2000 614000000 9250925 105.048 

2500 420000000 8030803 107.449 

5000 154000000 4920492 118.939 

10000 31793179 3080308 141.828 

 

Table 5.5: Thread 2 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block size L1 Misses L2 Misses  

10 2580000000 1710000000 

50 1420000000 400000000 

100 1250000000 185000000 

200 1160000000 105000000 

250 1130000000 80958095 

500 1130000000 39853985 

1000 1180000000 19691969 

2000 1370000000 10121012 

2500 1550000000 8070807 

5000 1780000000 4630463 

10000 1950000000 3210321 
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Figure 5.4: Thread 1 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.4

Table 5.6: Thread 1, Thread 2 Instructions completed on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity

Block 

size Thread 1  INS Thread 2 INS 

Total Instruc!ons 

Completed 

10 5.19E+10 43600000000 9.55E+10 

50 4.06E+10 42900000000 8.35E+10 

100 3.78E+10 30200000000 6.80E+10 

200 3.50E+10 31700000000 6.67E+10 

250 3.39E+10 28200000000 6.21E+10 

500 3.32E+10 28400000000 6.16E+10 

1000 3.67E+10 33200000000 6.99E+10 

2000 3.97E+10 38700000000 7.84E+10 

2500 3.91E+10 43600000000 8.27E+10 

5000 3.61E+10 50800000000 8.69E+10 

10000 3.43E+10 39700000000 7.40E+10 
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Figure 5.5: Thread 2 L1, L2 Misses on Core2 with Classic parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.5

Table 5.7: Thread 1, Thread 2 CPU Cycles on Core2 with Classic parallel algorithm
using data.dat : 10000 items x 10000 capacity

Block 

size 

Running !me of 

classic parallel 

algorithm 

Thread 1 Cpu 

Cycles Thread 2 Cpu Cycles Total Cycles  

10 211.366 7.41E+10 6.32E+10 1.37E+11 

50 124.374 4.79E+10 4.39E+10 9.18E+10 

100 111.646 4.21E+10 4.53E+10 8.74E+10 

200 105.404 4.32E+10 4.29E+10 8.61E+10 

250 103.949 4.15E+10 4.18E+10 8.33E+10 

500 102.094 3.66E+10 4.65E+10 8.31E+10 

1000 104.82 3.43E+10 3.80E+10 7.23E+10 

2000 107.081 3.11E+10 4.42E+10 7.53E+10 

2500 109.383 2.53E+10 4.54E+10 7.07E+10 

5000 120.989 4.93E+10 4.23E+10 9.16E+10 

10000 144.558 2.96E+10 4.91E+10 7.87E+10 
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Figure 5.6: Thread 1, Thread 2 Instructions completed on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity, Graph from Table 5.6
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Figure 5.7: Thread 1, Thread 2 CPU Cycles on Core2 with Classic parallel algorithm
using data.dat : 10000 items x 10000 capacity, Graph from Table 5.7
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Table 5.8: Total L1, L2 misses, CPU cycles and Instruction completed including all
Threads on Core2 with Classic parallel algorithm using data.dat : 10000 items x
10000 capacity

ock size 

Algorithm 

running 

Time for 

l1,l2, Instr in 

sec 

Algorithm 

Running 

!me for 

CPU Cycles 

in sec 

Total L1 

Misses  

Total L2 

Misses :  

Total Instr 

completed  

Total Cpu 

Cycles  

10 208.303 211.366 5.50E+09 2288000000 9.55E+10 1.37E+11 

50 121.808 124.374 2.89E+09 588000000 8.35E+10 9.18E+10 

100 109.507 111.646 2.53E+09 308000000 6.80E+10 8.74E+10 

200 103.371 105.404 2.29E+09 159185418 6.67E+10 8.61E+10 

250 101.887 103.949 2.19E+09 128752874 6.21E+10 8.33E+10 

500 100.16 102.094 2.11E+09 67506750 6.16E+10 8.31E+10 

1000 101.038 104.82 2.03E+09 35543554 6.99E+10 7.23E+10 

2000 105.048 107.081 1.98E+09 19371937 7.84E+10 7.53E+10 

2500 107.449 109.383 1.97E+09 16101610 8.27E+10 7.07E+10 

5000 118.939 120.989 1.93E+09 9550955 8.69E+10 9.16E+10 

10000 141.828 144.558 1.98E+09 6290629 7.4E+10 7.87E+10 
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Figure 5.8: Total L1, L2 misses including all Threads on Core2 with Classic parallel
algorithm using data.dat : 10000 items x 10000 capacity, Graph from Table 5.8
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Figure 5.9: Total CPU cycles and Instruction completed including all Threads on
Core2 with Classic parallel algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.8

Table 5.9: Total L1, L2 Miss Rates per 1000 ins for all Threads on Core2 with Classic
parallel algorithm using data.dat : 10000 items x 10000 capacity

ck 

e 

Total 

Instruc!ons 

Completed Total L1 Total L2 

L1 Miss Rate 

per INStr 

L1 Miss 

Rates  

per 1000 

INStr 

L2 Miss 

Rate per 

INStr 

L2 Miss 

Rates 

per 1000 

INStr 

10 95500000000 5500000000 2288000000 0.057591623 57.59162 0.023958 23.95812 

50 83500000000 2890000000 588000000 0.034610778 34.61078 0.007042 7.041916 

100 68000000000 2530000000 308000000 0.037205882 37.20588 0.004529 4.529412 

200 66700000000 2290000000 159185418 0.034332834 34.33283 0.002387 2.386588 

250 62100000000 2190000000 128752874 0.0352657 35.2657 0.002073 2.073315 

500 61600000000 2105000000 67506750 0.034172078 34.17208 0.001096 1.095889 

1000 69900000000 2034000000 35543554 0.029098712 29.09871 0.000508 0.508491 

2000 78400000000 1984000000 19371937 0.025306122 25.30612 0.000247 0.247091 

2500 82700000000 1970000000 16101610 0.02382104 23.82104 0.000195 0.194699 

5000 86900000000 1934000000 9550955 0.022255466 22.25547 0.00011 0.109907 

10000 74000000000 1981793179 6290629 0.026780989 26.78099 8.5E-05 0.085009 
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Figure 5.10: Total L1 Miss Rates per 1000 ins for all Threads on Core2 with Clas-
sic parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from
Table 5.9
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Figure 5.11: Total L2 Miss Rates per 1000 ins for all Threads on Core2 with Clas-
sic parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from
Table 5.9
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Morales parallel algorithm analysis for Core2 with the data.dat (10000

x10000) dataset using 2 threads:

Figures. 5.12 to 5.20 show the L1,L2 cache misses, CPU cycles and Instructions

completed for the classic parallel algorithm. A breakdown of the results for each

individual thread are shown as well. The morales parallel algorithm had been

implemented using pthreads. One main thread was used to create and run the

worker threads and then wait for them to finish and then end the program. So when

2 threads for morales are mentioned, these are the two worker threads excluding the

main thread. So in total they are three threads running. Similarly for 4 threads with

the Quad they are 5 threads in total running and with the 8-core including the main

thread they are 9 threads in total. So the data for three threads are shown in the

figures 5.12 to 5.20 for the morales parallel algorithm for the Core2 with 2 threads.

Thread 1 is the main thread and Thread 2 and Thread 3 are the worker threads.

Table 5.10: Thread 1 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block Size L1 Misses L2 Misses 

Running !me of 

Morales parallel 

algorithm 

10 1320132 10001 4.44827 

50 1330133 10001 1.53626 

100 1350135 10001 1.3119 

200 1330133 10001 1.22364 

250 1310131 10001 1.20865 

500 1320132 10001 1.16916 

1000 1280128 10001 1.14916 

2000 1340134 10001 1.14085 

2500 1310131 10001 1.13936 

5000 1300130 10001 1.178 

10000 1300130 10001 2.07549 
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Figure 5.12: Thread 1 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.10

Table 5.11: Thread 2 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block Size L1 Misses L2 Misses 

10 48374837 3070307 

50 14501450 3130313 

100 11911191 3130313 

200 10861086 3130313 

250 10671067 3130313 

500 10151015 3130313 

1000 9770977 3130313 

2000 9670967 3130313 

2500 9710971 3130313 

5000 9860986 3130313 

10000 9820982 3130313 
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Figure 5.13: Thread 2 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.11

Table 5.12: Thread 3 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity

Block Size L1 Misses L2 Misses 

10 49774977 3190319 

50 14581458 3140314 

100 11941194 3140314 

200 10861086 3130313 

250 10671067 3140314 

500 10171017 3130313 

1000 9800980 3140314 

2000 9690969 3130313 

2500 9740974 3130313 

5000 9900990 3130313 

10000 9870987 3130313 
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Figure 5.14: Thread 3 L1, L2 Misses on Core2 with Morales parallel algorithm using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.12

Table 5.13: Thread 1, Thread 2, Thread 3 Instructions completed on Core2 with
Morales parallel algorithm using data.dat : 10000 items x 10000 capacity

Block Size Thread 1  INS 
Thread 2 

INS 
Thread 3 INS 

Total 

Instruc!ons 

Completed 

10 1530000000 5.48E+09 5490000000 1.25E+10 

50 1530000000 3.92E+09 3920000000 9370000000 

100 1530000000 3.73E+09 3730000000 8990000000 

200 1530000000 3.63E+09 3630000000 8790000000 

250 1530000000 3.61E+09 3610000000 8750000000 

500 1530000000 3.58E+09 3580000000 8690000000 

1000 1530000000 3.56E+09 3560000000 8650000000 

2000 1530000000 3.55E+09 3550000000 8630000000 

2500 1530000000 3.55E+09 3550000000 8630000000 

5000 1530000000 3.54E+09 3540000000 8610000000 

10000 1530000000 3.54E+09 3540000000 8610000000 
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Figure 5.15: Thread 1, Thread 2, Thread 3 Instructions completed on Core2 with
Morales parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph
from Table 5.13

• • • • • • • • • • • 

'\ 

"-

'\ 

"-



71

Table 5.14: Thread 1, Thread 2, Thread 3 CPU Cycles on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity

Block Size 

Running !me 

of Morales 

parallel 

algorithm 

Thread 1 

Cpu Cycles 

Thread 2  

Cpu Cycles 

Thread 3  

Cpu Cycles 

Total  

CPU Cycles 

10 4.63877 1.23E+09 6900000000 6900000000 1.5E+10 

50 1.56791 9.34E+08 2930000000 2940000000 6.8E+09 

100 1.33757 9.82E+08 2510000000 2520000000 6.01E+09 

200 1.24879 1.12E+09 2310000000 2320000000 5.75E+09 

250 1.23046 1.05E+09 2270000000 2270000000 5.59E+09 

500 1.1882 1.34E+09 2190000000 2190000000 5.72E+09 

1000 1.16864 1.22E+09 2150000000 2150000000 5.52E+09 

2000 1.16424 1.14E+09 2130000000 2130000000 5.4E+09 

2500 1.15788 1.29E+09 2130000000 2130000000 5.55E+09 

5000 1.20013 1.26E+09 2130000000 2130000000 5.52E+09 

10000 2.10711 1.14E+09 2120000000 2120000000 5.38E+09 

 

Table 5.15: Total L1, L2 misses, CPU cycles and Instruction completed including all
Threads on Core2 with Morales parallel algorithm using data.dat : 10000 items x
10000 capacity

 

Block size 

Total L1 

Misses 

Total L2 

Misses 

Total 

Instruc!ons 

Completed 

Total CPU 

Cycles 

Algorithm 

Running 

Times for 

INS and 

Cycles in 

Sec 

Algorithm 

Running 

Time for L1 

, L2 in Sec 

10 99469946 6270627 12500000000 15030000000 4.63877 4.44827 

50 30413041 6280628 9370000000 6804000000 1.56791 1.53626 

100 25202520 6280628 8990000000 6012000000 1.33757 1.3119 

200 23052305 6270627 8790000000 5750000000 1.24879 1.22364 

250 22652265 6280628 8750000000 5590000000 1.23046 1.20865 

500 21642164 6270627 8690000000 5720000000 1.1882 1.16916 

1000 20852085 6280628 8650000000 5520000000 1.16864 1.14916 

2000 20702070 6270627 8630000000 5400000000 1.16424 1.14085 

2500 20762076 6270627 8630000000 5550000000 1.15788 1.13936 

5000 21062106 6270627 8610000000 5520000000 1.20013 1.178 

10000 20992099 6270627 8610000000 5380000000 2.10711 2.07549 
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Figure 5.16: Thread 1, Thread 2, Thread 3 CPU Cycles on Core2 with Morales par-
allel algorithm using data.dat : 10000 items x 10000 capacity. Graph from Table 5.14
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Figure 5.17: Total L1, L2 misses including all Threads on Core2 with Morales parallel
algorithm using data.dat : 10000 items x 10000 capacity, Graph from Table 5.15
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Figure 5.18: Total CPU cycles and Instruction completed including all Threads on
Core2 with Morales parallel algorithm using data.dat : 10000 items x 10000 capacity,
Graph from Table 5.15
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Table 5.16: Total L1, L2 Miss Rates per 1000 ins for all Threads on Core2 with
Morales parallel algorithm using data.dat : 10000 items x 10000 capacity

 

Block 

Size 

Total 

Instruc!ons 

Completed 

Total L1 

Misses 

Total L2 

Misses 

L1 Miss Rate 

per INStr 

L1  Miss Rates  

per 1000 

INStr 

L2 Miss Rate 

per INStr 

L2 Miss 

Rates per 

1000 INStr 

10 12500000000 99469946 6270627 0.007957596 7.95759568 0.00050165 0.50165016 

50 9370000000 30413041 6280628 0.003245789 3.245788794 0.000670291 0.670291142 

100 8990000000 25202520 6280628 0.002803395 2.803394883 0.000698624 0.698623804 

200 8790000000 23052305 6270627 0.00262256 2.622560296 0.000713382 0.713381911 

250 8750000000 22652265 6280628 0.00258883 2.588830286 0.000717786 0.717786057 

500 8690000000 21642164 6270627 0.002490468 2.490467664 0.000721591 0.721591139 

1000 8650000000 20852085 6280628 0.002410646 2.410645665 0.000726084 0.726084162 

2000 8630000000 20702070 6270627 0.002398849 2.398849363 0.000726608 0.726607995 

2500 8630000000 20762076 6270627 0.002405803 2.405802549 0.000726608 0.726607995 

5000 8610000000 21062106 6270627 0.002446238 2.446237631 0.000728296 0.728295819 

10000 8610000000 20992099 6270627 0.002438107 2.438106736 0.000728296 0.728295819 
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Figure 5.19: Total L1 Miss Rates per 1000 ins for all Threads on Core2 with Morales
parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from Ta-
ble 5.16
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Figure 5.20: Total L2 Miss Rates per 1000 ins for all Threads on Core2 with Morales
parallel algorithm using data.dat : 10000 items x 10000 capacity, Graph from Ta-
ble 5.16
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Summary of results for Core2 with the data.dat (10000 x10000) dataset

using 2 threads:

The blocking factor controls both the granularity of parallelism and the data

locality among concurrent threads. A series of experiments is conducted to evaluate

the performance impact of blocking factors for both parallel variants. The results of

these experiments are summarized in fig. 5.2 and fig. 5.3. These figures show

performance of classic and morales on Core2, as the block sizes are varied. One

observes a clear performance trend for both classic and morales. The

performance drops significantly for smaller block sizes, picks up as we increase the

block size and then drops again when we increase the block size beyond 5K.

The poor performance for smaller block sizes is speculated to be due to a result

of poor granularity. When block sizes are ≤ 48, concurrent threads are not assigned

enough computation to offset the overhead of thread creation and synchronization.

In the overall L1,L2 Cache misses of the classic algorithm in table 5.8,fig. 5.8,

table 5.9, fig. 5.10 and fig. 5.11 one can see that both the L1 , L2 misses decrease

and became fairly constant after block size 1000. The CPU cycles for the classic

algorithm in fig. 5.9 and table 5.8 constantly decrease till they hit block size 1000

and then start to increase after block size 2500. The instructions completed from

fig. 5.9 and table 5.8 also increase after block size 1000. The fact that the L1, L2

misses are higher before block size 48 do account for the lower performance. The

same goes for the CPU cycles and instructions completed when the block size is less

than 48. This goes hand in hand with the values from fig. 5.2. Looking at the

individual thread figures 5.4 to 5.7 a similar pattern is seen.
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Looking at the overall L1 cache misses of the morales algorithm in table 5.15

and fig. 5.17 one see that they start high and decrease after block size 50k and

became somewhat constant. The L2 cache misses in these figures remains fairly

constant and unchanged. The CPU cycles and Instructions completed of the

morales algorithm in table 5.15 and fig. 5.18 also follow a similar trend like the L1

misses. So they are higher CPU cycles, L1 misses and Instructions completed when

the block size is less than 48. These results follow a similar trend like that in fig. 5.3

when the block size is less than 48. Looking at the individual thread figures 5.12

to 5.16 a similar pattern is seen.

On the other hand, when the block size to is greater than 5K, the speed up is

decreased. In the classic parallel algorithm when the block size is greater than 5K,

one sees that both the CPU cycles from fig. 5.9 and table 5.8 and the Instructions

completed increase. The L1, L2 misses (table 5.8,fig. 5.8, table 5.9, fig. 5.10 and

fig. 5.11) stay fairly constant beyond this point. So one reason for the lower

performance of the classic parallel algorithm beyond this point of 5K can be

explained with the increase in the CPU cycles and Instructions completed. Also in

fig. 5.5 the L1 misses of Thread 2 go up after a block size of 500. The instructions

completed of Thread 2 in fig. 5.6 also go up after 500. With Thread 1 in fig. 5.6 the

instructions completed go up slightly after 500. In CPU cycles Thread 2 in fig. 5.7

goes up slightly after 1000 while Thread 1 gets a sharp increase after the block size

of 2500. The maximum speed up with the parallel classic was around the block size

of 500. After that the speed up drops and these individual thread figures show that.

The individual thread figures show similar results to those of the overall total CPU
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cycles and Instructions completed of the algorithm. But they also give an

interesting insight with the L1,L2 misses. Looking at the individual threads , it is

seen that although the L1,L2 misses in total are dropping but with Thread 2 the L1

misses increase after the block size of 500. So apart from the increase in CPU cycles

and the Instructions completed of the classic parallel algorithm, This could be

another reason for the decrease in its speed up.

Looking at the L1,L2 cache misses,CPU cycles and Instructions completed of the

morales parallel algorithm from table 5.15, and figures 5.17 and 5.18, one sees that

after block size 5K everything is mostly constant. This does not tell much as to why

after 5K the speed up is decreased with the morales algorithm, unlike the classic

algorithm where the CPU cycles and Instructions completed did show an increase

in activity beyond this point, along with Thread 2’s L1 cache misses. In the

morales parallel algorithm Thread 1’s L1 misses in fig 5.12 increase after the block

size of 1000 and Thread 1’s CPU cycles in fig 5.16 are steadily increasing. The

Threads 2 and 3 either become constant at some point or have decreasing numbers.

So it is possible that apart from Thread 1, something else is happening with

Thread 2 and 3 in the morales parallel algorithm beyond this point. It is possible

that the L1,L2 misses could be resulting in page faults increasing the running time

of the algorithm. So although the misses are constant , after the 5K mark they

could be leading to page faults instead.
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5.3.1.2 Quad with 4 threads:

Table 5.17: Impact of block size on performance of parallel classic on Quad using
data.dat : 10000 items x 10000 capacity

Quad : 4 threads 

data.dat : 10000 items x 10000 capacity 

Classic  

Block size 
Parallel Running 

time in Seconds 

Sequential running 

time in seconds 
Speed up 

  174.952  

    

2 (very long)   

10 556.253  0.314519 

50 163.192  1.072062 

100 108.679  1.609805 

200 80.0991  2.184194 

250 72.75  2.404838 

500 61.9131  2.825767 

1000 57.1973  3.058746 

2000 58.0052  3.016143 

2500 59.7216  2.929459 

5000 70.6995  2.474586 

10000 89.6722  1.951017 

    

 

Running times and Speed up with varying block sizes

Figs. 5.21 and 5.22 present performance results for varying block sizes on Quad.

One thing to note that both graphs of the respective algorithms achieve higher speed

ups than the Core2. An identical performance pattern is observed on this platform

with the morales parallel algorithm compared to the Core2 from before. Any block

size smaller than 48 or larger than 5K turns out to be a poor choice. With a block

size of less than 48 the classic parallel algorithm shows similar results to the

Core2 as well. When the block size is larger than 5K the classic parallel algorithm

still shows speed up, even with the largest block size of 10000. However the pattern

of the speed up overall is similar to the one before with the Core2.
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Figure 5.21: Impact of block size on performance of parallel classic on Quad using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.17
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Figure 5.22: Impact of block size on performance of parallel morales on Quad using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.18

It should be noted, that although total cache capacity on Quad is larger than

Core2, the available cache per socket is still the same, and thus, the range of good

tile sizes appears to be the same for both platforms. The range of good tile sizes are

likely to be different for architectures that have cache configurations that are

significantly different from Core2 or Quad.
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Table 5.18: Impact of block size on performance of parallel morales on Quad using
data.dat : 10000 items x 10000 capacity

Quad : 4 threads 

data.dat : 10000 items x 10000 capacity 

Morales  

Block size 
Parallel Running 

time in Seconds 

Sequential running 

time in seconds 
Speed up 

    

  1.42791  

2 23.8235  0.059937 

10 5.19119  0.275064 

50 1.40146  1.018873 

100 0.929053  1.536952 

200 0.786962  1.814459 

250 0.735538  1.941314 

500 0.635935  2.245371 

1000 0.655799  2.177359 

2000 0.662451  2.155495 

2500 0.595529  2.397717 

5000 0.974834  1.464772 

10000 1.85246  0.770818 
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5.3.1.3 8-core with 8 threads:

Table 5.19: Impact of block size on performance of parallel classic on 8-core using
data.dat : 10000 items x 10000 capacity

8-core : 8 threads 

data.dat : 10000 items x 10000 capacity 

Classic  

Block size 
Parallel Running time in 

Seconds 

Sequential running time in 

seconds 

Speed 

up 

  168.472  

    

10 89.3494  1.885541 

50 37.5553  4.485971 

100 30.5213  5.519817 

200 25.5953  6.582146 

250 25.5377  6.596992 

500 24.3337  6.923403 

1000 24.7436  6.80871 

2000 25.831  6.522086 

2500 26.016  6.475707 

5000 29.9237  5.630052 

10000 38.7219  4.35082 

    

 

Running times and Speed up with varying block sizes

Figs. 5.23 and 5.24 present performance results for varying block sizes on

8-core.One thing to note that both graphs of the respective algorithms achieve

higher speed ups than the Quad.In the classic algorithm even with smaller block

sizes there is still speed up. The pattern of the speed up of the algorithm is similar

to the ones (of the classic algorithm) seen before. In the morales algorithm there is

no speed up when the block size is less than 10. The behaviour of having block sizes

greater than 5K is the same. The speed up is lost when the block sizes are less than

10 and greater than 5K. Since the speed up overall is greater than the Quad with

similar behaviours the graph is more steeper than the ones seen from before. In all
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Figure 5.23: Impact of block size on performance of parallel classic on 8-core using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.19

of these graphs of both the algorithms with the different machines a similar bell

type shape block size pattern is observed.
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Table 5.20: Impact of block size on performance of parallel morales on 8-core using
data.dat : 10000 items x 10000 capacity

8-core : 8 threads 

data.dat : 10000 items x 10000 capacity 

Morales  

Block size 
Parallel Running 

time in Seconds 

Sequential running 

time in seconds 
Speed up 

  1.2407  

2 9.57458  0.129583 

10 2.25421  0.550392 

50 0.632238  1.962394 

100 0.378743  3.275836 

200 0.281235  4.411613 

250 0.252115  4.921167 

500 0.270831  4.581086 

1000 0.2825  4.391858 

2000 0.645026  1.923488 

2500 0.697792  1.778037 

5000 1.2279  1.010424 

10000 1.89505  0.654706 
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Figure 5.24: Impact of block size on performance of parallel morales on 8-core using
data.dat : 10000 items x 10000 capacity, Graph from Table 5.20
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5.4 Impact of Data Set Size and Range of Values

The following figures show the running times of both parallel classic and morales

with the variation in block sizes with larger datasets and different values of R.

5.4.1 Using the Data set : ds60-30k.dat : 30000 items x 30000

capacity.

One thing to note in this test is that the dataset’s R value is 30000. The classic

sequential algorithm overall has a better running time with this dataset. It is better

than the smaller data.dat (R=100 ,10000 x10000) dataset even though the size of

30000 items x 30000 capacity is larger. One reason for this could be the iterations of

the inner while loop ( 0 ¡ l ¡ ĉ/weightitem) in the algorithm. When R=100 this

means that the dataset has smaller values 1:100 and therefore more combinations.

When R=30000 this means that the values are larger and hence lesser combinations

and so lesser iterations of the while loop. This is proved when another dataset

(ds30-300.dat) is used of the same size 30000 items x 30000 capacity with R=300.

The fig 5.25 and table 5.21 shows the results. The classic sequential and parallel

algorithm were run on the 8-core machine with 8 threads.

From the table 5.21 one see the large running times required from the classic

sequential to run such a dataset with smaller R values and larger sizes of items and

capacity.

The Core2 machine could not be used for this test because it would run out of

memory when running a dataset of this size and the data.dat (10000 x10000)
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Table 5.21: Classic parallel on 8-core using ds30-300.dat (R:300, 30000 items x
30000 capacity)

8-core : 8 threads 

ds30-300.dat : 30000 items x 30000 capacity 

R:300 

Classic  

Block 

size  

Parallel Running !me in 

Seconds  

Sequen!al running !me in 

seconds  

Speed up over 

sequen!al 

  2068  

2500 1333.56  1.550736375 

5000 324.15  6.379762456 

10000 365.037  5.665179146 

15000 402.707  5.135247214 

30000 522.072  3.96113946 
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Figure 5.25: Classic parallel on 8-core using ds30-300.dat (R:300, 30000 items x
30000 capacity), Graph from Table 5.21

dataset was among the maximum it could take.

5.4.1.1 Overall Speed up of Quad and 8-core compared

Table 5.22 and Fig. 5.26 show speedup obtained over the sequential version, for

both classic and morales for 4 and 8 cores. The data set used was ds60-30k.dat

with 30000 item x 30000 capacity and R=30000. This chart reveals that both

parallel variants obtain significant speedup over their sequential counterparts. A

-" --
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Table 5.22: Performance improvement with increasing number of cores with ds60-
30k.dat dataset (R:30000, 30000 items x 30000 capacity)

Parallel Algorithms Speed up over Sequential Counterparts

#Cores Machines with same #Threads Classic Morales

4 2.256168 2.648065

8 5.78876 5.145088

0

1

2

3

4

5

6

7

4 8

S
p

e
e

d
 u

p
 o

v
e

r 
S

e
q

u
e

n
!

a
l

Number of Cores 

Classic

Morales

Figure 5.26: Performance improvement with increasing number of cores with ds30-
60k.dat dataset (R:30000, 30000 items x 30000 capacity), Graph from Table 5.22

more detailed view of the block size pattern is shown for both the Quad and 8-core

in the following sections.

5.4.1.2 Quad with 4 threads:

Running times and Speed up with varying block sizes

In figure 5.27 we see an increasing pattern of speed up of the classic parallel

algorithm starting from a block size of 1000 up to a block size of 15k. Before the

block size 1000 the speed up is not present but starting from 50 the performance

does continue to increase. After the block size of 15k the performance decreases but

there is still speed up. In the fig 5.28 of the morales parallel algorithm we see a

more familiar bell shape type pattern of the speed up. The behavior seems similar
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Table 5.23: Impact of block size on performance of parallel classic on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

Core 4 Quad : 4 threads 

ds60-30k.dat : 30000 x 30000 

Classic 

Block 

size 

Parallel Algrthm 

Running time in 

secs 

Sequential 

Algrthm 

Running 

time in secs 

Speed up 

over 

sequential 

  48.6784  

    

50 873.953  0.055699 

100 447.178  0.108857 

200 230.647  0.211052 

250 189.382  0.257038 

500 104.839  0.464316 

1000 61.4949  0.791584 

2000 39.6362  1.22813 

2500 35.4272  1.37404 

5000 26.6018  1.829891 

10000 22.5772  2.156087 

15000 21.5757  2.256168 

30000 24.2907  2.003993 

    

 

to the one with the data.dat dataset from before. Before the block size 50 there is

no speed up and after block size 30k there is no speed up. The performance

increases till it reaches 5K and then decreases afterwards.
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Figure 5.27: Impact of block size on performance of parallel classic on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.23

Table 5.24: Impact of block size on performance of parallel morales on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

Core 4 Quad : 4 threads 

ds60-30k.dat : 30000 x 30000 

Morales  

Block 

size 

Parallel 

running 

time in 

Secs 

Sequential 

running 

time in 

secs 

Speed up 

over 

sequential 

  10.5049  

    

10 44.39  0.23665 

50 11.6418  0.902343 

100 7.33079  1.432983 

200 5.49236  1.912639 

250 5.28358  1.988216 

500 4.96281  2.116724 

1000 5.10009  2.059748 

2000 4.91814  2.13595 

2500 4.73286  2.219567 

5000 3.96701  2.648065 

10000 5.46396  1.92258 

15000 7.90661  1.328623 

30000 12.6438  0.830834 
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Figure 5.28: Impact of block size on performance of parallel morales on Quad using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.24
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5.4.1.3 8-core with 8 threads:

Table 5.25: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

8-Core : 8 threads 

ds60-30k.dat : 30000 x 30000 

Classic  

Block size 

Parallel algorithm 

Running time in secs 

Sequential 

algorithm 

Running time 

in secs 

Speed up 

over 

sequential 

  43.6777  

    

    

10 290.246  0.150485 

50 67.143  0.650518 

100 36.073  1.210814 

200 21.9986  1.985476 

250 20.4762  2.133096 

500 13.6401  3.202154 

1000 10.5676  4.133171 

2000 8.74639  4.993797 

2500 8.08234  5.404091 

5000 7.54526  5.78876 

10000 7.73978  5.643274 

15000 8.21835  5.314656 

30000 9.97752  4.377611 

 

Running times and Speed up with varying block sizes

In fig. 5.29 we see a similar pattern of the classic parallel algorithm to the one

seen before with the same dataset on the Quad. The graph achieves higher speed up

than the Quad. It gains speed up after a smaller block size of 100 and continues to

have a speed up with the largest block size of 30000. In this case the maximum

speed up is reached sooner with a lower block size of 5000 , after which the

performance decreases. In fig. 5.30 we again see the bell type shape pattern of the

morales parallel algorithm. The speed up is a lot more than the Quad. The speed

up starts from a smaller block size of around 20 and ends after the block size of 15k.
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Figure 5.29: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.25

5.4.2 Using the Data set : ds60-30k.dat : 60000 items x 60000

capacity.

The same dataset set ds60-30k.dat was used again in this test with the R:30000.

The only change was that the items and capacity were both increased to 60000

items and 60000 total capacity. The Quad and Core2 machines could not be used

for this test because both of them would run out of memory.

5.4.2.1 Overall Speed up 8-core

Table 5.27 and Fig. 5.31 show speedup obtained over the sequential version, for both

classic and morales for 8 cores. The data set used was ds60-30k.dat with 60000

item x 60000 capacity and R=30000. This chart reveals that both parallel variants

obtain significant speedup over their sequential counterparts. A more detailed view

of the block size pattern is shown for the 8-core in the following sections.
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Table 5.26: Impact of block size on performance of parallel morales on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity)

8-Core : 8 threads 

ds60-30k.dat : 30000 x 30000 

Morales  

Block size 

Parallel 

algorithm 

Running time 

in secs 

Sequential 

algorithm 

Running time in 

secs 

Speed up over 

sequential 

  8.54347  

2 89.1302  0.095854 

10 19.548  0.437051 

50 5.15533  1.657211 

100 3.08486  2.769484 

200 2.22153  3.845759 

250 2.03502  4.198224 

500 1.80226  4.74042 

1000 1.71406  4.984347 

2000 1.66051  5.145088 

2500 1.68942  5.057043 

5000 2.58473  3.305363 

10000 5.36337  1.592929 

15000 7.80193  1.095046 

30000 12.0662  0.70805 

 

5.4.2.2 8-core with 8 threads:

Running times and Speed up with varying block sizes

In fig. 5.32 we see a similar pattern of the classic parallel algorithm to the one

seen before with the same dataset with 30000 items and 30000 capacity. It gains

speed up after a smaller block size of 50 and continues to have a speed up with the

largest block size of 60000. The maximum speed up is reached with between a block

size of 6000 and 10000 , after which the performance decreases. In fig. 5.33 we again

see the bell type shape pattern of the morales parallel algorithm.The speed up

starts from a smaller block size of around 20 and ends after the block size of 30k.
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Figure 5.30: Impact of block size on performance of parallel morales on 8-core using
ds60-30k.dat (R:30000, 30000 items x 30000 capacity), Graph from Table 5.26

Table 5.27: Performance improvement with increasing number of cores with ds60-
30k.dat dataset: 60000 items x 60000 capacity

Data set : ds60-30k.dat : 60000 items x 

60000 capacity 

Parallel Algorithms Speed up over 

Sequential Counterparts 

#Cores Machines with same 

#Threads 
Classic Morales 

8 5.924733 5.877096 
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Table 5.28: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 60000 items x 60000 capacity)

8-Core : 8 threads 

ds60-30k.dat : 60000 x 60000 

Classic  

Block Size 

Parallel algorithm 

Running time in 

secs 

Sequential algorithm 

Running time in secs 
Speed up over 

sequential 

  297.549  

    

    

10 1248.31  0.238361 

50 294.24  1.011246 

100 170.853  1.74155 

200 114.157  2.606489 

250 104.328  2.852053 

300 94.5814  3.145957 

500 77.9818  3.815621 

1000 67.0304  4.439016 

2000 58.2024  5.112315 

2500 55.7891  5.333461 

3000 54.0621  5.503837 

5000 51.1151  5.821157 

6000 50.2367  5.922941 

10000 50.2215  5.924733 

12000 50.6974  5.869118 

15000 51.7351  5.751395 

20000 53.7819  5.532512 

30000 58.4627  5.089553 

60000 73.5006  4.048253 
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Figure 5.32: Impact of block size on performance of parallel classic on 8-core using
ds60-30k.dat (R:30000, 60000 items x 60000 capacity), Graph from Table 5.28
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Table 5.29: Impact of block size on performance of parallel morales on 8-core using
ds60-30k.dat (R:30000, 60000 items x 60000 capacity)

8-Core : 8 threads 

ds60-30k.dat : 60000 x 60000 

Morales  

Block 

Size 

Parallel algorithm 

Running time in secs 

Sequential algorithm 

Running time in secs 

Speed up over 

sequential 

  39.5468  

2 356.845  0.110823 

10 79.4656  0.497659 

50 20.0876  1.968717 

100 11.9872  3.299086 

200 8.59146  4.603036 

250 8.11221  4.874972 

300 7.7104  5.129021 

500 7.30286  5.415248 

1000 6.93928  5.698977 

2000 6.72897  5.877096 

2500 6.76225  5.848172 

3000 6.81423  5.803561 

5000 6.84038  5.781375 

6000 6.86945  5.756909 

10000 10.2732  3.849511 

12000 14.0776  2.8092 

15000 16.2578  2.432482 

20000 20.9384  1.888721 

30000 29.4532  1.3427 

60000 51.8065  0.763356 

 



CHAPTER 6

RELATED WORK

6.1 Parallelization on Multi-core Architecture

[23]Tan et al. discussed a parallel programming algorithm for a multi-core

architecture. They presented a scheme to exploit fine grain parallelism and locality

of a dynamic programming algorithm with non-uniform dependence on a multi-core

architecture. The multi-core architecture they tested their algorithm on was the

IBM Cyclops64 simulator. They proposed that, since this architecture model was an

extension conventional out-of-core model, their algorithm solution can be adapted

to achieve high performance on a conventional out-of-core model. [13]Holzmann

described a stack slicing algorithm whose application was for multi-core model

checking. The Stack slicing algorithm tried to achieve an even distribution of work

across the available CPUs(load balancing) , maximal independence between the

work done on different CPUs and minimal communication overhead. The focus was

primarily on shared memory systems but could be easily extended to use on cluster

computers. The algorithm was a modified and parallelized depth-first search and

was compared to the classic depth-first search and proved that an inherently

sequential process can be parallelized. [25]Villa et al. discuss the challenges and

design choices involved in parallelizing a breadth-first search algorithm on the Cell

Broadband Engine multi-core processor. The Cell BE is meant for high performance
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clusters and supercomputers and it’s memory hierarchy is explicitly managed at

software level. They described how they parallelized the Breadh-first search

algorithm and by experimentation proved that their method achieved a high level of

performance on the Cell BE processor. [21]Scarpazza, Villa et al. wrote another

paper that looked deeper into the parallelization of the Breadth first search

algorithm on the Cell BE processor. The paper was a bit similar to the one

mentioned before but included more details and experimental results. With the

Breadth-first search graph exploration ,they proved that it is possible to tame the

algorithmic and software development process and achieve, at the same time , an

impressive level of performance. They mentioned that explicit management of the

memory hierarchy, with emphasis on the local memories of the multiple cores, is a

fundamental aspect that needs to be captured by the high level algorithmic design

to guarantee portability of performance across existing and future multicore

architectures. They also added that the major strength of the Cell BE processor was

the possibility of overcoming the memory wall: the user can explicitly orchestrate

the memory traffic by pipelining multiple DMA requests to the main memory. This

is a unique feature that is not available on other commodity multi-processors, which

cannot efficiently handle working sets that overflow the cache memory.

6.2 Previous Work on the Parallelization of the IKP

There is fewer literature on parallelizing the IKP than on parallelizing the 0/1 KP.

The related work closest to the one in this paper is in [17]. These authors present

multiple strategies for parallelizing the DP recursion 2.2 proposed by [11] for the
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IKP. The results are tested in a distributed framework for transputer and LAN

networks using occam and PVM, respectively. The first algorithm is a simple

pipeline algorithm (SPA) that performs a parallelization on the objects. The

implementation is on a one-way ring topology with a root processor to facilitate

synchronization and administration of the queue of messages (computed f values).

Authors in [17] do not consider blocking as an alternative to improve the

performance of SPA but they implemented SPA with single dominancy [10] to

reduce the high communication cost between processors. The new algorithm is

named pipelined algorithm with dominancy (PAD). Only non dominated solutions

from a previous row are sent to the next processor to compute 2.2. A future study

may consider to combine dominance and the blocking concept proposed in this

research to improve performance for morales algorithm.

Paper in [17] also implemented a pipelined algorithm with parallelization on the

capacities (PAPC). For a particular knapsack item, each processor computes the f

values for a range of capacities of fixed length r. Dependency may occur among

non-adjacent processors and therefore a particular processor may wait for values

sent by a processor different to its predecessor. The knapsack items are associated

with the iterations or steps of the algorithm. Only after a row of the matrix M is

completely computed, the algorithm proceeds with the computations for the next

item (row).

Authors in [2] present a parallel pipelined algorithm for the IKP with time

complexity equal to the one in [17], that is, O(nC/q + n) where q is the number of

processors. The algorithm was implemented on a ring topology and the speedup
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resulted asymptotically linear on q. Authors also present a new procedure for the

backtracking phase with a time complexity O(n), an improvement to O(mc),the

time complexity of usual strategies.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This paper explored the issue of algorithmic choice in the context of the IKP by

comparing the performance of two parallel variants on multicore platforms. The

results reveal that although a row-by-row problem decomposition does not fare well

when run sequentially, it exhibits good scalability when run in parallel. Another key

finding of this study is that blocking factors have significant impact on performance

of each parallel variant. Therefore, to achieve improved performance, it is necessary

to select blocking factors through careful analysis. One point to note is that the

classic parallel variant was alot simpler to parallelize and was implemented using

OpenMP. Transforming a sequential program to a parallel one using OpenMP

usually requires minimal code structure changes compared to other methods like

pthreads. If one were to compare the ease of parallelizing an algorithm along with

the performance gain for a multi-core architecture then the classic parallel variant

would be an ideal example. As this demonstrates a generic method in transforming

a sequential algorithm with minimal effort and huge performance gains when run on

a multi-core system.

The impact of dominance optimization on the sequential IKP was also explored.

Dominance significantly reduced the search space of large datasets and improved

running times. This improvement in reducing the search space to smaller datasets
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would increase the performance of the parallel variants even further. Future

research will explore effects on performance of the parallel variants to changes in

data set sizes. The data locality aspects of performance will also be examined in

more depth.
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