TOWARDS A GREEN FUTURE: ENERGY EFFICIENT

CONVERSATIONAL Al ON THE EDGE

by

Kaylee Williams

HONORS THESIS

Submitted to Texas State University
in partial fulfillment
of the requirements for
graduation in the Honors College
May 2022

Thesis Supervisor:

Apan Qasem

COPYRIGHT
by
Kaylee Williams

2022

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use
This work is protected by the Copyright Laws of the United States (Public Law 94-553,
section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for
financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Kaylee Williams, authorize duplication of this
work, in whole or in part, for educational or scholarly purposes only.

ACKNOWLEDGEMENTS

Thank you to my advisor, Dr. Apan Qasem, for supporting my ideas and guiding me through my
research. | am grateful for the opportunity to learn more about energy efficiency in computing. It
was a great experience working with you.

TABLE OF CONTENTS

LIST OF FIGURES
ABSTRACT
1. INTRODUCTION
1.1 Importance of energy efficient computing
1.2 Emerging workloads and Edge
1.3 Overview
2. BACKGROUND
2.1 Energy Efficient Computing
2.2 Edge Computing
2.3 Conversational Al
3. APPROACH
3.1 Setting up a Raspberry Pi
3.2 Developing a Chatbot App
3.3 Setting up a Compute Server for Baseline Comparison
3.4 Energy Measurement
4. EXPERIMENTS
4.1 Results
4.2 Challenges and Errors
5. CONCLUSION
WORKS CITED

Page
Vi

vii

© O© N N N oo oo o o 0o NP

el e
~N o b W W

LIST OF FIGURES

Figure

1. Data Centers’ Global Energy Consumption
2. Expected Computer Energy Consumption
3. Worldwide Al Software Forecast, 2020-2024
4. Al Training Carbon Emission Production

5. Edge Computing

6. Terminal view of the Raspberry Pi

7. Likwid command on Linux Servers

8. Linux Server results from Likwid command
9. Linux Server middle column of results

10. Perf command on Raspberry Pi

11. Perf stat results on Raspberry Pi

12. Iscpu output of Raspberry Pi

Vi

Page

10
11
11
12
13

13

ABSTRACT

This project aims to show that emerging compute- and data-intensive workloads
can be executed in an energy efficient way on low-power edge devices. To this end, | set
up a cloud compute cluster consisting of three Raspberry Pis based on the ARM
architecture. | then built a conversational Al app, a simple chatbot, to run on this cluster.
My proposed framework reduces the energy cost in two ways (i) there is no need to
communicate to back-end servers, saving bandwidth and (ii) all computation takes place
on a low-power ARM processor, greatly reducing the carbon intensity at the cost of slightly
diminished performance. Right now and in the future, complex applications can be created

and run efficiently using the proposed framework.

vii

1. INTRODUCTION

1.1 Importance of energy efficient computing

There is a need for energy efficiency in computing due to our current and project
energy consumption. In data centers, the energy consumption is immense. They consume
about 25% of global energy consumption and will continue to increase in use as data
grows exponentially. Computing larger amounts of data takes longer and requires a
significant amount of energy. This is a key issue to energy efficiency and as seen in
Figure 1, the high use of energy from data centers produce 422,000,000,000 pounds of
carbon emissions yearly. This is a significant contribution to the carbon emissions
worldwide [5]. Alongside the energy consumption of data centers, Figure 2 shows that in
less than two decades computing will no longer be sustainable. It is projected that the
world’s computers will need more electricity than our global energy production can
deliver. Our world’s energy production is at a stagnant production, whereas the growth of
computing energy is increasing linearly [1], [19]. Both of these contributions affect the
energy efficiency of computing and are notable reasons as to why we need to limit our

energy consumption as well as find ways to reduce computation.

g GLOBAL DATA CENTER CONSUMPTION

DATA CENTERS ARE
RESPONSIBLE FOR 610/0 %%s% lv’ﬂ:

1% =

OF THE TOTAL e 200 CONSUMED BY DATA
%gmluu}v DEMAND TWHh CENTERS ANNUALLY
422,000,000,000
§ Pounds 0f C02 Emissions Yearly

P

Figure 1. Data Centers’ Global Energy Consumption

1.00E+22
1.00E+20

1.00E+18 7

S o \
@ 1.00E+16 , - \
ﬂ>)_) %A \\\3 o\
~— = e \Q O
QL 1.00E+14 PRAT N
= 7 C
” L) o

‘9‘ E+12 | e (’,\C'\\

1.00E+1. [- ,\:\ﬂ C

P
1.00E+10 .
\
1.00E+08
2010 2015 2020 2025 2030 2035 2040 2045

Figure 2. Expected Computer Energy Consumption

1.2 Emerging workloads and Edge

In my project, | chose to replicate an Artificial Intelligence (Al) application, since
Al is a relevant topic and a growing field. One of the most common and well-known Al
applications is chatbots. Chatbots are software applications that allow for communication
between users. They interact with various prompts and answer questions [3]. Al is a high-
demand topic and will continue to rise in the future. It is an application that we are seeing
more of today and is expected to be even more present in the future. In less than two
years, we should see about a 15% increase in Al Software Platforms [Figure 3], [12].
Although with Al, comes data computation. As shown in Figure 4, Al consumes a lot of
energy and produces carbon emissions as well, particularly when training on a model.
Training is the process where an Al is learning how to interpret data and formulate proper
responses. This uses a large amount of energy because most Al handles large amounts of
data and is mainly done on the cloud. So not only are Al relevant to being commonly

used, but they are important in the discussion of making computing energy efficient [4].

A method of improving energy efficiency in computing is using the Edge
Computing paradigm. About 8 years ago, the Edge did not exist. Originally, the internet
of things, which are devices and machines, would directly communicate with the cloud or
data centers. This uses a lot of bandwidth and consumes a lot of energy since it takes
longer to process the data. Edge Computing was created to add another layer to the
process and retrieval of data. It allows computation to be done a lot closer to the device
itself, which reduces latency, improves efficiency, and consumes less energy than back-
end servers [Figure 5], [2]. This paradigm is what | have frame worked my project

around.

50.0%
45.0%
40.0%
35.0%
30.0%

£
% 25.0%
© 200%

15.0%

10.0%

5.0%

0.0%

2020 2021 2022 2023 2024
e A| CRM e A| ERM
Rest of Al Apps w— Al Software Platforms
s Al Application Development & Deployment Al System Infrastructure Software

Source: IDC 2021

Figure 3. Worldwide Al Software Forecast, 2020-2024

CO2 emission benchmarks

800

8
Qq

i 1y
O

626.2

600
»
§ 500
6 |
§ 400
3
& 300
2
! P

o
o 126.0
100 |
=4 z/ 36.2
1.0
ol 20 N
Air travel from Human life American life US. car Training an
New York City to (Avg. 1year) (Avg 1year) manufacturing and Al model
San Francisco fuel consumption
(1 passenger) (Avg 1 lifetime)

Data compiled Oct. 9, 2019,

An ‘imerican lie" has a larger carbon rootprint than a “Human lire” because the U.S. is widely regarded as one of the top carbon dicxide
emitters in the world.

Source: College of Information and Computer atl y of Amherst

Figure 4. Al Training Carbon Emission Production

Edge Computing

CLOUD DATA CENTER

EDGE

INTERNET OF THINGS

Figure 5. Edge Computing

1.3 Overview

This project aims to show that emerging compute- and data-intensive workloads
can be executed in an energy efficient way on low-power edge devices. To this end, I set
up a cloud compute cluster consisting of three Raspberry Pis based on the Advanced
RISC Machines (ARM) architecture. | then built a conversational Artificial Intelligence
(Al) I app, a simple chatbot, to run on this cluster. My proposed framework reduces the
energy cost in two ways (i) there is no need to communicate to back-end servers, saving
bandwidth, and (ii) all computation takes place on a low-power ARM processor, greatly
reducing the carbon intensity at the cost of slightly diminished performance. Right now
and in the future, complex applications can be created and run efficiently using the

proposed framework.

2. BACKGROUND

2.1 Energy Efficient Computing

Cloud Computing has soared in popularity for storing and handling data, with
about 83% of workloads existing on the cloud. The cloud, however, has a number of
drawbacks [10]. Energy consumption is very high due to the distance between a device
and server, which also makes the performance low. The operational costs continue to
grow as well while data increases. The disadvantages to the cloud presented a need for
more energy efficient computing. A paradigm that was introduced to address energy

efficiency relating to the cloud is Edge Computing [2].

2.2 Edge Computing

Edge Computing was created to combat the issues that are present in the cloud. It
brings computation and data geographically closer to the devices that are gathering the
information. Edge devices consist of constrained devices, single board computers, and
mobile devices [2], [10]. This is the method of my proposed framework by using low-
power edge devices, a cluster of Raspberry Pis, which is composed of four small single-
board computers. Raspberry Pis are based on the ARM architecture that has low power
consumption and lower latency. In this project, a cluster of Raspberry Pis will be used as
a server. Creating a cluster of Raspberry Pis increases the efficiency with faster compute

times as well as has increased load balance with the distribution of tasks on each Pi [17].

2.3 Conversational Al

Conversational Al is a set of technologies that allows humans and computers to
interact. The most well-known form of Conversational Al are chatbot assistants that use
conversational dialogue to accomplish a set of tasks. Users tend to use this application to
ask several questions or prompt the chatbot for a response. In a conventional model of
how a chatbot works, humans communicate with a Conversational Al device and in turn,
the device communicates with back-end servers over the internet, which consist of
multiple high-power CPUs (Central Processing Units). The servers then interpret the
response and send the result back to the device. Lastly, the device sends the result to the
user [3], [6]. This method of communication uses a significant amount of bandwidth and
energy consumption [4]. In this project, a chatbot will be used as the type of

Conversational Al.

3. APPROACH

3.1 Setting up a Raspberry Pi

To initiate this project, I set up the first Raspberry Pi to be run and accessed. First,
I connected the microSD card to my MacBook and installed the Operating System (OS). |
downloaded the Raspberry Pi Imager and used this to install the Raspbian OS onto the
microSD card. After choosing the OS, | went into the advanced settings and set the
hostname to be raspberrypi.local as well as enabled Secure Shell (SSH). SSH allows
network services to be accessed remotely. To enable this, | connected the Pi to my
network and set up a username and password for it. This allows me to access my
Raspberry Pi from my MacBook’s terminal on my local network. Once I configured the
settings, | wrote this information to the microSD card [15], [20]. Then, I placed the card
into the Raspberry Pi and plugged in the power source. It is running and connected when
the red light is on, and the green light is flickering. In order to confirm that the Raspberry
P1i is running correctly, I used the command line “sudo nmap -sn 10.245.147.0/24” on my
local device to see the pi’s IP address. Then, I connect to the Pi using the line “ssh
thesispi@<IP Address>", and it prompts me to input the password [7], [8]. am
successfully connected to the Pi when the terminal displays the username and local

hostname as shown in Figure 6.

[© ®0 i kayleebwilliams—thesispi@rasperrypi: ~/chatbot

thesispiPraspberrypi: I

Figure 6. Terminal view of the Raspberry Pi
3.2 Developing a Chatbot App
The next step was creating the chatbot. 1 first followed the documentation of a
simple node.js application to understand how they work. | then used Node.js and NPM to

7

create my application. Node.js is an event-driven JavaScript runtime that’s designed to
build scalable network applications. NPM is a package manager for the Node JavaScript
platform and puts modules in place so the node can find them. These modules are used to
import and export keywords to share with functionalities. Then, I found a simple
instruction set of how to create a chatbot to run in the terminal. | used Visual Studio Code
to create the program files and intents to create a dialogue between the chatbot and user.
The three components of the chatbot consist of intent files, a training program, and an
index program. The intents folder consists of multiple JavaScript files containing various
prompts and responses. Initially, I created a hello and goodbye intent where | could input
a variation of hello or goodbye, and the chatbot would take in my input and respond with
an appropriate response, which in this case would be various ways to say hello or
goodbye. The training file takes in data and trains a neural network on how to take in
prompts and interpret them to give a correct response. Lastly, the index file takes the
trained neural network and runs the chatbot allowing me to input a prompt and the
chatbot to display a response, which I am implementing on a client-server model. The
server side of my project is the Raspberry Pi, which will run the training program and
will handle the inputs and outputs of a response [11].

After creating and running the chatbot on my MacBook, | set up the chatbot on
the Raspberry Pi. | went through the same environment setup | did on my MacBook; |
installed NPM and Node.js as well as followed the chatbot tutorial again to initialize the
node modules and JavaScript packages [11]. Since | installed these components on the
Raspberry Pi, | could not copy over the entire folder of the application. | had to

individually copy the intents folder, index.js, and train.js in order for the transfer to work

properly. Next, I trained the chatbot by running “npm run train” in the command line of
the terminal. This shows the Epochs running. After training the neural network, | used the
command line “npm run start” to run the chatbot. When the chatbot is running “Chatbot
started!” is displayed along with the line that prompts the user to input something, which

is CC>”

3.3 Setting up a Compute Server for Baseline Comparison

Before measuring the energy consumption of the Raspberry Pi, | used a large-
scale Linux Server on Texas State University’s campus, called Shadowfax. It is a High-
Performance Computing server that contains 16 cores. This server consumes a large
amount of energy. Running the chatbot on this server allows a baseline of results to
compare the performance measurements of the Raspberry Pi in order to show efficiency

and less energy consumption.

3.4 Energy Measurement

| used a performance tool called LIKWID; it Leverages the Linux RAPL*
interface to dynamically measure processor power draw and energy usage. LIKWID also
provides more precise readings than external devices hooked up to power outlets [9]. |
first ran the chatbot on Shadowfax on 8 of the 16 cores. Using the command line “likwid-
perfctr -c 0-7 -g ENERGY node train.js”, LIKWID runs the training program on the
Shadowfax server and measures multiple performance information for each core [Figure
7], [16]. There is also a section that provides the minimum, maximum, sum, and average

of these measurements from all of the cores [Figure 8]. The middle section is of most

interest due to displaying the energy consumption of the chatbot on Shadowfax. LIKWID
calculates the energy consumption by taking the measured power consumption and the

runtime of the train.js file; then, multiplies the two numbers [Figure 9].

(shadowfax)% likwid-perfctr -c @-7 -g ENERGY node

Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
Intel Xeon Haswell EN/EP/EX processor

0.4596524524023277 time 1ms
0.2962695587195059 time Oms
0.19712730813767312 time Oms
0.1408789783010156 time Oms
0.10477826476719965 time @ms
0.07905526835604512 time @Oms
0.05998595144389987 time @ms
0.045779981712655106 time Oms
0.035212641143217045 time Oms
0.02733158029694324 time Oms
0.021409904054065645 time Oms
0.016914235377565208 time @Oms
0.01346251607493424 time Oms
0.010783130123052414 time Oms
0.008682331035622548 time Oms
0.007020642899300199 time Oms
0.005696418039978071 time Oms
0.00463455520624529 time @ms
0.003778765853202165 time @ms
0.003086263375999947 time Oms
0.0025240917398717234 time Oms
0.002066564687794515 time Oms
0.001693460681800621 time Oms
0.0013887209595508172 time Oms
0.0011395063022087988 time Oms
0.000935494750415567 time @ms
0.0007683498248805382 time Oms
0.0006313169621664136 time Oms
0.0005189073977526028 time 1ms
0.0004266515815400525 time Oms
0.0003509037923748333 time Oms
0.0002886862020643881 time Oms
0.0002375649540166589 time Oms

Figure 7. Likwid command on Linux Servers

10

Group 1: ENERGY

INSTR_RETIRED_ANY | FIXC® | 44872 1320 | 124728672 | 14320 |
CPU_CLK_UNHALTED_CORE | FIXC1 | 661571 | 21740 | 73379897 | 88608 |
CPU_CLK_UNHALTED_REF | FIXC2 | 554136 | 43464 | 138627720 | 177216 |

TEMP_CORE | 38 36 | 33 |
PWR_PKG_ENERGY | 38.9501 | |
| |

I |

207237
994534
1880376

PWR_PP@_ENERGY |

|

|

0 |

PWR_DRAM_ENERGY | 1.4199 |

INSTR_RETIRED_ANY STAT FIXCO | 125076712 1133 | 124728672
CPU_CLK_UNHALTED_CORE STAT FIXC1 | 75849476 9366 | 73379897
CPU_CLK_UNHALTED_REF STAT FIXC2 18720 | 138627720
TEMP_CORE STAT T™PO 32
PWR_PKG_ENERGY STAT PWRO .]
PWR_PPO_ENERGY STAT PWR1 [}
PWR_DRAM_ENERGY STAT PWR3 .

Runtime (RDTSC) [s] | 1.4169 . 1.4169 | 1.4169
Runtime unhalted [s] | 0.0003 | 9.079319e-06 1.387332e-05 | 3.700553e-05 | 0.0004 | 3,911541e-06 0.0003
Clock [MHz] | 2858.6854 1197.6671 2| 1197.3345 1197.2264 | 1266.4300 1197.9938 1197.1847
CPI 14,7435 16.4697 . 3.4442 6.1877 | 4.7990
Temperature [C] 38
Energy [J]
Power [W]
Energy PPO [J]

|

|

| 38.9501

|

|
Power PPO [W] |

|

|

+

27.4892

Energy DRAM [J]
Power DRAM [W]

Runtime (RDTSC) [s] STAT
Runtime unhalted [s] STAT
Clock [MHz] STAT
CPI STAT
Temperature [C] STAT
Energy [J] STAT
Power [W] STAT
Energy PP [J] STAT
Power PP@ [W] STAT
Energy DRAM [J] STAT
Power DRAM [W] STAT

11.3352
0.0317 | 3.911541e-06

11379.9790 1197.1847 . 1422.4974
64.0013 0.5883 . 8.0002
280 35
38.9501 . 4.8688
27.4892 . 3.4362
0 0
0 0
.4199 . 0.1775

f—_———— — — —

Figure 9. Linux Server middle column of results
Next, to measure the energy consumption of the chatbot on the Raspberry Pi, |
installed a Linux performance analyzing tool called perf. This performance tool is able to
do lightweight profiling and displays information about CPU performance counters. |
installed this onto the Raspberry Pi and confirmed that it was installed properly by
running the command “perf stat Is”. I then ran perf stat on the train program with the

command line “perf stat npm run train” [Figure 10], [14]. Figures 11 and 12 display the

11

information based on these two command lines. Using this information, | calculated the
power used by the chatbot with the following formula

P =Cv?f
where C is the static power, v is the voltage, and f is the frequency. The frequency is
calculated by the clock rate in GHz multiplied by the CPU utilization. After calculating
the power, the energy consumed by the Pi was obtained by multiplying the power used

and the runtime of the training task.

thesispi@Praspberrypi: perf stat npm run train

> chatbot1.0.0 train
> node train.js

.2323930316774059 time 1ms
.1499022355658465 time Oms
.10032044942505107 time 1ms
.07160425595808939 time Oms
.05278816616574206 time Oms
.03979231569216551 time Oms
.030566466656886684 time Oms
Epoch loss ©.023887942193071568 time 1ms
Epoch loss 0.01893701056365793 time Oms
Epoch loss 0.015179424564610388 time Oms
Epoch loss 0.012271296762582411 time 1ms
Epoch loss 0.009994463756599183 time Oms
Epoch loss 0.008184952214312131 time Oms
Epoch loss 0.006746745085149314 time 1ms
Epoch loss 0.005578192736549367 time ©Oms
Epoch loss 0.004624763536493598 time Oms
Epoch loss 0.003844882691770936 time 1ms
Epoch loss 0.0032052796449703364 time Oms
Epoch loss 0.00267932822426658 time Oms
Epoch loss 0.0022457071047955663 time Oms
Epoch loss 0.0018873081799861344 time 1ms
Epoch loss 0.001590366538588602 time Oms
Epoch loss 0.001343770521592771 time ©Oms
Epoch loss 0.0011385209466340605 time ©Oms
Epoch loss 0.0009673065940991876 time ©Oms
Epoch loss 0.0008241683594469501 time 3ms
Epoch loss 0.0007042384114972274 time ©Oms
Epoch loss 0.000603528657817055 time ©Oms
Epoch loss 0.0005187662015476978 time Oms
Epoch loss 0.0004472590417934137 time 1ms
Epoch loss 0.0003867893323794729 time Oms
Epoch loss 0.000335527105659715 time Oms
Epoch loss 0.0002919597792097282 time ©Oms
Epoch loss 0.00025483530347827 time Oms

loss
loss
loss
loss
loss
loss
loss

Epoch
[Epoch
Epoch
[Epoch
Epoch
Epoch
Epoch

VONOCCOHSWN PR
OO0 ®

Figure 10. Perf stat command on Raspberry Pi

12

Performance counter stats for 'npm run train':

5,319.89 msec task-clock:u 1.203 CPUs utilized
0 context-switches:u 0.000 K/sec
0 cpu-migrations:u 0.000 K/sec
27,296 page-faults:u 0.005 M/sec
supported> cycles:u
supported> instructions:u

supported> branches:u
supported> branch-misses:u

4.422631087 seconds time elapsed

4.819238000 seconds user
0.506625000 seconds sys

Figure 11. Perf stat results on Raspberry Pi

[thesispi@Praspberrypi: 1scpu

Architecture: armv71l

Byte Order: Little Endian

CPU(s):

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 4

Socket(s): 1
ARM

Vendor ID:

Model: 3

Model name: Cortex—A72

Stepping: rop3

CPU max MHz: 1800.0000

CPU min MHz: 600.0000

BogoMIPS: 108.00

Flags: half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idi
vt vfpd32 lpae evtstrm crc32

Figure 12. Iscpu output of Raspberry Pi

4. EXPERIMENTS
4.1 Results
I ran the chatbot on Shadowfax as a baseline and then ran the chatbot 10
times on the Raspberry Pi in order to show the difference between energy
consumption on both devices. Table 1 shows the data taken to calculate energy as

well as the average of the multiple runs on the Raspberry Pi.

Run Number | Runtime (Seconds) | Power (Watts) Energy (Joules)

1 4.422631087 23.93909181 105.8376223

13

2 5.609149589 17.10772 95.95977183
3 4.524626147 23.4137079 105.938275
4 4.468746455 23.6922057 105.8744602
5 4.457424235 22.8911327 102.0354897
6 4.475442935 22.6126349 101.2015571
7 4.420373454 23.9707035 105.9594614
8 4.442050708 22.7916692 101.2417503
9 4.455468775 23.0502743 102.6997774
10 4.405979422 23.9707035 105.6144264

Average Energy 103.2362592

Table 1. Raspberry Pi power and energy consumption

From my measurement of energy consumption, the chatbot on Shadowfax
consumes 35.9501 joules of energy and consumes an average of 103.2362 joules

of energy on the Raspberry Pi.

4.2 Challenges and Errors

After configuring the settings and attempting to connect to the Raspberry
Pi for the first time, | had an issue with the local host and was not able to locate
the Raspberry Pi remotely. | tried using the command:
ping raspberrypi.local
but I ran into the error as follows:

kex exchange identification: read: Connection reset by peer

ssh error

14

After troubleshooting this issue, | disconnected the Pi and set up its environment
again [15]. Sometimes the ping command line would not work, but nmap was a
more reliable indication that the Pi was running. I took note of my Raspberry Pi’s
IP address and used this each time in order to ssh to it [7], [8].

The second challenge | ran into was when | was first creating the chatbot.
The first tutorial | referenced used TypeScript, which | was not familiar with. |
ran into some compile errors when trying to run my code because of my lack of
knowledge in the programming language [18]. | chose to look into a simpler
node.js application instead to understand the basics of the program. Then, I found
documentation of a chatbot application using node.js [11], [13]. | referenced this
documentation and had success with setting up my chatbot.

Next, | had compilation errors in the chatbot application after | transferred
the files from my MacBook to the Raspberry Pi. | removed all of the JavaScript
and node module files. | found that after removing these, | needed to set up the
environment on the Pi and instead of copying the environment files. Therefore, |
followed the documentation again to download the JavaScript packages and node
modules [11]. From here, | compiled the chatbot on the Pi and was able to run it
successfully.

The last set of errors | ran into were when trying to install the Likwid
performance tool on my Raspberry Pi. Since my Raspberry Pi is remote, [wasn’t
able to have a quick installation of Likwid. | followed the GitHub Repository
containing all of the files, but it was unable to build properly. | attempted to clone

the git repository; however, the clone would not download and fail [9], [16]. The

15

next step was to find a way to measure the performance on the Raspberry Pi

without using LIKWID, which we solved by installing the perf tool.

5. CONCLUSION

Based on the results, the chatbot on Shadowfax consumed less energy than
the Raspberry Pi. This was caused by the throughput being lower on the Pi,
meaning the tasks per second were done at a lower rate than the servers. The
cloud servers receive many requests simultaneously from different clients.
Therefore, at any point in time, they are running many Al applications. The
collection of Al applications running on a server within a given time window is
called a workload. To measure the performance of cloud workloads, we don't
consider the individual running times of an individual application but rather the
number of tasks completed in a given time frame. To compute the energy
efficiency we would look at the average power consumption over a given unit of
time, which is typically one hour. The energy efficiency would be measured as
avg power x 60 x 60 joules.

Through my project, it can be seen that the Edge computing paradigm
allows data computation to be done a lot closer to devices and is a significant
approach to energy efficiency in computing. Using devices such as Raspberry Pis
to run applications like Al with large training datasets are in the right direction
and could be explored more by using a cluster with more Pis. Along with my

project, it is possible to work towards a sustainable future in the tech industry.

16

WORKS CITED

[1] A. Burgess and T. Brown, “By 2040 there may not be enough power for all our
computers,” The Manufacturer, 17-Aug-2016. Available:
https://www.themanufacturer.com/articles/by-2040-there-may-not-be-enough-power-
for-all-our-computers/.

[2] A. Chalimov, “The impact of edge computing on IOT: The main benefits and real-life
use cases: Eastern peak,” Eastern Peak - Technology Consulting & Development
Company, 19-Aug-2020. Available: https://easternpeak.com/blog/the-impact-of-edge-
computing-on-iot-the-main-benefits-and-real-life-use-cases/.

[3] A. Freed, “Introduction to conversational Al,” in Conversational Al, Shelter Island:
Manning Publications, 2021.

[4] C. Adam, “Sustainable Al can be done today,” Medium, 07-Jun-2021. Available:
https://blog.ml6.eu/sustainable-ai-can-be-done-today-35a85aa0achO.

[5] C. Piera Garrigosa, “Powering a data center with renewable energy: Dream or
reality?,” Powering a data center with renewable energy: dream or reality? | Blogs
La Salle | Campus Barcelona, 10-Mar-2021. Available:
https://blogs.salleurl.edu/en/powering-data-center-renewable-energy-dream-or-
reality.

[6] “Conversational Al: What it is and how it works,” Ada, 2021. Available:
https://www.ada.cx/conversational-ai.

[7] Emmet, “Finding the IP Address of your Raspberry Pi,” Pi My Life Up, 30-Jan-2022.
Available: https://pimylifeup.com/raspberry-pi-ip-address/.

[8] “How to SSH into the Raspberry Pi,” The Pi, 18-May-2017. Available:
https://thepi.io/how-to-ssh-into-the-raspberry-pi/.

[9] “Likwid performance tools,” Erlangen National High Performance Computing
Center. Available: https://hpc.fau.de/research/tools/likwid/.

[10] M. Caprolu, R. Di Pietro, F. Lombardi, and S. Raponi, “Edge computing
perspectives: Architectures, technologies, and open security issues,” 2019 IEEE
International Conference on Edge Computing (EDGE), 2019.

[11] N. Baranwal, “How to Create Chatbot with Node.js,” Medium, 16-May-2021.
Available: https://medium.com/geekculture/create-chatbot-with-nodejs-
cf3d8bc3f302.

[12] Needham, “IDC forecasts improved growth for Global Al market in 2021,” IDC,

23-Feb-2021. Available:
https://www.idc.com/getdoc.jsp?containerld=prUS47482321.

17

[13] “Node.js - First Application,” Node.js - first application. Available:
https://www.tutorialspoint.com/nodejs/nodejs_first_application.htm.

[14] P. J. Drongowski, “Performance events on Raspberry Pi 4: Tips,” Sand, software
and
sound, 23-Nov-2020. Available: http://sandsoftwaresound.net/performance-events-
on-raspberry-pi-4-tips/.

[15] “Raspberry Pi Documentation,” Getting Started, 2022. Available:
https://www.raspberrypi.com/documentation/computers/getting-
started.html#installing-the-operating-system.

[16] “Rrze-HPC/likwid: Performance monitoring and benchmarking suite,” GitHub.
Available: https://github.com/RRZE-HPC/likwid/.

[17] Stoyanka Mollova, Radoslav Simionov, and Kamen Seymenliyski. 2018. “A study
of the energy efficiency of a computer cluster.” Association for Computing
Machinery. Available: https://doi-
org.libproxy.txstate.edu/10.1145/3278161.3278170

[18] S. Ronce, “Create a universal chatbot in Javascript, for beginners,” Medium,
17-Sep-2021. Available: https://codeburst.io/create-a-universal-chatbot-in-
javascript-for-beginners-cfd4e580680.

[19] U. Gupta et al., "Chasing Carbon: The Elusive Environmental Footprint of
Computing,” 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2021, pp. 854-867. Available at:
https://ieeexplore.ieee.org/abstract/document/9407142.

[20] W. Gordon, “Beginner's Guide: How to get started with Raspberry Pi,” PCMAG,

2019. Available: https://www.pcmag.com/how-to/beginners-guide-how-to-get-
started-with-Raspberry-pi.

18

	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	1.1 Importance of energy efficient computing
	1.2 Emerging workloads and Edge
	1.3 Overview

	2. BACKGROUND
	2.1 Energy Efficient Computing
	2.2 Edge Computing
	2.3 Conversational AI

	3. APPROACH
	3.1 Setting up a Raspberry Pi
	3.2 Developing a Chatbot App
	3.3 Setting up a Compute Server for Baseline Comparison
	3.4 Energy Measurement

	4. EXPERIMENTS
	4.1 Results
	4.2 Challenges and Errors

	5. CONCLUSION
	WORKS CITED

