

TOWARDS A GREEN FUTURE: ENERGY EFFICIENT

CONVERSATIONAL AI ON THE EDGE

by

Kaylee Williams

HONORS THESIS

Submitted to Texas State University

in partial fulfillment

of the requirements for

graduation in the Honors College

May 2022

Thesis Supervisor:

 Apan Qasem

ii

COPYRIGHT

by

Kaylee Williams

2022

iii

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Kaylee Williams, authorize duplication of this

work, in whole or in part, for educational or scholarly purposes only.

iv

ACKNOWLEDGEMENTS

Thank you to my advisor, Dr. Apan Qasem, for supporting my ideas and guiding me through my

research. I am grateful for the opportunity to learn more about energy efficiency in computing. It

was a great experience working with you.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

ABSTRACT vii

1. INTRODUCTION 1

1.1 Importance of energy efficient computing 1

1.2 Emerging workloads and Edge 2

1.3 Overview 5

2. BACKGROUND 5

2.1 Energy Efficient Computing 5

2.2 Edge Computing 6

2.3 Conversational AI 6

3. APPROACH 7

3.1 Setting up a Raspberry Pi 7

3.2 Developing a Chatbot App 7

3.3 Setting up a Compute Server for Baseline Comparison 9

3.4 Energy Measurement 9

4. EXPERIMENTS 13

4.1 Results 13

4.2 Challenges and Errors 14

5. CONCLUSION 16

WORKS CITED 17

vi

LIST OF FIGURES

Figure Page

1. Data Centers’ Global Energy Consumption 1

2. Expected Computer Energy Consumption 2

3. Worldwide AI Software Forecast, 2020-2024 3

4. AI Training Carbon Emission Production 4

5. Edge Computing 4

6. Terminal view of the Raspberry Pi 7

7. Likwid command on Linux Servers 10

8. Linux Server results from Likwid command 11

9. Linux Server middle column of results 11

10. Perf command on Raspberry Pi 12

11. Perf stat results on Raspberry Pi 13

12. lscpu output of Raspberry Pi 13

vii

 ABSTRACT

This project aims to show that emerging compute- and data-intensive workloads

can be executed in an energy efficient way on low-power edge devices. To this end, I set

up a cloud compute cluster consisting of three Raspberry Pis based on the ARM

architecture. I then built a conversational AI app, a simple chatbot, to run on this cluster.

My proposed framework reduces the energy cost in two ways (i) there is no need to

communicate to back-end servers, saving bandwidth and (ii) all computation takes place

on a low-power ARM processor, greatly reducing the carbon intensity at the cost of slightly

diminished performance. Right now and in the future, complex applications can be created

and run efficiently using the proposed framework.

 1

1. INTRODUCTION

1.1 Importance of energy efficient computing

There is a need for energy efficiency in computing due to our current and project

energy consumption. In data centers, the energy consumption is immense. They consume

about 25% of global energy consumption and will continue to increase in use as data

grows exponentially. Computing larger amounts of data takes longer and requires a

significant amount of energy. This is a key issue to energy efficiency and as seen in

Figure 1, the high use of energy from data centers produce 422,000,000,000 pounds of

carbon emissions yearly. This is a significant contribution to the carbon emissions

worldwide [5]. Alongside the energy consumption of data centers, Figure 2 shows that in

less than two decades computing will no longer be sustainable. It is projected that the

world’s computers will need more electricity than our global energy production can

deliver. Our world’s energy production is at a stagnant production, whereas the growth of

computing energy is increasing linearly [1], [19]. Both of these contributions affect the

energy efficiency of computing and are notable reasons as to why we need to limit our

energy consumption as well as find ways to reduce computation.

Figure 1. Data Centers’ Global Energy Consumption

2

Figure 2. Expected Computer Energy Consumption

1.2 Emerging workloads and Edge

In my project, I chose to replicate an Artificial Intelligence (AI) application, since

AI is a relevant topic and a growing field. One of the most common and well-known AI

applications is chatbots. Chatbots are software applications that allow for communication

between users. They interact with various prompts and answer questions [3]. AI is a high-

demand topic and will continue to rise in the future. It is an application that we are seeing

more of today and is expected to be even more present in the future. In less than two

years, we should see about a 15% increase in AI Software Platforms [Figure 3], [12].

Although with AI, comes data computation. As shown in Figure 4, AI consumes a lot of

energy and produces carbon emissions as well, particularly when training on a model.

Training is the process where an AI is learning how to interpret data and formulate proper

responses. This uses a large amount of energy because most AI handles large amounts of

data and is mainly done on the cloud. So not only are AI relevant to being commonly

used, but they are important in the discussion of making computing energy efficient [4].

3

A method of improving energy efficiency in computing is using the Edge

Computing paradigm. About 8 years ago, the Edge did not exist. Originally, the internet

of things, which are devices and machines, would directly communicate with the cloud or

data centers. This uses a lot of bandwidth and consumes a lot of energy since it takes

longer to process the data. Edge Computing was created to add another layer to the

process and retrieval of data. It allows computation to be done a lot closer to the device

itself, which reduces latency, improves efficiency, and consumes less energy than back-

end servers [Figure 5], [2]. This paradigm is what I have frame worked my project

around.

Figure 3. Worldwide AI Software Forecast, 2020-2024

4

Figure 4. AI Training Carbon Emission Production

Figure 5. Edge Computing

5

1.3 Overview

This project aims to show that emerging compute- and data-intensive workloads

can be executed in an energy efficient way on low-power edge devices. To this end, I set

up a cloud compute cluster consisting of three Raspberry Pis based on the Advanced

RISC Machines (ARM) architecture. I then built a conversational Artificial Intelligence

(AI) I app, a simple chatbot, to run on this cluster. My proposed framework reduces the

energy cost in two ways (i) there is no need to communicate to back-end servers, saving

bandwidth, and (ii) all computation takes place on a low-power ARM processor, greatly

reducing the carbon intensity at the cost of slightly diminished performance. Right now

and in the future, complex applications can be created and run efficiently using the

proposed framework.

2. BACKGROUND

2.1 Energy Efficient Computing

Cloud Computing has soared in popularity for storing and handling data, with

about 83% of workloads existing on the cloud. The cloud, however, has a number of

drawbacks [10]. Energy consumption is very high due to the distance between a device

and server, which also makes the performance low. The operational costs continue to

grow as well while data increases. The disadvantages to the cloud presented a need for

more energy efficient computing. A paradigm that was introduced to address energy

efficiency relating to the cloud is Edge Computing [2].

6

2.2 Edge Computing

Edge Computing was created to combat the issues that are present in the cloud. It

brings computation and data geographically closer to the devices that are gathering the

information. Edge devices consist of constrained devices, single board computers, and

mobile devices [2], [10]. This is the method of my proposed framework by using low-

power edge devices, a cluster of Raspberry Pis, which is composed of four small single-

board computers. Raspberry Pis are based on the ARM architecture that has low power

consumption and lower latency. In this project, a cluster of Raspberry Pis will be used as

a server. Creating a cluster of Raspberry Pis increases the efficiency with faster compute

times as well as has increased load balance with the distribution of tasks on each Pi [17].

2.3 Conversational AI

Conversational AI is a set of technologies that allows humans and computers to

interact. The most well-known form of Conversational AI are chatbot assistants that use

conversational dialogue to accomplish a set of tasks. Users tend to use this application to

ask several questions or prompt the chatbot for a response. In a conventional model of

how a chatbot works, humans communicate with a Conversational AI device and in turn,

the device communicates with back-end servers over the internet, which consist of

multiple high-power CPUs (Central Processing Units). The servers then interpret the

response and send the result back to the device. Lastly, the device sends the result to the

user [3], [6]. This method of communication uses a significant amount of bandwidth and

energy consumption [4]. In this project, a chatbot will be used as the type of

Conversational AI.

7

3. APPROACH

3.1 Setting up a Raspberry Pi

To initiate this project, I set up the first Raspberry Pi to be run and accessed. First,

I connected the microSD card to my MacBook and installed the Operating System (OS). I

downloaded the Raspberry Pi Imager and used this to install the Raspbian OS onto the

microSD card. After choosing the OS, I went into the advanced settings and set the

hostname to be raspberrypi.local as well as enabled Secure Shell (SSH). SSH allows

network services to be accessed remotely. To enable this, I connected the Pi to my

network and set up a username and password for it. This allows me to access my

Raspberry Pi from my MacBook’s terminal on my local network. Once I configured the

settings, I wrote this information to the microSD card [15], [20]. Then, I placed the card

into the Raspberry Pi and plugged in the power source. It is running and connected when

the red light is on, and the green light is flickering. In order to confirm that the Raspberry

Pi is running correctly, I used the command line “sudo nmap -sn 10.245.147.0/24” on my

local device to see the pi’s IP address. Then, I connect to the Pi using the line “ssh

thesispi@<IP Address>”, and it prompts me to input the password [7], [8]. I am

successfully connected to the Pi when the terminal displays the username and local

hostname as shown in Figure 6.

Figure 6. Terminal view of the Raspberry Pi

3.2 Developing a Chatbot App

The next step was creating the chatbot. I first followed the documentation of a

simple node.js application to understand how they work. I then used Node.js and NPM to

8

create my application. Node.js is an event-driven JavaScript runtime that’s designed to

build scalable network applications. NPM is a package manager for the Node JavaScript

platform and puts modules in place so the node can find them. These modules are used to

import and export keywords to share with functionalities. Then, I found a simple

instruction set of how to create a chatbot to run in the terminal. I used Visual Studio Code

to create the program files and intents to create a dialogue between the chatbot and user.

The three components of the chatbot consist of intent files, a training program, and an

index program. The intents folder consists of multiple JavaScript files containing various

prompts and responses. Initially, I created a hello and goodbye intent where I could input

a variation of hello or goodbye, and the chatbot would take in my input and respond with

an appropriate response, which in this case would be various ways to say hello or

goodbye. The training file takes in data and trains a neural network on how to take in

prompts and interpret them to give a correct response. Lastly, the index file takes the

trained neural network and runs the chatbot allowing me to input a prompt and the

chatbot to display a response, which I am implementing on a client-server model. The

server side of my project is the Raspberry Pi, which will run the training program and

will handle the inputs and outputs of a response [11].

After creating and running the chatbot on my MacBook, I set up the chatbot on

the Raspberry Pi. I went through the same environment setup I did on my MacBook; I

installed NPM and Node.js as well as followed the chatbot tutorial again to initialize the

node modules and JavaScript packages [11]. Since I installed these components on the

Raspberry Pi, I could not copy over the entire folder of the application. I had to

individually copy the intents folder, index.js, and train.js in order for the transfer to work

9

properly. Next, I trained the chatbot by running “npm run train” in the command line of

the terminal. This shows the Epochs running. After training the neural network, I used the

command line “npm run start” to run the chatbot. When the chatbot is running “Chatbot

started!” is displayed along with the line that prompts the user to input something, which

is “>”.

3.3 Setting up a Compute Server for Baseline Comparison

 Before measuring the energy consumption of the Raspberry Pi, I used a large-

scale Linux Server on Texas State University’s campus, called Shadowfax. It is a High-

Performance Computing server that contains 16 cores. This server consumes a large

amount of energy. Running the chatbot on this server allows a baseline of results to

compare the performance measurements of the Raspberry Pi in order to show efficiency

and less energy consumption.

3.4 Energy Measurement

I used a performance tool called LIKWID; it Leverages the Linux RAPL*

interface to dynamically measure processor power draw and energy usage. LIKWID also

provides more precise readings than external devices hooked up to power outlets [9]. I

first ran the chatbot on Shadowfax on 8 of the 16 cores. Using the command line “likwid-

perfctr -c 0-7 -g ENERGY node train.js”, LIKWID runs the training program on the

Shadowfax server and measures multiple performance information for each core [Figure

7], [16]. There is also a section that provides the minimum, maximum, sum, and average

of these measurements from all of the cores [Figure 8]. The middle section is of most

10

interest due to displaying the energy consumption of the chatbot on Shadowfax. LIKWID

calculates the energy consumption by taking the measured power consumption and the

runtime of the train.js file; then, multiplies the two numbers [Figure 9].

Figure 7. Likwid command on Linux Servers

11

Figure 8. Linux Server results from Likwid command

Figure 9. Linux Server middle column of results

 Next, to measure the energy consumption of the chatbot on the Raspberry Pi, I

installed a Linux performance analyzing tool called perf. This performance tool is able to

do lightweight profiling and displays information about CPU performance counters. I

installed this onto the Raspberry Pi and confirmed that it was installed properly by

running the command “perf stat ls”. I then ran perf stat on the train program with the

command line “perf stat npm run train” [Figure 10], [14]. Figures 11 and 12 display the

12

information based on these two command lines. Using this information, I calculated the

power used by the chatbot with the following formula

P = Cv²f

where C is the static power, v is the voltage, and f is the frequency. The frequency is

calculated by the clock rate in GHz multiplied by the CPU utilization. After calculating

the power, the energy consumed by the Pi was obtained by multiplying the power used

and the runtime of the training task.

Figure 10. Perf stat command on Raspberry Pi

13

Figure 11. Perf stat results on Raspberry Pi

Figure 12. lscpu output of Raspberry Pi

4. EXPERIMENTS

4.1 Results

 I ran the chatbot on Shadowfax as a baseline and then ran the chatbot 10

times on the Raspberry Pi in order to show the difference between energy

consumption on both devices. Table 1 shows the data taken to calculate energy as

well as the average of the multiple runs on the Raspberry Pi.

Run Number Runtime (Seconds) Power (Watts) Energy (Joules)

1 4.422631087 23.93909181 105.8376223

14

2 5.609149589 17.10772 95.95977183

3 4.524626147 23.4137079 105.938275

4 4.468746455 23.6922057 105.8744602

5 4.457424235 22.8911327 102.0354897

6 4.475442935 22.6126349 101.2015571

7 4.420373454 23.9707035 105.9594614

8 4.442050708 22.7916692 101.2417503

9 4.455468775 23.0502743 102.6997774

10 4.405979422 23.9707035 105.6144264

 Average Energy 103.2362592

Table 1. Raspberry Pi power and energy consumption

From my measurement of energy consumption, the chatbot on Shadowfax

consumes 35.9501 joules of energy and consumes an average of 103.2362 joules

of energy on the Raspberry Pi.

4.2 Challenges and Errors

After configuring the settings and attempting to connect to the Raspberry

Pi for the first time, I had an issue with the local host and was not able to locate

the Raspberry Pi remotely. I tried using the command:

ping raspberrypi.local

but I ran into the error as follows:

kex_exchange_identification: read: Connection reset by peer

ssh error

15

After troubleshooting this issue, I disconnected the Pi and set up its environment

again [15]. Sometimes the ping command line would not work, but nmap was a

more reliable indication that the Pi was running. I took note of my Raspberry Pi’s

IP address and used this each time in order to ssh to it [7], [8].

The second challenge I ran into was when I was first creating the chatbot.

The first tutorial I referenced used TypeScript, which I was not familiar with. I

ran into some compile errors when trying to run my code because of my lack of

knowledge in the programming language [18]. I chose to look into a simpler

node.js application instead to understand the basics of the program. Then, I found

documentation of a chatbot application using node.js [11], [13]. I referenced this

documentation and had success with setting up my chatbot.

Next, I had compilation errors in the chatbot application after I transferred

the files from my MacBook to the Raspberry Pi. I removed all of the JavaScript

and node module files. I found that after removing these, I needed to set up the

environment on the Pi and instead of copying the environment files. Therefore, I

followed the documentation again to download the JavaScript packages and node

modules [11]. From here, I compiled the chatbot on the Pi and was able to run it

successfully.

The last set of errors I ran into were when trying to install the Likwid

performance tool on my Raspberry Pi. Since my Raspberry Pi is remote, I wasn’t

able to have a quick installation of Likwid. I followed the GitHub Repository

containing all of the files, but it was unable to build properly. I attempted to clone

the git repository; however, the clone would not download and fail [9], [16]. The

16

next step was to find a way to measure the performance on the Raspberry Pi

without using LIKWID, which we solved by installing the perf tool.

5. CONCLUSION

Based on the results, the chatbot on Shadowfax consumed less energy than

the Raspberry Pi. This was caused by the throughput being lower on the Pi,

meaning the tasks per second were done at a lower rate than the servers. The

cloud servers receive many requests simultaneously from different clients.

Therefore, at any point in time, they are running many AI applications. The

collection of AI applications running on a server within a given time window is

called a workload. To measure the performance of cloud workloads, we don't

consider the individual running times of an individual application but rather the

number of tasks completed in a given time frame. To compute the energy

efficiency we would look at the average power consumption over a given unit of

time, which is typically one hour. The energy efficiency would be measured as

avg power x 60 x 60 joules.

Through my project, it can be seen that the Edge computing paradigm

allows data computation to be done a lot closer to devices and is a significant

approach to energy efficiency in computing. Using devices such as Raspberry Pis

to run applications like AI with large training datasets are in the right direction

and could be explored more by using a cluster with more Pis. Along with my

project, it is possible to work towards a sustainable future in the tech industry.

17

WORKS CITED

[1] A. Burgess and T. Brown, “By 2040 there may not be enough power for all our

computers,” The Manufacturer, 17-Aug-2016. Available:

https://www.themanufacturer.com/articles/by-2040-there-may-not-be-enough-power-

for-all-our-computers/.

[2] A. Chalimov, “The impact of edge computing on IOT: The main benefits and real-life

use cases: Eastern peak,” Eastern Peak - Technology Consulting & Development

Company, 19-Aug-2020. Available: https://easternpeak.com/blog/the-impact-of-edge-

computing-on-iot-the-main-benefits-and-real-life-use-cases/.

[3] A. Freed, “Introduction to conversational AI,” in Conversational AI, Shelter Island:

Manning Publications, 2021.

[4] C. Adam, “Sustainable AI can be done today,” Medium, 07-Jun-2021. Available:

https://blog.ml6.eu/sustainable-ai-can-be-done-today-35a85aa0acb0.

[5] C. Piera Garrigosa, “Powering a data center with renewable energy: Dream or

reality?,” Powering a data center with renewable energy: dream or reality? | Blogs

La Salle | Campus Barcelona, 10-Mar-2021. Available:

https://blogs.salleurl.edu/en/powering-data-center-renewable-energy-dream-or-

reality.

[6] “Conversational AI: What it is and how it works,” Ada, 2021. Available:

https://www.ada.cx/conversational-ai.

[7] Emmet, “Finding the IP Address of your Raspberry Pi,” Pi My Life Up, 30-Jan-2022.

Available: https://pimylifeup.com/raspberry-pi-ip-address/.

[8] “How to SSH into the Raspberry Pi,” The Pi, 18-May-2017. Available:

https://thepi.io/how-to-ssh-into-the-raspberry-pi/.

[9] “Likwid performance tools,” Erlangen National High Performance Computing

Center. Available: https://hpc.fau.de/research/tools/likwid/.

[10] M. Caprolu, R. Di Pietro, F. Lombardi, and S. Raponi, “Edge computing

perspectives: Architectures, technologies, and open security issues,” 2019 IEEE

International Conference on Edge Computing (EDGE), 2019.

[11] N. Baranwal, “How to Create Chatbot with Node.js,” Medium, 16-May-2021.

Available: https://medium.com/geekculture/create-chatbot-with-nodejs-

cf3d8bc3f302.

[12] Needham, “IDC forecasts improved growth for Global AI market in 2021,” IDC,

23-Feb-2021. Available:

https://www.idc.com/getdoc.jsp?containerId=prUS47482321.

18

[13] “Node.js - First Application,” Node.js - first application. Available:

https://www.tutorialspoint.com/nodejs/nodejs_first_application.htm.

[14] P. J. Drongowski, “Performance events on Raspberry Pi 4: Tips,” Sand, software

and

sound, 23-Nov-2020. Available: http://sandsoftwaresound.net/performance-events-

on-raspberry-pi-4-tips/.

[15] “Raspberry Pi Documentation,” Getting Started, 2022. Available:

https://www.raspberrypi.com/documentation/computers/getting-

started.html#installing-the-operating-system.

[16] “Rrze-HPC/likwid: Performance monitoring and benchmarking suite,” GitHub.

Available: https://github.com/RRZE-HPC/likwid/.

[17] Stoyanka Mollova, Radoslav Simionov, and Kamen Seymenliyski. 2018. “A study

of the energy efficiency of a computer cluster.” Association for Computing

 Machinery. Available: https://doi-

org.libproxy.txstate.edu/10.1145/3278161.3278170

[18] S. Ronce, “Create a universal chatbot in Javascript, for beginners,” Medium,

17-Sep-2021. Available: https://codeburst.io/create-a-universal-chatbot-in-

javascript-for-beginners-cfd4e580680.

[19] U. Gupta et al., "Chasing Carbon: The Elusive Environmental Footprint of

Computing," 2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), 2021, pp. 854-867. Available at:

https://ieeexplore.ieee.org/abstract/document/9407142.

[20] W. Gordon, “Beginner's Guide: How to get started with Raspberry Pi,” PCMAG,

2019. Available: https://www.pcmag.com/how-to/beginners-guide-how-to-get-

started-with-Raspberry-pi.

	LIST OF FIGURES
	ABSTRACT
	1. INTRODUCTION
	1.1 Importance of energy efficient computing
	1.2 Emerging workloads and Edge
	1.3 Overview

	2. BACKGROUND
	2.1 Energy Efficient Computing
	2.2 Edge Computing
	2.3 Conversational AI

	3. APPROACH
	3.1 Setting up a Raspberry Pi
	3.2 Developing a Chatbot App
	3.3 Setting up a Compute Server for Baseline Comparison
	3.4 Energy Measurement

	4. EXPERIMENTS
	4.1 Results
	4.2 Challenges and Errors

	5. CONCLUSION
	WORKS CITED

