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Remarks on semilinear problems with
nonlinearities depending on the derivative *

Jose Maria Almira & Naira Del Toro

Abstract

In this paper, we continue some work by Cafiada and Drébek [1] and
Mawhin [6] on the range of the Neumann and Periodic boundary value
problems:

where g € C([a,b] x R™,R™), f € R™, and f has mean value zero. For the
Neumann problem with n > 1, we prove that for a fixed f the range can
contain an infinity continuum. For the one dimensional case, we study
the asymptotic behavior of the range in both problems.

1 Introduction

Let us consider the resonance problem

u’(t) + g(u'(t)) = f(t), t€(ab)

W' (a) =u'(b) =0 (1.1)

where f € Cla,b] and ¢g : R — R is continuous. The linearized part of (1.1) is
the resonance system

u//(t) = f(t)7 te (a7 b)
u'(a)=u'(b) =0
and the corresponding eigenfunction is u () = 1. The change of variable v = u’
transforms (1.2) into the problem

V'(t) = f(t), te(a,b)
v(a) =v(b) =0

(1.2)

(1.3)
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which obviously is solvable if and only if ff f(®)dt = 0. Moreover, its solution
is given by v(¢ f f(s)ds. Hence (1.2) is solvable if and only if f = f €
Cla,b] :={f € C [a,b] : f f(t)dt = 0} and its set of solutions is

uc(t) =c+ /at v(s)ds

where ¢ € R and v(t f f(s)ds. Let us now consider problem (1.1). When
we decompose

F(t) = s+ f(1) (1.4)

where s € R and fe C [a, b], it is quite natural to ask for which values s € R the
problem (1.1) is solvable. This question has been studied by several authors.
In particular, Caiiada and Drabek (see [1]) proved that if ¢ € C*(R) and is
bounded, then for each f there is a unique value s = s(f) € R such that
(1.1) is solvable. Moreover, in such a case they also proved that the map s(-) :

Cla,b] — R, f — s(f) is continuously differentiable and satisfies |s(f)| < [|g]
for all f € Cla,b], where ||g|| = sup,cg |9(t)|. In the same paper the authors
noted that their proofs are also applicable to the more general problem

(8 + gt (1) = s+ f(t), t€ (a,b)

@)= (0) =0 0

(with g € C*([a,b] x R,R) and bounded) and also to the periodic problem

u"(t) + g(t,u/' (1) = s+ f(t), t€ (a,b)
u(a) =u(b), u'(a)=u'(b);
and proposed as an open question to study these kind of problems for systems

of equations and for higher order equations. This was made by Mawhin in [6].
In particular, he studied the problems

(1.6)

(1.7)

and

(1.8)

where g : [a,b] x R® — R" is a Carathédory function, u :[a,b] — R", f € R"
and

. _ b
f € L([a,b],R") := {f € L*([a,}],R") : / f(t)dt = 0};
and proved that if

| ﬁim g, v)/IIvlz|l, =0 uniformly a.e. in ¢ € [a, ], (1.9)
v 2—>OO
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then for each f € I,/vl([a, b], R™) the sets
‘7¥(N) = {f € R” : the problem (1.7) is solvable}
jfp) = {f € R" : the problem (1.8) is solvable}

are both nonempty, where |- || denotes the Euclidean norm of R" Moreover he
also proved that for n =1 and f € Ll(a b) := Ll([ b, R), #j~ #j

1 and stated the uniqueness problem for n > 1 as an open questlon In thls note
we solve this problem in the negative sense for the Neumann case (1.7).

Forn=1and g € C([a,b] xR ]R) satisfying (1.9), we denote by sx-(f) the
unique element of j~N and by sp( f) the unique element of j ) We study

the asymptotic behav1or of the functionals sy (f) and sp(f) for || f|l = oo when
the uniqueness results are applicable.

2 Uniqueness Problem

The first contribution of this note to the subject is that we solve for the Neumann
problem (1.7) the uniqueness question in the negative sense for all n > 1. With
this objective in mind, we take h : R — R a C*° function such that it is bounded
and satisfies h(z) = z for all z € [-2,2] and we set f = 0 and

g(t, 1,22, 23,...,2,) = —(=h(z2), h(z1),0,...,0).
Then g : [0, 27] x R™ — R™ belongs to C*°([0, 27r] x R™,R™) and it is bounded.
Let us now consider the problem
u’(t) +g(t,u'(t) =f, te (0 2r)
w'(0) = u'(2m) =
and let a € [-1,1] be fixed. We set u,(t) = (asin(t — §),at — acos(t —

£),0,...,0) with a € [-1 } Then u, € C?([0, 277] R™) and ul,(t) = (acos(t —
5),a+asin(t - 5),0,...,0), so that u),(0) = u,,(27) = 0 and

(2.1)

u’(t) = (—asin(t—

v ), acos(t —

—~

= (—(a+asin(t— g)),acos(t— 2)70,...70)+(a70,0,...,0)

= —g(t,u,(t))+ («,0,0,...,0)

Hence u,, solves (2.1) with f = (,0,...,0) and we have proved that there
exists a continuum of vectors f € R™ for which the problem (2.1) is solvable.
Moreover, we have got such a result not only for g(¢,x) continuous but also
C* and bounded, so that g(t,x) satisfies the hypothesis of the existence and
uniqueness results in the papers by Mawhin (see [6, Theorems 1 and 3]) and
Canada and Drabek (see [1, Theorem 3.3]). This proves that the mentioned
uniqueness result for n = 1 is impossible to generalize to higher dimensions. Of
course, the same problem is still open for the periodic case.



4 Remarks on semilinear problems EJDE-2003/18

3 Asymptotic behavior

In this section we set n = 1 and we consider the problems (1.5) and (1.6).
Moreover, in order to have existence of solutions, we assume that g(t, u) satisfies

that lim,| s 9w — 0 yniformly in ¢ € [a, b]. With these hypotheses at hands

[

we know that for each f € Cla, b], }N) = {sn(f)} and ]}p) = {sp(f)}, where

sy : Cla,b] — R and sp : C[a,b] — R are certain functionals. Furthermore, the
change of variables v = v’ transforms (1.5) and (1.6) into the problems

V() +g(t,o(t) =s+ f(t), te(a,b) (3.1)

and

(3.2)

Thus, if w(t) solves (3.1) and w(t) solves (3.2) and we integrate between a and
b both sides of the equation, we get

sw(f) = bia

b N b
/g(t,w(t))dt and SP(f)zbia/ ot w(t))dt.

We will use the formulas above in order to prove certain asymptotic results for
the functionals sar(+) and sp(+).
Now we state and prove the main results of this section.

Theorem 3.1 Let us set © = {;- f;g(t,vo)dt :vg € R}y. Then for each
go € O, the closure of © in R, there exists a sequence { f,}52, C Cla,b] such that
limy, oo || full = 00 and limy, oo sA7(fn) = go, where || fr|l = SUD;¢a,b] | fn(D)]-

Proof Let go = ;- f: g(t,vo)dt € © be arbitrarily chosen. We define for each
n > 2(b—a)~! a function w, : [a,b] — R which satisfies the following conditions

)
)
¢) wnla+g;) =wn(b— 5;) =
)
)

wy(t) =vg forall ¢t € [a+1,b— 1]
[wnll < fvol +2

and we set
b

b-a o

fn(t) = 1wy, (t) + g(t, wn (1)) g(t, wn(t))dt.
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It is clear that a) implies that f, € C([a,b]) for all n € N and b) implies
that f fu(t)dt = 0. Moreover, using that K = [a,b] x [—|ve| — 2, |vo| + 2]
is compact and {(t,w,(t)) : t € [a,b]} C K for all n € N, we have that the
functions ¢(t, w,(t)) are uniformly bounded in [a,b], so that the conditions b)
and ¢) imply that lim, . || fn|| = 0o

Then w = w,, solves the problem

wl(t) + g(t,w(t)) = SN(fn) + fn(t)v te (a7b)
w(a) =w(b) =0

with sy (fn) = —— f g(t,wn(t))dt. We will prove that lim, e sx°(fn) = go-
In fact, by d) w that

_ b
wF) = b% [ ottwatenar

- bia(/aaﬂ g(t, wy(t))dt + /abi g(t,vo)dt + /bbl g(t,wn(t))dt),

1
+a

The uniform boundedness of g(¢, w, (t)) implies that
a+% b
lim g(t,wy(t))dt = lim g(t, wy(t))dt = 0.

— —
n—oo [, noobii

p—L
/ g(t,vo)dt = go

+1

Hence

lim sy (fy,) = lim

n— oo n—oo b —a

which is what we wanted to prove.
Let us now take go € © \ ©. Then there exists a sequence of numbers

{9n}221 C © and a family of functions {fmk}zo,kzl C Cla, b] such that || f,, x| >
k and |5J\/ fnk — gn| < for all k,n > 1 and limy, o g» = go. Thus the
sequence {fnn}o2, satlsﬁes that 1imy, oo || fr.nll = 00 and limy, o sp*(frm) =
go-

Corollary 3.2 Let us assume that g = g(v) € C(R) and go € g(R). Then

there exists a sequence {fn}n L C Cla,b] such that lim,_ . 1ol = oo and
limp, o0 SN (fn) = g0-

Proof 1In [6, Corollary 2] it is shown the existence of solutions for n = 1
whenever g = g(v) is continuous. Hence, it is enough to observe that if g does
not depend on the variable ¢ then © = g(R). O

Theorem 3.3 Let us assume that g is bounded and set © = {3 1a fb g(t,vo)dt
vo € R}. Then for each gy € ©, there exists a sequence {f,}22, C Cla,b] such
that lim,,_, ||an =00 and lim,_,« $p (fn) = qgo.
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Proof We define for each n > 2(b — a)~! a function ¢, : [a,b] — R which
satisfies the following conditions:

a) ¢n € C'la,b]

b) ¢nla) = ¢n(b)

¢) enla+3z) =pnlb—57) =1

d) @n(t) =wvg forallt € [a+ ,b— 1]

e) [ pn(t)dt =0

Clearly, these functions exist. The rest of the proof is analogous to that of
Theorem 3.1. We just change wy, by ¢, and sy (f) by sp(f). The only differ-
ence with the other proof is that now the graphs of the functions ¢, are not
uniformly bounded, and this is the reason because we need now to assume that
g is bounded. &

Corollary 3.4 Assume that g = g(v) € C(R) is bounded and go € g(R). Then
there exists a sequence {fn}n . C Cla,b] such that limy,_o ||fn] = oo and

hmn—»oo SP(fn) =4o-

Proof In [6, Corollary 4] it is shown the existence of solutions for n = 1
whenever g = g(v) is continuous. Hence, it is enough to observe that if g does
not depend on the variable ¢ then © = g(R). &

We have proved that the limits lim 7 sy (f) and lim 5 sp (f) never

exist if © is not a single point. This makes natural to ask if some weaker
asymptotic results are possible. For example, for which functions f eC [a, b]

do the radial limits limg_o0 spr(kf) or limy_o sp(kf) exist? Now we prove a
comparison result which will be helpful for the computation of these limits.

Lemma 3.5 (Comparison Principle) Let k> 0 and f € Cla,b]. If wy is a
solution of the problem

w'(t) + g(t,w(t) = sw(kf) + kf (1), t€ (ab)

w(a) =w(b) =0 3:3)
where wp s a solution of the problem
w'(t) + g(t,w(t)) = sp(kf) + kf(t), te€ (a,b)
b (3.4)
w(a) = w(b); / w(t)dt =0,
v 1S the unique solution of
()= F#). te ) 55
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and vp is the unique solution of
(3.6)

then |lwy — kuy|| < (b—a)(M —m) and ||wp — kvp|| < (b —a)(M —m),
where m = inf (; o)efab)xr 9(t; ) and M :=sup g efa,p)xr 9(t; S)-

Proof: Let wy be a solution of (3.3) and let vpr(t) = f; f(s)ds be the solution
of (3.5). Then

wpr(t) = k/ f(s)ds + sN(k:f)(t —a)— / g(s,wpr(s))ds

and

unt) < kun(t) = s (bt =)~ [ gls,wals)ds

) t
= Z_ . / g(s,war(s))ds —/ g(s,wa(s))ds.
Hence
lwar(t) — koar(8)| < (b—a)(M —m), forall t € [a, b
since o
(t—a)m < Z — /a g(s,war(s))ds < (t —a)M

and

(t—a)ym < / g(s,war(s))ds < (t —a)M.

This completes the proof for the Neumann problem. For the periodic case we
must take into account that if wp is a solution of (3.4) and

op(t) :/:ﬂs)ds— bi@/f[f@)@dt

is the solution of (3.6) then

_ “ bt
we(t) = kop(®) + sp (k) = 50 + 5= [ [ ot wn(e))asd

- [ stsswntsras

After this, the proof is quite similar to that of the Neumann problem. &

In what follows we denote by |A| the Lebesgue measure of the set A.
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Theorem 3.6 Assume that the limits g(t, :I:oo) = msﬂioo g(t,s) exist uni-

formly in t € [a,b]. Given f € Cla,b] and F(t f s)ds, we have that
(2) If |{t € [a,b] : F(t) = 0}| =0 then

_ oy 9t Hoo)dt + [y gy 9(t, —o0)dt
lim SN(kf) fF 1(0,400) ( ) fF 1( ,0) ( )
k—oo b—a

(i) If |{t € [a,b] : F(t) = 0} > 0 and g(t,s) = g(¢,0) for all (t,s) in [a,b] X
[—(b—a)(M —m),(b—a)(M —m)], then

Jlim sy (kf)
1

- (/ g(t, +oo)dt+/ g(t,—oo)dt—i—/ g(t,o)dt).
b—a\Jp-10400) F1(—00,0) F=1(0)

Proof It follows from Lemma 3.5 that

EF(t)—(b—a)(M—m) < wp(t) < kF(t)+(b—a)(M—m), for all t € [a,b]; (3.7)
where F(¢ f f . We define the sets:
T ={teca,b]: F(t) >0} = F1(0,400)
={t € [a,b] : F(t) =0} = F~'(0)
A- ={t€a,b): F(t) <0} = F}(—00,0)
Then

b
g(t, war(t))dt

sw(kf)=p—
1 1
= —a/Ao g(t, war(t)) b—a/A+ g(t, wpr(t))dt

[ st

+

Now we will estimate each one of the integrals which appear in the equality
above. First, using (3.7) and the Lebesgue’s dominated convergence theorem
we have

1
twn(t))dt = t dt
kLH;Ob_aA+g(7wN()) —a A+g(,+00)
1
kggob_a/fg(t,w/\f(t))dt N g(t, —oo)dt.

Second, under the assumption (i) (i.e. |A°| = 0) we have

o g(t, wn(t))dt = 0.
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On the other hand, under the hypotheses of (i7) (i.e. g(t,s) = g(¢,0) for all

(t,s) € [a,b] x [-(b—a)(M —m),(b—a)(M —m)]), we obtain from (3.7) that
—(b—a)(M —m) <wpr(t) < (b—a)(M—m)

for all t € A°. Hence,

1 1
= [ ottt = = [ g0

Taking into account the two items above we complete the proof. O

Theorem 3.7 Assume that g(t,s) is bounded and that the limits g(t, £o0) :=
limg_,yo0 g(t,s) exist uniformly in t € [a,b]. Given f € Cla,b] and

t b, ot
H(t) = / Fs)ds — ﬁ ( / Fs)ds) at
we have that:
(1) If |{t € [a,b] : H(t) =0} = 0 then

=1
lim sp(kf) = (/ g(t, +oo)dt+/ g(t,—oo)dt)
koo b= Ju-104) H=1(=00,0)

(i) If |{t € [a,b] : H(t) = 0} > 0 and g(t,s) = ¢(t,0) for all (t,s) in |a,b] X
[—2552(M — m), 252(M — m)] then

klim sp(kf)

1
- (/ g(t,+oo)dt+/ g(t,—oo)dt+/ g(t,O)dt.)
b—a\Jg-—10400) H1(—00,0) H-1(0)

The proof of this theorem is analogous to that of Theorem 3.6, using the
periodic case of the comparison principle. The following result is a direct con-
sequence of the theorems above:

Corollary 3.8 With the notation of Theorems 3.6 and 3.7, if g = g(s) does
not depend on the variable t and there exists the limits g(£00) := lims_ 10 g($)
then

lim sp (k) = 207 [F~1(0, +00)| + g(—00) [F ! (~00,0)|

k—o0 b—a

whenever |[F~1(0)| =0 and

~ g(400) [H71(0,+00)| + g(—00) |[H~!(—00,0)|

li Ef) =
kg101087>( f) —

whenever |H‘1(O)‘ =0.
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The following proposition gives an estimation of the size of the sets of func-
tions with the property that the radial limits exists.

Proposition 3.9 The sets

F={feCla,b]: /f Yds satisfies |[F~1(0)] = 0}

{fecab /f )ds — _a/ /f ds

satisfies |[H~1(0)| = O}

and

are dense non-meager subsets of the Banach space CN'[a7 b].

Proof Clearly, F is a dense subset of Cla,b], since I = I1 N C[a, b] is dense
in C [a, b], where II denotes the set of algebraic polynomials, and ﬁ\ {0} C F.
Now, we are going to prove that F has nonempty interior, which implies that
F is non-meager. Of course, there is no loss of generality if we assume that
[a,b] = [-1,1]. Then f(¢) = t belongs to F. Let g € C[-1,1] be such that
If =gl < L and let G(t) = [*, §(s)ds. Then

1
4

¢t 3 t2
51100 <
Thus, G71(0) € {-1} U [1/2,1]. If #G~1(0) > 3 then there are two points
x,y € [1/2,1] such that G(x) = G(y) = 0 and Rolle’s theorem implies that
G'(t) = g(t) vanishes at some point & € [1/2,1], which is impossible since
If—ql < 1. This implies that #G~*(0) < 2, so that § € F and F has
nonempty interior and proves the claim for the set F. Finally, the proof of the

claim for the set H follows from similar arguments. &

~+

for all t € [-1,1].

[N
W

Remark Note that when g € C*(R), it follows from [1, Theorems 3.3 and 3.4]
that sy (-) and sp(-) are continuous functionals so that limy 7, sn(f) = sa(0)

and lim 7 sp(f) = sp(0). Now, sx(0) = sp(0) = g(0) since [6, Theorem 3]
guarantees that w(t) = 0 is the unique solution of the systems

w'(t) + g(w(t)) = g(0), t€ (a,b)
b
w(a) = wd) =0 or wla)=wb); / w(t)dt = 0
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