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Remarks on semilinear problems with

nonlinearities depending on the derivative ∗

Jose Maŕıa Almira & Naira Del Toro

Abstract

In this paper, we continue some work by Cañada and Drábek [1] and
Mawhin [6] on the range of the Neumann and Periodic boundary value
problems:

u′′(t) + g(t,u′(t)) = f + f̃(t), t ∈ (a, b)

u′(a) = u′(b) = 0

or u(a) = u(b), u′(a) = u′(b)

where g ∈ C([a, b]×Rn, Rn), f ∈ Rn, and f̃ has mean value zero. For the

Neumann problem with n > 1, we prove that for a fixed f̃ the range can
contain an infinity continuum. For the one dimensional case, we study
the asymptotic behavior of the range in both problems.

1 Introduction

Let us consider the resonance problem

u′′(t) + g(u′(t)) = f(t), t ∈ (a, b)
u′(a) = u′(b) = 0

(1.1)

where f ∈ C[a, b] and g : R → R is continuous. The linearized part of (1.1) is
the resonance system

u′′(t) = f(t), t ∈ (a, b)
u′(a) = u′(b) = 0

(1.2)

and the corresponding eigenfunction is u1(t) = 1. The change of variable v = u′

transforms (1.2) into the problem

v′(t) = f(t), t ∈ (a, b)
v(a) = v(b) = 0

(1.3)
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Grupo de Investigación “Aproximación y Métodos Numéricos” .

1



2 Remarks on semilinear problems EJDE–2003/18

which obviously is solvable if and only if
∫ b

a
f(t)dt = 0. Moreover, its solution

is given by v(t) =
∫ t

a
f(s)ds. Hence (1.2) is solvable if and only if f = f̃ ∈

C̃[a, b] := {f̃ ∈ C[a, b] :
∫ b

a
f̃(t)dt = 0} and its set of solutions is

uc(t) = c +
∫ t

a

v(s)ds

where c ∈ R and v(t) =
∫ t

a
f(s)ds. Let us now consider problem (1.1). When

we decompose
f(t) = s + f̃(t) (1.4)

where s ∈ R and f̃ ∈ C̃[a, b], it is quite natural to ask for which values s ∈ R the
problem (1.1) is solvable. This question has been studied by several authors.
In particular, Cañada and Drábek (see [1]) proved that if g ∈ C1(R) and is
bounded, then for each f̃ there is a unique value s = s(f̃) ∈ R such that
(1.1) is solvable. Moreover, in such a case they also proved that the map s(·) :
C̃[a, b] → R , f̃ → s(f̃) is continuously differentiable and satisfies |s(f̃)| ≤ ‖g‖
for all f̃ ∈ C̃[a, b], where ‖g‖ = supt∈R |g(t)|. In the same paper the authors
noted that their proofs are also applicable to the more general problem

u′′(t) + g(t, u′(t)) = s + f̃(t), t ∈ (a, b)
u′(a) = u′(b) = 0

(1.5)

(with g ∈ C1([a, b]× R, R) and bounded) and also to the periodic problem

u′′(t) + g(t, u′(t)) = s + f̃(t), t ∈ (a, b)
u(a) = u(b), u′(a) = u′(b);

(1.6)

and proposed as an open question to study these kind of problems for systems
of equations and for higher order equations. This was made by Mawhin in [6].
In particular, he studied the problems

u′′(t) + g(t,u′(t)) = f + f̃(t), t ∈ (a, b)
u′(a) = u′(b) = 0

(1.7)

and
u′′(t) + g(t,u′(t)) = f + f̃(t), t ∈ (a, b)

u(a) = u(b), u′(a) = u′(b),
(1.8)

where g : [a, b] × Rn → Rn is a Carathédory function, u :[a, b] → Rn, f ∈ Rn

and

f̃ ∈ L̃1([a, b], Rn) := {f̃ ∈ L1([a, b], Rn) :
∫ b

a

f̃(t)dt = 0};

and proved that if

lim
‖v‖2→∞

∥∥g(t,v)/‖v‖2
∥∥

2
= 0 uniformly a.e. in t ∈ [a, b], (1.9)
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then for each f̃ ∈ L̃1([a, b], Rn) the sets

J (N )

f̃
= {f ∈ Rn : the problem (1.7) is solvable}

J (P)

f̃
= {f ∈ Rn : the problem (1.8) is solvable}

are both nonempty, where ‖·‖2 denotes the Euclidean norm of Rn. Moreover, he
also proved that for n = 1 and f̃ ∈ L̃1(a, b) := L̃1([a, b], R), #J (N )

f̃
= #J (P)

f̃
=

1 and stated the uniqueness problem for n > 1 as an open question. In this note
we solve this problem in the negative sense for the Neumann case (1.7).

For n = 1 and g ∈ C([a, b]× R, R) satisfying (1.9), we denote by sN (f̃) the
unique element of J (N )

f̃
and by sP(f̃) the unique element of J (P)

f̃
. We study

the asymptotic behavior of the functionals sN (f̃) and sP(f̃) for ‖f̃‖ → ∞ when
the uniqueness results are applicable.

2 Uniqueness Problem

The first contribution of this note to the subject is that we solve for the Neumann
problem (1.7) the uniqueness question in the negative sense for all n > 1. With
this objective in mind, we take h : R → R a C∞ function such that it is bounded
and satisfies h(x) = x for all x ∈ [−2, 2] and we set f̃ = 0 and

g(t, x1, x2, x3, . . . , xn) = −(−h(x2), h(x1), 0, . . . , 0).

Then g : [0, 2π]×Rn → Rn belongs to C∞([0, 2π]×Rn, Rn) and it is bounded.
Let us now consider the problem

u′′(t) + g(t,u′(t)) = f , t ∈ (0, 2π)
u′(0) = u′(2π) = 0

(2.1)

and let α ∈ [−1, 1] be fixed. We set uα(t) = (α sin(t − π
2 ), αt − α cos(t −

π
2 ), 0, . . . , 0) with α ∈ [−1, 1]. Then uα ∈ C2([0, 2π], Rn) and u′α(t) = (α cos(t−
π
2 ), α + α sin(t− π

2 ), 0, . . . , 0), so that u′α(0) = u′α(2π) = 0 and

u′′α(t) = (−α sin(t− π

2
), α cos(t− π

2
), 0, . . . , 0)

= (−(α + α sin(t− π

2
)), α cos(t− π

2
), 0, . . . , 0) + (α, 0, 0, . . . , 0)

= −g(t,u′α(t)) + (α, 0, 0, . . . , 0)

Hence uα solves (2.1) with f = (α, 0, . . . , 0) and we have proved that there
exists a continuum of vectors f ∈ Rn for which the problem (2.1) is solvable.
Moreover, we have got such a result not only for g(t,x) continuous but also
C∞ and bounded, so that g(t,x) satisfies the hypothesis of the existence and
uniqueness results in the papers by Mawhin (see [6, Theorems 1 and 3]) and
Cañada and Drábek (see [1, Theorem 3.3]). This proves that the mentioned
uniqueness result for n = 1 is impossible to generalize to higher dimensions. Of
course, the same problem is still open for the periodic case.
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3 Asymptotic behavior

In this section we set n = 1 and we consider the problems (1.5) and (1.6).
Moreover, in order to have existence of solutions, we assume that g(t, u) satisfies
that lim|u|→∞

g(t,u)
|u| = 0 uniformly in t ∈ [a, b]. With these hypotheses at hands

we know that for each f̃ ∈ C̃[a, b], J (N )

f̃
= {sN (f̃)} and J (P)

f̃
= {sP(f̃)}, where

sN : C̃[a, b] → R and sP : C̃[a, b] → R are certain functionals. Furthermore, the
change of variables v = u′ transforms (1.5) and (1.6) into the problems

v′(t) + g(t, v(t)) = s + f̃(t), t ∈ (a, b)
v(a) = v(b) = 0

(3.1)

and
v′(t) + g(t, v(t)) = s + f̃(t), t ∈ (a, b)

v(a) = v(b),
∫ b

a

v(t)dt = 0.
(3.2)

Thus, if w(t) solves (3.1) and ω(t) solves (3.2) and we integrate between a and
b both sides of the equation, we get

sN (f̃) =
1

b− a

∫ b

a

g(t, w(t))dt and sP(f̃) =
1

b− a

∫ b

a

g(t, ω(t))dt.

We will use the formulas above in order to prove certain asymptotic results for
the functionals sN (·) and sP(·).

Now we state and prove the main results of this section.

Theorem 3.1 Let us set Θ = { 1
b−a

∫ b

a
g(t, v0)dt : v0 ∈ R}. Then for each

g0 ∈ Θ, the closure of Θ in R, there exists a sequence {f̃n}∞n=1 ⊂ C̃[a, b] such that
limn→∞ ‖f̃n‖ = ∞ and limn→∞ sN (f̃n) = g0, where ‖f̃n‖ = supt∈[a,b] |f̃n(t)|.

Proof Let g0 = 1
b−a

∫ b

a
g(t, v0)dt ∈ Θ be arbitrarily chosen. We define for each

n > 2(b−a)−1 a function wn : [a, b] → R which satisfies the following conditions

a) wn ∈ C1[a, b]

b) wn(a) = wn(b) = 0

c) wn(a + 1
2n ) = wn(b− 1

2n ) = 1

d) wn(t) = v0 for all t ∈ [a + 1
n , b− 1

n ]

e) ‖wn‖ ≤ |v0|+ 2

and we set

f̃n(t) := w′n(t) + g(t, wn(t))− 1
b− a

∫ b

a

g(t, wn(t))dt.
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It is clear that a) implies that f̃n ∈ C([a, b]) for all n ∈ N and b) implies
that

∫ b

a
f̃n(t)dt = 0. Moreover, using that K = [a, b] × [−|v0| − 2, |v0| + 2]

is compact and {(t, wn(t)) : t ∈ [a, b]} ⊂ K for all n ∈ N, we have that the
functions g(t, wn(t)) are uniformly bounded in [a, b], so that the conditions b)
and c) imply that limn→∞ ‖f̃n‖ = ∞.

Then w = wn solves the problem

w′(t) + g(t, w(t)) = sN (f̃n) + f̃n(t), t ∈ (a, b)
w(a) = w(b) = 0

with sN (f̃n) = 1
b−a

∫ b

a
g(t, wn(t))dt. We will prove that limn→∞ sN (f̃n) = g0.

In fact, by d) we have that

sN (f̃n) =
1

b− a

∫ b

a

g(t, wn(t))dt

=
1

b− a

( ∫ a+ 1
n

a

g(t, wn(t))dt +
∫ b− 1

n

a+ 1
n

g(t, v0)dt +
∫ b

b− 1
n

g(t, wn(t))dt
)
.

The uniform boundedness of g(t, wn(t)) implies that

lim
n→∞

∫ a+ 1
n

a

g(t, wn(t))dt = lim
n→∞

∫ b

b− 1
n

g(t, wn(t))dt = 0.

Hence

lim
n→∞

sN (f̃n) = lim
n→∞

1
b− a

∫ b− 1
n

a+ 1
n

g(t, v0)dt = g0

which is what we wanted to prove.
Let us now take g0 ∈ Θ \ Θ. Then there exists a sequence of numbers

{gn}∞n=1 ⊂ Θ and a family of functions {f̃n,k}∞n,k=1 ⊂ C̃[a, b] such that ‖f̃n,k‖ ≥
k and

∣∣sN (f̃n,k) − gn

∣∣ ≤ 1
k for all k, n ≥ 1 and limn→∞ gn = g0. Thus the

sequence {f̃n,n}∞n=1 satisfies that limn→∞ ‖f̃n,n‖ = ∞ and limn→∞ sN (f̃n,n) =
g0. ♦

Corollary 3.2 Let us assume that g = g(v) ∈ C(R) and g0 ∈ g(R). Then
there exists a sequence {f̃n}∞n=1 ⊂ C̃[a, b] such that limn→∞ ‖f̃n‖ = ∞ and
limn→∞ sN (f̃n) = g0.

Proof In [6, Corollary 2] it is shown the existence of solutions for n = 1
whenever g = g(v) is continuous. Hence, it is enough to observe that if g does
not depend on the variable t then Θ = g(R). ♦

Theorem 3.3 Let us assume that g is bounded and set Θ = { 1
b−a

∫ b

a
g(t, v0)dt :

v0 ∈ R}. Then for each g0 ∈ Θ, there exists a sequence {f̃n}∞n=1 ⊂ C̃[a, b] such
that limn→∞ ‖f̃n‖ = ∞ and limn→∞ sP(f̃n) = g0.
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Proof We define for each n > 2(b − a)−1 a function ϕn : [a, b] → R which
satisfies the following conditions:

a) ϕn ∈ C1[a, b]

b) ϕn(a) = ϕn(b)

c) ϕn(a + 1
2n ) = ϕn(b− 1

2n ) = 1

d) ϕn(t) = v0 for all t ∈ [a + 1
n , b− 1

n ]

e)
∫ b

a
ϕn(t)dt = 0

Clearly, these functions exist. The rest of the proof is analogous to that of
Theorem 3.1. We just change wn by ϕn and sN (f̃) by sP(f̃). The only differ-
ence with the other proof is that now the graphs of the functions ϕn are not
uniformly bounded, and this is the reason because we need now to assume that
g is bounded. ♦

Corollary 3.4 Assume that g = g(v) ∈ C(R) is bounded and g0 ∈ g(R). Then
there exists a sequence {f̃n}∞n=1 ⊂ C̃[a, b] such that limn→∞ ‖f̃n‖ = ∞ and
limn→∞ sP(f̃n) = g0.

Proof In [6, Corollary 4] it is shown the existence of solutions for n = 1
whenever g = g(v) is continuous. Hence, it is enough to observe that if g does
not depend on the variable t then Θ = g(R). ♦

We have proved that the limits lim‖f̃‖→∞ sN (f̃) and lim‖f̃‖→∞ sP(f̃) never
exist if Θ is not a single point. This makes natural to ask if some weaker
asymptotic results are possible. For example, for which functions f̃ ∈ C̃[a, b]
do the radial limits limk→∞ sN (kf̃) or limk→∞ sP(kf̃) exist? Now we prove a
comparison result which will be helpful for the computation of these limits.

Lemma 3.5 (Comparison Principle) Let k > 0 and f̃ ∈ C̃[a, b]. If wN is a
solution of the problem

w′(t) + g(t, w(t)) = sN (kf̃) + kf̃(t), t ∈ (a, b)
w(a) = w(b) = 0,

(3.3)

where wP is a solution of the problem

w′(t) + g(t, w(t)) = sP(kf̃) + kf̃(t), t ∈ (a, b)

w(a) = w(b);
∫ b

a

w(t)dt = 0,
(3.4)

vN is the unique solution of

v′(t) = f̃(t), t ∈ (a, b)
v(a) = v(b) = 0

, (3.5)
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and vP is the unique solution of

v′(t) = f̃(t), t ∈ (a, b)

v(a) = v(b);
∫ b

a

v(s)ds = 0,
(3.6)

then ‖wN − kvN ‖ ≤ (b − a)(M − m) and ‖wP − kvP‖ ≤ 1
2 (b − a)(M − m),

where m := inf(t,s)∈[a,b]×R g(t, s) and M := sup(t,s)∈[a,b]×R g(t, s).

Proof: Let wN be a solution of (3.3) and let vN (t) =
∫ t

a
f̃(s)ds be the solution

of (3.5). Then

wN (t) = k

∫ t

a

f̃(s)ds + sN (kf̃)(t− a)−
∫ t

a

g(s, wN (s))ds

and

wN (t)− kvN (t) = sN (kf̃)(t− a)−
∫ t

a

g(s, wN (s))ds

=
t− a

b− a

∫ b

a

g(s, wN (s))ds−
∫ t

a

g(s, wN (s))ds.

Hence
|wN (t)− kvN (t)| ≤ (b− a)(M −m), for all t ∈ [a, b]

since

(t− a)m ≤ t− a

b− a

∫ b

a

g(s, wN (s))ds ≤ (t− a)M

and

(t− a)m ≤
∫ t

a

g(s, wN (s))ds ≤ (t− a)M.

This completes the proof for the Neumann problem. For the periodic case we
must take into account that if wP is a solution of (3.4) and

vP(t) =
∫ t

a

f̃(s)ds− 1
b− a

∫ b

a

∫ t

a

f̃(s)ds dt

is the solution of (3.6) then

wP(t) = kvP(t) + sP(kf̃)(t− a + b

2
) +

1
b− a

∫ b

a

∫ t

a

g(s, wP(s))ds dt

−
∫ t

a

g(s, wP(s)ds.

After this, the proof is quite similar to that of the Neumann problem. ♦
In what follows we denote by |A| the Lebesgue measure of the set A.
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Theorem 3.6 Assume that the limits g(t,±∞) := lims→±∞ g(t, s) exist uni-
formly in t ∈ [a, b]. Given f̃ ∈ C̃[a, b] and F (t) =

∫ t

a
f̃(s)ds, we have that

(i) If |{t ∈ [a, b] : F (t) = 0}| = 0 then

lim
k→∞

sN (kf̃) =

∫
F−1(0,+∞)

g(t, +∞)dt +
∫

F−1(−∞,0)
g(t,−∞)dt

b− a

(ii) If |{t ∈ [a, b] : F (t) = 0}| > 0 and g(t, s) = g(t, 0) for all (t, s) in [a, b] ×
[−(b− a)(M −m), (b− a)(M −m)], then

lim
k→∞

sN (kf̃)

=
1

b− a

( ∫
F−1(0,+∞)

g(t, +∞)dt +
∫

F−1(−∞,0)

g(t,−∞)dt +
∫

F−1(0)

g(t, 0)dt
)
.

Proof It follows from Lemma 3.5 that

kF (t)−(b−a)(M−m) ≤ wN (t) ≤ kF (t)+(b−a)(M−m), for all t ∈ [a, b]; (3.7)

where F (t) =
∫ t

a
f̃(s)ds. We define the sets:

A+ = {t ∈ [a, b] : F (t) > 0} = F−1(0,+∞)

A0 = {t ∈ [a, b] : F (t) = 0} = F−1(0)

A− = {t ∈ [a, b] : F (t) < 0} = F−1(−∞, 0)

Then

sN (kf̃) =
1

b− a

∫ b

a

g(t, wN (t))dt

=
1

b− a

∫
A0

g(t, wN (t))dt +
1

b− a

∫
A+

g(t, wN (t))dt

+
1

b− a

∫
A−

g(t, wN (t))dt

Now we will estimate each one of the integrals which appear in the equality
above. First, using (3.7) and the Lebesgue’s dominated convergence theorem
we have

lim
k→∞

1
b− a

∫
A+

g(t, wN (t))dt =
1

b− a

∫
A+

g(t, +∞)dt

lim
k→∞

1
b− a

∫
A−

g(t, wN (t))dt =
1

b− a

∫
A−

g(t,−∞)dt.

Second, under the assumption (i) (i.e. |A0| = 0) we have

1
b− a

∫
A0

g(t, wN (t))dt = 0.
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On the other hand, under the hypotheses of (ii) (i.e. g(t, s) = g(t, 0) for all
(t, s) ∈ [a, b]× [−(b− a)(M −m), (b− a)(M −m)]), we obtain from (3.7) that

−(b− a)(M −m) ≤ wN (t) ≤ (b− a)(M −m)

for all t ∈ A0. Hence,

1
b− a

∫
A0

g(t, wN (t))dt =
1

b− a

∫
A0

g(t, 0)dt.

Taking into account the two items above we complete the proof. ♦

Theorem 3.7 Assume that g(t, s) is bounded and that the limits g(t,±∞) :=
lims→±∞ g(t, s) exist uniformly in t ∈ [a, b]. Given f̃ ∈ C̃[a, b] and

H(t) =
∫ t

a

f̃(s)ds− 1
b− a

∫ b

a

( ∫ t

a

f̃(s)ds
)
dt,

we have that:
(i) If |{t ∈ [a, b] : H(t) = 0}| = 0 then

lim
k→∞

sP(kf̃) =
1

b− a

( ∫
H−1(0,+∞)

g(t,+∞)dt +
∫

H−1(−∞,0)

g(t,−∞)dt
)

(ii) If |{t ∈ [a, b] : H(t) = 0}| > 0 and g(t, s) = g(t, 0) for all (t, s) in [a, b] ×
[− b−a

2 (M −m), b−a
2 (M −m)] then

lim
k→∞

sP(kf̃)

=
1

b− a

( ∫
H−1(0,+∞)

g(t, +∞)dt +
∫

H−1(−∞,0)

g(t,−∞)dt +
∫

H−1(0)

g(t, 0)dt.
)

The proof of this theorem is analogous to that of Theorem 3.6, using the
periodic case of the comparison principle. The following result is a direct con-
sequence of the theorems above:

Corollary 3.8 With the notation of Theorems 3.6 and 3.7, if g = g(s) does
not depend on the variable t and there exists the limits g(±∞) := lims→±∞ g(s)
then

lim
k→∞

sN (kf̃) =
g(+∞)

∣∣F−1(0,+∞)
∣∣ + g(−∞)

∣∣F−1(−∞, 0)
∣∣

b− a

whenever
∣∣F−1(0)

∣∣ = 0 and

lim
k→∞

sP(kf̃) =
g(+∞)

∣∣H−1(0,+∞)
∣∣ + g(−∞)

∣∣H−1(−∞, 0)
∣∣

b− a

whenever
∣∣H−1(0)

∣∣ = 0.
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The following proposition gives an estimation of the size of the sets of func-
tions with the property that the radial limits exists.

Proposition 3.9 The sets

F = {f̃ ∈ C̃[a, b] : F (t) =
∫ t

a

f̃(s)ds satisfies |F−1(0)| = 0}

and

H =
{

f̃ ∈ C̃[a, b] : H(t) =
∫ t

a

f̃(s)ds− 1
b− a

∫ b

a

( ∫ t

a

f̃(s)ds
)
dt

satisfies |H−1(0)| = 0
}

are dense non-meager subsets of the Banach space C̃[a, b].

Proof Clearly, F is a dense subset of C̃[a, b], since Π̃ = Π ∩ C̃[a, b] is dense
in C̃[a, b], where Π denotes the set of algebraic polynomials, and Π̃ \ {0} ⊂ F .
Now, we are going to prove that F has nonempty interior, which implies that
F is non-meager. Of course, there is no loss of generality if we assume that
[a, b] = [−1, 1]. Then f̃(t) = t belongs to F . Let g̃ ∈ C̃[−1, 1] be such that
‖f̃ − g̃‖ < 1

4 and let G(t) =
∫ t

−1
g̃(s)ds. Then

t2

2
− t

4
− 3

4
≤ G(t) ≤ t2

2
+

t

4
− 1

4
for all t ∈ [−1, 1].

Thus, G−1(0) ⊂ {−1} ∪ [1/2, 1]. If #G−1(0) ≥ 3 then there are two points
x, y ∈ [1/2, 1] such that G(x) = G(y) = 0 and Rolle’s theorem implies that
G′(t) = g̃(t) vanishes at some point ξ ∈ [1/2, 1], which is impossible since
‖f̃ − g̃‖ < 1

4 . This implies that #G−1(0) ≤ 2, so that g̃ ∈ F and F has
nonempty interior and proves the claim for the set F . Finally, the proof of the
claim for the set H follows from similar arguments. ♦

Remark Note that when g ∈ C1(R), it follows from [1, Theorems 3.3 and 3.4]
that sN (·) and sP(·) are continuous functionals so that lim‖f̃‖→0 sN (f̃) = sN (0)

and lim‖f̃‖→0 sP(f̃) = sP(0). Now, sN (0) = sP(0) = g(0) since [6, Theorem 3]
guarantees that w(t) = 0 is the unique solution of the systems

w′(t) + g(w(t)) = g(0), t ∈ (a, b)

w(a) = w(b) = 0 or w(a) = w(b);
∫ b

a

w(t)dt = 0
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