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POSITIVE SOLUTIONS OF A NONLINEAR PROBLEM
INVOLVING THE p-LAPLACIAN WITH NONHOMOGENEOUS

BOUNDARY CONDITIONS

AHMED LAKMECHE, ABDELKADER LAKMECHE, MUSTAPHA YEBDRI

Abstract. In this work we consider a boundary-value problem involving the
p-Laplacian with nonhomogeneous boundary conditions. We prove the exis-

tence of multiple solutions using the quadrature method.

1. Introduction

The p-Laplacian operator arises in the modelling of physical and natural phe-
nomena [11, 15, 16, 21, 22, 23, 24], and has has been considered in many papers;
see for example [1, 3, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 19, 22, 25]. In this work
we consider the boundary-value problem

−(|u′(x)|p−2u′(x))′ = λf(u(x)), a.e. 0 < x < 1, (1.1)

u(0) = u(1) + k(u(1))u′(1) = 0 (1.2)

where λ ≥ 0, p ∈ (1, 2], k : R+ → R∗+, and f : R+ → R∗+ smooth enough.
Problem (1.1)–(1.2) was considered by Lakmeche and Hammoudi [19] for k con-

stant, in Anuradha et al. [2][2] and Lakmeche [20] for p = 2 and k constant. In this
work we generalize [19] by considering the nonhomogeneous boundary conditions.
Our aim in this work is to prove existence of solutions of (1.1), (1.2) and their
multiplicity, using the quadrature method [8, 9, 12, 18]. In section 2, we give some
preliminaries and definitions, in section 3 we give our main results, and we conclude
by some remarks in the last section.

2. Preliminaries

In this section we give some definitions and preliminaries.

Definition 2.1. A pair (u, λ) ∈ C1([0, 1]; R+) × [0,+∞[ is called a solution of
(1.1)-(1.2), if

• (|u′|p−2u′) is absolutely continuous, and
• −(|u′|p−2u′)′ = λf(u) a.e. in (0, 1), and u(0) = u(1) + k(u(1))u′(1) = 0.
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Note that the pair (0, 0) is a solution of (1.1), (1.2).
Let F : R+ → R+ be defined by F (u) =

∫ ρ

0
f(s)ds, and g : R+ → R+ be defined

by

g(ρ) =

{
2
(

p−1
p

)1/p ∫ ρ

0
ds

[F (ρ)−F (s)]1/p , for ρ > 0,

0 for ρ = 0.

Let n ≥ 0. Define hn : [n, +∞) → R∗+, by

hn(ρ) =
(p− 1

p

)1/p
[ ∫ ρ

0

ds

[F (ρ)− F (s)]1/p
+

∫ ρ

n

ds

[F (ρ)− F (s)]1/p

]
.

Note that g ≡ h0.

Lemma 2.2. The functions g and hn are continuous, and g(ρ) ≤ 2hn(ρ) ≤ 2g(ρ),
for all ρ ≥ n ≥ 0.

The proof of the lemma above can be found in [7, Theorem 7].
For u ∈ C1([0, 1]; R+), we define ‖u‖ := sup{u(s); s ∈ (0, 1)}.

Lemma 2.3. If (u, λ) is a solution of (1.1), (1.2) with λ > 0, then
(1) u′(1) < 0, u(1) > 0, and
(2) λ1/p = hn(‖u‖), where n = u(1).

Proof. Let (u, λ) be a positive solution of (1.1), (1.2) with λ > 0, then u 6= 0. Using
the maximum principle [26], we obtain u > 0 in (0, 1), then u(1) ≥ 0, which implies

u′(1) = − u(1)
k(u(1))

≤ 0.

Since f(0) > 0, then u′(1) < 0 and u(1) > 0. Also there exists a unique x0 ∈ (0, 1)
such that u′(x0) = 0, u(x0) = ‖u‖, u′(x) > 0 for x ∈ (0, x0), and u′(x) < 0 for
x ∈ (x0, 1).

Let (u, λ) be a solution of (1.1), (1.2), and u(1) = n with 0 < n < ρ, then we
have u(x0) = maxx∈[0,1] |u(x)| = ρ. Multiplying (1.1) by u′(x), and integrate it for
x ∈ [0, x0] and x0, we obtain

−
∫ x0

x

(|u′(t)|p−2u′(t))′u′(t)dt =
∫ x0

x

λf(u(t))u′(t)dt. (2.1)

We have in one hand∫ x0

x

λf(u(t))u′(t)dt = λ

∫ u(x0)

u(x)

f(y)dy = λ(F (ρ)− F (u(x))), (2.2)

and in the other hand

−
∫ x0

x

(|u′(t)|p−2u′(t))′u′(t)dt =
(p− 1)

p
(u′(x))p. (2.3)

From (2.1), (2.2) and (2.3), we have

(p− 1)
p

(u′(x))p = λ(F (ρ)− F (u(x))). (2.4)

Then for all x ∈ (0, x0), we have

(u′(x))p =
( p

p− 1
)
λ(F (ρ)− F (u(x))), (2.5)
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which implies

u′(x) =
( p

p− 1
)1/p[λ(F (ρ)− F (u(x)))]1/p for x ∈ [0, x0], (2.6)

and by symmetry

u′(x) = −
( p

p− 1
)1/p[λ(F (ρ)− F (u(x)))]1/p for x ∈ [x0, 1]. (2.7)

Integrate (2.6) between 0 and x0, we obtain

λ1/px0 =
(p− 1

p

)1/p
∫ ρ

0

ds

[F (ρ)− F (s)]1/p
. (2.8)

Similarly, by integration of (2.7) between 1 and x0, we obtain

λ1/p(1− x0) =
(p− 1

p

)1/p
∫ ρ

n

ds

[F (ρ)− F (s)]1/p
. (2.9)

From (2.8) and (2.9), we deduce that

λ1/p =
(p− 1

p

)1/p
[ ∫ ρ

0

ds

[F (ρ)− F (s)]1/p
+

∫ ρ

n

ds

[F (ρ)− F (s)]1/p

]
. (2.10)

From equation this equation, we deduce the results of lemma 2.3. �

Consider the boundary-value problem consisting of (1.1) and the Dirichlet bound-
ary conditions

u(0) = u(1) = 0 . (2.11)

Lemma 2.4. [19] We have

(1) If lims→+∞
f(s)
sp−1 = 0, then lims→+∞ g(s) = +∞

(2) If lims→+∞
f(s)
sp−1 = +∞, then lims→+∞ g(s) = 0

For the proof of the lemma above, see [19].

Theorem 2.5 ([19]). If lims→+∞ f(s)/sp−1 = 0, then problem (1.1), (2.11) has at
least one positive solution for all λ > 0.

Proof. From lemma 2.4 we have lims→+∞ g(s) = +∞ and g(0) = 0. �

Theorem 2.6 ([19]). If lims→+∞ f(s)/sp−1 = +∞, then there exist λ∗ > 0 such
that the problem (1.1), (2.11) has at least two positive solutions for λ ∈ (0, λ∗), and
no positive solution for λ > λ∗.

Proof. From lemma 2.4, we have lims→+∞ g(s) = g(0) = 0. Then g is bounded and
reaches its maximum at some point ρ0 > 0. Further λ∗ = (g(ρ0))p. �

3. Main results

Let (u, λ) be a solution of (1.1), (1.2), and u(1) = n with 0 < n < ρ, then we
have u(x0) = maxx∈[0,1] |u(x)| = ρ. Substituting x by 1 in (2.7), we obtain

n

k(n)
=

( p

p− 1
)1/p [λ(F (ρ)− F (s))]1/p

. (3.1)

Hence
λ1/p =

(p− 1
p

)1/p n

k(n) [F (ρ)− F (n)]1/p
(3.2)
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Then from (2.10) and (3.2), we have∫ ρ

0

ds

[F (ρ)− F (s)]1/p
+

∫ ρ

n

ds

[F (ρ)− F (s)]1/p
=

n

k(n) [F (ρ)− F (n)]1/p
. (3.3)

Theorem 3.1. Assume that k ∈ C(R+; R∗+). Let ρ > 0, then
(1) there exist at least n∗ ∈ (0, ρ), such that (3.3) is satisfied for n = n∗;
(2) for each n∗ satisfying (3.3), there is a unique λ = λ(ρ, n∗) given by (2.10)

or (3.2) such that (1.1), (1.2) has exactly one solution (u, λ), with ‖u‖ = ρ,
u(1) = n∗, u′(1) = − n∗

h(n∗) and

x0 =
(p− 1

p

)1/p
λ−

1
p

∫ ρ

0

ds

[F (ρ)− F (s)]1/p
;

(3) if k is decreasing, n∗ is unique.

Proof. Equation (3.3) is equivalent to

k(n) =
( ∫ ρ

0

ds

[F (ρ)− F (s)]1/p
+

∫ ρ

n

ds

[F (ρ)− F (s)]1/p

)−1 n

[F (ρ)− F (n)]1/p
. (3.4)

Let γ : [0, ρ) → R+ be defined by

γ(n) :=
( ∫ ρ

0

ds

[F (ρ)− F (s)]1/p
+

∫ ρ

n

ds

[F (ρ)− F (s)]1/p

)−1 n

[F (ρ)− F (n)]1/p
. (3.5)

We have γ(0) = 0, limn→ρ− γ(n) = +∞ and γ is differentiable on (0, ρ), with

γ′(n) :=
p[F (ρ)− F (n)] + nf(n)

p[F (ρ)− F (n)]1+
1
p
( ∫ ρ

0
ds

[F (ρ)−F (s)]1/p +
∫ ρ

n
ds

[F (ρ)−F (s)]1/p

)
+

n

[F (ρ)− F (n)]1/p
( ∫ ρ

0
ds

[F (ρ)−F (s)]1/p +
∫ ρ

n
ds

[F (ρ)−F (s)]1/p

)2 > 0.

Then γ increases from 0 to +∞ on (0, ρ). Since k : R+ → R∗+ is continuous and
k(0) > 0, k(ρ) < ∞, then there exist at least n∗ ∈ (0, ρ) such that k(n∗) = γ(n∗).

If k decreases, we have 0 < k(n) ≤ k(0) for all n ∈ [0, ρ], γ(0) = 0 and
lims→ρ− γ(s) = +∞.

Let n0 ∈ (0, ρ) such that k(n0) = γ(n0). Suppose that there exists n1 ∈ (0, ρ)
such that k(n1) = γ(n1). Then we have k(n0) = γ(n0) < γ(n1) = k(n1) for n0 < n1

and k(n0) ≥ k(n1), which is a contradiction. Similarly we find a contradiction if
n0 > n1. Finally, we deduce that n0 = n1. �

Corollary 3.2. Assume that k ∈ C(R+; R∗+). Let ρ > 0, then the bifurcation
diagram (λ, ρ) of the positive solutions of (1.1), (1.2) is given by

λ(ρ)1/p =
(p− 1

p

)1/p
[ ∫ ρ

0

ds

[F (ρ)− F (s)]1/p
+

∫ ρ

n∗

ds

[F (ρ)− F (s)]1/p

]
,

where n∗ is the solution of (3.3).

Remark 3.3. If k is not decreasing, then the solution n∗ of (3.3) is not necessarily
unique, in some cases it could be infinite. This is one of different results with
respect to precedent works [2, 18, 19].

Theorem 3.4. Assume that k ∈ C1(R+; R∗+). Let ρ > 0, and k decreasing, then
there exists a unique n∗(ρ) ∈ (0, ρ) such that k(n∗) = γ(n∗). Further n∗ is contin-
uously differentiable.
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Proof. Because k is decreasing, k′ ≤ 0; further γ′ > 0, hence k′ − γ′ < 0. From the
implicit function theorem, there exists a unique n∗(ρ) ∈ (0, ρ) such that k(n∗) =
γ(n∗), and n∗(ρ) is continuously differentiable. �

Theorem 3.5. Assume that k ∈ C(R+; R∗+). Let ρ > 0 and k decreasing. Then
there exists a unique n∗(ρ) ∈ (0, ρ), such that (3.3) is satisfied for n = n∗. Also
there exists a unique λ = λ(ρ) given by (2.10) or (3.2) for which (1.1), (1.2) has a
unique solution (u, λ), with ‖u‖ = ρ, u(1) = n∗(ρ),

u′(1) = − n∗(ρ)
h(n∗(ρ))

and x0 =
(p− 1

p

)1/p
λ−

1
p

∫ ρ

0

ds

[F (ρ)− F (s)]1/p
.

The result is easily deduced from Theorems 3.1 and 3.4.

Corollary 3.6. Assume that k ∈ C(R+; R∗+). If k is decreasing, then the bifurca-
tion diagram (λ, ρ) of positive solutions of (1.1), (1.2) is given by

λ(ρ)1/p =
(p− 1

p

)1/p
[ ∫ ρ

0

ds

[F (ρ)− F (s)]1/p
+

∫ ρ

n∗(ρ)

ds

[F (ρ)− F (s)]1/p

]
,

where n∗(ρ) is the unique solution of (3.3).

Theorem 3.7. Assume that k ∈ C(R+; R∗+). If k is decreasing, then

(1) when lims→+∞ f(s)/sp−1 = 0, (1.1), (1.2) has at least one positive solution
for all λ > 0; and

(2) when lims→+∞ f(s)/sp−1 = +∞, there exist

λ∗0 =
(
sup{hn∗(s)(s); s ∈ (0,+∞)}

)p

such that (1.1), (1.2) has at least two positive solutions for λ ∈ (0, λ∗0), and
zero positive solution for λ > λ∗0.

Proof. We have g(ρ) ≤ 2hn∗(ρ)(ρ) ≤ 2g(ρ), for all ρ > 0. From theorems 2.5 and
2.6, we deduce the results. �

Concluding remarks

In this work we have studied a boundary value problem of the one-dimensional
p-Laplacian with nonhomogeneous boundary conditions. We have proved existence
of positive solutions using quadrature method, also we have proved the multiplicity
of the solutions for lims→+∞

f(s)
sp−1 = +∞. In the case where the nonhomogeneous

term k is a decreasing function, we proved the uniqueness of the solution (u, λ)
for each ‖u‖ = ρ > 0. Our results generalize the works [2, 19]. When k is not a
decreasing function we can find, some examples in which the solution n∗ of (3.4) is
not unique, for example for k given as it follows

k(n) =


γ(ρ1), for 0 ≤ n < ρ1,

γ(n), for ρ1 ≤ n < ρ2,

γ(ρ2), for ρ2 ≤ n,

where 0 < ρ1 < ρ2 < ρ, we have an infinite number of solutions of equation (3.4)
(k(n) = γ(n)) which constitutes exactly the interval [ρ1, ρ2].

It will be interesting to analyze the ramification of solutions for concrete and
simple examples with boundary conditions cited above.
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In this work we have considered un autonomous problem, it will be interesting to
consider the non-autonomous problem using the fixed point method as the Avery
and Peterson fixed point theorem [4].
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