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CORRECTORS FOR FLOW IN A PARTIALLY FISSURED
MEDIUM

M. RAJESH

ABSTRACT. We prove a corrector result for the homogenization of flow in a
partially fissured medium. The homogenization problem was studied by Clark
and Showalter [3] using the two-scale convergence technique.

1. INTRODUCTION

A fissured medium consists of a porous and permeable matriz interlaced, on a
fine scale, by a system of highly permeable fissures. Fluid flow in such a medium
takes place, primarily, through the fissures. The fissured medium is said to be
totally fissured if the matrix is broken up into disjoint cells by the fissures. In this
case, there is no direct flow through the matrix but only an exchange of fluids
between the cells and the surrounding fissures. If, on the other hand, the matrix
is connected there is a global flow through the matrix as well. This is the partially
fissured case.

As remarked by Clark and Showalter [3], an exact microscopic model for flow
in a fissured medium, written as a classical interface problem, is both analytically
and numerically intractable. One way to get around this difficulty is to model
the flow on two separate scales, one microscopic and the other macroscopic. The
problem, then, can be studied as a problem in homogenization. Such a model
for flow in a partially fissured medium was considered by Douglas, Peszyniska and
Showalter [6] assuming the diffusion operator to be linear. Clark and Showalter [3]
extend the results of [6] to the case where the diffusion operator is quasilinear.
The corresponding homogenization problem was solved under weak monotonicity
conditions and using the two-scale convergence method.

Correctors for the homogenization of quasilinear equations

— div (a (gvu)) = (1.1)

were obtained by Dal Maso and Defranceschi [5] under some strong monotonicity
conditions on the function a. Later, the proof of the corrector result was greatly
simplified using the two-scale convergence method by Allaire [1].

Based on these ideas we prove a corrector result for the flow in a partially fissured
medium under strong monotonicity conditions on the diffusion operator.
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The plan of the paper is as follows. In Section 2, we describe the micro-model
for flow in a partially fissured medium. In Section 3, we recall the homogenization
results obtained by Clark and Showalter in [3] under weak monotonicity of the
diffusion operator. In Section 4, we present our results on correctors. Strong
monotonicity conditions are required here.

2. THE MICRO-MODEL

We present, here, the micro-model for flow in a partially fissured medium as
described in [3].

Let Q be a bounded open set in RY. Y = [0,1]" denotes the unit cube and
Y =Y1 JYs, where Y7 and Ys represent the local structure of the fissure and matrix
respectively. Let x;(y) denote the characteristic function of Y; (j=1, 2) extended
Y-periodically to all of RY. We shall assume that the sets {y € RY : x;(y) = 1}
(j=1, 2) are smooth (connectedness will not be required in view of the coercivity
conditions to be assumed on the coefficients in the differential operators). The
domain 2 is thus divided into the two subdomains, Q] and 5, representing the
fissures and the matrix respectively, and are given by

Q;:{xeﬂzxj(g)zl}, j=1,2.

Henceforth, we will denote x; (%) by x5
Let T'T 5 = 0950925 €2 denote the interface of Q] with 5 which is interior to
Q. Ty =0Y1(0Y2(Y denotes the corresponding interface in the reference cell
Y. We set Qf = Q5,Y3 = Ys, and x3 = X2, to be used to simplify notation at times.

Let pj : RN x RN — RN (j = 1,2,3) be functions which satisfy the following
hypothesis:

1. (., &) is measurable and Y-periodic for all £ € RY.

2. p;(y, .) is continuous for a.e. y € Y.

3. There exist positive constants k,C,cop and 1 < p < oo such that for every
&, me RN andae. yeY

iy, 1 < ClEP+k (2.1)

iy, &) —wily,m).-(E—m) = 0 (2.2)

wi(y, €).& > col &P — k. (2.3)

q will denote the conjugate exponent of p, viz. ¢ =p/p—1. Let ¢; € C4(Y) (j =

1,2,3) be continuous Y-periodic functions on R" such that
0<cp<c¢; <C. (2.4)

The flow potential of the fluid in the fissure Q5 is denoted by the function u§(x,t)
and the corresponding flux by —pu; (%, Vu‘i). The flow potential in the matrix is rep-
resented as the sum of two parts, one component u5(x,t) with the flux —ps (f, Vug)
which accounts for the global diffusion through the pore system of the matrix, and
the second component u§(z,t) with flux —eus (%,eVug) and corresponding high
frequency spatial variations which lead to local storage in the matrix. The “total
flow potential” in the matrix is then au§ + fu§ (here a+ 8 =1 with a > 0,8 > 0).
The exact microscopic model for diffusion in a partially fissured medium is given
by the system
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a 3
Cl(g) 81? —div g (—, Vui) = 0 inQj
x, Ous . x . e
02(2) 8t2 —div po (E, Vuz) = 0 inQf
8 £
03(§) ;3 —ediv s <— , 5Vu§) = 0 inQ§
au; +Bu; = uj onI7,
< € € _ T € €
ap (2> Vui) v = e = Vus ) .vf
x x
Bpa (E , Vui) V= eus (E , V5u§> 25

where the last two conditions hold on I'f ,. We have the homogeneous Neumann

condition on the external boundary
m (g,vu;‘) 5 = 0 on 905 NOQ

x
po (2, vus) o3

3 (g,avug) v = 0 on 905NN

0 on 9905 N O

where 5 denotes the outward normal on 09Q%,j = 1, 2.
The system is completed by the initial conditions

u$(0,.) =ul € L*(Q), 1 <5 <3.

(2.11)
(2.12)

(2.13)

(2.14)

Remark 2.1: Condition (2.8) is the continuity of flow potential across the interface.
Conditions (2.9), (2.10) determine the partition of flux across the interface.O
We now describe the variational formulation needed to study the well posedness

of the Cauchy problem. The state space is the Hilbert space
H. = L*(Qf) x L*(Q5) x L*(Q25) (= L*(Qf) x L*(25)?)
equipped with the inner product

3
(11, w2, w1, o, 6. = Y [ es(E)us(w) ) da

Define the energy space
B.= H. n{[@] € W'(5) x WP(25) : us = aug + Bug on T ,}
where W = (u1,uz,us). B. is a Banach space with the norm
3 3

I [ur, wa, usllls. = D 1XGui 2@ + Y IX5 Vs lleo)-

j=1 j=1
Define the operator A, : B, — B. (where B. denotes the dual of B.) by,
Ae ([u, w2, us)) (01, 62,03)) = S0y Joe (%, Vuy) .V da
+fQ§ ps( £, eVug).eVesda
for [u1, ua, usl, [¢1, P2, ¢p3] € Be. Let
Ve={u € L(0.T]: B.) : (')

’

€ LU([0,T}; BY)} -
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For € > 0, the Cauchy problem is equivalent to finding a solution @ e V. to the

problem

j

ddit + A = 0in L9([0,T); B) (2.15)

Z0) = o in H. (2.16)

and this problem is well-posed, thanks to the conditions (2.1)-(2.3) (cf. Showal-
ter [8]). We end with an identity(cf. [3]),

T
I @, = 51w O, + [ A = (217)

3. HOMOGENIZATION

We recall the results on the homogenization of flow in a partially fissured medium
here (cf. [3]) in the form of propositions. For a proof of these results, refer Clark
and Showalter (cf. [3]).

We recall the definition of two-scale convergence (cf. [1], [3]).

Definition 3.1. A function, ¥(t,z,y) € L1([0,T] x Q,C4(Y")), which is Y-periodic
i y and satisfies

T T\ q T
lim/ /w(t,x, —) dmdtz/ //w(t,x,y)qdydacdt
e—0Jo Ja € o JaJy

is called an admissible test function. O

Definition 3.2. A sequence f¢ in LP([0,T] x Q)) two-scale converges to a function
f(t,z,y) € LP([0,T) x Q@ x Y) if for any admissible test function (¢, z,y),

EILHEO/OT/Q fs(t,a:)"g[)(t,x,g) da:dt:/OT/Q/Yf(t,x,y)¢(t,x,y)dydxdt

We write f¢ 23 f.0

Proposition 3.1. Let u° be the solution of the Cauchy problem (2.5)-(2.14). The
following estimate holds

2 3
C
S INGVuSIE g, + Ix5eVus|L g, < % > 13 0- (3.1)
j=1 j=1

O
Proposition 3.2. Let @ be the solution of the Cauchy problem (2.5)-(2.14). There

exist functions uj in LP([0,T]; WHP(2)), j = 1,2 and functions U; in LP([0,T] x
Q; Wﬁl’p(Yj)/R), j = 1,2,3 such that, for a subsequence of 1?, (to be indexed by e
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again) the following hold:

[\v]
|
»

X5us — i@yt z), j=1,2
£, € 2—s
xauz — xe(y)Us(t, y)
X Vu; 273 X; (W) (Vau;(t, x) + VUt z,y)), 7=1,2
€ e 2-3
5X2Vu3 = x2(y)VyUs(t,z,y)
£ 2—s .
leu]( , Vuj ) — xiWws(y, Veuy +VyUj), j=1,2
-73 —s
Xahs(Z,eVus) 3 Xe(y)us(y, VyUs)
e 2—s
xjui(Tox) — Xy, (T,z), j=1,2
X5u5(Tox) =3 xa(y)Us(T,,y) and
ui(t,x) = oaus(t,x)+ pUs(t,x,y) forallyeTio. O

Proposition 3.3. The functions uy,us, Uy, Us, Us satisfy the homogenized system

—Z/ // ¢ (y)u, jdydmdt /// cs(y U3—dydxdt
ot Y
_Z// ci(y quOa:)dydx—//Y c3(y)ud ®3(0, z,y) dy dz

+Z/ /Q/Y i (Y, Vauj + VyU;).(Ve g + Vy@;) dy de dt
j=17"0 i

T
+/ // p3(y, VyUs).(Vy@3) dydzdt = 0
0 QJYs

(3.2)

for all
6i(ta) € LI(0T] W), j=1,2
@(try) € L(0.T)x RWIN(Y,), =123
satisfying
% e LU0, T; W), j=1,2
P e p0, 1 < 0 W) ), G =1,2.3

BPs(t,z,y) = ¢1(t,x) — ape(t,z) for all y € T2 and,

¢1(T7 13) = ¢2(Ta J}) = ¢3(T7mvy) =0. o

The strong form of the homogenized problem has the following description. De-
fine the state space,

H=L*Q) x L*(Q) x L*(Q x Yz)
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with the scalar product
2
ST L), e @da

[ ] eswatw sy
for every ? = [¢1, 2, 3], ?
B={[$1,¢2,®s] € HNWP(Q) x WP(Q) x L2(Q; W, P (Y2)/R)

BPs(z,y) = ¢1(x) — ape(z,y) for all y € T'1 o}

and the corresponding evolution space V.= LP([0,T]; B).

= [¢1, P2, P3] € H. Define the energy space,

Proposition 3.4. W = [u1,u2,Us] € V and is the solution of the strong homoge-
nized system,

([ et Gen + 53] e

— diva / (g Vo + VU1 dy) (3.3)
Y1

([ et GEen — S5 @

= divx(/ w2 (y, Vyus + V,Us) dy) (3.4)
Y

oUs(t, z, .
es) PGB i, gy, VU2, 9) =0 (5.5)
where Us(t, z,y) and ps(y, VyUs(t, x,y)).v are Y-periodic and,
BUs(t,z,y) = wi(t,z) — aua(t,z) fory € T'io (3.6)
with boundary conditions
/ p1(y, Vour + VyUi)dyv = 0 on 0Q (3.7)
Y1
/ p2(y, Vyus + VyUs)dy.y = 0 on 0Q (3.8)
Y2
and initial conditions
uj(0,2) = uf(z) j = 1,2; Us(0,2,y) = u(z). (3.9)
The functions U;(t,x,y) solve the cell problems,
diVy ,uj(y, Vau; (t7 J}) + vaj(tv T, y)) =0 forye Y; (310)
wi(y, Vaou;(t, z) + VU (t, x,y)).v =0 on 'y 5 and (3.11)

Y -periodic on I's 9, for j = 1,2. In the above, t,z are treated as parameters and
the cell equations are solved.O
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For £ € RN, define the following functions;

Aj(6) = / pi(y, €+ VyVi(y) dy, j=1,2 (3.12)

where Vf is the Y-periodic solution of
div, (4,6 + V,VE(W) = 0in Y, (3.13)
iy, €+ VyVi)r = OonTis (3.14)

Then, because of (3.10), (3.11), the righthandsides in (3.3), (3.4) can be replaced
by the functions divy A (Vgzui(t, z)) and divgAe(Vgus(t, ) respectively. Also the
lefthandsisdes of (3.7), (3.8) can be replaced by A1 (Vzuy).v and Ao(Viusz).v re-
spectively.

Remark 3.1: We note that the functions A; can be interpreted as the integrands
in the I' — limit of the functionals

Fj@(Vv):/ Xj,u]( ,Vo)dz.

In fact, I' — lim F}; . (Vv) = [, A\j(Vv) dz (cf. DalMaso [4]). Further, the functions
Aj, j = 1,2 satisfy condltons (2 1) (2 3) for the same p but maybe for different
constants k,C’,(fo (cf. [5], [2]). D

Proposition 3.5. The following energy identity holds (cf. [3]),

—Z// ¢j(y)|u; (T, z)|* dy dz + = //Y cs(W)|Us(T, z, y)|* dy dx
2

——Z// ¢j(y)|uf (z |2dydx——//y2 cs(y)[uy(x)|? dy dz

+Z/O /Q/Y 115 (y, Vouj + VyUy).(Vou; + V,Uy) dy da dt
j=1 i

T
+/ // M3(y,VyU3).VyU3dyd1}dt=0.
0 JQJY,

4. CORRECTORS

We now prove corrector results for the gradient of flows under stronger hypothe-
ses on p;’s than (2.1)-(2.3). Let ki, k2 > 0 be constants and assume for j=1,2,
3:

p;( . €) is measurable and Y-periodic for all ¢ € RN (4.1)
For ¢, € RN with |¢|+ |n| > 0 and a.e. y €Y,
pi(y,0) = 0 (4.2)
(0, €) = sy, )l < k(€] + [n)P21€ =) (4.3)
(1 (y:€) = niy,m)-(€ = m) = ka(l€] + [n))P~2|€ —nf® (4.4)

The above hypotheses will, henceforth, be known as (H).
Remark 4.1: Note that (4.2) and (4.3) imply

i (y, ) < ka€]P~} (4.5)
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and, (4.2) and (4.4) imply
15 (y, €).6 = ka2|€JP. (4.6)

Thus, the new hypotheses are indeed stronger than the original hypotheses on p;’s.
Moreover,

(1 (y:©) = i (ym)-(E=m) = kel —mf” ifp>2 (4.7)
i (Y, €) —mi(wm| < k-t 1 <p<2. (4.8)
These inequalities follow from (4.4) and (4.3) and triangle inequality in RY. O

Remark 4.2: An example of yu; satisfying (4.2)- (4.4) is p; = [£[P72¢, i.e. the
corresponding diffusion operator is the p-Laplacian. More generally, let C denote
the class of functions

fec®@x RY;RNynCt(Q x RN\ {0}; RY)
which satisfy condition (4.2) and the following

N

of; _
S 195w < o
' i
J,g=1

> 15t @mEg = AP
ja=1 M

for all z € Q,n € RV \ {0} and ¢ € RY and I,y are positive constants. Then for
w; ’s in the class C the conditions (H) are satisfied (cf. Damascelli [7]).0

Let u§, u§, u§ be the solution of the Cauchy problem (2.5)- (2.14) and let
[u1,us2, U, Uz, Us] be as in Section 3. We will denote [0,7] x Q by Q. Define the
sequence of functions

éj(tvxvy) = Xj(y)(vxu](fﬂx) + Vij(t,a:,y)), .] =1,2, (49)
é3(t7may) = XQ(y)VyUg}(t,Z‘,y) (410)

and let,
&(t,2) = &, g), j=1,2,3. (4.11)

Our main theorems are the following;:

Theorem 4.1. If the functions, V,U;, j = 1,2,3 are admissible (cf. Definition
2.1), then

— z . . .
hme—>0||Xj(g) (Vu§(t,z) = & (t, z)) lpor — 0, =12,
3 T € €

lim eolx2(2) (eVus(t, ) — &(¢,2)) |

Theorem 4.2. If the functions, V,U;, j = 1,2,3 are admissible (cf. Definition
2.1), then

p,QT > 0.

2) (1 (2. V65) =15 (2,60 D) ) lor — 0,5=12
) (ks (Z02V5) = w3 (2.6 (8.2) ) o — 0.

me%OHX}’

me—)O”X2(
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Remark 4.3: Theorem 4.1 gives strong convergence of the gradients of the flow
of the Cauchy problem to the gradients of the flow of the homogenized problem
by adding a corrector, whereas the gradients of the flow of the Cauchy problem,
themselves, only weakly converge to the gradients of the flow of the homogenized
problem in LP. Theorem 4.2 gives an analogous result for the flux terms.O

We first calculate some limits and prove some estimates in order to prove the
theorems. For that we need some more notations, functions and quantities which
we will use hereafter. We will use M to denote a generic constant which does not
depend on &, but probably on p, k1, kg, co, C, and the L? norm of the initial vector
u?. We will also set 25 = Q5 and Y3 = Y5. Let 0 < k < 1 be a constant and
(¢, z,y) be admissible test functions such that

3
Z”VyU D, Hp 0,7]x0xy; = f-

Note that,
®,(t, x, x) 228 @, (t, 2, y)
for j=1,2,3. Define the functions:

) = x(0)(Veu(t o)+ @5(te,2)), = 1,2 (4.12)
ni(te) = m(—)%(t,x@. (4.13)

Then we note that the functions 75 (¢, z) and u5(Z,75(¢,v)) arise from admissible
test functions and we have the following two-scale convergence (cf. [3]),

c 2— o .
s =3 mitay) = x5 W) (Veui(tz) + @5t 2,y), §=1,2,

e 2- _
UES _s> 773(@%11) = X2(y)q)3(tax7y)
X e 2—s .
Mj(g: 77]) — X](y) Mj(yv Uj(tJ?; y))7 J = 1,2,3.

Lemma 4.1. (cf. [5], lemma 3.1.) Let 1 <p < 2 and ¢1, ¢ € LP(Q7)N. Then,

r :
o1 — all? o, < [/o /Q [¢1 — da2|* (1| + |¢2|)pzxdxdt]

x [/OT/QW " |¢2|>pdxdt]

=
where x denotes the characteristic function of the set
{(t,2) € [0,T] x 2 |n|(t, ) + |p2(¢,2) > 0}

Proof: Multiply and divide the integrand in left hand side by (|¢y |+ |¢a|)2~P)P/2
and apply Hoélder’s inequality to get the result. O

Lemma 4.2.

3
ZHx] (Vaus + VU5 + Ix2(y) Vy Uslh < 2—2

Proof: Follows from the energy identity (Proposition 3.5) and (4.6). O
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Lemma 4.3. Let &,n;,£,n5,1=1,2,3 be functions as defined above. Then,

T
Timeoo [ (10900 = Ea)) (Vs =) d
<SS by, (&) — i s mp) (& — my) dy davdt

fori=1,2 and

T
o [ (na(Z0e008) = i (Eo0) (V5 = )
<S5 So Saly, (5(0:6) = iy, my) (& — ) dy dadt

Proof: Denote the integrals appearing in the left-handsides of the above relations
by 1§,15 and [§ respectively. Then for i=1,2,3, using (2.17), we obtain,

3 3
- ég/ & (Ol de - %g/ & (Ol (T, 2) do
2 T
S [ E v ) do
im0 Jag €
T X
[ i) ) de

2 T .
_Z/O /E M](%,V'UJ;)UJE dx dt —‘/0 /E NB(g?EVUE)ng da dt
Jj=1 j <

We now use the two-scale convergence properties of various functions discussed so
far to pass to the limit. We get,

3 3
_ 1
o 6 = 33 [ [ cwld@Pad
j=1 j=179Ys
1< T
. 2
1_mﬁz/ () (T, 0)] do
3 T
*Z/ // 1 (Y, m;).(& — my) dy dz dt
mJo Jaly;
3 T
S wtw g dyazar
oo Jaly;
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The right hand side can be written as
1< 13 .
5 ; /Q/y, ci(y)|uf(z)|* dy dz — lim .05 ; /Q Cj(g)|”§($,T)|2 dx

+§i:/OT/Q/Y] (15 (v, &) — wi(y,m5)) (&5 — my) dy dz dt

jf:l/oT/ﬂ/Yjuj(y,Sj).fjdydxdt

which, using Proposition 3.5 to replace the last expression, is nothing but,

2
1 1
[ awhs@araa s [ [ awiodepPaa
j=17/Y; QJY,
1 3 T
. £ 2
_h_me—>o§j§=:1/m Cj(g)|uj($,T)| dx

3 T
+j§:1/0 /Q/YJ (15 (y, &) — i (y,my)) (&5 — ny) dy dx dt

However, by standard arguments,

i/ﬂ/yjcj<y>|uj<T,m>|2dydx+/Q/Y203<y>|U3<T,m,y>|2dydm

3
. T
<t} [ el D ds

This completes the proof. O

Lemma 4.4. Let &;,7n;,K be as before. Then,

3 T
§:j / / /Y (5 (0-65) — 3 (w2m3)) (& — my) dy de it < MsS®)

where
1 ifl<p<?2,
o(p) = :
) { 2 ifp>2.

Proof: Let the left hand side of the estimate be denoted by S.
Case 1: 1 < p < 2. Using (4.8) we get,

3 T
55 [ L 10506 - 16 - v

3 T
k /// & —nilPdydxdt
1;0 Qlej J|
Mk

IN

IN

11
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Case 2: 2 < p. Using (4.3) and Hélder’s inequality we get,

3 T
s 2 Y [ ] &) - wwnlle -l dydads
j=170 JQJY;

3 T
< wY [ [ ] 16 -nel b dydsar
j=170 JQJY;
3 T pr2
< kY lg -l (/ |/ <|§j|+|nj|>pdydxdt>
j=1 0 JQJY;
3
< kY& = il (gl + i llp)P >
j=1
2 p=2
3 P 3 P
< k[ Do NG -l (1€ 1lp + lImjllp)*
j=1 j=1
2 p=2
3 P 3 P
< k(D NEG il Cl&llp + 1€ — nillp)?
j=1 j=1
2 p=2
(p—2)(p—1) 3 ! 3 !
< k20 v SONE =il > @PIGIE + 11 —nil1R)
j=1 j=1

Therefore, by the estimate for the second term proved in lemma 4.2, we get the
result.O

Theorem 4.3.

— x ,
T ol (D) (Vs (6 2) — 3 (4,2) [0, < M)
— x ,
T o lxa(2) (Vs (t,2) 5 (6,2) [, < M)
where
_ % if 1<p<2,
r(p) = 2 if p>2.

Proof: Casel: 1 <p < 2. We use lemma 4.1 with the functions x;Vu; and n3, j =
1,2 to get,

INGVus = 5112 g,

T € e € e\p— 2T € e 2p
< (Jo Joe Va5 =05 P(VU5] + In5)P=2 dedt)> (fy Joo (IVu5] + [n5])F dzdt) >

Therefore, using strong monotonicity (4.4), we get,

4
2

T
€ € (3 < € T € € €
VU = el g <k ( L (v = (o) (=) dmdt>

2-p
2

x(Ix5Vu3 b + (105 115)
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(p—1)(2—p)

where k=272 / k‘f . Similarly,

[NIS]

IV w50, < (/ L, (b oe9ed) st e - na)dwdt>

x(Ixsevug|is + [n5]12) ="
Let,

ST = ZHxiw — I + IXGeVUs — 7520, s

55 = Z/ / s (2, 908) i) (Vs )

xr xr
+ / [ (. 2903) = aE.19)) eV — o) dd and
0 Jaz € €

2
S5 = D INGVSIE + 15115 + IxseVusly + lIns5.
j=1

Then, by Holder’s inequality, S5 < k(S5)% x (Sg)%p

Note that n; arise from admissible test functions. Therefore,

3
. v
lim 5|17
j=1

3
Z 175115, 10,712 v
j=1

IN

3 3

-1
2P oy T 2115 = &8 0 1)
j=1 J=1

< M
where the last estimate follows from lemma 4.2. Also by (2.17) and (4.6), we get,

S GVl + eVl < o I, <
7j=1

From this we conclude that, Eeﬁosg < M. Therefore, taking limsup as ¢ — 0
and using lemmas 4.3 and 4.4, we get

lim e—097 < Mk?=.

This concludes the proof in this case.
Case 2: 2 < p. From (4.7), we get,

IVu§ — 5P < (m(%,Vus) — i (2,n5)) (Vu§ —nf)

Therefore, by integrating with respect to ¢ in [0,7] and x in Qj , we get,

I V5 =5 11p < = Sy Jos (ki (2, Vu5) = 1 (2,5))-(Va§ —15) de dt
Similarly,
Ix5eVus — n5l2 0, < & fy Jos (us(£,eVug) — pa(E,75))-(eVus — ) dz dt
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We note that if ST and S5 are defined as in the previous case, then S7 < éSS.
Passing to the limit, as before, we reach our conclusions. O

Theorem 4.4.
Fra. x T
lim el (2, V) — Hj(g,nf)ﬂq,m < Mys®
— T T
hme—>0HX§M3(g75VU§) - H3(g777§)||q,QT < My*®)

where

£ if 1<p<2,

2 ifp>2
p—1 =7

Proof: We will prove only the first of these estimates, the other is proved similarly.

If 1 < p < 2, by (4.3) and triangle inequality in R, we get,
' 2, VS Zotdzdt < ki [ for [Vus —ng |20 de dt
) (V) = (o) Tt < fy Jo. [V 5] z
3

Since g(p — 1) = p, using the theorem 4.3, the estimate follows easily. Let 2 < p.
Then,

T
T € T €
L s 9 iy Gy

-2
< k1 fy foe V05 =gt (Vs + ) " dadt

The right hand side, by Holder’s inequality,

pP—2

_1
< ko207t (g e IV = mslP dwat) ™ () for (IVusl + ngP) dwdt) "
iy J
< MpxGVus = njllp 0,
So, again using theorem 4.3, we get the desired result.O

Proof of Theorems 4.1 and 4.2: Since, V,U;’s are assumed to be admissible
test functions, we can take ®; = V,U;. Thus,  can be taken arbitrarily small and
therefore, Theorem 4.1 follows from Theorem 4.3. Similarly, Theorem 4.2 follows
from Theorem 4.4. O

Remark 4.4: The functions V,U;(t,z,y) will be admissible if we have C* regu-
larity of U; in the variable y. Even if the functions U; are not admissible, Theorems
4.3 and 4.4 are corrector results in their own right.
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