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UNIFORM STABILIZATION AND EXACT CONTROLLABILITY
FOR HYPERBOLIC SYSTEMS WITH DISCONTINUOUS

COEFFICIENTS

FÉLIX P. QUISPE GÓMEZ, BORIS V. KAPITONOV

Abstract. This paper considers a hyperbolic system with discontinuous co-

efficients in a bounded, open, connected set with smooth boundary and con-

trolled through the Robin boundary condition. Uniform stabilization of the
solutions are established. Exact boundary controllability is obtained through

the Russell’s “Controllability via Stabilizability” principle.

1. Introduction

Let Ω be a bounded domain in Rn with a smooth boundary S which consists
of the disjoint closed surfaces S0 and S1 (the case S1 = ∅ is not excluded). In the
cylinder Ω×]0, T [ we consider the mixed problem

∂2
t u(x, t)−

n∑
i=1

∂xi [P (x)∂xiu(x, t)] = 0 (x, t) ∈ Ω×]0, T [ (1.1)

u(x, 0) = f1(x), ∂tu(x, 0) = f2(x) x ∈ Ω (1.2)

P∂νu(x, t) + au(x, t) + b∂tu(x, t) = 0 (x, t) ∈ Σ0 = S0×]0, T [, (1.3)

u(x, t) = 0 (x, t) ∈ Σ1 = S1×]0, T [ (1.4)

Here u = (u1(x, t), . . . , um(x, t)), x = (x1, . . . , xn), P (x) = P ∗(x) are square ma-
trices of order m, ν = (ν1, . . . , νn) is the unit outward normal to the boundary S,
and a, b are positive constants.

Assume that
P (x)ξ · ξ ≥ c0 |ξ|2, c0 > 0

where ξ = (ξ1, . . . , ξm) is an arbitrary vector.
Assume that Ω0 ⊂ Ω is a bounded domain with sufficiently smooth boundary

Γ. We set Ω1 = Ω \Ω0 and assume that the entries apq(x) of the matrix P (x) lose
continuity on the surface Γ.

We shall use the notation

P (x) =

{
A(x) if x ∈ Ω0,

B(x) if x ∈ Ω1.
u(x, t) =

{
w(x, t) if x ∈ Ω0,

v(x, t) if x ∈ Ω1.
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For simplicity we assume that A and B are constants matrices. We add to (1.1)
the following interface conditions on Γ:

w
∣∣
Σ

= v
∣∣
Σ
, A∂νw

∣∣
Σ

= B∂νv
∣∣
Σ

in Σ = Γ×]0, T [ (1.5)

where ν is the unit outward (with respect to Ω0) normal to the surface Γ.
In one space dimension it is well known that stabilization holds for wave operators

with piecewise smooth but possibly discontinuous coefficients (BV is the right class)
regardless of the sign of the jump. Thus, one dimension is much better than several
dimensions. The proof of this is based on simple sidewise energy estimates. See [1]
and [19] and the references therein.

Our purpose is to prove the uniform stabilization of solutions to the problem
(1.1)-(1.4) and (1.5). Using this result we obtain exact boundary controllability
for the corresponding evolution system. Several approaches are known to solve the
problem of exact boundary controllability. A systematic method (named HUM)
was proposed by Lions [13] and [14].

In [7] we obtained exact controllability for the system (1.1)-(1.4) using HUM.
The exact controllability for a system in elasticity theory is established by Lagnese,
with method HUM in [11]. We obtain the same result for the class of systems
∂2

t u− ∂xi
(Aij∂xi

u) = 0 which includes the system in elasticy theory.
Here we use another approach which is based on D. Russell’s “controllability

via stabilizability” principle [16], which is different from of Lagnese’s in [11]. Both
techniques are well known.

There is an extensive number of publications on these topics. Exact controllabil-
ity and uniform energy decay (boundary damping) are obtained for various equa-
tions and systems: the wave equation, the Schrödinger equation, Euler-Bernoulli
beam equation, the system of elasticity, Maxwell’s equation and others [2], [4]-
[15], [18]. Although for equations with discontinuous coefficients very few results
are known: Maxwell’s equations in multilayered media [6], Euler-Bernoulli beam
equation in the one-dimensional case [3].

2. Well-Posedness

Denote by H the Hilbert space of pairs {u,u1} of m-component vector-functions
such that

u ∈ H1(Ωk), u1 ∈ L2(Ωk), k = 0, 1, u
∣∣∣
S1

= 0.

The scalar product in H is defined by the formula

〈{u,u1}, {f, f1}〉 =
∫

S0

au · f dS +
∫

Ω

(
P ∂xi

u · ∂xi
f + u1 · f1

)
dx.

Define an unbounded operator A in H whose domain D(A) consists of the elements
{u,u1} ∈ H such that u ∈ H2(Ωk), u1 ∈ H1(Ωk), k = 0, 1,

P∂νu(x, t) + au + bu1

∣∣∣
S0

= 0, u1

∣∣∣
S1

= 0, u
∣∣∣
S1

= 0 (2.1)

u0
∣∣∣
Γ

= u1
∣∣∣
Γ
, u0

1

∣∣∣
Γ

= u1
1

∣∣∣
Γ
, A∂νu0

∣∣∣
Γ

= B∂νu1
∣∣∣
Γ
, (2.2)

where uk, uk
1 are the restrictions of the functions u, u1 on Ωk. For {u,u1} ∈ D(A)

we set
A{u,u1} = {u1, ∂xi

(P∂xi
u)}.
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In a standard way we construct the adjoint operatorA∗. The domain of the operator
A∗ consists of elements {v,v1} ∈ H such that v ∈ H2(Ωk), v1 ∈ H1(Ωk), k = 0, 1,

P∂νv(x, t) + av − bv1

∣∣∣
S0

= 0, v1

∣∣∣
S1

= 0, v
∣∣∣
S1

= 0

v0
∣∣∣
Γ

= v1
∣∣∣
Γ
, v0

1

∣∣∣
Γ

= v1
1

∣∣∣
Γ
, A ∂νv0

∣∣∣
Γ

= B ∂νv1
∣∣∣
Γ
,

where vk, vk
1 are the restrictions of the functions v, v1 on Ωk.

For {v,v1} ∈ D(A∗) we set

A∗{v,v1} = −{v1, ∂xi (P∂xiv)} .

It can be shown that A and A∗ are dissipative operators in H; i.e.,

〈A{u,u1}, {u,u1}〉 ≤ 0 {u,u1} ∈ D(A)

〈A∗{v,v1}, {v,v1}〉 ≤ 0 {v,v1} ∈ D(A∗).

Assume that {u,u1} ∈ D(A). Then
d

dt
〈A{u,u1}, {u,u1}〉 = −

∫
S0

b|u1|2d S ≤ 0.

Similarly,
d

dt
〈A∗{v,v1}, {v,v1}〉 = −

∫
S0

b|v1|2d S ≤ 0, {v,v1} ∈ D(A∗).

Indeed, if {u,u1} ∈ D(A), then

〈A{u,u1}, {u,u1}〉

=
∫

S0

au1 · u dS +
∫

Ω0

(
A

∂u0
1

∂xi
· ∂u0

∂xi
+

∂

∂xi

(
A

∂u0

∂xi

)
· u0

1

)
dx

+
∫

Ω1

(
B

∂u1
1

∂xi
· ∂u1

∂xi
+

∂

∂xi

(
B

∂u1

∂xi

)
· u1

1

)
dx

=
∫

S0

au1 · u dS +
∫

Ω0

(
A

∂u0
1

∂xi
· ∂u0

∂xi
− ∂u0

∂xi
A

∂u0
1

∂xi

)
dx +

∫
Γ

A
∂u0

∂ν
u0

1dS

+
∫

Ω1

(
B

∂u1
1

∂xi
· ∂u1

∂xi
− ∂u1

∂xi
B

∂u1
1

∂xi

)
dx−

∫
Γ

B
∂u1

∂ν
u1

1dS +
∫

S

B
∂u1

∂ν
u1

1dS

=
∫

Γ

(
A

∂u0

∂ν
u0

1 −B
∂u1

∂ν
u1

1

)
dS +

∫
S0

au1 · u dS +
∫

S0

B
∂u1

∂ν
u1

1dS

=
∫

S0

au1 · u dS +
∫

S0

P
∂u
∂ν

· u1 dS

=
∫

S0

[au1 · u + (−au− bu1)u1] dS =
∫

S0

b|u1|2 dS ≤ 0.

It can be shown in a similar way that A∗ is dissipative.
Thus, A generates a C0-semigroup of contractions U(t) : H → H, t > 0 where

U(t){f1, f2} ∈ C([0,∞);D(A)) ∪ C1([0,∞);H)

when {f1, f2} ∈ D(A) and U(t){f1, f2} is strongly differentiable with respect to t
for {f1, f2} ∈ D(A). Moreover,

d

dt
U(t){f1, f2} = AU(t){f1, f2}
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and U(t) carries D(A) onto D(A) and commutes with A.
Let {f1, f2} ∈ D(A) and {u,u1} = U(t){f1, f2}. Then u = u1 and u1t =∑
∂xi(P∂xiu); i.e, the first component of U(t){f1, f2} is a solution to the problem

(1.1), (1.5).
Observe that, for F = {f1, f2} ∈ H, U(t)F is a weak solution in H to the

abstract Cauchy problem

d

dt
{u,u1} = {u1, ∂xi

(P∂xi
u)} = {u1,Pu}

in the following sense∫ T

0

(
〈U(t)F,

dφ

dt
〉+ 〈U(t)F,A∗φ〉

)
dt = −〈F, φ(0)〉

for every φ ∈ L2(0, T ;D(A∗)), φ
t
∈ L2(0, T ;H), φ(T ) = 0.

3. Stabilization

We start from geometrical conditions on Ω. We consider the problem:

∆Ψ =
a0

c0

, x ∈ Ω, ∂νΨ
∣∣
S0

=
a0 meas(Ω)
c0 meas(S0)

, ∂νΨ
∣∣
S1

= 0, (3.1)

where Ψ(x) ∈ C2(Ω)∪C1(Ω) be a solution to the problem, a0 = max |apq|, apq are
the entries of the matrix P , and c0 is a constant defined as above (observe that for
the wave operator P = I and c0 = a0 = 1).

For an arbitrary bounded domain Ω with smooth boundary S we define the
quantity

κ = max
i,j

sup
x∈Ω

|∂2
xixj

Ψ(x)|.

Suppose that Ω satisfies the conditions: There is a point x0 ∈ Rn such that

(a) S1 is star-like with respect to x0: (x− x0, ν) ≤ 0 for x ∈ S1;
(b) for some 0 < ε ≤ 1

(x− x0, ν) > − 1
ε + nκ

meas(Ω)
meas(S)

, x ∈ S0.

Clearly, (b) holds if S0 is star-like with respect to the point x0 when it be taken
sufficiently close to the domain, see Figure 1.

Theorem 3.1. Let a domain Ω and surface Γ satisfy the above-listed conditions
with a parameter 0 < ε ≤ 1 and let the coefficient a in the boundary conditions
satisfy 0 < a < δc0n

2κ/(3r), where r = supx∈Ω |∇ϕ|. Suppose that AB = BA and
matrix A − B is nonnegative. Then there are T ∗ > 0 and C∗ > 0 such that for
t > T ∗

‖U(t){f1, f2}‖2 ≤ C∗(T ∗)ε−1 1
tε
‖{f1, f2}‖2

for every {f1, f2} ∈ H.
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Figure 1. Surface S0 is starlike with respect to the point xo

Proof. The following identity is proved in the Appendix:

2
[
t∂tu + (∇ϕ,∇)u +

n− 1
2

u
]
·
[
∂2

t u− ∂xi
(P∂xi

u)
]

= ∂t

[
t
(
|∂tu|2 +

n∑
i=1

P∂xi
u · ∂xi

u
)

+ 2(∇ϕ,∇)u · ∂tu + (n− 1)u · ∂tu
]

− ∂xi

[
P∂xi

u ·
(
2t∂tu + 2(∇ϕ,∇)u + (n− 1)u

)
+ ∂xiϕ

(
|∂tu|2 −

n∑
i=1

P∂xiu · ∂xiu
)]

−
[
(∆ϕ− n + 2)P∂xiu · ∂xiu− (∆ϕ− n)|∂tu|2 − 2∂2

xpxi
ϕ ∂xpu · P∂xiu

]
.

(3.2)

For ϕ = 2−1|x − xo|, it represents a conservation law, a consequence of invariance
of the system relative to the one-parameter group of dilations in all variables with
the infinitesimal operator

t∂t + (xi − xo
i )∂xi

− n− 1
2

uj∂uj .

Let {f1, f2} ∈ D(A) and u(x, t) be a solution of (1.1), (1.5). After integration by
parts over Ω0×]0, T [ and Ω1×]0, T [ using (1.5), we obtain the formula

−
∫

Ω

u∂tu dx
∣∣∣t=T

t=T0

−
∫

S0

1
2
b|u|2 dS

∣∣∣t=T

t=T0

=
∫ T

T0

∫
Ω

( n∑
i=1

P∂xi
u · ∂xi

u− |∂tu|2
)
dx dt +

∫ T

T0

∫
S0

a|u|2 dSdt.

(3.3)
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An application of (3.2), together with (3.3) multiplied by the constant γ, leads to
the formula{∫

Ω

[tI(u) + 2(∇ϕ,∇)u · ∂tu + (n− 1− γ)u · ∂tu] dx

+
∫

S0

[
ta|u|2 +

n− 1− γ

2
b|u|2

]
dS

}∣∣∣t=T

t=T0

=
∫ T

T0

∫
Ω

[
(∆ϕ− n + 2 + γ)Φ(u)− (∆ϕ− n + γ)|∂tu|2

− 2∂2
xpxi

ϕP∂xi
u∂xp

u
]
dxdt +

∫ T

T0

∫
S1

∂νϕ Φ(u) dS dt

+
∫ T

T0

∫
S0

{
∂νϕ

(
|∂tu|2 − Φ(u)

)
− 2tb|∂tu|2 − (n− 2− γ)a|u|2

− 2b(∇ϕ,∇)u · ∂tu− 2a(∇ϕ,∇)u · u
}

dS dt

+
∫ T

T0

∫
Γ

{
− ∂νϕ (A−B) ∂xiw · ∂xiw − ∂νϕ(AB−1A

+ B − 2A)∂νw · ∂νw
}

dΓ dt,

(3.4)

here we use the notation:

Φ(u) =
n∑

i=1

P∂xiu · ∂xiu, I(u) = |∂tu|2 + Φ(u).

Choose the function ϕ(x) in (3.4) as follows

ϕ(x) =
c0

a0
Ψ(x) +

1
2θ
|x− x0|2, θ > 0, x0 ∈ Rn

We obtain

K ≡ (∆ϕ− n + 2 + γ)Φ(u)− (∆ϕ− n + γ)|∂tu|2 − 2∂2
xpxi

ϕP∂xi
u · ∂xp

u

≤
(
n− 1− n

θ
− γ

)
|∂tu|2 +

(
3 +

n− 2
θ

+ 2κn + γ − n
)
Φ(u).

Set θ = (ε + nκ)−1 and γ = n− 2 + ε− n(ε + κn). Then K ≤ (1− ε)I(u), and for
x ∈ S0 we have

∂ν ϕ = (ε + nκ)
[
(x− x0, ν) +

1
(ε + nκ)

meas(Ω)
meas(S0)

]
> 0,

which by compactness of S0 leads to the inequality

∂ν ϕ ≥ |∇ϕ|δ, δ > 0.

We now assume that the surface Γ satisfies the condition

∂ν ϕ
∣∣
Γ
≥ 0.

Note that if S0 is strictly star-shaped with respect to x0 ∈ Rn; i.e,

(x− x0, ν) > 0

we can choose ϕ(x) = 1
2 |x− x0|2. In this case, Γ is an arbitrary star-shaped surface

with respect to x0.
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Moreover, we assume that matrices A and B are constant and

AB = BA, (A−B)ξ · ξ ≥ 0, ∀ξ ∈ Rm,

for examples on the last condition, see [11] and [14]. For examples where mono-
tonicity fails, so that the uniform decay does not hold, see [17].

Then we obtain that integral over Γ×]T0, T [ in (3.4) is non positive. Denote by G
the integrand of the integral over S0×]T0, T [ on the right side of the formula (3.4).
We have the following estimate for G:

G ≤ |u|2
[
n2κa− |∇ϕ|3a2

δc0

]
− |ut|2

[
2tb− |∇ϕ| − |∇ϕ|3b2

δc0

]
. (3.5)

By hypotheses we have

0 < a <
δc0n

2κ

3r
, (3.6)

where r = supx∈Ω |∇ϕ|.
Choose T1 so large that for t ≥ T1 the last term in (3.5) is non positive. Since

(∇ϕ, ν) ≤ 0 for x ∈ S1, the surface integrals on the right-hand side of (3.4) are
nonnegative as T0 ≥ T1. Thus, we obtain that for T0 ≥ T1:{∫

Ω

[
tI(u) + 2(∇ϕ,∇)u · ∂tu + (n− 1− γ)u · ∂tu

]
dx

+
∫

S0

[
ta|u|2 +

n− 1− γ

2
b|u|2

]
dS

}∣∣∣t=T

t=T0

≤ (1− ε)
∫ T

T0

∫
Ω

I(u) dxdt.

(3.7)

here γ = n + ε − 2 − n(ε + κn). Denote by τ0 the smallest constant for which the
following inequality holds∫

Ω

(
|u|2 + |∇u|2

)
dx ≤ τ0

( ∫
Ω

P∂xi
u · ∂xi

u dx +
∫

S0

a|u|2 dS
)
, u ∈ H1(Ω).

We have∫
Ω

[
2(∇ϕ,∇)u · ∂tu + (n− 1− γ)u · ∂tu

]
dx ≤ C0‖U(T0){f1, f2}‖2, t ≥ T0

Combining this estimate with (3.7), we arrive at the inequality

T‖U(T ){f1, f2}‖2 − (T0 + C1)‖U(T0){f1, f2}‖2 ≤ (1− ε)
∫ T

T0

‖U(t){f1, f2}‖2dt

(3.8)
in which T0 ≥ T1. With the help of Gronwall’s inequality, and (3.8) we obtain

t‖U(t){f1, f2}‖2 ≤ C2

( t

T2

)1−ε‖U(T2){f1, f2}‖2

for t > T2.
Given an arbitrary element {f1, f2} ∈ H, approximate it by smooth data for

which the inequality of the theorem was established above. Taking the limit finishes
the proof. �

Corollary 3.2. The operator U(t) takes H into itself and

‖U(t)‖ < 1 for t > t∗ = (C∗(T ∗)ε−1)1/ε.
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By applying semigroup properties, we obtain the following result.

Corollary 3.3. Assume {f1, f2} ∈ H. There are C, β > 0 such that

‖U(t){f1, f2}‖2 ≤ C exp(−βt)‖{f1, f2}‖2.

4. Exact Controllability

In this section, we shall use the estimate of the Theorem 3.1 to prove exact
controllability of the evolution system studied in the previous sections. In Ω×]0, T [
we consider the problem

∂2
t u(x, t)−

n∑
i=1

∂xi
[P (x)∂xi

u(x, t)] = 0 (x, t) ∈ Ω×]0, T [ (4.1)

u(x, 0) = f1(x), ∂tu(x, 0) = f2(x) x ∈ Ω (4.2)

P∂νu(x, t) + au(x, t) = q(x, t) (x, t) ∈ Σ0 = S0×]0, T [, (4.3)

u(x, t) = 0 (x, t) ∈ Σ1 = S1×]0, T [ (4.4)

w = v, A∂νw = B∂νv, (x, t) ∈ Σ = Γ×]0, T [ (4.5)

where A(B) and w(v) are the restrictions of matrix P and vector-function u on
Ω0 (Ω1), f = {f1, f2} is an arbitrary element of the space H.

For every g = {g1, g2} ∈ H, we have to find a vector-function q(x, t) such that
the solution of (4.1) satisfies the conditions

u
∣∣∣
t=T

= g1(x), ∂tu
∣∣∣
t=T

= g2(x), for T > t∗.

Theorem 4.1. Let the coefficient a in the boundary conditions of problem (4.1)
satisfies (3.6). There is a t∗ > 0 such that, for T > t∗, arbitrary initial data
f = {f1, f2} ∈ H, and any element g = {g1, g2} ∈ H, there exists a boundary control
q(x, t) ∈ L2(S0×]0, T [) transferring a solution of (4.1) to the state g = {g1, g2} at
time T . Moreover,

‖q‖2
L2(Γ0×]0,T [) ≤ C(‖f‖2 + ‖ð‖2).

Proof. Let U(t) be the semigroup defined above and let U∗(t) be semigroup con-
structed from the operator A∗. Consider the following equation in H:

{h, h1} − U∗(T )U(T ){h, h1} = f − U∗(T )g.

The operator G(T ) = U∗(T )U(T ) takes H into itself and ‖G(T )‖ < 1 for T > t∗.
Thus we can solve this equation for any f , g ∈ H and

‖h‖ = ‖{h, h1}‖ ≤ C(‖f‖+ ‖g‖).
Consequently, if we choose h = (I −G(T ))−1(f − U∗(T )g), then

{α, α1} = U(t)h and {β, β1} = U∗(T − t)(U(T )h− g)

are weak solutions to the problems
d

dt
{α, α1} = {α1,Pα}

P∂να + aα + bα1

∣∣∣
S0

= 0, α
∣∣∣
S1

= 0,

and
d

dt
{β, β1} = {β1,Pβ}
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P∂νβ + a β − b β1

∣∣∣
S0

= 0, β
∣∣∣
S1

= 0 .

By the energy identity, the following estimates hold∫ T

0

∫
S0

b|α1|2 dS dt ≤ C‖h‖2,

∫ T

0

∫
S0

b|β1|2dS dt ≤ C(‖h‖2 + ‖g‖2).

Clearly, {u, u1} = {α, α1} − {β, β1} is a solution to problem (4.1) with boundary
data on S0:

q(x, t) = −b(α1 + β1),
which belongs to L2(S0×]0, T [) and

‖q‖2
L2(S0×(0,T )) ≤ C(‖f‖2 + ‖g‖2).

�

Remark 4.2. We can study in the same way the more general case. Assume that
Bk ⊂ Ω is a bounded domain with boundary Γk, Bk ⊂ Bk+1 for k = 1, . . . , n.

Assume that Γ1, . . . ,Γn and S0, S1 are star-shaped with respect to the point x0 ∈
Rn. Suppose that matrix P (x) lose the continuity on Γ1, . . . ,Γn. We set

Ω0 = B1, Ωk = Bk+1 \Bk, k = 1, . . . , n− 1, Ωn = Ω \Bn

The interface conditions are

uk−1
∣∣∣
Γk×]0,T [

= uk
∣∣∣
Γk×]0,T [

P k−1∂νuk−1
∣∣∣
Γk×]0,T [

= P k∂νuk
∣∣∣
Γk×]0,T [

, k = 1, . . . , n

where ν = ν(x) (for x ∈ Γk) is the unit normal vector pointing into the exterior of
Bk; P k, uk are the restrictions of P and u on Ωk.

5. Appendix

We shall show here the details in the proof of the identity used in Theorem 3.1.
We use the following notation

u =
(
u1, . . . ,um

)
, ∂tu =

(
∂tu1, . . . , ∂tum

)
, ∇ = (∂xi

, . . . , ∂xi
) ,

∂2
t u =

(
∂2

t u
1, . . . , ∂2

t u
m

)
, ∂xi

u =
(
∂xi

u1, . . . , ∂xi
um

)
,

the matrix P (x) =
(
a

pq
(x)

)
m×m

and

(∇ϕ,∇)u =
( n∑

i=1

∂xiϕ ∂xiu
q
)

1≤q≤m

The identity (3.2) can be verified by direct computations as follows

2
(

tuq
t +

∂ϕ

∂xi

∂uq

∂xi
+

n− 1
2

uq

) (
uq

tt −
∂

∂xi

(
apq

∂uq

∂xi

))
= 2tuq

ttu
q
t − 2tup

t

∂

∂xi

(
apq

∂uq

∂xi

)
+ 2

∂ϕ

∂xi

∂uq

∂xi
uq

tt − 2
∂ϕ

∂xi

∂up

∂xi

∂

∂xi

(
apq

∂uq

∂xi

)
+ (n− 1)uquq

tt − (n− 1)up ∂

∂xi

(
apq

∂uq

∂xi

)
= t

∂|uq
t |2

∂t
− 2t

∂

∂xi

(
apqu

p
t

∂uq

∂xi

)
+ 2tapq

∂up
t

∂xi

∂uq

∂xi
+ 2

∂ϕ

∂xi

∂uq

∂xi
uq

tt
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− ∂

∂xi

(
2

∂ϕ

∂xi
apq

∂up

∂xi

∂uq

∂xi

)
+

∂

∂xi

(
2

∂ϕ

∂xi

∂up

∂xi

)
apq

∂uq

∂xi

+ (n− 1)
∂

∂t
(uquq

t )− (n− 1)|uq
t |2 − (n− 1)

∂

∂xi

(
apqu

p ∂uq

∂xi

)
+ (n− 1)apq

∂up

∂xi

∂uq

∂xi

= t
∂|uq

t |2

∂t
− 2t

∂

∂xi

(
apqu

p
t

∂uq

∂xi

)
+ 2tapq

∂up
t

∂xi

∂uq

∂xi
+

∂

∂t

(
2

∂ϕ

∂xi

∂uq

∂xi
uq

t

)
− ∂

∂t

(
2

∂ϕ

∂xi

∂uq

∂xi

)
uq

t −
∂

∂xi

(
2apq

∂ϕ

∂xi

∂up

∂xi

∂uq

∂xi

)
+

∂

∂xi

(
2

∂ϕ

∂xi

∂up

∂xi

)
apq

∂uq

∂xi

+ (n− 1)
∂

∂t

(
uquq

t

)
− (n− 1)|uq

t |2 − (n− 1)
∂

∂xi

(
apqu

p ∂uq

∂xi

)
+ (n− 1)apq

∂up

∂xi

∂uq

∂xi

= t
∂|uq

t |2

∂t
+ t

∂

∂t

(
apq

∂up

∂xi

∂uq

∂xi

)
+ |uq

t |2 + apq
∂up

∂xi

∂uq

∂xi
+

∂

∂t

(
2

∂ϕ

∂xi

∂uq

∂xi
uq

t

)
+

∂

∂t

(
(n− 1)uquq

t

)
− 2t

∂

∂xi

(
apq

∂uq

∂xi
up

t

)
− ∂

∂xi

(
2apq

∂ϕ

∂xi

∂up

∂xi

∂uq

∂xi

)
+

∂

∂xi

(
2

∂ϕ

∂xi

∂up

∂xi

)
apq

∂uq

∂xi
− 2

∂

∂t

(
∂ϕ

∂xi

∂uq

∂xi

)
uq

t − (n− 1)
∂

∂xi

(
apqu

p ∂uq

∂xi

)
+ (n− 2)apq

∂up

∂xi

∂uq

∂xi
− n|uq

t |2

=
∂

∂t

[
t
(
|uq

t |2 + apq
∂up

∂xi

∂uq

∂xi

)
+ 2

∂ϕ

∂xi

∂uq

∂xi
uq

t + (n− 1)uquq
t

]
− ∂

∂xi

[
apq

∂up

∂xi

(
2tuq

t + 2
∂ϕ

∂xi

∂uq

∂xi
+ (n− 1)uq

)
+

∂ϕ

∂xi

(
|uq|2 − apq

∂up

∂xi

∂uq

∂xi

)]
+

∂2ϕ

∂xi
apq

∂up

∂xi

∂uq

∂xi

+ (n− 2)apq
∂up

∂xi

∂uq

∂xi
− n|uq

t |2 +
∂2ϕ

∂x2
i

+ 2
∂ϕ

∂xi

∂2up

∂x2
i

apq
∂uq

∂xi
.

The computation is now complete.
To obtain (3.4) it’s enough to add to the above identity for equation (3.3) af-

ter multiplication by a parameter fixed γ, and finally apply Green’s formula and
interface conditions (2.1) and (2.2).
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[14] J. L. Lions, Contrôllabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués:
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