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Weak Solutions to the One-dimensional
Non-Isentropic Gas Dynamics by the Vanishing
Viscosity Method *

Kazufumi Ito

Abstract

In this paper we consider the non-isentropic equations of gas dynamics
with the entropy preserved. Equations are formulated so that the problem
is reduced into the 2 x 2 system of conservation laws with a forcing term
in momentum equation. The method of compensated compactness is then
applied to prove the existence of weak solution in the vanishing viscosity
method.

1 Introduction
Consider the one-dimensional gas dynamics equation in the Eulerian coordinate

pt+ (pu)e =0
(1.1) (pu) + (pu® +p)z =0
st +us, = 0.

where p, u, p and s denote the density, velocity, pressure and entropy. Other
relevant quantities are the internal energy e and the temperature 7. We assume
that the gas is ideal, so that the equation of state is given by

p = RpT
and that it is polytropic, so that e = ¢, T' and
(1.2) p=(y—1)e/p
where v = ¢p/c, > 1 and R = ¢, — ¢,. Define ¢ by

(1.3) P =y —1) e
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Then, ¢ satisfies
¢t +u ¢9c =0.

Thus, we consider the Cauchy problem (equivalent to (1.1))

pt +my =0
(1.4) me + (m?/p +p)e =0
¢t+u¢x =0.
where
1 I=y v
(1.5) m = pu and p:;(b o7,

with smooth initial data (po,mg) in L°°(R?) that approaches a constant state
(p,m) at infinity and satisfies po(z) > &1 > 0, and ¢o in W1°(R) that satisfies
(o) converges to 0 at infinity and

(1.6) do(x) > 02 >0 and (¢o)z(z) >0 (or (¢o).(x) <0).

Consider the conservation form of the gas dynamics

Pt + (pu):n =0
(1.7) (pu%t + (pu? + p)s = (1)
o (5 u® + e)le + (pu [ u® + €] + pu)e = 0.

System (1.7) can be written as the hyperbolic system of conservation laws

yt+f(y):n:0

where y = y(t, z) = (p, pu, p (% u?+e¢€)) € R? and f is a smooth nonlinear map-
ping from R? to R3. System (1.4) is equivalent to system (1.7) when solutions
are smooth but not necessarily when solutions are weak (e.g.,[Sm, Chapters 16-
17]). It is proved in Corollary 3.6 that the viscosity limit of solutions to (1.10)
satisfies n; + ¢, < 0 in the sense of distributions, i.e., the third equation of (1.7),
the conservation of energy 7 + ¢, = 0 is replaced by the non-energy production.
We also note that the isentropic solution (¢ = const) [Dil] is a weak solution of
(1.4) but not necessarily of (1.7).

In this paper we show the existence of weak solutions to (1.4)-(1.5) using
the vanishing viscosity method. The function (p,m,¢) € L>®(Q) x L>®(Q) x
Wb (Q) with Q = [0,7] x R is a weak solution of (1.4)-(1.5) if ¢ satisfies the
third equation of (1.4) a.e in 2 and

(1.8) /OT/_OO(U-wt—l—F(p,m,qﬁ)~¢x)dmdt:0
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for all ¢ € C°(Q; R?) where v = (p,m) and

(1.9) F(p,m,¢) = (m,m?/p+p)

We consider the viscous equation of (1.4) with equal diffusion rates

Pt + My = € Pz
(1.10) me + (m2/p + D) = €EMyy
d)t + ud)m = Ed)mm«

It will be shown in Theorem 3.5 that the solutions (p¢, m<, ¢¢) to (1.10) converge
to a locally defined (in time) weak solution (p, m, ¢) of (1.4).

Our approach is based on the following observation. Suppose ¢ is a constant.
Then equation (1.4) reduces to the isentropic gas dynamics. For the isentropic
equation it is shown in DiPerna [Dil] that (1.4) has a weak solution by the
vanishing viscosity method and using the theory of compensated compactness.
The key steps in [Dil] are given as follows. First, if ¢ is a constant and § =
(v —1)/2 then
(1.11)

1 1
w = Gi(p,m, ¢) = % +567%" and —z=Galp,m,0) = —% +507%

are the Riemann invariants so that V,G; and VG2 are the two left eigenvectors
of the 2 x 2 matrix

0 1

V. F = m? _ 2m
v __2+p29¢ 20 =
p p

where ¢ is assumed to be a positive constant. The method of invariant regions
([CCS],[Sm]) is applied to G1, G2 to obtain that 0 < p¢ < const, |mc/p¢| <
const. Then, there exist a subsequence of v¢ = (p¢, m¢), still denoted by v¢ and
a Young measure vy, such that for each ® € C(R?) we have ®(v®) converges
weak star to ® in L°°() where

D(t,x) = (v,®) = /Q D(y) dvy 2 (), ae. (t,x) € Q.

Using the entropy fields [La] and the div-curl theorem of Murat [Mu] and Tatar
[Ta] for bilinear maps in the weak topology,

(1.12) (v,mae — n2q1) = (v, m) (v, g2) — (v, m2) (v, q1)
for all entropy/entropy flux pairs (7, ¢;) so that

VonVuF = V,q.
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Then, using the weak entropy pairs (i.e., n(0,-) = 0) it is shown that v reduces
to a point mass, i.e., v converges to v, a.e. in 2.

We will apply the method described above for the non-isentropic equation
(1.10). We need to overcome the two major difficulties. First, G1, G2 are no
longer the Riemann invariants of the 3 x 3 matrix M:

0 1 0
m? _ 2m 20 _og_
M—VF — __2+p29¢ 20 <270 __p"/(b 20—1
P P
0 0 —
p

Next, equation (1.12) should be extended to the 3 x 3 system. We resolve
these difficulties by the following steps. Note (see Lemma 2.4) that G; =
Gi(p,m, ), i = 1,2 satisfies
(1.13)

Lf o2 g, i=1
(Gi)t + MiVG; -y + 5 { S PR

where y = (p, m, ¢) is a solution to (1.10) and A\; = u+ p¢ =, Aoy = u— p?¢~*
are the eigenvalues of the 2 x 2 matrix V, F. Here, G;, i = 1,2 are quasi-convex
functions of (p,m, @) (see Lemma 2.5), i.e.,

= e ((Gi)za — V2Gi(Yas o))

r-VG; =0 implies V2Gi(r, r) > 0.

Note that from the third equation of (1.10) that ¢¢ > 02 and |¢¢|ec < |(o]co (se€
Lemma 2.1) and moreover ¢, satisfies

()t + (U 93)z = €(d3)aa

Observing that if (p, m, @) is a solution to (1.10) then £ = log(‘%”) satisfies

(1.14) &+ uby = € (Eaa + | (l0ghs)a|* — [(logp)a|?),

we show that if (¢9), > 0 (resp. < 0) then ¢ > 0 (resp. < 0) and |¢S| < ¢p© in
Q provided that |(¢o)z| < cpo in R (see Lemma 2.3). It thus follows from (1.13)
and the quasi-convexity of G;, i = 1,2 that max, Ga2(t,2) < max, G2(0,x)
(resp. max, G1(t,z) < max, G1(0,z)) and

20+1
|p29¢72971¢>m| <ec (g) )

By the maximum principle (see Theorem 2.6), there exists a 7 = 7. > 0 with
¢ — 7. monotonically decreasing and 79 = oo such that max,c(o 7], zer G1(t, )
is less than a constant independent of € > 0. Hence, we obtain 0 < p¢ < const,
|me/p¢| < const and |¢,| < const in .
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Second, in contrast to the isentropic case, the system (1.10) is not endowed
with a rich family of entropy-entropy flux pairs. Thus, in order to prove that
the Young measures vy, of a weakly star convergent subsequence of (p¢, m¢, ¢°)
reduce to a point mass, we first note that {¢(¢,z)} is precompact in L? (€2)
and thus ¢ converges ¢ a.e. in Q (see Lemma 3.4). Also, we note that dividing

the first two equations (1.10) by ¢, we obtain

ﬁt +Mmy =€ (/3:2:2 + 2;0:2(5:2)
(1.15) ) ¢p¢ ad
mt+(m2/ﬁ+;[ﬂ)x+ ¢2”” = € (1 + 2 ;2”‘).

where p = g and m = % (see Lemma 3.2). This implies that ¢ = (p,7)

satisfies the (viscous) isentropic gas-dynamics with the forcing term —pg,/$>

€ L€
in the momentum equation. Since @)3:”2 € L*°(2) uniformly in € > 0, thus
€ _LE
{%}oo is precompact in Hl;cl’q(Q), 1 < g < 2. Hence, the method of

(;56 2
ccgmgensated compactness in [Dil],[Ch] can be applied to the functions (¢, m°)
to show that v , is a point mass provided that 1 <y < 5/3.

Regarding work on existence of weak solutions for conservation laws, we refer
the reader to an excellent treatise by DiPerna [Di3] and references therein. Con-
cerning basic framework on conservation laws, we refer the reader to [Lal,[Sm]
and for the functional analytic framework of compensated compactness we refer
[Mu],[Tal],[Ev] and [Di2]. For scalar conservation laws the vanishing viscosity
method is employed (e.g., in [Ol],[Kr]| and references in [Sm]) to define the unique
entropy solution. Also, the vanishing viscosity method is used to develop the
viscosity solution to the Hamilton-Jacobi equation in [CL]. The finite-difference
methods (e.g., Lax-Friedrichs and Gudunov schemes) are also used to construct
weak solutions to a scalar and 2 x 2 system of conservation laws (e.g., see
[Di2],[Ch] and [Sm]).

In the case where the initial data have small total variation, Glimm [Gl]
proved the global existence of BV-solutions for a general class of hyperbolic
systems as the strong limit of random choice approximations. However, the
problem of existence of solutions to (1.7) with large initial data is still unsolved.
In [CD] the vanishing viscosity method is applied to the system (1.7) under a
special class of constitutive relations in Lagrangian coordinates.

2 The Viscosity Method

In this section we establish the uniform L° bound of y¢ = (p¢, m¢, ¢°).
Lemma 2.1 If ¢ € CY2([0,7] x R) satisfies ¢y + u ¢y = € Puy then

min ¢o(z) < ¢(t, ) < max ¢o(z).
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Proof: Using the same arguments as in the proof of Theorem 2.6, we can show
that max, ¢(¢,z) < max, ¢o(z) and min, ¢(¢,z) > min, ¢o(z). O

It will be shown in Section 3 (see (3.4) and Lemma 3.1) that the normalized
mechanical energy
1 2, 1 2 -1 ~ 2AY Lamtd
@10 Blpu,¢) =5 pu—u)"+ 2 (o7 =yp" (v =7) = 77)¢
satisfies

e2 [ " B(o(t, 2),u(t, 2), 61, 7)) dr < / ™ Blpo(a), (@), g0 (x)) da.

The following lemma shows the lower bound of p..

Lemma 2.2 If p € C1%([0,7] x R) satisfies

(2.3) pt + (Up)e = €paa

with p(0,-) > 0 and u € C(Q), then p(t,-) > 0. Moreover, if p(0,-) > & > 0
and

(2.4) / / plu — uo|? dz dt < const,
0 —00

then p(t,-) > d(e,7) > 0 on (0,7).
Proof: Choose ¥ = min (p(¢,),0). Then we have

/ §|w<t,m>|2+/0 [m(6|¢x|2—wuwx)dmds:0.

— 00

By the Hoélder inequality, we obtain

[ weor <= [ [

where |ufoc = SUP(; zyc(0,r)xr [U(t 7)|, and the Gronwall’s inequality implies
1 = 0. Thus, p > 0.

Next, we prove p(t,-) > 6 = d(e,7) > 0 if p(0,-) > § > 0 by using the
Stampacchia’s lemma (e.g., see [FI],[Tr]), i.e., suppose x(c) is a nonnegative,
non-increasing function on [cp, 00), and there exist positive constants K, s and
t such that

x(8) < Kc*(é—e) " x(c)*™ forall é>c> e,

then

142t 1+t 14t

x(c*)=0 for ¢ =2¢o (1427 K=t x(co)™= ).
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First, we establish a priori bound. We consider the class K [Dil] of strictly
convex C? functions h with following properties:

h(p) =h'(p) =0, h(p)=p % on (0,p/2) for some 0 < o < 1.
Premultiplying the first equation of (1.10) by h'(p) we obtain
h(p): + (W (p)pu)a — b (p)pup = € (h(p)za — b (p)P})

Integration of this over (0,t) x R yields
o t o
| hotta) @) ds e [ [ W)k dzar
— 00 0 J—oo
t o
= / / W' (p)pap(u — u) da dt .
0 J—

Note that
_ € 1 _
W' (p)pzp(u—u) < 5 B (p)pf + o " (p)p* (u — w)*.
Since there exists some constant 3 > 0 such that

p>h'(p) < Bp for p/2<p<M
p*h"(p) < Bh(p) for 0<p<p/2

it follows that p? b (p)(u — @)? < B (p (u — @)% + h(p)). Hence,
| totean = nontende v 5 [ [ wodoar

t e8]
< %/O /_oop(u—a)2+h(p)dmdt.

and it follows from (2.4) and Gronwall’s inequality that
(2.5) / h(p(t,z)) dz < const on [0, 7].

Set n =1/p. Then from (2.3) n satisfies

2|n,)?
Nt +une — Uz = € (Moo — T)'

We further introduce 7 = e¥*n with w > 0 to be determined later. The equation
for 7 becomes
U

).

(2'6) ﬁt"‘wﬁ“‘uﬁx_uxﬁ:e(ﬁxx—
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Define ¢ = ¢, = max (0,7 — ¢) with ¢ > ¢g = §~1. Pre-multiplication of (2.6) by
&3 and integration over R yields

1) [ GEN+oE )+ @) < - [ w6 e dn

— 00 — 00

Note that

[ wee s [ Lue@nar<l [ @uPa Tl [ it

To estimate the second term on the right hand side of (2.7), we define
I.(t)={z € R: {(t,z) > 0} = {w € R:n(t,x) > ce“'}.

Then, using the Holder inequality, we have

_/Z 3¢£2¢, di = —/oo 5 uE(€). da

— 00

3c o0 1/2 oo 1/6
< —|u|oo (/ |(§2)m|2 dx) (/ |§|6 da;) |Ic(t)|1/3
¢ [~ 27002 92 oo o\ »
Szlm|(f )| da?-f—4—6|u|Oo (/oo|§| dx) |I.(t)| /3

25
Substituting these estimates into (2.7), choosing w = Z +— i |u|?,, and integrat-

ing on the interval [0, ¢], we obtain

/_ |§I4da:+e// (€212 + |(£H)2)?) dz ds
(28) < [ () |§|6dx)1/3| )P/ s

Since

|§2|oo§f(/oo<|s2|2+|< >|2>dx)1/2,

(/Z '5'”””)1/3 <2 ( / Z<I£2l2 +1(€%)al) da:)m .

Thus, from (2.8),

/Z |5|4dx+e/0t /Z(|§2|2+|<52>m|2>dxds

1/381‘34 4 ! 4/3 4 4/3
<2 fule ; [Le(s)]™* ds < Kc™ x(c)

we have
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where we define

1
X(©) = sup |L(t) and K —2/337
t€[0,7] 4e

Clearly x(c) is nonnegative, non-increasing on [cg, 00). Moreover, for é > c,

[ etz [tz @- oo,
(o) Iz

Hence,
L(t) < K (e =) *x(o)*?

and by taking the sup over ¢t we obtain
X(&) < Ket(é— o)™ x(e)"?.

It follows from (2.5) that x(2/p) < oo and thus from Stampacchia’s lemma that
x(c*) = 0 for some c¢* > ¢¢ and hence

n(t,z) < c*e*t and p(t,x) > (c*) e v,
where c* depends on € and 7. O

The following lemma shows that |¢¢ (¢,-)| is uniformly bounded by p¢(t,-)
for every t € [0, 7] under assumption (1.7).

Lemma 2.3 Assume that ¢o satisfies (1.7) and |(¢0)z| < cpo in R. Then
|pz(t, )] < cp(t,x) in R for every t € [0,7].

Proof: If the initial condition (pg, mo, ¢g) is sufficiently smooth and (¢g), > d3
then the solution to (1.10) satisfies p, u, ¢ € C3(Q2) and ¢, (¢,+) > 0. Note that
¢, satisfies

(2.9) (f2)t + (U @z)x = € (dz)za-
Then, it is not difficult to show that if we define £ = 10g(%) then ¢ satisfies

§etuly=c¢ (gacac + |(log¢x)x|2 - |(10gp)x|2)

Suppose £(t, zg) = max, (¢, z). Then

&z (t7 .'170) = (IOg d)m)m(tva) - (log p>$(t7x0> =0

and &gz (t, zo) < 0. Thus, d;(max, £(¢,z)) <0, which implies the lemma. Since
the solution to (2.9) continuously depends on the initial data (¢o), the estimate
holds for when (¢g), > 0. O

The following lemmas provide the technical properties of the functions G;(t),
i = 1,2 defined by (1.11).
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Lemma 2.4 If y = (p,m,¢) € CH2((0,7) x R)? is a solution to (1.10), then
(1.13) holds.

Proof: First, note that the 3 x 3 matrix M = VF has the eigenvalues \; =

% + 00070 N = m_ p¢~% and ™ and that VuGi, i = 1,2 are the left-

eigenvectors of the sub-matrix V, F' corresponding to A;. Thus,
20
(G M (VGiyatp’d™" 0a)=(Tp* 767 up’d™ e = VG o

Since VG1 * Yuz = (G1)zz — V?G1(Yz, y) we obtain (1.13) for G;. The same
calculation applies to Go. O

Lemma 2.5 If p > 0, ¢ > 0 then G;, i = 1,2, are quasi-conver.

1

Proof: We prove G; = m + g p? %% is quai-convex. The same proof applies
p

to Ga. Note that

6—1 ,—06
9 +p ¢
VG, = 1
_p9¢—9—1
2m o, 1 1 ,—g—
__3+(9_1)p9 2¢9 _? 9p0 1¢91
2 — 1
VG = —= 0 0

apefld)fefl 0 (0 + 1) p0¢7972

Ifr=(X,Y, Z) satisfies r-VG1 then Y = _n + 0270 X 4 pt1¢p="1 Z. Thus,
P

V2Gi(7‘, 7‘) = (6 + ]_) (p9*2¢*9 X2 _ 2p971¢7971 XZ+ p9¢7972 Z2)
=(0+1)p" 6" (dX —p2Z)?>0. O

We now state the main result of this section that establishes the uniform
L*-bound of (p¢, m*, ¢S) in € > 0.

Theorem 2.6 Suppose ¢ satisfies (1.7) and |(¢o)z| < cpo in R. Then, there
exists a T = 1. > 0 with ¢ — 7, monotonically decreasing and 79 = co such that
0 < p¢ < const, ’;}; < const and |¢,| < const in Q@ = [0,7] x R.
Proof: Suppose that (¢g), < 0. Then, it follows from Lemmas 2.3-2.6 that
1
max,; Ga(t,z) < max, G2(0,z) = A. Hence, m + A > gpe(b_e > (0. Set
P

G = A+ G4. Tt then follows from Lemma 2.4 that

1
Gt 4+ MVG - ys + 5 P92 p, = € (Gow — V2G (Y, Yz))
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Let G* = G(kh), h > 0. Then,
1
G’“—G’“—1+A1va’f~y§+; (P")?2(¢F) 271 (¢")e = € (Gr—V2GF (yh, ys))+e(h)

where e(h)/h — 0 as h — 07. Suppose G¥(x¢) = max, G¥(z). Then, G¥(zo) =
(VG* - yF)(z0) = 0 and G*_(zg) < 0. It follows from Lemmas 2.3 and 2.5 that
if ¥(t) = max, G(t,z) then

(mo))29+1 < 56(29“)/%(%)(29“)/9.

$(kh) —9((k —1)h) —e(h) < —(

P
¢

2

Taking the limit A — 0%, we obtain

t C
Vi) = w(0) < [ 200 ()0 gy

o
and thus
0/(6+41)
1/)(0)(‘9“)/9
(2.10) w(t) < [ —— .
1— ;(%)0(29“)/91#(0)(9‘“)/9t
In fact, if

t
()= 9(0) + [ £ 0@/ ()@ 47
o 7

then 1(t) < s(t) and § < %9(29+1)/98(29+1)/0, which implies (2.10). Since

(Gi+Gy) and —Gy< = <Gy,

0< 2 p9670 <
¢ p

N~

the lemma follows from (2.9). O

3 Compensated Compactness

In this section we show that the sequence {(p¢, m¢, )}~ has a subsequence
that converges to a weak solution of (1.10) a.e in €2 using the method of com-
pensated compactness. First note that the mechanical energy

1 m? 1
3.1 = —+————plp 7!
31) T2 T’
and the corresponding entropy-flux
m 1 m
(3.2) ¢=2p+ —Zpgnt

S 2'p" 4—=1p
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form an entropy pair, i.e.,
(3.3) VnM =Vq

In order to treat solutions approaching a nonzero state at infinity, we consider
a normalized entropy pair

77((67¢)) - vvn((ﬁv (b))(’U - ’E)a
Q((’Ev (b)) - VM?(@:@)F(Z/)

where v = (p,m), ¥ = (p,m) and y = (v, ¢). Premultiplying (1.10) by V7, we
obtain

n(y)
q(y)

LT
Il

T+ qe =€ (ﬁxw - VQW(yxayx))~
Integration over {) yields an energy estimate
[ed] t 00 [ed]
(3.4) / 7(t,z) dz + e/ / V20 (Y, Yo ) da dt = / 7(0, z) dz.
—00 0 J—oo —00

The following lemma implies the energy estimate (2.2) where 7(y) = E(p, u, ¢).

Lemma 3.1 For p > 0, ¢ > 0, V27 is non-negative.
Proof: Note that

2
m o m 1,
— +p7 2ot - =’ to
Vi = m f 0
A
_pvfl(b*“r 0 p”(b*”*l

Thus,

2 1 m 2 y—2  —y—1 2
(3.5) v n(ym,yz)=;(;px—mx) +p" 9 (ppe—pde)* >0
for y, = (pmmm¢m)« a

The following lemma establishes the viscosity estimate which is essential for
the method of compensated compactness.

Lemma 3.2 Assume that 1 < v < 2 and ffooo 7(0,z) dx < oco. Then, if (p, m, ®)
is a solution of (1.10)

e/ / (|p2(t, 2)|* 4 |me(t, )|*) dz dt < const
0 —oo

where T > 0 is defined in Theorem 2.6
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Proof: From (2.9) and Lemma 2.2 we have

/m |¢m<t,x>|dx=/°° 162(0,2) dz, 1€ [0,7].

— 00 — 00

It thus follows from Theorem 2.6 that

T o0
/ / |pe(t, 2)|? dz < const.
0 —oo

Since 0 < p(t,z), ¢(t,z) < const in Q it follows from (3.5) that

V2 n(ys (t, @), ya (b, 2)) + 162 (8 2)[* 2 e lyo(t, 2)
for some ¢; > 0. Hence, the lemma follows from (3.4). O

We apply the method of compensated compactness for the function 9¢ de-

fined by
~E ~NE A€ pe me
v=\\p,m =\ =
(p% %) = (G20 52
The function 9¢ satisfies the 2x 2 viscous conservation law (1.15) with the forcing
term which is in L°*°(€2). Based on this observation we have

Lemma 3.3 Assume that the conditions in Theorem 2.6 are satisfied and that
fix;o 7(0,z) dx < co. Then, for 1 <~y < 2, the measure set

n(®): +q()a
lies in a compact subset of lecl (Q) for all weak entropy/entropy fluz pair (n,q)

. pe me

of Vo, F, where 0 = (=, —).
v (d)e d)e )
Proof: Suppose (p,m,®) is a solution to (1.10). Then, dividing the first two

equations of (1.10) by ¢, we obtain (1.15) for p Pandm =" Let (n,q) be

¢ ¢

a weak entropy/entropy flux pair, i.e.,

(3.6) VnV,F =Vq and n(0,:)=0.

It can be shown that for 0 < p < const, [} < const

(3.7) |Vn| < const and |V2n(r,r)| < const VZn*(r,r)

where ) 1
* m 2
' =gp (=) + ="
2 p ) (v —1)
is the mechanical energy, 7 is any vector in R? and constant is independent of
r. Premultiplying (1.15) by V7, we obtain

n(®): + q(0)2 = € ((0)wa — V?1(b2, 02)) + V(0) A
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hea () (0.)

pog
6)2
from Lemma 3.2 and Theorem 2.6 that

() v

uniformly in € > 0. Thus, {Vn(v®)A}cs is precompact in I/Vl;cl’q(Q), 1<g<2.
Since

where

It follows from Theorem 2.6 that

€ L*°(Q) uniformly in € > 0. It follows

T o0
/ / €|0S(t, z)|* dr dt < const
0 —00

The set {eVni }e~o is precompact in L?(Q2) and so is {€n(9¢)zx feso in HH(Q).
Hence, the lemma follows from the fact that if set S is compact in W=14(U)
and bounded in W17 (U) then S is compact in H=*(U) for 1 < ¢ < 2 < r and
any bounded and open set U in R?. [Ev] O

In the next lemma we prove that the sequence {¢°}.~o is precompact in

().
Lemma 3.4 For e >0 and 7 > 0 defined in Theorem 2.6

L2

loc

T (o]
/ / (|61 + |9 |*) da dt < const.
0 —o00

Thus, the family {¢¢(t,xz)}es0 is compact in L?(U) for any bounded rectangle
U=(0,7) x (=L, L).

Proof: Premultiplying (1.10) by ¢,, and integrating in (0,7) X R, we obtain

1 [ JRE
—0o0 0 —o0
1

(o) 1 T (o)
< = 2 L2 2 .
<3/ lo0oPat gl [ [ ot

where |u[oo = SUP(; 4)c(0,7)xr [u(t; )] Thus,

T o) t oo o0
/ / € Poe|? da dt < |u|Zo/ / |¢$|2da:dt+e/ |62 (0, 2)|? dz
0 —o0 0 —0o0 —00

and
// |q§t|2dmdt§4|u|§o// |q§x|2dacdt+26/ 160, )| dz
0 —o0 0 — 00 —00
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which proves the lemma.
Now, we state the main result of the paper.

Theorem 3.5 Assume that the conditions in Theorem 2.6 are satisfied and
J7(0,z)dz < oco. Then, for 1 < v < 5/3, there exists a subsequence of
(p¢,me, ¢°) such that

(3.8)

({2, 2), me(t, 2), (1, 2)) — (plt, @), mlt,2), B(t,2))  ave. in Q= [0,7] x .

where the triple (p,m,$) € LY () x L>®(Q) x Wh>(Q) is a weak solution to
(1.4).

Proof: It follows from Lemma 3.3 that there exists a subsequence of (g€, mc)
such that

(5(t, ), me(t, ) — (p(t, ), m(t,z)) a.e. in Q.

by applying the results of [Dil] and [Ch]. It follows from Lemma 3.4 that using
a standard diagonal process, there is a subsequence of ¢¢(t,x) that converges
a.e. in (2, weakly in H'(Q2) and weakly-star in W1°°(Q) to ¢. Define p(t,z) =
p(t, x)p(t, x), m(t,x) = m(t, x)p(t, z) a.e. (t,x) € Q. Then, the statement (3.8)
holds. It follows from the first two equations of (1.10) that

/0 /_ ((pe,me) (¢t _€'¢:wc)+F(,0€,m€,¢€) ¢x) dedt =0

for all ¢ € C°(Q; R?). It thus follows from (3.8) and the dominated convergence
theorem that (1.8) is satisfied. It follows from the third equation of (1.10) that

|| i+ woe+eone) dsar—o
0 —oo

for all £ € C°(Q; R). Since u¢ — u in L?(U) for any bounded rectangle U =
[0,7] x [-L, L] and ¢¢ — ¢ weakly in H*(Q) it follows that

/oT /o;(d)t + ugy) E dw dt = 0

for all £ € C°(Q; R). Hence ¢ satisfies (1.4) a.e. in Q. O
Corollary 3.6 Suppose the entropy pair (n,q) is defined by (3.1)-(3.2). Then

(3.9) /0 /_ (€, +q&) dudi >0

for all & € C°(4 R) satisfying & > 0. That is, the third equation of (1.1) is
replaced by the inequality n: + g < 0 in the sense of distributions.
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Proof: It follows from (3.3) that

Tt ra e dedt=c [ [ VPt v ededi
[/ L/,

for all i € C°(2; R?) satisfying £ > 0. It follows from Lemma 3.1 that the
right hand side of this equality is nonnegative. Thus, by taking the limit as
e — 01 we obtain (3.9) O
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