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Weak Solutions to the One-dimensional

Non-Isentropic Gas Dynamics by the Vanishing

Viscosity Method ∗

Kazufumi Ito

Abstract

In this paper we consider the non-isentropic equations of gas dynamics
with the entropy preserved. Equations are formulated so that the problem
is reduced into the 2× 2 system of conservation laws with a forcing term
in momentum equation. The method of compensated compactness is then
applied to prove the existence of weak solution in the vanishing viscosity
method.

1 Introduction

Consider the one-dimensional gas dynamics equation in the Eulerian coordinate

(1.1)
ρt + (ρu)x = 0
(ρu)t + (ρu2 + p)x = 0
st + usx = 0.

where ρ, u, p and s denote the density, velocity, pressure and entropy. Other
relevant quantities are the internal energy e and the temperature T . We assume
that the gas is ideal, so that the equation of state is given by

p = RρT

and that it is polytropic, so that e = cv T and

(1.2) p = (γ − 1)es/cvργ

where γ = cp/cv > 1 and R = cp − cv. Define φ by

(1.3) φ1−γ = γ(γ − 1) es/cv .
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Then, φ satisfies

φt + uφx = 0.

Thus, we consider the Cauchy problem (equivalent to (1.1))

(1.4)
ρt +mx = 0
mt + (m2/ρ+ p)x = 0
φt + uφx = 0 .

where

(1.5) m = ρu and p =
1

γ
φ1−γργ ,

with smooth initial data (ρ0,m0) in L∞(R2) that approaches a constant state
(ρ̄, m̄) at infinity and satisfies ρ0(x) ≥ δ1 > 0, and φ0 in W 1,∞(R) that satisfies
(φ0)x converges to 0 at infinity and

(1.6) φ0(x) ≥ δ2 > 0 and (φ0)x(x) ≥ 0 (or (φ0)x(x) ≤ 0).

Consider the conservation form of the gas dynamics

(1.7)

ρt + (ρu)x = 0
(ρu)t + (ρu2 + p)x = 0

[ρ (
1

2
u2 + e)]t + (ρu [

1

2
u2 + e] + pu)x = 0.

System (1.7) can be written as the hyperbolic system of conservation laws

yt + f(y)x = 0

where y = y(t, x) = (ρ, ρu, ρ (1
2 u

2 + e)) ∈ R3 and f is a smooth nonlinear map-
ping from R3 to R3. System (1.4) is equivalent to system (1.7) when solutions
are smooth but not necessarily when solutions are weak (e.g.,[Sm, Chapters 16-
17]). It is proved in Corollary 3.6 that the viscosity limit of solutions to (1.10)
satisfies ηt+qx ≤ 0 in the sense of distributions, i.e., the third equation of (1.7),
the conservation of energy ηt+qx = 0 is replaced by the non-energy production.
We also note that the isentropic solution (φ = const) [Di1] is a weak solution of
(1.4) but not necessarily of (1.7).

In this paper we show the existence of weak solutions to (1.4)-(1.5) using
the vanishing viscosity method. The function (ρ,m, φ) ∈ L∞(Ω) × L∞(Ω) ×
W 1,∞(Ω) with Ω = [0, τ ] × R is a weak solution of (1.4)-(1.5) if φ satisfies the
third equation of (1.4) a.e in Ω and

(1.8)

∫ τ

0

∫ ∞
−∞

(v · ψt + F (ρ,m, φ) · ψx) dxdt = 0
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for all ψ ∈ C∞c (Ω;R2) where v = (ρ,m) and

(1.9) F (ρ,m, φ) = (m,m2/ρ+ p)

We consider the viscous equation of (1.4) with equal diffusion rates

(1.10)
ρt +mx = ε ρxx
mt + (m2/ρ+ p)x = εmxx

φt + uφx = εφxx.

It will be shown in Theorem 3.5 that the solutions (ρε,mε, φε) to (1.10) converge
to a locally defined (in time) weak solution (ρ,m, φ) of (1.4).

Our approach is based on the following observation. Suppose φ is a constant.
Then equation (1.4) reduces to the isentropic gas dynamics. For the isentropic
equation it is shown in DiPerna [Di1] that (1.4) has a weak solution by the
vanishing viscosity method and using the theory of compensated compactness.
The key steps in [Di1] are given as follows. First, if φ is a constant and θ =
(γ − 1)/2 then
(1.11)

w = G1(ρ,m, φ) =
m

ρ
+

1

θ
φ−θρθ and − z = G2(ρ,m, φ) = −

m

ρ
+

1

θ
φ−θρθ

are the Riemann invariants so that∇vG1 and∇vG2 are the two left eigenvectors
of the 2× 2 matrix

∇vF =

 0 1

−
m2

ρ2
+ ρ2θφ−2θ 2m

ρ

 .

where φ is assumed to be a positive constant. The method of invariant regions
([CCS],[Sm]) is applied to G1, G2 to obtain that 0 ≤ ρε ≤ const, |mε/ρε| ≤
const. Then, there exist a subsequence of vε = (ρε,mε), still denoted by vε and
a Young measure νt,x such that for each Φ ∈ C(R2) we have Φ(vε) converges
weak star to Φ̄ in L∞(Ω) where

Φ̄(t, x) = 〈ν,Φ〉 =

∫
Ω

Φ(y) dνt,x(y), a.e. (t, x) ∈ Ω.

Using the entropy fields [La] and the div-curl theorem of Murat [Mu] and Tatar
[Ta] for bilinear maps in the weak topology,

(1.12) 〈ν, η1q2 − η2q1〉 = 〈ν, η1〉〈ν, q2〉 − 〈ν, η2〉〈ν, q1〉

for all entropy/entropy flux pairs (ηi, qi) so that

∇vη∇vF = ∇vq.
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Then, using the weak entropy pairs (i.e., η(0, ·) = 0) it is shown that ν reduces
to a point mass, i.e., vε converges to v, a.e. in Ω.

We will apply the method described above for the non-isentropic equation
(1.10). We need to overcome the two major difficulties. First, G1, G2 are no
longer the Riemann invariants of the 3× 3 matrix M :

M = ∇F =


0 1 0

−
m2

ρ2
+ ρ2θφ−2θ 2m

ρ
−

2θ

γ
ργφ−2θ−1

0 0
m

ρ

 .

Next, equation (1.12) should be extended to the 3 × 3 system. We resolve
these difficulties by the following steps. Note (see Lemma 2.4) that Gi =
Gi(ρ,m, φ), i = 1, 2 satisfies
(1.13)

(Gi)t + λi∇Gi · yx +
1

γ

{
ρ2θφ−2θ−1φx, i = 1

−ρ2θφ−2θ−1φx, i = 2
= ε ((Gi)xx −∇

2Gi(yx, yx))

where y = (ρ,m, φ) is a solution to (1.10) and λ1 = u+ ρθφ−θ, λ2 = u− ρθφ−θ

are the eigenvalues of the 2×2 matrix ∇vF . Here, Gi, i = 1, 2 are quasi-convex
functions of (ρ,m, φ) (see Lemma 2.5), i.e.,

r · ∇Gi = 0 implies ∇2Gi(r, r) ≥ 0.

Note that from the third equation of (1.10) that φε ≥ δ2 and |φε|∞ ≤ |φ0|∞ (see
Lemma 2.1) and moreover φεx satisfies

(φεx)t + (uε φεx)x = ε (φεx)xx

Observing that if (ρ,m, φ) is a solution to (1.10) then ξ = log(φx
ρ

) satisfies

(1.14) ξt + u ξx = ε (ξxx + |(logφx)x|
2 − |(logρ)x|

2),

we show that if (φ0)x ≥ 0 (resp. ≤ 0) then φεx ≥ 0 (resp. ≤ 0) and |φεx| ≤ c ρ
ε in

Ω provided that |(φ0)x| ≤ c ρ0 in R (see Lemma 2.3). It thus follows from (1.13)
and the quasi-convexity of Gi, i = 1, 2 that maxxG2(t, x) ≤ maxxG2(0, x)
(resp. maxxG1(t, x) ≤ maxxG1(0, x)) and

|ρ2θφ−2θ−1φx| ≤ c

(
ρ

φ

)2θ+1

.

By the maximum principle (see Theorem 2.6), there exists a τ = τc > 0 with
c→ τc monotonically decreasing and τ0 =∞ such that maxt∈[0,τ ], x∈R G1(t, x)
is less than a constant independent of ε > 0. Hence, we obtain 0 ≤ ρε ≤ const,
|mε/ρε| ≤ const and |φx| ≤ const in Ω.
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Second, in contrast to the isentropic case, the system (1.10) is not endowed
with a rich family of entropy-entropy flux pairs. Thus, in order to prove that
the Young measures νt,x of a weakly star convergent subsequence of (ρε,mε, φε)
reduce to a point mass, we first note that {φε(t, x)} is precompact in L2

loc(Ω)
and thus φε converges φ a.e. in Ω (see Lemma 3.4). Also, we note that dividing
the first two equations (1.10) by φ, we obtain

(1.15)
ρ̂t + m̂x = ε (ρ̂xx + 2

ρxφx

φ2
)

m̂t + (m̂2/ρ̂+
1

γ
ρ̂γ)x +

pφx

φ2
= ε (m̂xx + 2

mxφx

φ2
).

where ρ̂ =
ρ

φ
and m̂ =

m

φ
(see Lemma 3.2). This implies that v̂ = (ρ̂, m̂)

satisfies the (viscous) isentropic gas-dynamics with the forcing term −pφx/φ2

in the momentum equation. Since
pεφεx
(φε)2

∈ L∞(Ω) uniformly in ε > 0, thus

{
pεφεx
(φε)2

}ε>0 is precompact in H−1,q
loc (Ω), 1 ≤ q < 2. Hence, the method of

compensated compactness in [Di1],[Ch] can be applied to the functions (ρ̂ε, m̂ε)
to show that νt,x is a point mass provided that 1 < γ ≤ 5/3.

Regarding work on existence of weak solutions for conservation laws, we refer
the reader to an excellent treatise by DiPerna [Di3] and references therein. Con-
cerning basic framework on conservation laws, we refer the reader to [La],[Sm]
and for the functional analytic framework of compensated compactness we refer
[Mu],[Ta1],[Ev] and [Di2]. For scalar conservation laws the vanishing viscosity
method is employed (e.g., in [Ol],[Kr] and references in [Sm]) to define the unique
entropy solution. Also, the vanishing viscosity method is used to develop the
viscosity solution to the Hamilton-Jacobi equation in [CL]. The finite-difference
methods (e.g., Lax-Friedrichs and Gudunov schemes) are also used to construct
weak solutions to a scalar and 2 × 2 system of conservation laws (e.g., see
[Di2],[Ch] and [Sm]).

In the case where the initial data have small total variation, Glimm [Gl]
proved the global existence of BV-solutions for a general class of hyperbolic
systems as the strong limit of random choice approximations. However, the
problem of existence of solutions to (1.7) with large initial data is still unsolved.
In [CD] the vanishing viscosity method is applied to the system (1.7) under a
special class of constitutive relations in Lagrangian coordinates.

2 The Viscosity Method

In this section we establish the uniform L∞ bound of yε = (ρε,mε, φε).
Lemma 2.1 If φ ∈ C1,2([0, τ ]×R) satisfies φt + uφx = ε φxx then

min
x

φ0(x) ≤ φ(t, x) ≤ max
x

φ0(x).
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Proof: Using the same arguments as in the proof of Theorem 2.6, we can show
that maxx φ(t, x) ≤ maxx φ0(x) and minx φ(t, x) ≥ minx φ0(x). 2

It will be shown in Section 3 (see (3.4) and Lemma 3.1) that the normalized
mechanical energy

(2.1) E(ρ, u, φ) =
1

2
ρ(u− ū)2 +

1

γ
(ργ − γ ρ̄γ−1(γ − γ̄)− ρ̄γ)φ1−γ

satisfies

(2.2)

∫ ∞
−∞

E(ρ(t, x), u(t, x), φ(t, x)) dx ≤

∫ ∞
−∞

E(ρ0(x), u0(x), φ0(x)) dx.

The following lemma shows the lower bound of ρε.

Lemma 2.2 If ρ ∈ C1,2([0, τ ]×R) satisfies

(2.3) ρt + (u ρ)x = ε ρxx

with ρ(0, ·) ≥ 0 and u ∈ C1(Ω), then ρ(t, ·) ≥ 0. Moreover, if ρ(0, ·) ≥ δ > 0
and

(2.4)

∫ τ

0

∫ ∞
−∞

ρ |u− u0|
2 dxdt ≤ const,

then ρ(t, ·) ≥ δ(ε, τ) > 0 on (0, τ).

Proof: Choose ψ = min (ρ(t, x), 0). Then we have∫ ∞
−∞

1

2
|ψ(t, x)|2 +

∫ t

0

∫ ∞
−∞

(ε |ψx|
2 − ψuψx) dxds = 0.

By the Hölder inequality, we obtain∫ ∞
−∞
|ψ(t, 0)|2 ≤

|u|∞
2ε

∫ t

0

∫ ∞
−∞
|ψ|2 dxds

where |u|∞ = sup(t,x)∈(0,τ)×R |u(t, x)|, and the Gronwall’s inequality implies
ψ = 0. Thus, ρ ≥ 0.

Next, we prove ρ(t, ·) ≥ δ = δ(ε, τ) > 0 if ϕ(0, ·) ≥ δ > 0 by using the
Stampacchia’s lemma (e.g., see [FI],[Tr]), i.e., suppose χ(c) is a nonnegative,
non-increasing function on [c0,∞), and there exist positive constants K, s and
t such that

χ(ĉ) ≤ Kcs(ĉ− c)−s χ(c)1+t for all ĉ > c ≥ c0,

then
χ(c∗) = 0 for c∗ = 2c0 (1 + 2

1+2t

t2 K
1+t
st χ(c0)

1+t
s ).
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First, we establish a priori bound. We consider the class K [Di1] of strictly
convex C2 functions h with following properties:

h(ρ̄) = h′(ρ̄) = 0, h(ρ) = ρ−α on (0, ρ̄/2) for some 0 < α < 1.

Premultiplying the first equation of (1.10) by h′(ρ) we obtain

h(ρ)t + (h′(ρ)ρu)x − h
′′(ρ)ρxρu = ε (h(ρ)xx − h

′′(ρ)ρ2
x)

Integration of this over (0, t)×R yields∫ ∞
−∞

h(ρ(t, x))− h(ρ0(x)) dx+ ε

∫ t

0

∫ ∞
−∞

h′′(ρ)ρ2
x dx dt

=

∫ t

0

∫ ∞
−∞

h′′(ρ)ρxρ(u− ū) dx dt .

Note that

h′′(ρ)ρxρ(u− ū) ≤
ε

2
h′′(ρ)ρ2

x +
1

2ε
h′′(ρ)ρ2(u− ū)2.

Since there exists some constant β > 0 such that

ρ2 h′′(ρ) ≤ β ρ for ρ̄/2 ≤ ρ ≤M
ρ2 h′′(ρ) ≤ β h(ρ) for 0 < ρ < ρ̄/2

it follows that ρ2 h′′(ρ)(u− ū)2 ≤ β (ρ (u− ū)2 + h(ρ)). Hence,∫ ∞
−∞

h(ρ(t, x)) − h(ρ0(x)) dx+
ε

2

∫ t

0

∫ ∞
−∞

h′′(ρ)ρ2
x dx dt

≤
β

2ε

∫ t

0

∫ ∞
−∞

ρ(u− ū)2 + h(ρ) dxdt .

and it follows from (2.4) and Gronwall’s inequality that

(2.5)

∫ ∞
−∞

h(ρ(t, x)) dx ≤ const on [0, τ ].

Set η = 1/ρ. Then from (2.3) η satisfies

ηt + u ηx − uxη = ε (ηxx −
2|ηx|2

η
).

We further introduce η̂ = eω tη with ω > 0 to be determined later. The equation
for η̂ becomes

(2.6) η̂t + ω η̂ + u η̂x − uxη̂ = ε (η̂xx −
2|η̂x|2

η̂
).
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Define ξ = ξc = max (0, η̂− c) with c ≥ c0 = δ−1. Pre-multiplication of (2.6) by
ξ3 and integration over R yields

(2.7)

∫ ∞
−∞

(
1

4
(ξ4)t + ω (ξ4 + c ξ3) +

3ε

4
|(ξ2)x|

2) ≤ −

∫ ∞
−∞

u (5 ξ3 + 3c ξ2)ξx dx.

Note that

−

∫ ∞
−∞

5u ξ3ξx ≤ −

∫ ∞
−∞

5

2
uξ2(ξ2)x dx ≤

ε

4

∫ ∞
−∞
|(ξ2)x|

2 dx+
25

4ε
|u|2∞

∫ ∞
−∞
|ξ|4 dx

To estimate the second term on the right hand side of (2.7), we define

Ic(t) = {x ∈ R : ξ(t, x) > 0} = {x ∈ R : η(t, x) > c eωt}.

Then, using the Hölder inequality, we have

−

∫ ∞
−∞

3c ξ2ξx dx = −

∫ ∞
−∞

3c

2
uξ(ξ2)x dx

≤
3c

2
|u|∞

(∫ ∞
−∞
|(ξ2)x|

2 dx

)1/2(∫ ∞
−∞
|ξ|6 dx

)1/6

|Ic(t)|
1/3

≤
ε

4

∫ ∞
−∞
|(ξ2)x|

2 dx+
9c2

4ε
|u|2∞

(∫ ∞
−∞
|ξ|6 dx

)1/3

|Ic(t)|
2/3.

Substituting these estimates into (2.7), choosing ω =
ε

4
+

25

4ε
|u|2∞, and integrat-

ing on the interval [0, t], we obtain∫ ∞
−∞
|ξ|4 dx+ ε

∫ t

0

∫ ∞
−∞

(|ξ2|2 + |(ξ2)x|
2) dxds

≤
9c2

ε
|u|2∞

∫ t

0

(∫ ∞
−∞
|ξ|6 dx

)1/3

|Ic(s)|
2/3 ds.(2.8)

Since

|ξ2|∞ ≤
√

2

(∫ ∞
−∞

(|ξ2|2 + |(ξ2)x|
2) dx

)1/2

,

we have (∫ ∞
−∞
|ξ|6 dx

)1/3

≤ 21/6

(∫ ∞
−∞

(|ξ2|2 + |(ξ2)x|
2) dx

)1/2

.

Thus, from (2.8),∫ ∞
−∞
|ξ|4 dx+ ε

∫ t

0

∫ ∞
−∞

(|ξ2|2 + |(ξ2)x|
2) dxds

≤ 21/3 81c4

4ε
|u|4∞

∫ t

0

|Ic(s)|
4/3 ds ≤ Kc4 χ(c)4/3
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where we define

χ(c) = sup
t∈[0,τ ]

|Ic(t)| and K = 21/3 81τ

4ε
.

Clearly χ(c) is nonnegative, non-increasing on [c0,∞). Moreover, for ĉ > c,∫ ∞
−∞
|ξ|4 dx ≥

∫
Iĉ

|ξ|4 dx ≥ (ĉ− c)4 Iĉ(t).

Hence,
Iĉ(t) ≤ K c4(ĉ− c)−4χ(c)4/3

and by taking the sup over t we obtain

χ(ĉ) ≤ Kc4(ĉ− c)−4 χ(c)4/3.

It follows from (2.5) that χ(2/ρ̄) <∞ and thus from Stampacchia’s lemma that
χ(c∗) = 0 for some c∗ ≥ c0 and hence

η(t, x) ≤ c∗eωt and ρ(t, x) ≥ (c∗)−1 e−ωt ,

where c∗ depends on ε and τ . 2

The following lemma shows that |φεx(t, ·)| is uniformly bounded by ρε(t, ·)
for every t ∈ [0, τ ] under assumption (1.7).

Lemma 2.3 Assume that φ0 satisfies (1.7) and |(φ0)x| ≤ c ρ0 in R. Then
|φx(t, ·)| ≤ c ρ(t, x) in R for every t ∈ [0, τ ].

Proof: If the initial condition (ρ0,m0, φ0) is sufficiently smooth and (φ0)x ≥ δ3
then the solution to (1.10) satisfies ρ, u, φ ∈ C3(Ω) and φx(t, ·) > 0. Note that
φx satisfies

(2.9) (φx)t + (uφx)x = ε (φx)xx.

Then, it is not difficult to show that if we define ξ = log(φxρ ) then ξ satisfies

ξt + u ξx = ε (ξxx + |(logφx)x|
2 − |(logρ)x|

2)

Suppose ξ(t, x0) = maxx ξ(t, x). Then

ξx(t, x0) = (log φx)x(t, x0)− (log ρ)x(t, x0) = 0

and ξxx(t, x0) ≤ 0. Thus, ∂t(maxx ξ(t, x)) ≤ 0, which implies the lemma. Since
the solution to (2.9) continuously depends on the initial data (φ0)x the estimate
holds for when (φ0)x ≥ 0. 2

The following lemmas provide the technical properties of the functions Gi(t),
i = 1, 2 defined by (1.11).
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Lemma 2.4 If y = (ρ,m, φ) ∈ C1,2((0, τ) × R)3 is a solution to (1.10), then
(1.13) holds.

Proof: First, note that the 3 × 3 matrix M = ∇F has the eigenvalues λ1 =
m

ρ
+ ρθφ−θ, λ2 =

m

ρ
− ρθφ−θ and

m

ρ
and that ∇vGi, i = 1, 2 are the left-

eigenvectors of the sub-matrix ∇vF corresponding to λi. Thus,

(G1)t+λ1 (∇Gi·yx+ρ
θφ−θ−1φx)−(

2θ

γ
ρ2θ−1φ−2θ−1+uρθφ−θ−1)φx = ε∇G1·yxx .

Since ∇G1 · yxx = (G1)xx − ∇2G1(yx, yx) we obtain (1.13) for G1. The same
calculation applies to G2. 2

Lemma 2.5 If ρ > 0, φ > 0 then Gi, i = 1, 2, are quasi-convex.

Proof: We prove G1 =
m

ρ
+

1

θ
ρθφ−θ is quai-convex. The same proof applies

to G2. Note that

∇G1 =


−
m

ρ2
+ ρθ−1φ−θ

1

ρ
−ρθφ−θ−1



∇2G1 =


−

2m

ρ3
+ (θ − 1) ρθ−2φ−θ −

1

ρ2
−θ ρθ−1φ−θ−1

−
1

ρ2
0 0

−θ ρθ−1φ−θ−1 0 (θ + 1) ρθφ−θ−2

 .

If r = (X,Y, Z) satisfies r ·∇G1 then Y = −
m

ρ
+ρθφ−θX+ρθ+1φ−θ−1 Z. Thus,

∇2Gi(r, r) = (θ + 1) (ρθ−2φ−θX2 − 2 ρθ−1φ−θ−1XZ + ρθφ−θ−2 Z2)
= (θ + 1)ρθ−2φ−θ−2 (φX − ρZ)2 ≥ 0. 2

We now state the main result of this section that establishes the uniform
L∞-bound of (ρε,mε, φεx) in ε > 0.

Theorem 2.6 Suppose φ0 satisfies (1.7) and |(φ0)x| ≤ cρ0 in R. Then, there
exists a τ = τc > 0 with c→ τc monotonically decreasing and τ0 =∞ such that
0 ≤ ρε ≤ const, |m

ε

ρε | ≤ const and |φx| ≤ const in Ω = [0, τ ]×R.

Proof: Suppose that (φ0)x ≤ 0. Then, it follows from Lemmas 2.3-2.6 that

maxxG2(t, x) ≤ maxxG2(0, x) = A. Hence,
m

ρ
+ A ≥

1

θ
ρθφ−θ ≥ 0. Set

G = A+G1. It then follows from Lemma 2.4 that

Gt + λ1∇G · yx +
1

γ
ρ2θφ−2θ−1φx = ε (Gxx −∇

2G(yx, yx))
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Let Gk = G(kh), h > 0. Then,

Gk−Gk−1+λ1∇G
k ·ykx+

1

γ
(ρk)2θ(φk)−2θ−1(φk)x = ε (Gkxx−∇

2Gk(ykx, y
k
x))+ε(h)

where ε(h)/h→ 0 as h→ 0+. Suppose Gk(x0) = maxx G
k(x). Then, Gkx(x0) =

(∇Gk · ykx)(x0) = 0 and Gkxx(x0) ≤ 0. It follows from Lemmas 2.3 and 2.5 that
if ψ(t) = maxx G(t, x) then

ψ(kh)− ψ((k − 1)h)− ε(h) ≤
c

γ
(
ρ

φ
(x0))

2θ+1 ≤
c

γ
θ(2θ+1)/θψ(kh)(2θ+1)/θ.

Taking the limit h→ 0+, we obtain

ψ(t)− ψ(0) ≤

∫ t

0

c

γ
θ(2θ+1)/θ ψ(τ)(2θ+1)/θ dτ

and thus

(2.10) ψ(t) ≤

(
ψ(0)(θ+1)/θ

1− c
γ ( θ+1

θ )θ(2θ+1)/θψ(0)(θ+1)/θ t

)θ/(θ+1)

.

In fact, if

s(t) = ψ(0) +

∫ t

0

c

γ
θ(2θ+1)/θ ψ(τ)(2θ+1)/θ dτ

then ψ(t) ≤ s(t) and ṡ ≤ c
γ
θ(2θ+1)/θs(2θ+1)/θ, which implies (2.10). Since

0 ≤
1

θ
ρθφ−θ ≤

1

2
(G1 +G2) and −G2 ≤

m

ρ
≤ G1 ,

the lemma follows from (2.9). 2

3 Compensated Compactness

In this section we show that the sequence {(ρε,mε, φε)}ε>0 has a subsequence
that converges to a weak solution of (1.10) a.e in Ω using the method of com-
pensated compactness. First note that the mechanical energy

(3.1) η =
1

2

m2

ρ
+

1

γ(γ − 1)
ργφ−γ+1

and the corresponding entropy-flux

(3.2) q =
ρ

2
(
m

ρ
)3 +

1

γ − 1

m

ρ
ργφ−γ+1
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form an entropy pair, i.e.,

(3.3) ∇ηM = ∇q

In order to treat solutions approaching a nonzero state at infinity, we consider
a normalized entropy pair

η̃ = η(y)− η((v̄, φ))−∇vη((v̄, φ))(v − v̄),
q̃ = q(y)− q((v̄, φ))−∇vη((v̄, φ))F (y)

where v = (ρ,m), v̄ = (ρ̄, m̄) and y = (v, φ). Premultiplying (1.10) by ∇η̃, we
obtain

η̃t + q̃x = ε (η̃xx −∇
2η(yx, yx)).

Integration over Ω yields an energy estimate

(3.4)

∫ ∞
−∞

η̃(t, x) dx+ ε

∫ t

0

∫ ∞
−∞
∇2η(yx, yx) dxdt =

∫ ∞
−∞

η̃(0, x) dx.

The following lemma implies the energy estimate (2.2) where η̃(y) = E(ρ, u, φ).

Lemma 3.1 For ρ > 0, φ > 0, ∇2η is non-negative.

Proof: Note that

∇2η =


m2

ρ3
+ ργ−2φ−γ+1 −

m

ρ2
−ργ−1φ−γ

−
m

ρ2

1

ρ
0

−ργ−1φ−γ 0 ργφ−γ−1

 .

Thus,

(3.5) ∇2η (yx, yx) =
1

ρ
(
m

ρ
ρx −mx)

2 + ργ−2φ−γ−1 (φρx − ρ φx)
2 ≥ 0

for yx = (ρx,mx, φx). 2

The following lemma establishes the viscosity estimate which is essential for
the method of compensated compactness.

Lemma 3.2 Assume that 1 < γ ≤ 2 and
∫∞
−∞ η̃(0, x) dx <∞. Then, if (ρ,m, φ)

is a solution of (1.10)

ε

∫ τ

0

∫ ∞
−∞

(|ρx(t, x)|
2 + |mx(t, x)|

2) dxdt ≤ const

where τ > 0 is defined in Theorem 2.6
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Proof: From (2.9) and Lemma 2.2 we have∫ ∞
−∞
|φx(t, x)| dx =

∫ ∞
−∞
|φx(0, x)| dx , t ∈ [0, τ ].

It thus follows from Theorem 2.6 that∫ τ

0

∫ ∞
−∞
|φx(t, x)|

2 dx ≤ const.

Since 0 < ρ(t, x), φ(t, x) ≤ const in Ω it follows from (3.5) that

∇2 η(yx(t, x), yx(t, x)) + |φx(t, x)|
2 ≥ c1 |yx(t, x)|

2

for some c1 > 0. Hence, the lemma follows from (3.4). 2

We apply the method of compensated compactness for the function v̂ε de-
fined by

v̂ε = (ρ̂ε, m̂ε) = (
ρε

φε
,
mε

φε
)

The function v̂ε satisfies the 2×2 viscous conservation law (1.15) with the forcing
term which is in L∞(Ω). Based on this observation we have

Lemma 3.3 Assume that the conditions in Theorem 2.6 are satisfied and that∫∞
−∞ η̃(0, x) dx <∞. Then, for 1 < γ ≤ 2, the measure set

η(v̂ε)t + q(v̂ε)x

lies in a compact subset of H−1
loc (Ω) for all weak entropy/entropy flux pair (η, q)

of ∇vF , where v̂ε = (
ρε

φε
,
mε

φε
).

Proof: Suppose (ρ,m, φ) is a solution to (1.10). Then, dividing the first two

equations of (1.10) by φ, we obtain (1.15) for ρ̂ =
ρ

φ
and m̂ =

m

φ
. Let (η, q) be

a weak entropy/entropy flux pair, i.e.,

(3.6) ∇η∇vF = ∇q and η(0, ·) = 0.

It can be shown that for 0 < ρ ≤ const, |m
ρ
| ≤ const

(3.7) |∇η| ≤ const and |∇2η(r, r)| ≤ const∇2η∗(r, r)

where

η∗ =
1

2
ρ (
m

ρ
)2 +

1

γ(γ − 1)
ργ

is the mechanical energy, r is any vector in R2 and constant is independent of
r. Premultiplying (1.15) by ∇η, we obtain

η(v̂)t + q(v̂)x = ε (η(v̂)xx −∇
2η(v̂x, v̂x)) +∇η(v̂)A
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where

A = 2ε

(
ρxφx

φ2
,
mxφx

φ2

)
−

(
0,
pφx

φ2

)
It follows from Theorem 2.6 that

pεφεx
(φε)2

∈ L∞(Ω) uniformly in ε > 0. It follows

from Lemma 3.2 and Theorem 2.6 that

ε1/2
(
ρεxφ

ε
x

(φε)2
,
mε
xφ

ε
x

(φε)2

)
∈ L2(Ω)

uniformly in ε > 0. Thus, {∇η(vε)Aε}ε>0 is precompact inW−1,q
loc (Ω), 1 ≤ q < 2.

Since ∫ τ

0

∫ ∞
−∞

ε |v̂εx(t, x)|
2 dxdt ≤ const

The set {ε∇ηv̂εx}ε>0 is precompact in L2(Ω) and so is {εη(v̂ε)xx}ε>0 in H−1(Ω).
Hence, the lemma follows from the fact that if set S is compact in W−1,q(U)
and bounded in W−1,r(U) then S is compact in H−1(U) for 1 ≤ q < 2 < r and
any bounded and open set U in R2. [Ev] 2

In the next lemma we prove that the sequence {φε}ε>0 is precompact in
L2
loc(Ω).

Lemma 3.4 For ε > 0 and τ > 0 defined in Theorem 2.6∫ τ

0

∫ ∞
−∞

(|φεt|
2 + |φεx|

2) dxdt ≤ const.

Thus, the family {φε(t, x)}ε>0 is compact in L2(U) for any bounded rectangle
U = (0, τ)× (−L,L).

Proof: Premultiplying (1.10) by φxx and integrating in (0, τ)×R, we obtain

1

2

∫ ∞
−∞
|φx(τ, x)|

2 dx+
ε

2

∫ τ

0

∫ ∞
−∞
|φxx|

2 dxdt

≤
1

2

∫ ∞
−∞
|φx(0, x)|

2 dx+
1

2ε
|u|2∞

∫ τ

0

∫ ∞
−∞
|φx|

2 dxdt.

where |u|∞ = sup(t,x)∈(0,τ)×R |u(t, x)|. Thus,∫ τ

0

∫ ∞
−∞
|ε φxx|

2 dxdt ≤ |u|2∞

∫ t

0

∫ ∞
−∞
|φx|

2 dxdt+ ε

∫ ∞
−∞
|φx(0, x)|

2 dx

and ∫ τ

0

∫ ∞
−∞
|φt|

2 dxdt ≤ 4|u|2∞

∫ τ

0

∫ ∞
−∞
|φx|

2 dxdt+ 2ε

∫ ∞
−∞
|φx(0, x)|

2 dx
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which proves the lemma.

Now, we state the main result of the paper.

Theorem 3.5 Assume that the conditions in Theorem 2.6 are satisfied and∫
η̃(0, x) dx < ∞. Then, for 1 < γ ≤ 5/3, there exists a subsequence of

(ρε,mε, φε) such that
(3.8)
(ρε(t, x),mε(t, x), φε(t, x))→ (ρ(t, x),m(t, x), φ(t, x)) a.e. in Ω = [0, τ ]×R.

where the triple (ρ,m, φ) ∈ L∞+ (Ω) × L∞(Ω) ×W 1,∞(Ω) is a weak solution to
(1.4).

Proof: It follows from Lemma 3.3 that there exists a subsequence of (ρ̂ε, m̂ε)
such that

(ρ̂ε(t, x), m̂ε(t, x))→ (ρ̂(t, x), m̂(t, x)) a.e. in Ω.

by applying the results of [Di1] and [Ch]. It follows from Lemma 3.4 that using
a standard diagonal process, there is a subsequence of φε(t, x) that converges
a.e. in Ω, weakly in H1(Ω) and weakly-star in W 1,∞(Ω) to φ. Define ρ(t, x) =
ρ̂(t, x)φ(t, x), m(t, x) = m̂(t, x)φ(t, x) a.e. (t, x) ∈ Ω. Then, the statement (3.8)
holds. It follows from the first two equations of (1.10) that∫ τ

0

∫ ∞
−∞

((ρε,mε) · (ψt − ε ψxx) + F (ρε,mε, φε) · ψx) dxdt = 0

for all ψ ∈ C∞c (Ω;R2). It thus follows from (3.8) and the dominated convergence
theorem that (1.8) is satisfied. It follows from the third equation of (1.10) that∫ τ

0

∫ ∞
−∞

((φεt + uεφεx) ξ + ε φxξx) dxdt = 0

for all ξ ∈ C∞c (Ω;R). Since uε → u in L2(U) for any bounded rectangle U =
[0, τ ]× [−L,L] and φε → φ weakly in H1(Ω) it follows that∫ τ

0

∫ ∞
−∞

(φt + uφx) ξ dx dt = 0

for all ξ ∈ C∞c (Ω;R). Hence φ satisfies (1.4) a.e. in Ω. 2

Corollary 3.6 Suppose the entropy pair (η, q) is defined by (3.1)-(3.2). Then

(3.9)

∫ τ

0

∫ ∞
−∞

(η ξt + q ξx) dxdt ≥ 0

for all ξ ∈ C∞c (Ω;R) satisfying ξ ≥ 0. That is, the third equation of (1.1) is
replaced by the inequality ηt + qx ≤ 0 in the sense of distributions.
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Proof: It follows from (3.3) that∫ τ

0

∫ ∞
−∞

(ηε (ξt − ε ξxx) + qε ξx) dxdt = ε

∫ τ

0

∫ ∞
−∞
∇2η(yε, yε) ξ dx dt

for all ψ ∈ C∞c (Ω;R2) satisfying ξ ≥ 0. It follows from Lemma 3.1 that the
right hand side of this equality is nonnegative. Thus, by taking the limit as
ε→ 0+ we obtain (3.9) 2
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