
SYNCHRONIZATION OF REMOTE DATABASES

THESIS

Presented to the Graduate Council of Texas State
University-San Marcos in Partial Fulfillment of

the Requirements

For the Degree

Master of SCIENCE

By

Jasmine Pabby

San Marcos, Texas
December 2003

COPYRIGHT

By

Jasmine Pabby

2003

IV

ACKNOWLEDGEMENTS

Completing this thesis with my very challenging instructor Dr. Haddix gives me special

pride that I survived it all. Thank you Dr. Haddix, I have learnt extensively from you and

at the end of it all find myself so much more knowledgeable and confident. You have

taught me how to be uncompromising towards quality. Thank you also for your immense

support and patience which have meant a lot to me.

I have also come to understand the meaning of teamwork with more enforced

significance. I cannot thank Dr. Ali enough, whose immense support in every way made

it possible for me to believe in myself and to continue working hard. Thank you Dr.

Hazlewood and Dr. Ogden, who have been very accommodating with the last minute

schedules. They are two of my most favorite professors and I enjoyed taking classes with

them.

My brother, my son, my husband, my parents and my in-laws—who would not let me quit

and tolerated my different moods this semester—I cannot thank them enough. I also owe a

special thanks to the Graduate College, especially Heather, who besides having a very

pleasing personality, has been so very prompt and helpful with information.

V

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. IV

LIST OF TABLES.. VHI

LIST OF FIGURES.. IX

ABSTRACT..X

CHAPTER 1: INTRODUCTION... 1

1.1 Introduction to the Problem.............................. 1

1.2 Identifying the Problem............. .. 2

1.3 The Objective.. 3

1.4 The ‘Unit Order of Battle’ Database............................ 4

1.5 The ‘Functional Descriptions of the Mission Space’ Database...5

1.6 Remaining Chapters... 6

CHAPTER 2: REQUIREMENTS SPECIFICATION............................. 8

2.1 Restrictions in Systems Specification.. 8

2.2 Mapping UOB Tables to FDMS Tables... 8
2.2.1 Mapping UOB Tables to the Entity Table in the FDMS Database..9
2.2.2 Mappmg UOB Tables to the Entity-Component Tables in the FDMS.................... 14
2.2.3 Mapping UOB Attributes to Characteristic Table in the FDMS Database.................................17
2.2.4 Mapping UOB Tables to Entity-Characteristic Table m the FDMS...18
2.2.5 Tracing and Updating the Database..24

2.3 Systems Specification.......................... 25
2.3.1 Transmission side (UOB)... 25
2.3.2 Receiving Side (FDMS)...28

2.4 Stages of Operation... 30

2.5 Summary of the Chapter.. 37

CHAPTER 3: ENABLING TECHNOLOGIES AND OUR SYSTEM. 38

3.1 Choosing the Enabling Technologies...38

3.2 Choice of Distributed Enterprise Technology..38
3.2.1 XML Portal Server (XPS).. 39
3.2.2 .Net... 40
3.2.3 Java 2 Enterprise Edition (J2EE)...... 42

3.3 Other Supporting Technologies.. 43
3.3.1 Operating System and J2EE...43
3.3.2 Programming Language and J2EE..43
3.3.3 Database Management System and J2EE...43

3.4 Java 2 Enterprise Edition (J2EE) and Our System..43
3.4.1 Presentation Tier................................ 45
3.4.2 Web Tier.. 45
3.4.3 Application Tier... 45
3.4.4 Database Tier.. 46

3.5 J2EE Components and Our System..46
3.5.1 Web Components and Our System...48
3.5.2 Application-Server Components and Our System............ ... 49

3.6 J2EE Containers and Our System... 50
3.6.1 Web Contamer and Our System... 50
3.6.2 EJB Container and Our System.. 51

3.7 J2EE and Communication.. 51
3.7.1 Communication Services.. 53
3.7.2 Enterprise Services... 54
3.7.3 Internet Services... 55

3.8 Installed Software.. 55

3.9 Summary of the Chapter................... 58

CHAPTER 4: SYSTEM DESIGN..59

4.1 Introduction to the System Design...59

4.2 Design of the UOB System................... 60
4.2.1 Design of the Presentation Tier....... ... 62
4.2.2 Design of the Web Tier........................... 65
4.2.3 Design of the Application Tier... 69
4.2.4 Design of the Database Tier... 71

4.3 Design of the Receiving Side (FDMS) System...71
4.3.1 Design of the Database Visualizer..72
4.3.2 Design of the Application Tier..................................7...73
4.3.3 Design of the Database Tier... 75

4.4 The Complete System Architecture... 76

4.5 Summary of the Chapter... 77

vi

CHAPTER 5: PROJECT IMPLEMENTATION 78

5.1 Introduction to implementation................. 78

5.2 Transmission Side... 78
5.2.1 Implementation Description of Transmission Side Modules...................78
5.2.2 Component Modules of the Transmission Side (UOB)...100

5.3 Receiving Side.............................. 112
5.3.1 Implementation Description of Receiving Side Modules... 112
5.3.2 Component Modules of the Receiving Side (FDMS)... 122

5.4 Summary.. 129

CHAPTER 6: CONCLUSIONS AND FUTURE WORK..................... 130

6.1 Conclusions.. 130

6.2 Future Work..................... 131

GLOSSARY..132

APPENDIX A: UOB DATABASE TABLES... 138

APPENDIX B: DMS DATABASE TABLES... 141

APPENDIX C: CODE..146

REFERENCES..258

Vil

BIBLIOGRAPHY 260

Vili

LIST OF TABLES

Table 2.1: M apping UOB Tables to FDMS Entity Ta ble ... 13
Table 2.2: M apping UOB Tables to FDMS Entity-Component Ta b l e 16
Table 2.3: Mapping UOB Tables to FDMS Characteristic Ta b l e18
Table 2.4: Mapping UOB Table to FDMS Entity-Characteristic Table 22
Table 2.5: Mapping UOB Records to Multiple Entries in FD M S..............................23
Table 4.1: Tabular R epresentation of Web Tier Design (continued in 4. 1(a)) 67
Table 4.1 (a): Tabular R epresentation of Web Tier Design 68
Table 4.2: Tabular Representation of Application Tier Activities...................... 70
Table 5.1: User Login (Continued on 5.1 (a)) ..80
Table 5.1 (a): User Lo g in ..81
Table 5.2: UOB Database Tables (Continued in Table 5.2 (a))83
Table 5.2(a): UOB DatabaseTables (Continued in Table 5.2 (b)) 84
Table 5.2 (b): UOB Database Tables (Continued in Table 5.2 (c)) 85
Table 5.2 (c): UOB Database Tables..86
Table 5.3: Accessing Table to Create Ro w ..89
Table 5.4: Creating A New Ro w .. 90
Table 5.4: Deleting a R ow ... 93
Table 5.5: Accessing the Table to Edit Data ...95
Table 5.6: Editing the Data in the Table .. 98
Table 5.7 Creating a New Row in Database.................................... ;...........................114
Table 5.8: Deleting a Row in Database .. 117
Table 5.9: Updating (Edit-Data) the Database.. 119

IX

LIST OF FIGURES

Figure 1.1 Unit Order of Battle (UOB) Database... 4
Figure 1.2: Abbreviated Functional Description of the M ission Space (FDMS)

Database..6
Figure 2.1: Requirements Specification -UOB Sid e .. 27
Figure 2.2: Requirements Specification - FDMS Sid e .. 29
Figure 2.3: Login Pa g e .. 30
Figure 2.4: Database Access.. 30
Figure 2.5: Editing a UOB Ta b l e ...31
Figure 2.6: Processing the Data ..31
Figure 2.7: Updating UOB Database...32
Figure 2.8: Updated Database D isplayed .. 32
Figure 2.9: Data Mapping...33
Figure 2.10: Data Transferred from UOB Database.. 33
Figure 2.11 Data Transfer to FDMS Database.. 34
Figure 2.12 FDMS Database Updated ...34
Figure 2.13 FDMS Tables D isplayed ... 35
Figure 2.14 Stages of Operation ...36
Figure 3.1: J2EE Architecture...44
Figure 3.2: J2EE Components... 47
Figure 3.3: J2EE Containers... 51
Figure 3.4: J2EE Standard Protocols...52
Figure 3.5: Publish-subscribe Messaging M odel.. 54
Figure 3.6: Installed Software...57
Figure 4.1: The System Desig n ...60
Figure 4.2: The Transmission Side (UOB) Design ... 62
Figure 4.3: Pictorial representation of presentation tier design 64
Figure 4.4: Transmission Side (FDMS) Design ...72
Figure 4.5: Transmission Side (FDMS) Design ...75
Figure 4.6: Systems Architecture... 76
Figure 5.1: U ser Login .. 79
Figure 5.2: Login Er r o r ... 82
Figure 5.4: Creating a new Unit Aircraft Table... 88
Figure 5.6: Editing the Table ... 97
Figure 5.7: Data Accepted by R eceiving Side (FDM S)..112
Figure 5.8: Data Transferred to Application Server (FDMS)................................ 113
Figure 5.9: FDMS Data Display...121

X

ABSTRACT

SYNCHRONIZATION OF REMOTE DATABASES

Most modem systems work in networked environments. Data used by these programs is

distributed and stored on heterogeneous systems, in multiple databases. Synchronizing

this data across multiple systems or providing an integrated access to it is a challenging

issue. The Department of Defense (DoD) has two such databases, The Unit Order of

Battle (UOB) and the Functional Descriptions of the Mission Space (FDMS). In this

dissertation, we will demonstrate the synchronization of the data between the two

databases, using standard, open-source J2EE technology and communicating through the

Internet using common, open communication protocols.

by

JASMINE PABBY, M.S.

Texas State University-San Marcos

December 2003

SUPERVISING PROFESSOR: DR. FURMAN HADDIX

1

CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem

Most modem systems work in networked environments. The systems are distributed

across wide area networks, and geographical locations hold few restrictions. Data used by

these programs are thus distributed and stored on disparate systems. The management

and synchronization of this data, spread out over the network, becomes an active

problem.

Providing an integrated access to multiple heterogeneous sources is a challenging issue

in global information systems for cooperation and interoperability. In the past, companies

have equipped themselves with data storing systems building up informative

systems containing data that are related one another, but which are often redundant,

heterogeneous and not always substantial. The problems that have to be faced in this field

are mainly due to both structural and application heterogeneity, as well as to the lack of

a common ontology, causing semantic differences between information sources.

[BDBSOO].

This topic has been an active study of research, although most of it has concentrated on

the problem of dynamic data integration. “The standard approach to this problem has

been to construct a global schema that relates all the information in the different sources

2

and to have the user pose queries against this global schema or various views of it. The

problem with this approach is that integrating the schemas is typically very difficult, and

any changes to existing data sources or the addition of new ones requires a substantial, if

not complete, repetition of the schema integration process” [YA96].

Dr Furman Haddix and Jack Sheehan in their paper have described how data is

transferred utilizing XML-based using Conceptual Models of the Mission Space DIF

[SJHFOO].

A slightly different approach has been the use of “Mobile Agents” along with the use of

mediators, which react to changes, travel to the areas of change, carrying with them the

agents for managing the ‘change’ [BDBSOO].

We have used a different approach in addressing this issue. Our focus is to synchronize

remote, disparate databases. We will solve this using off-the-shelf, asynchronous

communication technology, communicating over the Internet using commonly used

protocols. We will not be using mediators. Instead, each database will communicate to a

common pool as a publisher of change. The interested database will listen to this pool,

pick up the change and possess the local intelligence to use the information for

synchronization of its data.

1.2 Identifying the Problem

The Department of Defense (DoD) has several databases, situated on different systems, at

different locations. Some of these databases, although disparate in nature, contain

segments of common information. When data in one database is modified, data fields that

are common to fields in other databases are no longer consistent. Decisions made on

3

inconsistent data could result in significant mistakes. Hence, there exists a need to create

a methodology to synchronize common data fields in disparate databases.

1.3 The Objective

Our objective is to create an electronic system that would synchronize databases existing

at different locations. We will assume, while scoping the design and architecture of the

system, that the computers housing the databases we are required to synchronize will be

connected to a network and will have the basic ability to communicate with each other

through the network via a common, standard communication protocol. We have selected

two as the focus of this work: the Unit Order of Battle (UOB) and the Functional

Descriptions of the Mission Space (FDMS). Both of these databases belong to the

Department of Defense and reside on systems in geographically different locations.

4

1.4 The ‘Unit Order of Battle’ Database

The Unit Order of Battle (UOB) database collects mass data about operational units. It

contains information about military organizations for simulation knowledge acquisition,

scenario development, and operational planning. UOB is defined as data about military

organization units, their organizational relationships, and their associated personnel,

aircraft, and equipment [HSH99]. Figure 1.1 illustrates a version of the UOB database

simplified by excluding attributes not relevant to this thesis. This database contains data

in four related tables [UOB99]:

♦ Unit - e.g., id, name, location, type, parent.

♦ Personnel - e.g., grade occupation, quantities.

♦ Equipment - e.g., Type, quantities.

♦ Aircraft - e.g., descriptions, quantities.

Unit
Unit-Identification-Code

Parent-Unit-Identification-
___________Code________
________ Unit-Name______
________Home-Name_____
_______ Ship-Category_____
_______ Country-Code_____

Unit Personnel
PIC

Unit-Identification-Code
Personnel-Description

Personnel-Qty-Required
Personnel-Qty-

Authorized

Unit Equipment
EIC

Unit-Identification-Code
Equipment-Code

Equipment-Description
Equipment-Qty-Required

Equipment-Qty-Authorized

Unit Aircraft

________ AIC________
Umt-Identification-Code

Aircraft-Code
Aircraft-Description

Aircraft-Qty-Required
Aircraft-Qty-Authorized

Figure 1.1: Unit Order of Battle (UOB) Database

1.5 The ‘Functional Descriptions of the Mission Space’ Database

The Functional Descriptions of the Mission Space (FDMS) has been developed for the

exchange of functional descriptions of military operations without loss or distortion of

content. It was created to put the requirements description process under the control of

the warfighter, so that the ultimate expression of the functional requirements for a system

was appropriate for warfighter intent [HaFuOl]. FDMS therefore contains specific data

about military operations and is used as an aid for the development of simulations. A

fundamental objective of FDMS is to provide simulation/federation developers with

timely and cost-effective access to accurate mission space functional models that are

created, authenticated, and maintained by others [FDMS 00].

Some of the data used by FDMS is originally collected and stored in the UOB database.

When changes occur in data fields of the UOB database, we will update the

corresponding fields of the FDMS database. The mapping between the two databases is

discussed in the next chapter. Figure 1.2 illustrates the part of the FDMS database where

the UOB data to be updated resides.

6

Entity Entity Characteristic
Entity-RDS-ID
Entity-SDS-ID Characteristic-RDS-ID
Entity-Name Charactenstic-SDS-ID

Entity-Stereotype
Characteristic-NameEntity-Type

Entity Component Entity-Characteristic

Component-Entity-RDS-ID Entity-RDS-ID
Component-Entity-SDS-ID Entity-SDS-ID

Composite-Entity-RDS-ID Characteristic-RDS-ID
Composite-Entity-SDS-ID Charactenstic-SDS-ID

Entity-Component-Cardinality Entity-Charactenstic-Numeric-Value
Entity-Characteristic-String-V alue

Figure 1.2: Abbreviated Functional Description of the Mission Space (FDMS)
Database

1.6 Remaining Chapters

In Chapter 1 we identified our problem, defined the objective and introduced the two

databases that we will synchronize. We also specified fields we will focus on, to

synchronize the data.

In Chapter 2 we discuss systems requirements and the step-by-step stages of operation

that will be taken in the process of database synchronization.

Chapter 3 explores the different media available for the requirements design and

implementation and explains our selection of the software found most appropriate for the

final solution specifically J2EE. It also defines the enabling technology (J2EE) and its

components, and describes how the technology helps build our system.

Chapter 4 explains and illustrates our system design and its architecture.

7

Chapter 5 describes the high-level and the low-level user and system implementation

process of database synchronization.

Chapter 6 draws conclusions to our system design and functions and suggests future

work to make it more efficient

8

CHAPTER 2

REQUIREMENTS SPECIFICATION

2.1 Restrictions in Systems Specification

There were restrictions on the availability of government data encountered while

developing the system specification:

♦ It was found that the UOB and the FDMS databases would not be physically

available to us. For this reason, data was created in two representative databases (see

Appendix A for example data). The databases were modeled after the actual UOB

and FDMS databases, respectively, to be representative of each of them. In addition,

column contents had to be mapped between the two databases to allow

synchronization as described in the next section.

♦ A data-entry user interface will be created (presentation tier) to allow modifications

to the representative UOB databases.

♦ A Database Visualizer application will be installed to view the contents of the

representative FDMS database - before and after data is synchronized in it.

2.2 Mapping UOB Tables to FDMS Tables

The data in the UOB tables has multiple records in the FDMS database. Tables 2.1

through Table 2.4 display the mapping of UOB tables to the FDMS tables. Section 2.2.5

9

displays the multiple entries recorded in the FDMS tables for every column from the

UOB tables. A complete mapping description of how the data will be updated is

described in section 2.2.6.

2.2.1 Mapping UOB Tables to the Entity Table in the FDMS Database

Table 2.1 illustrates which columns in the UOB tables map to the various columns of the

Entity table in the FDMS database. The Entity table contains basic information about

things. This information from all UOB tables is recorded into it.

Mapping description from each UOB table to the Entity table is as follows:

> Unit Table:

♦ ‘Unit Identification Code’ (UIC) in the Unit table, in the UOB database, is a

very important column. It is a foreign key in the other tables, relating data from

the other UOB tables back to the Unit, described in the Unit table. The ‘UIC’ is

recorded in the personnel, equipment and aircraft tables in the UOB database.

Each row in these tables can be uniquely identified as a combination of the

identification code of that table (for example, ‘Personnel Identification Code’

(PIC) in the Unit Personnel table) with the ‘UIC’ of the Unit table (UOB tables

2, 3 and 4 in Appendix A). The values in the ‘UIC’ are recorded in the ‘Entity

SDS ID’ column of the Entity table, in the FDMS database.

♦ The ‘Unit Name’ column in the Unit table, in the UOB database, describes the

category the ‘UIC’ belongs to. The values in the ‘Unit Name’ column are

recorded in the ‘Entity Name’ column in the entity table.

♦ The values in the ‘Home Name’ and ‘Ship Category’ columns are local to the

UOB tables and are not recorded in the FDMS database.

10

♦ The column ‘Entity Stereotype’ contains the value ‘Organization’ and the

column ‘Entity Type’ contains the value ‘Unit’ identifying that the information

inserted in the row is for the Unit table. The ‘Entity Stereotype’ and ‘Entity

Type’ columns are local to the ‘Entity’ table in the FDMS database.

♦ A surrogate key is placed in the ‘Entity RDS ID’ column of the Entity table to

uniquely identify the rows of information in the table. This key is used to relate

rows in the Entity table to the rows in the Entity Component and Entity

Characteristic tables. For example, if there is an ‘Entity RDS ID’ of ‘ 103 ’, it has

the UIC (UOB) of value ‘ ARMR CO’, has the ‘Entity Name’ ‘Armor

Company’, is of the ‘Stereotype’ ‘Organization’ and belongs to the ‘Entity

Type’ ‘Unit’.

> Personnel Table:

♦ PIC (Personnel Identification Code) in the Personnel table (UOB) is used to

uniquely identify rows when combined with the values in ‘UIC’ (see Personnel

Table, UOB, Appendix A). It is recorded in the Entity table (FDMS) in the

‘Entity SDS ID’ column.

♦ ‘Personnel-Description’ column in the Personnel table gives a job description of

the personnel. The values in the ‘Personnel-Description’ column are recorded in

the ‘Entity Name’ column in the Entity table.

♦ The column ‘Entity Stereotype’ contains the value ‘Person’ and the column

‘Entity Type’ contains the value ‘Personnel’ identifying that the information

inserted in the row is for the Personnel Table. ‘Entity Stereotype’ and ‘Entity

Type’ are local to the Entity table in the FDMS database.

11

♦ A surrogate key is placed in the ‘Entity RDS ID’ column in the Entity table. The

key uniquely identifies the entity name, the stereotype and the Unit the

personnel belong to. Therefore the key number, ‘401’ corresponds to PIC with

value, ‘LT COL’, has the ‘Entity Name’ ‘Lieutenant Colonel’, is of Stereotype,

‘Person’, and belongs to ‘Entity Type’, ‘Personnel’.

> Equipment Table:

♦ EIC (Equipment Identification Code) in the Equipment table (UOB) can be

identified uniquely when combined with the values in ‘UIC’ (see Equipment

table, UOB, Appendix A). EIC is recorded in the Entity table (FDMS) in the

‘Entity SDS ID’ column.

♦ ‘Equipment Description’ column in the Equipment table gives a brief

description of the equipment. The values in the ‘Equipment Description’ column

are recorded in the ‘Entity Name’ column in the Entity table.

♦ The column ‘Entity Stereotype’ contains the value ‘Equipment’ and the column

‘Entity Type’ contains the value ‘Equipment’ identifying that the information

inserted in the row is for the Equipment Table. ‘Entity Stereotype’ and ‘Entity

Type’ are local to the Entity table in the FDMS database.

♦ The surrogate key in this table uniquely identifies the entity name of the

equipment, the stereotype Mid the Unit the equipment belongs to. Therefore the

key number, ‘801’ corresponds to EIC with value, ‘M1A1’, has the ‘Entity-

Name’, ‘Main Battle Tank’, is of stereotype, ‘Equipment’, and belongs to

‘Entity Type’, ‘Equipment’.

♦ ‘Equipment-Code’ is not recorded in the FDMS database.

12

> Aircraft Table:

♦ AIC (Aircraft Identification Code) in the Aircraft table (UOB) can be identified

uniquely when combined with the values in ‘UIC’ (Aircraft table, UOB,

Appendix A). AIC is recorded in the Entity table (FDMS) in the ‘Entity SDS

ID’ column.

♦ ‘Aircraft Description’ column in the Aircraft table gives a brief description of

the aircraft. The values in the ‘Aircraft Description’ column are recorded in the

‘Entity Name’ column in the Entity table.

♦ The column ‘Entity Stereotype’ contains the value ‘Equipment’ and the column

‘Entity Type’ contains the value ‘Aircraft’ identifying that the information

inserted in the row is for the Aircraft table. ‘Entity Stereotype’ and ‘Entity Type’

are local to the Entity table in the FDMS database.

♦ The surrogate key uniquely identifies the entity name of the aircraft, the

stereotype and the Unit the aircraft belongs to. Therefore if we have the key

number, ‘ 1201 ’ it corresponds to AIC with value, ‘UH1V’, has the ‘Entity

Name’ ‘UH1V Utility helicopter’, is of stereotype, ‘Equipment’, and belongs to

‘Entity Type’, ‘Aircraft’.

♦ The values in ‘Aircraft Code’ are not recorded in the FDMS database.

13

UNIT
ORDER

OF
BATTLE UNIT ORDER OF BATTLE

Translation
Notes FDMS FDMS FDMS FDMS FDMS

Table Attribute

Entity-
RDS-

ID

Entity-
SDS-

ID
Entity-
Name

Entity-
Stereo-type

Entity-
Type

Unit UNIT-IDENTIFICATION-CODE Per Row X
Unit UNIT-NAME Per Row X
Unit HOME-NAME N/A
Unit SHIP-CATEGORY N/A

Per Row SK Organization Unit

Personnel PIC Per Row X
Personnel PERSONNEL-DESCRIPTION Per Row X

Per Row SK Person Personnel

Equipment EIC Per Row X
Equipment EQUIPMENT-CODE N/A
Equipment EQUIPMENT-DESCRIPTION Per Row X

Per Row SK Equipment Equipment

Aircraft AIC Per Row X
Aircraft AIRCRAFT-CODE N/A
Aircraft AIRCRAFT-DESCRIPTION Per Row X

Per Row SK Equipment Aircraft

* SK represents a surrogate Key that uniquely identifies the data entries in the FDMS
database tables.

Table 2.1: Mapping UOB Tables to FDMS Entity Table

2.2.2 Mapping UOB Tables to the Entity-Component Tables in the FDMS

Table 2.2 illustrates which columns in the UOB tables map in the Entity-Component

table. The Entity-Component table provides linking information concerning components

of entities. Thus it maps to parent-child information from all UOB tables.

> Unit Table:

♦ The ‘Parent-Unit-identification-Code’ identifies the parent for a unit identified

by UIC. In the FDMS Entity tables, units are identified by both RDS-ID and

SDS-ID. Thus both components and composites have the same pairs of RDS-ID

and SDS-ID that appear in the Entity table. The linkages shown by each row in

the Entity-Component table from Component RDS-ID/ SDS-Id pair to

Composite RDS-ID/ SDS-ID pair corresponds to the linkage in the Unit table

from UIC to Parent Unit Identification Code.

♦ Example: A ‘Component-Entity-RDS-ID’ of ‘102’ has a corresponding row

with value ‘BN HQ’ of the ‘UIC’ (UOB) in the ‘Component-Entity-SDS-ID’

column in the component table (FDMS), has a Parent-Unit-Identification-Code,

‘ARMR BN’ in the “ Composite Entity SDS ID” and has a cardinality o f ‘1’.

This indicates ‘BN HQ’ is a component of ‘ARMR BN’.

♦ All values in the ‘Entity-Component-Cardinality’ column are ‘ 1 ’ since the UOB

does not provide cardinality information.

> Personnel Table:

♦ The UIC identifies the parent to a personnel row identified by PIC. In FDMS

Entity-Component table, personnel rows are uniquely identified by the

combination of RDS-ID and SDS-ID. Thus both Components and Composites

15

have the same pairs of RDS-ID and SDS-ID that appear in the Entity table. The

linkages shown by each row in the Entity Component table correspond to the

linkage in the Personnel table from PIC to UIC.

♦ Example: The ‘Component-Entity-RDS-ID’ number ‘402’ corresponds to PIC

with value, ‘ MAJ’, contains ‘BN HQ value in the ’‘UIC’ and has a cardinality

of ‘ 1 ’. This indicates that there is one ‘MAJ’ for ‘BN HQ’.

> Equipment Table:

♦ The UIC identifies the parent to an equipment row identified by EIC. In FDMS

Entity-Component Table, equipment rows are uniquely identified by the

combination of RDS-ID and SDS-ID. Thus both Components and Composites

have the same pairs of RDS-ID and SDS-ID that appear in the Entity table. The

linkages shown by each row in the Entity Component table correspond to the

linkage in the Equipment table from EIC to UIC.

♦ Example: The ‘Component-Entity-RDS-ID’ number ‘802’ correspond to EIC

with value, ‘ M23 ’, contains UIC, ‘ BN HQ ’, and has a cardinality of ‘ 1 ’. This

indicates that there is one (‘M23’) sidearm for BN HQ.

> Aircraft Table:

♦ The UIC identifies the parent to an aircraft row identified by AIC. In FDMS

Entity-Component table, aircraft rows are uniquely identified by the

combination of RDS-ID and SDS-ID. Thus both Components and Composites

have the same pairs of RDS-ID and SDS-ID that appear in the Entity table. The

linkages shown by each row in the Entity Component table correspond to the

linkage in the Aircraft table from AIC to UIC.

16

♦ Example: The ‘Component-Entity-RDS-ID’ number ‘1202’ corresponds to AIC

with value, ‘ UH1V’, contains ‘UIC’, CO HQ and has a cardinality of ‘ 1’. This

indicates that there is one (‘UH1V’) helicopter for CO HQ.

UNIT
ORDER

OF
BATTLE

UNIT
ORDER OF

BATTLE
Translation

Notes FDMS FDMS FDMS FDMS FDMS

Table Attribute

Component-
Entity-RDS-

ID

Component-
Entity-SDS-

ID
Composite-

Entity-RDS-ID

Composite-
Entity-SDS-

ID

Entity-
Component-
Cardinality

Unit

UNIT-
IDENTIFI­
CATION
CODE Per Row X

Unit

PARENT-
UNIT

IDENTIFI­
CATION
CODE Per Row X

Per Row SK SK 1

Personnel PIC Per Row X

Personnel

UNIT
IDENTIFI­
CATION
CODE Per Row X

Per Row SK SK 1

Equipment EIC Per Row X

Equipment

UNIT
IDENTIFI­
CATION
CODE Per Row X

Per Row SK SK 1

Aircraft AIC Per Row X

Aircraft

UNIT
IDENTIFI­
CATION
CODE Per Row X

Per Row SK SK 1

Table 2.2: Mapping UOB Tables to FDMS Entity-Component Table

17

2.2.3 Mapping UOB Attributes to Characteristic Table in the FDMS Database

The FDMS Characteristic tables define extensions to the basic information contained in

the Entity table. Once the additional information categories have been defined in the

Characteristic table, the actual data can be entered in the FDMS Entity-Characteristic

table. Because of this, the Characteristic table has the names of columns from the UOB

tables rather than values. Each of the names entered in this table has a surrogate key

placed in the ‘Character-RDS-ID’ that uniquely identifies the rows so that they can be

related to the rows of the Entity-Characteristic table.

> Unit Table:

♦ Column name ‘Country-Code’ is recorded in the Characteristic-Name, so that

the ‘Country-Code’ values can be entered in the related rows of the Entity-

Component table.

> Personnel Table:

♦ Column names ‘Personnel-Quantity-Required’ and ‘Personnel -Quantity-

Authorized’ are recorded under the Characteristic-Name column, so that the

‘Personnel-Quantity-Required’ and ‘Personnel -Quantity-Authorized’ values

can be entered in the related rows of the Entity-Component table.

> Equipment Table:

♦ Column names ‘Equipment-Quantity-Required’ and ‘Equipment-Quantity-

Authorized’ are recorded under the Characteristic-Name column so that the

‘Equipment-Quantity-Required’ and ‘Equipment-Quantity-Authorized’ values

can be entered in the related rows of the Entity-Component table.

18

> Aircraft Table:

♦ Column names ‘Aircraft-Quantity-Required’ and ‘Aircraft-Quantity-

Authorized’ are recorded under the Characteristic-Name column, so that the

‘Aircraft-Quantity-Required’ and ‘Aircraft-Quantity-Authorized’ values can be

entered in the related rows of the Entity-Component table.

UNIT
ORDER OF

BATTLE

UNIT
ORDER

OF
BATTLE Translation Notes FDMS FDMS FDMS

Table Attribute
Characteristic-

RDS- ID
Characteristic-

SDS -D Characteristic-Name

Unit Per Database SK Null COUNTRY-CODE

Personnel Per Database SK Null
PERSONNEL-

QUANTIITY-REQUIRED

Per Database SK Null

PERSONNEL-
QUANTITIY-

AUTHORIZED

Equipment Per Database SK Null
EQUIPMENT-QUANTITY-

REQUIRED

Per Database SK Null
EQUIPMENT-QUANTITY-

AUTHORIZED

Aircraft Per Database SK Null
AIRCRAFT-QUANTITY-

REQUIRED

Per Database SK Null
AIRCRAFT-QUANTITY-

AUTHORIZED

Table 2.3: Mapping UOB Tables to FDMS Characteristic Table

2.2.4 Mapping UOB Tables to Entity-Characteristic Table in the FDMS

Table 2.4 illustrates the columns in the UOB tables that map to the columns in the FDMS

Entity-Characteristic table. The important point to note in the Entity-Characteristic table

is that there are two sets of similar values in the Entity-RDS-ID’ column in the Personnel,

Equipment, and Aircraft column. Therefore it is not the data value in this column that

19

uniquely identifies that row but a combination of values both in ‘Entity RDS ID’ and

‘Characteristic-RDS-ID’ (FDMS Entity-Characteristic table, Appendix B). These in turn

relate back to the Entity table and Characteristic table, respectively.

> Unit Table:

♦ The values in ‘UIC’ column (UOB) are recorded in ‘Entity SDS ID’ column

(FDMS). Once again, as also shown in Tables 2.1 and 2.2, we have a pair of

values in the RDS-ID and SDS-ID columns, which were originally defined in

the Entity table.

♦ The value from the ‘Country-Code’ Unit table is mapped to the ‘Entity-

Characteristic-String-Value’ .

♦ Example: If we have the ‘Entity RDS ID’ value of ‘103’, the ‘Entity SDS ID’ is

‘ARMR CO’, the ‘Characteristic-RDS-ID’ value is ‘201’ (which relates to the

characteristic value “Country-Code” in the FDMS Characteristic table), with a

‘Entity-Characteristic-String-Value’ as ‘US’, which means the Country-Code is

US for ‘ARMR CO’.

> Personnel Table:

♦ The values in ‘PIC’ column (UOB) are recorded in “ Entity SDS ID’ column’

(FDMS). Once again, as also shown in tables 2.1 and 2.2, we have a pair of

values in the RDS-ID and SDS-ID columns, which were originally defined in

the Entity table.

♦ The values in ‘Entity RDS ID’ and the ‘Characteristic-RDS-ID’ columns

together identify the row in the Entity-Characteristic table.

20

♦ Example: ‘ If we have Entity-RDS-ID’ value of ‘403’, the ‘Entity SDS ID’ is

‘DRIVER’, the Characteristic-RDS-ID value is ‘601’, which relates to the

‘Characteristic’ column ‘Personnel-Quantity-Required’ (FDMS Characteristic

table) and, ‘Entity-Characteristic-Numeric-Value’ of ‘ 1’, meaning that one

driver is required for this unit.

Also, if we look at the second set of entries in the same table with ‘Entity RDS

ID’ value of ‘403’, most of the values remain the same, except the

‘Characteristic-RDS-ID’ value is now ‘701’, which refers to Personnel-

Quantity-Authorized, with ‘Entity-Characteristic-Numeric-Value’ o f ‘1’,

meaning that one driver is authorized for this unit.

> Equipment Table:

♦ The values in ‘EIC’ column (UOB) are recorded in ‘Entity SDS ID’ column

(FDMS). Once again, as also shown in tables 2.1 and 2.2, we have a pair of

values in the RDS-ID and SDS-ID columns, which were originally defined in

the Entity table.

♦ The values in ‘Entity RDS ID’ and the ‘Characteristic-RDS-ID’ columns

together identify the row in the Entity-Characteristic table.

♦ Example: ‘ If we have Entity-RDS-ID’ value of ‘803’, the ‘Entity SDS ID’ is

‘MIR’, the Characteristic-RDS-ID value is ‘ 1001’, which relates to the

‘Characteristic’ column ‘Equipment-Quantity-Required’ (FDMS Characteristic

table) and, ‘Entity-Characteristic-Numeric-Value’ o f ‘6’, meaning that six Ml

rifles are required for this unit.

21

Also, if we look at the second set of entries in the same table with ‘Entity RDS

ID’ value of ‘803’, most of the values remain the same except the

4Characteristic-RDS-ID’ value is now ‘1101’, which refers to Equipment-

Quantity-Authorized, with ‘Entity-Characteristic-Numeric-Value’ o f ‘6’,

meaning that six Ml rifles are authorized for this unit.

> Aircraft Table:

♦ The values in AIC column (UOB) are recorded in ‘Entity SDS ID’ column

(FDMS). Once again, as also shown in tables 2.1 and 2.2, we have a pair of

values in the RDS-ID aid SDS-ID columns, which were originally defined in

the Entity table.

♦ The values in ‘Entity RDS ID’ and the ‘Characteristic-RDS-ID’ columns

together identify the row in the Entity-Characteristic table.

♦ Example: ‘ If we have Entity-RDS-ID’ value of ‘ 1201’, the ‘Entity SDS ID’ is

‘UH1V’, the Characteristic-RDS-ID value is ‘1401’, which relates to the

‘Characteristic’ column ‘Aircraft-Quantity-Required’ (FDMS Characteristic

table) and, ‘Entity-Characteristic-Numeric-Value’ o f ‘1’, meaning that there is

one UH1V helicopter required for this unit.

Also, if we look at the second set of entries in the same table with ‘Entity-RDS-

ID’ value of ‘ 1201’, most of the values remain the same except the

‘Characteristic-RDS-ID’ value is now ‘1501’, which refers to Personnel-

Quantity-Authorized, with ‘Entity-Characteristic-Numeric-Value’ o f ‘1’,

meaning that there is one UH1V helicopter authorized for this unit.

22

UNIT

ORDER

OF UNIT ORDER Translation

BATTLE OF BATTLE Notes FDMS FDMS FDMS FDMS FDMS FDMS

Entity-

Character Entity

Character­ Character -istic Character­

Entity- Entity- istic RDS istic- Numeric istic String

Table Attribute RDS-ID SDS- ID ID SDS-ID Value Value

Unit

UNIT-
IDENTIF1CA-
TION-CODE Per Row X

Unit
COUNTRY

CODE Per Row X
Per Row SK SK Null

Personnel PIC Per Row X

Personnel

PERSONNEL
QUANTITY
REQUIRED Per Row X

Personnel

PERSONNEL
QUANTITY

AUTHORIZED Per Row X
Per Row SK SK null

Equip­
ment EIC Per Row X

Equip­
ment

EQUIPMENT
QUANTITY
REQUIRED Per Row X

Equip­
ment

EQUIPMENT
QUANTITY

AUTHORIZED Per Row X
Per Row SK SK null

Aircraft AIC Per Row X

Aircraft

AIRCRAFT
QUANTITY
REQUIRED Per Row X

Aircraft

AIRCRAFT
QUANTITY

AUTHORIZED Per Row X
Per Row SK SK null

Table 2.4: Mapping UOB Table to FDMS Entity-Characteristic Table

23

Table 2.5 shows the entries in the FDMS tables for each entry in the UOB tables. It does

not show the FDMS surrogate keys assigned to the RDS-ID columns.

UOB Table Entity
(FDMS)

Table Entity
Component

(FDMS)

Table Entity-
Characteristic

(FDMS)
Table Unit

Unit-Identification-Code
(Table Unit) Entity-SDS-ID

Component-Entity-
SDS-ID Entity-SDS-ID

Parent-Unit-
Identification-Code

Composite-Entity-SDS-
ID

Unit-Name Entity-Name

Country-Code
Entity-Characteristic-String-

Value

Table Personnel Table Entity
(FDMS)

Table Entity
Component

(FDMS)

Table Entity-
Characteristic

(FDMS)

PIC Entity-SDS-ID
Component-Entity-

SDS-ID Entity-SDS-ID***

Unit-Identification-Code
Composite-Entity-SDS-

ID
Personnel-Description Entity-Name

Personnel Quantity
Required

Entity-Characteristic-
Numeric-Value***

Personnel Quantity
Authorized

Entity-Characteristic-
Numeric-V alue * * *

Table Equipment Table Entity
(FDMS)

Table Entity
Component

(FDMS)

Table Entity-
Characteristic

(FDMS)

EIC Entity-SDS-ID
Component-Entity-

SDS-ID Entity-SDS-ID***

Unit-Identification-Code
Composite-Entity-SDS-

ID
Equipment-Description Entity-Name

Equipment Quantity
Required

Entity-Characteristic-
Numenc-Value***

Equipment Quantity
Authorized

Entity-Characteristic-
Numenc-Value * * *

Table Aircraft Table Entity
(FDMS)

Table Entity
Component

(FDMS)

Table Entity-
Characteristic

(FDMS)

AIC Entity-SDS-ID
Component-Entity-

SDS-ID Entity-SDS-ID***
Unit-Identification-Code

(Table Aircraft)
Composite-Entity-SDS-

ID
Aircraft-Description Entity-Name

Aircraft Quantity
Required

Entity-Characteristic-
Numeric-V alue * * *

Aircraft Quantity
Authorized

Entity-Characteristic-
Numenc-Value***

Table 2.5: Mapping UOB Records to Multiple Entries in FDMS

2.2.5 Tracing and Updating the Database

In order to update the database, the entries are first made in the Entity-Component table,

then in the Entity table and finally in the Entity-Characteristic table. No entries will be

necessary for the Characteristic table.

Component Table:

♦ Start with the Entity-Component table.

♦ Check to see whether the incoming ‘AIC’ and ‘Unit-Identity-Code’ already exist.

♦ If it does not, enter them in the ‘Component Entity SDS ID’ and the Composite-

Entity- SDS-DD respectively.

♦ The ‘Composite-Entity-RDS-ID is obtained from the Entity-Component table, based

on the value of the ‘Composite Entity SDS ID’.

♦ The Cardinality is maintained as ‘ 1’.

Entity Table:

♦ A new record is then inserted into the Entity table.

♦ The ‘Entity RDS ID’ and the ‘Entity SDS ID’ values correspond to the ‘Component

Entity-RDS-ID’ and the “ Component Entity SDS ID” values in the Entity-

Component table.

♦ The ‘Entity Name’ is derived from the ‘Aircraft/Equipment/Personnel-Description’

in the incoming message object.

♦ The ‘Entity-Stereotype’ and the ‘Entity Type’ are deduced from the identity of the

UOB table created (Equipment/Personnel /Aircraft).

25

Entity-Characteristic Table:

♦ For each entry, the ‘Entity RDS ID’ and the ‘Entity SDS ID’ correspond to the

values in the Entity table.

♦ The ‘Characteristic-RDS-ID’ and the ‘Characteristic-SDS-ID’ are obtained from the

FDMS Characteristic table, corresponding to the UOB table created for the

‘Equipment/Personnel /Aircraft Quantity Required’ and ‘Equipment/Personnel

/Aircraft Quantity’ Authorized.

♦ The numeric data for each of these is contained within the incoming data in the

ChangeObj object.

2.3 Systems Specification

Recalling our objective, it is to synchronize data in diverse databases, located

geographically apart. Hence, our system will have two components, one on the

transmission side (UOB) and the other on the receiving side (FDMS).

2.3.1 Transmission side (UOB)

♦ A data entry application with a user interface will display the values in the various

tables of the UOB database and interactively allow a user to make changes to the

database. Figure 2.1 illustrates this application.

♦ The system will accept the changes made by the user.

♦ The system will correspondingly update the UOB database.

♦ The system will check the modifications made against a UOB to FDMS data map to

determine whether modified data is present in the FDMS database and will need to

be synchronized.

26

♦ The system will encapsulate the ‘change’ information (identify table, database

columns and values) in a format that will enable its transmission over the network to

the receiving system.

♦ The system will communicate with a standard communication protocol on the

network to transmit the packets encapsulating the ‘change data’.

27

User

1
System will accept the

changes made by the User
and correspondingly

update the UOB database

Database will be
updated

UOB Database

Figure 2.1: Requirements Specification -UOB Side

28

2.3.2 Receiving Side (FDMS)

♦ The system will communicate with the network to receive the ‘change data’

information. Figure 2.2 illustrates the receiving side activities

♦ The system will extract the ‘change’ information from the communicated packets.

♦ The system will decode the information to identify the FDMS table and relevant

columns that need updating with the data received.

♦ The system will update the FDMS database.

♦ The system will display the updated tables to the FDMS user.

29

The system will
identify the table and
its relevant columns

1

User Database Visualizer FDMS Database

Figure 2.2: Requirements Specification - FDMS Side

30

2.4 Stages of Operation

Following are the sequence of stages and steps that the system will support for its

operation.

♦ User Login

The user will initiate the process by requesting a change to the UOB database

through the interactive user interface (UI). The user will be able to access the UI by

entering a valid username and password. Figure 2.3 illustrates the user login.

♦ Accessing the Database Tables

The user will request access of UOB tables in the UOB database to edit the required

data. Figure 2.4 illustrates accessing the UOB tables.

User UI

Figure 2.3: Login Page

UOB Tables J
User UI

Figure 2.4: Database Access

31

♦ Editing the tables

The user will edit the data in the required UOB table. Figure 2.5 illustrates the user

editing the database.

►

User

Figure 2.5: Editing a UOB Table

UOB Tables

UI

♦ Edited tables are forwarded to the system

The edited data will be sent to system for further processing. Figure 2.6 illustrates

the data being sent from the User Interface to the system for further processing.

‘Change’ data
sent to the

System

UI

System accepts
‘change’ data

System

Figure 2.6: Processing the Data

32

♦ ‘Change’ data sent to the UOB database

The ‘change’ data request will be communicated to the database by our system and

the corresponding changes will be made. Figure 2.7 illustrates the UOB database

being updated.

‘Change’ data is \
sent to database) ----------- ^ Database

for an update J updated

♦ Change confirmation

The changes will be relayed back to the UI by our system, and will be made visible

to the user. Figure 2.8 illustrates the updated UOB database.

System UOB Database

Figure 2.7: Updating UOB Database

/ \
Display of updated

tables

User Interactive UI

Figure 2.8: Updated Database Displayed

33

♦ Edited UOB data mapped to FDMS data

The ‘change’ data that is changed in the UOB database is checked in the common

data table to find if there is a requirement to update the database (figure 2.9).

UOB Data Tables FDMS Data Tables

Common Data Mapping

Figure 2.9: Data Mapping

♦ ‘Change’ data packaged to FDMS-side

The modifications, if made to data common with the FDMS database, will be

encapsulated and transmitted over the network to the FDMS system. Figure 2.10

illustrates the change data being transferred via a network to the FDMS side.

r Change data
sent as package J

UOB Side System

Figure 2.10: Data Transferred from UOB Database

34

♦ ‘Change’ data accepted by the system on the FDMS side

The FDMS-side system will receive the packets, decode them and extract the

‘change data’ information. Figure 2.11 illustrates the change data being received via

a network from the FDMS side.

Figure 2.11 Data Transfer to FDMS Database

♦ ‘Change’ data is used by the system to update the FDMS Database.

‘Change’ data is sent to the FDMS database for an update. Figure 2.12 illustrates the

change data being transferred to the FDMS database.

Database Updated

FDMS Database

Figure 2.12 FDMS Database Updated

35

♦ Updated FDMS database displayed

The system receives UOB changes whenever they are made and automatically

updates the FDMS, displaying the changes the next time the FDMS user logs in.

Figure 2.13 illustrates the updated data being displayed to the user through the

database visualizer.

User Database Visualizer FDMS Database

Figure 2.13 FDMS Tables Displayed

36

♦ Figure 2.14 summarizes the stages of operation as per our systems requirements.

Interactive UI I UOB Database

The ‘change data’ is
encapsulated into

data packets by the
system

Figure 2.14 Stages of Operation

37

2.5 Summary of the Chapter

In this chapter the systems requirements are defined in detail including a step-by-step

description of the stages of operation.

In the next chapter we will discuss the three distributed enterprise technologies that were

available to us to meet our functional requirements and discuss the reasons for their

adoption/rejection. We will also describe the technology (J2EE) we have selected in

detail, and show how our system is built using this technology and an n-tier system

architecture.

38

CHAPTER 3

ENABLING TECHNOLOGIES AND OUR SYSTEM

3.1 Choosing the Enabling Technologies

Among the several technologies employed in this project, including programming

language, database management system, operating system, the most significant choice is

the selection of the distributed enterprise technology. We looked in detail at several

contemporary technologies in making this important choice.

3.2 Choice of Distributed Enterprise Technology

To build our system, we would prefer to use technology that is:

♦ An Industry Standard - We would like to avoid proprietary technology and use

something widely accepted and defined as a standard by the industry.

♦ Widely in use - We would like to use technology that has been extensively adopted

and is likely to be in use for several more years. Wide adoption will give us a good

choice of reference material and several human references we might be able to call

upon.

♦ Relatively inexpensive - Any system is only as good as its practical viability. We

would like to use technology that is relatively affordable and easily licensable.

Based on our requirements, we analyzed three technologies: Sequoia’s XML Portal

Server, Microsoft’s .Net, and Sun’s Java 2 Enterprise Edition. We discuss each of these

below in our quest for the best distributed enterprise technology solution.

3.2.1 XML Portal Server (XPS)

XML Portal Server (XPS) was developed by, Sequoia Software Corporation. An

industrial collaborator was to help with requirements for applications and agreed to make

XPS available.

XPS is a portal platform that features an extensible, standards-based architecture and

enables true interactivity with diverse and disparate systems. It is portrayed as a new

media communication vehicle that extends information and processes and communicates

resources to the many constituencies that make up an organization’s business

environment. As such, it seems to have all the capabilities needed by our system for

resource management, communication to the network and transmitting targeted data over

the network [XPS02].

XPS provides a comprehensive set of functionalities needed to customize, and manage a

portal and provides a bi-directional interface to the systems that feed it, giving it the

ability to access not only relevant information, but also update, edit, and act on

information of the portal. It is inherently based on XML and has the ability to understand

the context of the information flowing through the portal. Through its use of XML, XPS

has the ability to understand the context of the information flowing through the portal.

Within the portal server, XML becomes a powerful mechanism for building contextual

indexes that streamline information discovery. XML provides the basic architecture for

scalability, high throughput and flexibility. When applied to the interchange of

information between these systems, XML plays a pivotal role in supporting these

expanding capabilities. XML is mainly important to facilitate information interchange.

XML supports machine-to-machine processing, are readily transformed into Web pages

for consumption by end users, and are easily transportable between disparate

applications.

The software was found to be inappropriate because:

♦ It is a proprietary technology.

♦ There are very few references available for its installation and use.

♦ The software is expensive.

♦ Following a merger, active sales efforts were discontinued. Obtaining technical

support became a problem.

♦ Alternative software is freely available and less complicated and

♦ Obtaining support for using the software is difficult and complicated.

3.2.2 .Net

. Net is the latest architecture from Microsoft for building distributed enterprise

applications. It provides enhanced interoperability features based upon open Internet

standards. Microsoft’s .Net is a platform built on top of the operating system. It is

language independent, but platform dependent. Programmers can develop in the

Windows platform. It can be used in 27 languages, including C#. The applications are

compiled to Microsoft Intermediate Language code, which is a low-level platform-

independent language [TPV02]. .Net provides the following services:

♦ The runtime environment - Net consists of a runtime environment called the

common language runtime and a set of supporting libraries. The runtime

40

41

environment controls the installation, loading, and execution of .NET applications.

The libraries provide code for common programming tasks.

♦ ASP.NET - ASP .Net is a new environment that runs on Internet Information

Services and makes it much easier for programmers to write code that constructs

HTML-based Web pages for browser viewing. ASP.Net features a new language-

independent way of writing code and tying it to Web page requests.

♦ XML Web services - .Net framework provides a set of services that allows a server

to expose its functions to any client on any machine running any operating system. A

set of functions exposed this way is called Web services.

♦ Support for handling XML documents - .Net framework contains outstanding

support for writing applications that handle XML documents and streams.

[PDS03],

♦ Connection from one .Net system to another - The .Net remoting API allows

programmers to write code that creates objects and calls functions from one .Net

system to another .Net System. .Net therefore provides a complete host of services

and capabilities suitable for our system. References and manuals are extensively

available [PDS03].

However, we decided not to use this technology for the following reasons:

♦ It is relatively new and unproven. Given the history of its manufacturer with respect

to new software, we found it advisable to wait until its imperfections were found and

corrected.

♦ Although well on its way to becoming a standard, there are few practical

implementations yet.

42

♦ . Net is much cheaper than XPS, but there is still a cost associated with the product.

3.2.3 Java 2 Enterprise Edition (J2EE)

Java 2 Enterprise Edition (J2EE) is licensed by Sun Microsystems. Its technology

provides a component-based approach to the design, development, assembly and

deployment of enterprise applications. The Java 2 computing platforms are Java

language-centric but have a platform-independent architecture. It can run on several

different operating systems, including Solaris, Unix, Windows, Linux, and MacOS. The

J2EE supports a multitiered (n-tier) approach:

♦ The client tier, which manages the client interface and communicates with the web

and business tiers (J2EE) to obtain the information needed to present to the user.

♦ The web tier, which is responsible for creating the presentation used by the client to

interact with the user.

♦ The business tier reacts to client calls and retrieves data from the database tier.

♦ The database tier, which consists of data tables, implemented as a relational

database.

J2EE was found to have all the capabilities we need for our system. It has a

programmable base in a widely used programming language, has user interface design

tools, has a built in interface with the Ethernet for communication and has a messaging

system for communication with other systems. Additionally, it has the following benefits:

♦ It is widely in use. There are thousands of systems using this technology.

♦ It is an industry standard.

♦ It has multiple vendors - it is not proprietary.

♦ It has plenty of resources and references.

43

♦ Some of its vendors offer open source versions with free licenses.

Based on all of these benefits, we decided to use J2EE as the distributed enterprise

technology for our system. The technology and its architecture are described in much

greater detail in the following chapters.

3.3 Other Supporting Technologies

Of the technologies employed include an operating system, a programming language, and

a database management system.

3.3.1 Operating System and J2EE

As mentioned earlier since J2EE is platform independent we could select from Solaris,

Windows, MacOS, Linux operating system. We decided to use the Windows operating

system since it is the most convenient to use.

3.3.2 Programming Language and J2EE

J2EE is language-centric. Java is the only programming language compatible with j2EE.

3.3.3 Database Management System and J2EE

Oracle and Mysql are two database management systems that could have been used. We

selected MySql since it could be freely downloaded, was easy to handle and was

compatible with the J2EE server.

3.4 Java 2 Enterprise Edition (J2EE) and Our System

J2EE is an n-tier technology that separates the presentation, business logic, and data

storage into separate tiers. Since tiers are logical concepts, it is actually the combination

of various servers that creates the system. Figure 3.1 illustrates the tiers and the servers.

We therefore have the presentation tier on the client, the web tier on the web server, the

logic (application) tier on the application server and the database tier on the database

server [SSJ02].

44

Client Web Server Application Server Database Server

K ey:____ ^ Inter-System Communication using various protocols
described in Section 3.7.

Figure 3.1 : J2EE Architecture

The design of our system is based on this separate tier technology. Our system will

logically be made of the four tiers and will contain the four software modules illustrated

in the above figure.

45

3.4.1 Presentation Tier

The presentation tier on the client manages the client interface and communicates with

the web tier to obtain the information needed to present to the user.

Our system will be using this tier, implemented using a web browser, so that the user can

interactively communicate with the components of the system to modify and view the

contents of the database.

3.4.2 Web Tier

The web tier on the web server is a program that dishes out web pages in response to

requests from a user sitting at a web browser - on the presentation tier. Besides serving

static HTML pages they run programs in response to user request and return the dynamic

results to the users browsers [JT02].

Our system will use the web tier to send database data to the presentation tier, and to

accept data edited by the user to forward it to the application-server, for further

processing.

3.4.3 Application Tier

The application tier contains the business logic in the system. All program logic and rules

reside here. Typically, user data is provided to this tier by the web tier, is processed here

and is stored in the database tier. For data recalled by the presentation tier, this tier

obtains the relevant data columns from the database, provides any necessary processing,

and returns it via the web tier [JT02].

We will use the application tier on the UOB system to update the UOB database, to

verify whether columns changed in the UOB need synchronization in the FDMS database

46

and if so, to package the ‘change’ data and communicate it to the FDMS system with

appropriate and adequate information, to synchronize the FDMS database.

On the FDMS system, the application server will receive the ‘change’ data packets from

the network, decode them and use the information to update the FDMS database.

3.4.4 Database Tier

The database tier on the database server stores all the required data. It is also responsible

for maintaining the consistency of application data.

The database tier on our system will store UOB data on the UOB-side and FDMS data on

the FDMS-side.

3.5 J2EE Components and Our System

The J2EE system is composed of numerous components, each performing a specific

function. They are application-level software units with related classes and files that

communicate with other related components in the system. These components can be

invoked remotely and can accept and receive parameters and in turn, return specific

values. Examples of components are Java Server Pages (JSPs) and Servlets (web

components) on the web tier and Enterprise JavaBeans (EJBs) (application components)

on the application tier [SSJ02]. Figure 3.2 illustrates the distribution of J2EE components

between the UOB processor and the FDMS processor.

47

JSPs EJBs

Browser
-----p
◄---- —► ___

Servlets
EJBs

w Data
(Presentation ◄— (Database

Tier) Web Tier Application Tier Tier)

Client Web Server Application Server Database Server

I

Client Application Server Database Server

(FDMS Side)

**Web Tier is not required on the FDMS side since there is no user interaction

Keys:

◄------
— ►

Inter-System Communication using various protocols
described in Section 3.7

< C = ...-I
JDBC (Java Database Connectivity)

Figure 3.2: J2EE Components

48

In our system, we will be using JSPs and servlets (components) in the Web tier and EJBs

in the application-server tier. It is therefore important to understand these components.

3.5.1 Web Components and Our System.

♦ Java Server Pages - JSPs typically generate the user interface for a web-based

application. They accept user requests and generate corresponding responses. A

typical JSP page appears very similar to an HTML page, with the added ability of

displaying dynamic content, typically obtained from servlet components in the

system. Internally the Web Server converts each JSP page into a servlet of its own.

However, JSPs differ from servlets in their programming model. A JSP page is

primarily a formatting document that presents dynamic content, unlike a servlet,

which is a program that produces dynamic content. [TPV02].

♦ Servlets - Servlets are Java programming language classes that dynamically process

requests and construct responses. They are programs that run on a web server and are

generally invoked by JSPs. The job of the servlet is to read data sent by the user,

look up any other information about the request, generate results by talking to the

application-tier or database and send the documents back to the client through a JSP.

We will be using JSPs in our system to present the pages that the user will view in

the presentation tier. Additionally, the JSPs will receive UOB ‘change’ data from the

client application (browser). The JSPs, in turn, will forward this data from the user to

appropriate servlets in the system for communication with the application-tier. When

the data is processed and the application-tier returns data to the web-tier, it will be

received by another servlet, to be forwarded to the appropriate JSP for presentation

to the user.

49

3.5.2 Application-Server Components and Our System

♦ Enterprise Java Beans - Enterprise JavaBeans (EJBs) help developers create

business objects that consist of columns and methods that implement business logic.

They perform specific tasks by themselves, or forward operations to other enterprise

beans. EJBs are under control of a pplication servers[ANAN02]. There are three

types of EJBs. However, we will describe only two types that we will require to

build our system:

♦ Session beans. These EJBs perform a task for a client inside the application server.

Each bean consists of several methods that contain logic and are invoked for

performing specific functions. There are two types of session beans - Stateless and

Stateful. Stateless session beans do not retain any state data of their own - it is

typically passed in by the calling client. When the client finishes executing this bean,

its data is gone. These are highly efficient to use and are the most common types of

EJBs used. The application server maintains a pool of these beans and one is

allocated out of the pool to a calling client. Stateful session beans contain attributes

that retain state information. [AnAn02].

We will be using stateless session beans on the application tier of the UOB-side

system to process data.

♦ Message-Driven Beans (MDBs) - MDBs are components that receive inbound

messages delivered via the Java Message Service. These beans contain business

logic for handling messages received from communicating clients, typically on other

systems [TP V02]. Each bean implements a JMS message listener interfaces, and

asynchronously consumes messages sent to a JMS queue that it is listening on. A

50

message sent to that queue typically wakes up a waiting MDB and invokes the

‘onMessage’ method of that bean. This method contains the business logic required

to process the message. A communicating client never accesses a message driven

bean directly when a message arrives; it is the application server that calls the

message-driven bean’s ‘onMessage’ method to process the message.

We will be using message-driven beans on the FDMS-side of our system to receive

and process messages sent by the UOB-side. Each message will contain

appropriately formatted ‘change’ data and will contain information about the data

that will need synchronization in the FDMS database.

3.6 J2EE Containers and Our System

Containers are standardized runtime environments that provide specific services to the

web and Application components. They provide a way for services to be “injected” into

the operations of the components without the component developer needing to write

specific code. These containers are transparent to the users, and they provide some of the

services provided by operating services. They are the interface between a component and

the low-level platform-specific fimctionality that supports the component. Before a web

or an enterprise bean component can be executed; it must be assembled into an

application and deployed into its container [TPV02].

3.6.1 Web Container and Our System

The web container manages the execution of JSP and servlet components for J2EE

applications. The web components and their container run on the web server (figure 3.3).

The web container in our system, as defined above, will manage and serve the execution

of its JSPs and servlets.

51

3.6.2 EJB Container and Our System

The EJB container manages the execution of Enterprise Java Beans (EJBs) for J2EE

applications. Enterprise java beans and their container run on the application server

(figure 3.3).

In our system the EJB container will handle the execution of the EJBs.

Browser
(Presentation

Tier)

JSPs

Servlets

Web Container

Web Tier

EJBs

EJBs

EJB Container

Application Tier

>

Data
(Database

Tier)

Client Web Server Application Server Database Server

Figure 3.3: J2EE Containers

3.7 J2EE and Communication

J2EE systems include communication-enabling technology, to enable clients to

communicate with J2EE components, and for J2EE components to communicate with

each other (figure 3.4), by providing the necessary underlying infrastructure.

The communicating components can be on the same or different computers, the one

exception being the Database Visualizer communication with the database server, which

must be on the same computer.

52

Client Web Server Application Server Database Server
▼

Database Visualizer Application Server Database Server

Figure 3.4: J2EE Standard Protocols

A few of the Java technologies in the communication enabling technology group that we

have used to build our system are described below. These are categorized into

Communication services, Enterprise services and Internet services. All these services

help communicate in different areas of the technology, depending on the area where the

service is required.

53

3.7.1 Communication Services

These include the RMI HOP services and the Java Message Service.

♦ Remote Method Invocation and Inter-ORB Protocol (RMI-IIOP)

RMI-HOP is a transparent layer and has the ability to invoke methods on objects

located on different computers as easily as invoking a method on objects on the sane

computer. It is a protocol for invoking services and programs on separate servers [].

We use the RMI IOP feature on our system to communicate between tiers.

♦ Java Message Service

Java Messaging Service (JMS) provides a standard unified message API for different

message formats to encapsulate and exchange asynchronous messages. The

application uses the underlying Enterprise Messaging System to create messages and

to communicate asynchronously with one or more peer applications.

JMS supports the Publish / Subscribe messaging model (defined below). This

messaging model depends on the JMS provider, which is a server that provides

messaging services to both the producer and the receiver of a given message.

> Publish / Subscribe

In publish/subscribe messaging, the publisher publishes messages to a topic

destination and subscribers consume the messages from the topic destination (figure

3.5). Publish/subscribe messaging systems provide one-to-many delivery of

messages. For example, when a message is published to a particular topic

destination, all subscribers that have subscribed to the topic automatically receive the

message.

The above is referred from [TPV02]: Reference.

Our system will be using the publish/subscribe messaging system to communicate

between the UOB and FDMS systems. In this way the communication model is

generalized to multiple FDMS instances.

54

Figure 3.5: Publish-Subscribe Messaging Model

3.7.2 Enterprise Services

This includes JDBC for database access and JNDI for Java naming and directory

services.

♦ Java Database Connectivity (JDBC)

Java Database Connectivity (JDBC) service provides access to the databases in our

systems. The JDBC API is a Java API for accessing virtually any kind of tabular data,

stored in a database. The JDBC API makes it easy to send SQL statements to the

database systems and supports all dialects of SQL. One can write a single program using

the JDBC API to enable the program to send corresponding SQL statements to the

appropriate data sources. The above is referred from [SSJ02] in the Reference Section.

JDBC services are enabled through JDBC drivers and enable the following:

♦ Establish a connection with a data source.

♦ Send queries and update statements to the data source.

♦ Process the results.

55

Applications typically make calls to the JDBC API to open a connection with a database,

retrieve and update data, execute commands on the data source, and close the connections

upon the end of such transactions.

As a service, the EJB container maintains a pool of database connections. This pool is

transparent to the enterprise java beans. When an enterprise java bean requests a

connection, the container fetches one from the pool and assigns it to the bean. This

enables quick connectivity from the bean to the database. Our system will use the JDBC

services on both systems to communicate with the UOB and the FDMS databases

respectively.

Java Naming Directory Interface (JNDI)

The Java Naming and Directory Interface (JNDI) provides naming and directory

functionality to applications written using the Java programming language. These naming

services provide for storage and access of various objects. They are effectively

lightweight databases with very specific uses. JNDI enables applications to access

resources transparently in the network. This service provides the means to locate other

components in a distributed system.

Our system will use JNDI to find appropriate EJB and messaging services, for use by the

various tiers.

3.7.3 Internet Services

Includes support for HTTP, TCP/IP.

3.8 Installed Software

Several choices of J2EE systems were available to us. They are listed as below:

♦ WebLogic by BEA Systems

♦ WebSphere by IBM

56

♦ J2EE Systems by Borland

♦ J2EE Systems by Oracle

♦ Open source systems such as Apache Tomcat, JBOSS Application Server and

MySQL database server.

Each of these choices gave us a full array of J2EE capabilities. However, the open source

systems offered the added advantage of offering licenses that were at no cost. Hence, we

chose the following configuration (figure 3.6):

Apache Tomcat Web Server + JBOSS Application Server + MySQL Database Server

Each of these servers constitutes a tier as per J2EE nomenclature. Details of the installed

software are given in the next chapter.

Our presentation, web, application and database tiers are all going to be on the same

machine (one each for UOB and FDMS), but each tier is going to be on different servers.

♦ The presentation tier is on the browser with Windows Pro 2000 software installation.

♦ The web tier is on the web server, and the software installed is the Apache Tomcat

version 4.0.4

♦ The application tier is on the application server and we have installed the Jboss

server version 3.0.2.

♦ The database tier is on the database server, and we have installed the MySql database

server version 4.0.4

♦ JDK (java development kit) 1.4 java, is installed on web server and application

server.

♦ The transmission side uses Java Messaging Service for sending messages through the

Publish / Subscribe Messaging Model. The transmission side publishes the message

57

and the receiving side subscribes to the service in order to receive the published

messages.

♦ Web tier and application tier send messages to the databases using JDBC.

♦ Configured them “Eclipse Ide setup”

♦ Connection through JNDI.

▼

Client Application Server Database Server

Figure 3.6: Installed Software

In this Chapter we discussed the different enabling technologies available that would

meet the basic requirements of building the system and discussed the reasons for their

adoption/rejection. We described in detail the enabling technology (J2EE) its components

and containers, aid mapped it to our system. We also showed the communication

protocol that is used to communicate between tiers.

In the next chapter we will explain and illustrate in detail, the design of our system.

3.9 Summary of the Chapter

59

CHAPTER 4

SYSTEM DESIGN

4.1 Introduction to the System Design

The UOB database and the FDMS database reside on different geographical locations. As

discussed earlier, we have used a combination of Client Server, Web Server, Application

Server and Database Server on the Transmission (UOB) Side, and a combination of

Database Visuabzer, Application Server and the Database Server on the Receiving

(FDMS) Side. Figure 4.1 illustrates the design of the entire system.

Since the UOB and the FDMS systems reside on separate machines, we have described

each side of the design separately.

60

Client Web Server Application Server Database
Server

Client Application Server Database Server

Figure 4.1: The System Design

4.2 Design of the UOB System

We will recall that the UOB Side architecture consists of:

♦ The Presentation Tier - This tier displays the browser to the user. The user will use

this to communicate requests to the web tier. In our system, this could be the user

requesting the display of the contents of the UOB database. The client browser

manages this tier.

61

♦ The Web Tier - This tier will receive requests from the client browser, process them

and communicate them to the application tier. Responses received from the

application tier will be processed and communicated back to the presentation tier for

display in the browser. Hence, for a request from the presentation tier requesting the

display of the contents of the UOB database, the web tier will interpret the

appropriate request, transfer it into logical service calls and make the calls on the

application tier. The Web server manages this layer.

♦ The Application Tier - This tier receives requests for services from the web tier,

processes them and makes corresponding requests on the database tier for data. This

tier also contains the application logic for the system. In our example, this tier will

receive the request for display of UOB data from the web tier and make the

corresponding request on the database tier. On receipt of data from the database tier,

this tier will return the data to the web tier. Additionally, the logic on this tier will

also interpret requests for changes in the UOB data, made by the web tier. This tier

will analyze such requests and request that corresponding changes be made in the

database tier. In addition, it will check whether the changes need to be

communicated to the FDMS system. If so, it will send a corresponding message to

the FDMS system. The Application server manages this layer.

♦ The Database Tier - This tier manages the data in the system. It communicates with

the Application Tier.

62

Browser
(Presenta­
tion Tier)

JSPs

Servlet«?

(Web Tier)

Session Bean

(EJBs)

(Application
Tier)

>

UOB Data
(Database

Tier!

Client Web Server Application Server Database Server

i
‘Change data’ packet is sent from

UOB database to the FDMS
Database through the Internet

Figure 4.2: The Transmission Side (UOB) Design

4.2.1 Design of the Presentation Tier

The presentation tier of our system is essentially a browser. Through this, the user should

be able to view and modify the contents of the UOB database.

A user interface was developed utilizing separate screens for each function and for

editing each table.

♦ Login. This is the first screen presented to a user, when the user accesses our system.

Fundamentally, the UOB system is being designed to allow a user to change the

contents of the UOB database. Since database contents need to be kept secure, we

decided to create a login screen, so that only legitimate users could access it. The

63

login screen consists of a screen allowing a user to enter a user name and password.

If the user name and password are validated, the system will present the View

screen. Else, it will present the Login Error screen.

♦ Login Error. This screen will be presented to the user when invalid user name and

passwords are entered into the system. This screen will consist of an error message

displayed to the user. When the user has read the message, the Login screen will be

presented again.

♦ View. This screen will be presented to a user upon the successful entry of a correct

set of user name and password. It will give him the ability to view the contents of the

UOB database. Data modification will not be done on this screen. However, it will

give the user the ability to indicate whether he would like to edit the contents of any

table in the database. If a user chooses to edit any table, the appropriate Edit screen

will be presented.

♦ Edit. This consists of several screens, one per table in the database. When a user

indicates in the View screen that he would like to edit a table in the UOB database,

the appropriate Edit screen will be displayed. In these screens, the user will be able

to edit the contents of any record in the table and save it. Once saved, the system

presents the View screen again.

64

Figure 4.3: Pictorial Representation of Presentation Tier Design

65

The web tier of our system acts as the interface between the presentation tier and the

application tier. All actions made by the user in the presentation tier are sent to the web

tier. All screens viewed by the user in the presentation tier are created by the web tier and

sent as HTML content to the browser.

When the user first opens a browser and types in the address for our system, he is

essentially communicating with the web tier and requesting a login page. The web tier

sends HTML content corresponding to the ‘login’ screen to the browser, where it is

presented. When the user fills the screen with a user name and a password, the contents

of the page are sent to the web tier, which in turn, sends it to the application tier for

validation. If the user is validated, the web tier sends HTML content corresponding to the

‘view’ screen to the browser. If not, the web tier sends HTML content corresponding to

the ‘login error’ screen to the browser.

The central program in the web tier of our application is a ‘controlling servlet’. This is a

program supported by the web container used in our system, Tomcat. The controlling

servlet acts as the central manager of the web tier system, directing and communicating

with several other servlets and Java Server Pages. The servlet is also the program

receiving all communication from the browser. Based on requests received from the

browser, the controlling servlet makes decisions on the next fine of action. If information

is to be conveyed to the application tier, it invokes an action servlet. If a screen is to be

displayed, it invokes a Java Server Page.

HTML content is sent to the presentation tier using Java Server Pages (JSPs), as defined

in Chapter 3. Java Server Pages are specialized pages supported by the web container for

4.2.2 Design of the Web Tier

the dispatch of HTML content to the browser. Each screen (Figure 4.26) has its own

corresponding JSP in the web tier. When it’s time to present a certain screen to a user, the

controlling servlet invokes the corresponding JSP. The JSP creates appropriate HTML

formatting code for the screen and sends it to the browser. If data from the system is to be

presented on the screen, the JSP obtains it from the application tier using appropriate

service calls. Each JSP can communicate directly with the application tier to obtain data

for presentation.

The web tier also uses other programs called ‘action servlets’ for communicating with the

application tier. These are programs that receive information from the controlling servlet

and make corresponding service calls on the application tier.

The figures in table 4.1 and 4.2 show the sequence of actions between the presentation

tier and the web tier, detailing the interaction between the various components of the web

67

Presentation Tier

(Contents of

browser)

User Action Web Tier

Blank on startup User types in the
URL of our system

into a browser

Controlling servlet receives
communication for startup screen.
Invokes the ‘Login’ JSP. Login JSP
sends HTML for login screen to browser

Login Screen User types in
incorrect username
and password and

clicks on the ‘Login’
button

Controlling servlet receives username
and password for validation. Invokes
action servlet to send it to application
tier. Waits for validation from
application tier. Since this was not
validated (incorrect password), invokes
‘ Login Error JSP ’. Login Error JSP
sends HTML for login error screen to the
browser

Login Error
Screen

User clicks on the
OK button signaling
user has read error
message and is ready
to enter username and
password again

Controlling servlet invokes ‘Login’ JSP.
Login JSP sends HTML for login screen
to browser

Table 4.1: Tabular Representation of Web Tier Design (continued in 4.1(a))

Continued from 4.1:

Presentation Tier
(Contents of

browser)
User Action Web Tier

Login Screen User types in correct
username and
password and clicks
on the ‘Login’ button

Controlling servlet receives username
and password for validation. Invokes
action servlet to send it to application
tier. Waits for validation from
application tier. Since this is validated
(correct password), invokes ‘View JSP’.
View JSP requests UOB data from the
application tier, formats it into HTML
and sends it to the browser to display
contents of UOB database in read only
format

View Screen User selects option to
edit the Unit table
and clicks on the OK
button

(Editing of other
tables is identical)

Controlling servlet receives user option.
Invokes the ‘EditUnit Table JSP’.
EditUnitTable JSP requests contents of
the Unit table of the UOB database from
the application tier. Upon receiving it, it
formats the data into an HTML table and
sends it to the browser to display in
editable format

Edit Unit Table
Screen

User makes changes
to some of the values
in the Unit table and
clicks on ‘save’

Controlling servlet receives edited
values for the Unit table and calls on the
action servlet to request the application
tier to save it in the UOB database.
When done, it invokes the View JSP to
display the updated values on the screen.

View Screen User selects ‘Logout’ Controlling servlet invokes the Login
JSP.

Login Screen

Table 4.1 (a): Tabular Representation of Web Tier Design

The application tier of our system on the UOB side consists of application logic,

embedded in a stateless session enterprise java bean (EJB). Stateless session EJBs are

defined in Chapter 3. These EJBS are supported by the application server used in our

system, JBoss.

The application server provides essential communication services to the EJB, allowing

the web tier to communicate easily with the EJB, through programming calls. The EJB

exposes a series of application programming interface (API) calls, used by the web tier to

request services from the application tier. The application server also provides the EJB

with Java Messaging capability (JMS), allowing the EJB to send packets of ‘change’ data

to the FDMS system.

The EJB communicates with the database using another protocol, called Java Data Base

Connectivity (JDBC), also defined in Chapter 3. JDBC allows SQL statements to be

embedded in programming calls, allowing the EJB to interact with the UOB database.

The EJB contains all the logic needed for the processing of services requested by the web

tier. It also communicates with the UOB database for update and retrieval of data.

Additionally, it contains a map of common data between the UOB and FDMS databases,

allowing it to send packets of ‘update’ information to the FDMS system whenever data

common to both databases is edited.

The table in Figure 4.2 details the services requested by the web tier from the application

tier and the corresponding design of the application tier.

69

4.2.3 Design of the Application Tier

70

Service requested by

Web Tier

Data Interaction
In / Out Application Tier Functionality

User Validation

User name and
password

Accepts a set of user name and
password and tries to match with
existing accounts in the database.
Returns True if a match is found; False
otherwiseTrue / False

Retrieve all UOB
data

None
Retrieves all UOB data in the database
and returns to the web tier

UOB data

Retrieve UOB data in
a specific table

UOB table name
Retrieves all UOB data in specified
table from the database and returns it to
the web tierUOB data in

specified table

Update UOB data in
a specific table

UOB table name,
updated data

• Updates the specified table in the
UOB database with the supplied data.

• Checks mapping table to see whether
this was common data with FDMS

• Creates a packet of ‘change’ data, if
true

• Sends ‘change’ packet to FDMS
system

None

Others

None
Performs initialization of connection
with the database

None

Table 4.2: Tabular Representation of Application Tier Activities

The database tier consists of a database. In our system, we used the MySQL database.

The design of the database was the simplest part of the entire system. It was done using

the SQL language, from a command line window.

The design consisted of the following steps:

♦ Create a database for our use in the MySQL database

♦ Create user permissions and privileges for our system to access the database

♦ Create tables corresponding to the UOB database.

4.3 Design of the Receiving Side (FDMS) System

The receiving side system receives change packets from the UOB system, decodes them

and updates the FDMS database (figure 4.4). It consists of:

♦ Database Visualizer - Since data will be updated in the database, we did need the

ability to view its contents. However, we decided not to create a presentation tier for

it since a public domain application was available for that purpose. Hence, in our

system, data in the FDMS database will be viewed using an external application,

called the Database Visualizer.

♦ Application tier - This tier contains all of the logic for the messaging interface,

decoding of the change packets and updating of the database; and the FDMS

database tier.

71

4.2.4 Design of the Database Tier

♦ Database Tier - This tier manages the FDMS-side data.

72

Database Visualizer Application Server Database Server

Figure 4.4: Transmission Side (FDMS) Design

4.3.1 Design of the Database Visualizer

The Database Visualizer is an application written by Minq Software, Sweden. It allows

the visualization of contents of a database. We used version 3.3.1, since it met our needs

and was freely downloadable.

The application was downloaded from the web site www.minq. se/nroducts/dbvis/install-

331/install.isn. The downloaded file was an executable file, which when executed,

installed the application on our system.

The application was configured as follows:

1. We had to give it the path of the JDBC driver for MySQL, installed on our

system. Our driver was in the file “com.mysql.jdbc.driver” and was obtained

along with the MySQL database.

2. We had to give it the URL of the MySQL system whose tables we wanted to

view. In our case, it was Tocalhost’.

3. We had to give it a valid user name and password to allow it to access the tables

of our database.

When the application was configured with these details, we were able to view all the

tables of our database.

4.3.2 Design of the Application Tier

The application tier on the FDMS side consists of two fundamental elements, both

supported by the application server. The first one is the Message Driven Bean (MDB),

introduced in Chapter 3. The second one is a message queue.

The message driven bean is a special EJB supported by the application server. Like other

EJBs it contains program logic and, in our context, has all the ability to make JDBC calls

and interface with the database. Unlike other EJBs however, it does not expose an

application-programming interface. It is not called externally by any other entity or

component.

Each MDB is a message listener. It (indirectly) listens to a topic or a queue. Unless a

message arrives on that topic or in the queue, it is not invoked. When a message it’s

listening on arrives, the application server invokes it and calls its ‘OnMessage () method.

That allows an MDB to execute in that context. Hence, unlike other EJBs, which support

synchronous operations, an MDB fundamentally supports asynchronous communication

between components of a system.

Our FDMS system uses a message queue for communication. JBoss supports the creation

of JMS message queues and allows components to send messages to that queue by using

its address. The UOB system sends change packets in form of JMS messages to this

queue. Our MDB is programmed to be a listener on this queue.

73

74

When a ‘change’ packet arrives from the UOB system, the application server invokes the

MDB and calls its OnMessage() method, passing the ‘change’ packet to it as a parameter.

Once invoked, the MDB functions similar to a stateless session EJB. It decodes the

‘change’ packet and extracts the information needed to update the necessary tables and

records in the FDMS database. It then uses the JDBC interface to update the database, in

effect synchronizing the databases.

Hence, the design of the application tier is summarized as follows:

♦ Create a JMS message queue

♦ Create an MDB as a listener to this queue

♦ When a message arrives at this queue, the application server invokes the MDB and

sends the message to it

♦ The MDB decodes the message and extracts the ‘change’ information out of it.

♦ The MDB updates the FDMS database as per the ‘change’ information.

75

Database Visualizer Application Server Database Server

Figure 4.5: Transmission Side (FDMS) Design

4.3.3 Design of the Database Tier

The database tier consists of the FDMS database. In our system, we used the MySQL

database. The design of the database was done using the SQL language, from a command

line window.

The design consisted of the following steps:

♦ Create a database for our use in the MySQL database. The name of our database was

‘soup’.

♦ Create user permissions and privileges for our system to access the database.

76

4.4 The Complete System Architecture

Browser

Windows

HTML
JSPs

Servlets

Tomcat

RMIIOP
---------►
◄-----------

Client Web Server Application Server Database Server

Client

Figure 4.6: Systems Architecture

77

♦ Create tables corresponding to the FDMS database. The tables created were ‘Entity’,

‘Entity Component’, ‘Characteristic’ and ‘Entity Characteristic’.

4.5 Summary of the Chapter

In this chapter we discussed the design of our system. We displayed and explained the

systems different components and their functionalities and the combination of software

used to construct the system.

In the next chapter we will describe the detailed high and low-level implementation

process.

78

CHAPTER 5

PROJECT IMPLEMENTATION

5.1 Introduction to implementation

In the preceding chapters we have described the design of our system and the technology

we will be using to create it. The system as described, is made of the Transmission Side

(UOB), and the Receiving Side (FDMS). In this chapter we will explain user actions and

corresponding system implementation.

5.2 Transmission Side

5.2.1 Implementation Description of Transmission Side Modules

5.2.1.1 User Login

A. High Level Design

User accesses the website, and logs in with his User Name and Password to access the

UOB data (figure 5.1). This fulfils the requirement specification in chapter 2, figure 2.3.

UOB Data Editor: Login

User Name |l , .

Password
1

Figure 5.1: User Login

80

B. Low Level Design

Presentation tier Web Tier Application Tier Database Tier

Init Running Tomcat

Requesting Login
Page:

Running the
Session Bean

Running Database

User types m URL of
System

Received by
controlling

Servlet

Login Page Displayed
to User ^

Calls JSP
(logmjsp)

User Name and
Password:

User Submits the
username and

password
Received by
controlling

Servlet

Calls Servlet
(Login Action)

CALLS

Returns success
or failure to
Controlling ^

Servlet

Validate User()
Method of

UOBEJB Bean
(Session Bean)

CALLS

Matches password^
with database

Password

RETURNS TRUE
OR FALSE

Requests
password for

Username

RETURNS
PASSWORD

Table 5.1: User Login (Continued on 5.1(a))

81

Continued from 5.1:

Table 5.1 (a): User Login

♦ When the user submits the Username and Password data on the ‘Login’ screen, the

data is sent to the Controlling Servlet in the Web Tier.

♦ The Controlling Servlet accepts the Username and Password and calls the Login

Action servlet to validate them.

♦ The Login Action Servlet calls the ‘ValidateUser’ method in the UOB EJB, in the

Application Tier to validate them.

♦ The UOB EJB searches the database for a password related to the given Username. If

the password matches correctly, it returns ‘true’ to the Login Action servlet. Else, if

either the Username is not found in the database or the password does not match, it

returns ‘false’.

♦ The Login Action servlet, based on the results received, returns ‘success’ or ‘failure’

to the controlling servlet.

♦ If the result was a failure, the controlling servlet invokes ‘ErrorLogin.jsp’, which

displays the ‘Login Error’ html page (Figure 5.2). It communicates to the user that

the log in attempt failed. When the user clicks ‘OK’ on this page, the controlling

servlet invokes ‘Login.jsp’ again to allow the user to re-enter the user name and

password.

UOB Data Editor: Login Error!!

Login activity had error(s):

Please try again...

82

Figure 5.2: Login Error

If the result is a success, the Controlling Servlet invokes the JSP ‘UobView.jsp’.

♦ ‘UobView.jsp’ represents the UOB Editor page and has to display the contents of all

the tables in the database (figure 5.3). For each table to be displayed, it calls the

‘ViewObjects’ method in the UOB EJB to get the contents of that table.

♦ The ViewObjects method in the EJB makes a call to the database requesting all the

contents for that specific table. Upon receipt, it returns them to UobView.jsp.

83

♦ The UobView.jsp displays the contents of that table in the UOB database. It repeats

this sequence for all the tables in the database, displaying them all. It also provides

the user several buttons by which he can either modify (Create / Delete / Edit) the

contents of any table or log out (Logout) of the application. (Figure 5.2)

Welcome to UOB Editor

Table View

Unit
Logout

Unit
Identification

Code

Parent Unit
Id. Code Unit Name Home

Name
Ship

Category
Country

Code Select

ARMRBN null Armor
Battalion Pink N1 US r

BN HQ ARMRBN
Armor

Battalion
Headquarters

Red N2 US r

ARMRCO ARMRBN Armor
Company Brown N3 US C

CO HQ ARMRCO
Armor

Company
Headquarters

White N4 US c

ARMRPLT ARMRCO Armor
Platoon Orange N5 US r

CMDSN ARMRPLT
Armor

Command
Section

Green N6 US r

ARMRSN ARMRPLT Armor
Section Yellow N7 US C

Table 5.2: UOB Database Tables (Continued in Table 5.2 (a))

84

(Continued from Tables 5.2):

Create ! Delete I Hit
Unit-AircraftI.■...'...

AIC
Unit

Identification
Code

Aircraft
Code

Aircraft
Description

Aircraft Qty
Required

Aircraft
Qty

Auth
Select

UH1V BN HQ H13579
UH-IV
Utility

Helicopter
2 2 ' C

UH1V CO HQ H13589
UH-1V
Utility

Helicopter
4 4 C:

Table 5.2(a): UOB Database Tables (Continued in Table 5.2 (b))

85

Create I .Delete I Ed#
Unit-Equipment _ ___ JL-— J____

Continued from Tables 5.2 (a):

EIC
Unit

Identification
Code

Equipment
Code

Equipment
Description ■

Equipment
Qty

Required

Equipment
Qty Auth Select

M1A1 BN HQ M1234 Main Battle
Tank 15 11 C

M2 3 BN HQ M2345 7.62 MM
Sidearm 145 145 C

MIR BN HQ M1357 Rifle 61 61 r

M1A1 CO HQ M1234 Main Battle
Tank 15 11 C

M23 CO HQ M2345 7.62 MM
Sidearm 145 145 c

MIR CO HQ M1357 Rifle 61 61 c.

M1A1 CMDSN M1234 Main Battle
Tank 15 11 r

M23 CMD SN M2345 7.62 MM
Sidearm 145 145 c

MIR CMDSN M1357 Rifle 61 61 r

M1A1 ARMRSN M1234 Main Battle
Tank 15 11 c

M23 ARMRSN M2345 7.62 MM
Sidearm 145 145 r

MIR ARMRSN M1357 Rifle 61 61 c

Table 5.2 (b): UOB Database Tables (Continued in Table 5.2 (c))

86

Create I Delete 1 Hit
Unit-Personnel _ _ J — .

Continued from Tables 5.2 (b):

PIC
Unit

Identification
Code

Personnel
Description

Personnel Qty
Required

Personnel
Qty Auth Select

LT COL BN HQ Lieutenant
Colonel 1 1 C

MAJ BN HQ Major 3 2 r

DRIVER BN HQ Tank Driver 4 4 r

GUNNER BN HQ Gunner 6 5 r

LOADER BN HQ Loader 6 5 c.

PILOT BN HQ UH-1 Pilot 2 2 c

CAPT CO HQ Captain 4 4 c

1LT CO HQ First Lieutenant 5 4 r

DRIVER : CO HQ Tank Driver 4 4 c

GUNNER CO HQ Gunner 6 5 r

LOADER CO HQ Loader 6 5 c

PILOT CO HQ UH-1 Pilot 2 2 r

2LT CMDSN Second
Lieutenant 5 4 C

DRIVER CMD SN Tank Driver 4 4 c
GUNNER CMDSN Gunner 6 5 c
LOADER CMDSN Loader 6 5 r

CHIEF ARMRSN Crew Chief 2 2

DRIVER ARMRSN Tank Driver 4 4 C

GUNNER ARMRSN Gunner 6 5 r

LOADER ARMRSN Loader 6 5 c

Table 5.2 (c): UOB Database Tables

87

, 5.2.1.2 Updating Database Tables

The UOB Editor allows a user to access all the UOB tables in the database (figure 5.3).

For each table, the user can click on the

1. ‘Create’ button for adding a new row (entry) in a table.

2. ‘Delete’ button for deleting an existing row.

3. ‘Edit’ button for modifying a specific row of a table.

The Unit table allows no editing. Additionally, the user can click on the Logout button to

exit the application. We will be describing the activities for one table (Unit Aircraft). The

implementation for all tables is identical.

1. Creating a New Row in a Table

♦ Accessing the Data

A. High Level

The user clicks on the ‘Create’ button of the Unit Aircraft table (figure 5.3) and the page

‘Create Unit Aircraft’ is displayed to him (figure 5.4).

UOB Editor

Create Unit Aircraft

Unit Aircraft

AIC

Unit

Id1

Aircraft

Code1

Aircraft

Desc
1

Aircraft

Qty

Reqd
i

Aircraft

Qty

Auth
1

Figure 5.4: Creating a New Unit Aircraft Table

89

B. Low Level

Table 5.3: Accessing Table to Create Row

♦ The Controlling Servlet (in the Web Tier) receives the identity of the table for which

the user has requested to add a new row - in this case the Unit Aircraft table.

♦ The Controlling Servlet invokes the JSP ‘CreateUnitAircraft.jsp’.

♦ The CreateUnitAircraft.jsp displays the ‘Create Unit Aircraft’ html page (Figure

5.4). This presents to the user a page with blank entries, corresponding to the

columns in a row of the Unit Aircraft table.

♦ Entering data in the row

A. High Level

The user fills in the columns and clicks the ‘OK’ button.

90

Low Level

Table 5.4: Creating a New Row

91

♦ The Controlling Servlet receives the contents of the columns the user just filled in.

♦ It calls the ‘Create Unit Aircraft Action’ servlet and passes to it all the data received

from the user entry.

♦ The ‘Create Unit Aircraft Action’ servlet calls the ‘CreateUOB’ method of the

UOBEJB bean in the Application Tier and passes to it the identity of the table (Unit

Aircraft) and all the data for inserting into a new row in this table.

♦ The CreateUOB method sends the data to the database for insertion into a new row

in the Unit Aircraft table.

♦ The CreateUOB method then calls the UpdateFDMS method in the UOBEJB to

update the FDMS tables, if required.

♦ The UpdateFDMS method checks in a mapping table to see if the data is mapped

into the FDMS database. If so, it creates a ‘ChangeObj’ object and inserts into it the

identity of the operation (‘create’), the identity of the table (Unit Aircraft), and the

new data itself. Then, it pushes the ‘ChangeObj’ object to the queue of the FDMS

system. When done, it returns control to the CreateUOB method, which in turn,

indicates to the Create Unit Aircraft Action servlet that it’s done.

♦ The ‘Create Unit Aircraft Action’ servlet indicates to the Controlling Servlet that it is

done.

♦ The Controlling Servlet calls UobView.jsp. UobView.jsp gets all the current

(including the new row added) contents of the database and displays them to the user

in the UOB Editor html page. At this point, the system waits for new user input.

92

2. Deleting a Row in a Table

A. High Level

The user selects a row in the Unit Aircraft table and clicks on the ‘Delete’ button of the

Unit Aircraft table (figure 5.3).

♦ The Controlling Servlet (in the Web Tier) receives the identity of the table (Unit

Aircraft) and the number of the row that the user has requested to delete.

♦ The Controlling Servlet calls the ‘Delete Action’ servlet and passes to it the table

name and row number.

♦ The ‘Delete Action’ servlet calls the ‘DeleteUOB’ method of the UOBEJB bean in

the Application Tier and passes to it the identity of the table (Unit Aircraft) and the

identity of the row to be deleted.

♦ The DeleteUOB method sends the data to the database requesting deletion of the row

in the Unit Aircraft table.

♦ The DeleteUOB method then calls the UpdateFDMS method in the UOBEJB to

update the FDMS tables, if required.

♦ The UpdateFDMS method checks the mapping table to see if the data is mapped into

the FDMS database. If so, it creates a ‘ChangeObj’ object and inserts into it the

identity of the operation (‘delete’), the identity of the table (Unit Aircraft), and keys

for identification of the row that was deleted. Then, it pushes the ‘ChangeObj’ object

to the queue of the FDMS system. When done, it returns control to the DeleteUOB

method, which in turn, indicates to the Delete Action servlet that it’s done.

♦ The ‘Delete Action’ servlet indicates to the Controlling Servlet that it is done.

93

Low Level

Table 5.4: Deleting a Row

94

♦ The Controlling Servlet calls UobView.jsp. UobView.jsp gets all the current (new)

contents of the database and displays them to the user in the UOB Editor html page.

At this point, the system waits for new user input.

95

3. Editing data in a Table

♦ Accessing the Table

A. High Level

The user selects a row in the Unit Aircraft table and clicks on the ‘Edit’ button of the Unit

Aircraft table (figure 5.3).

B. Low Level

Table 5.5: Accessing the Table to Edit Data

96

♦ The Controlling Servlet (in the Web Tier) receives the identity of the table (Unit

Aircraft) and the row number that the user has requested to edit.

♦ The Controlling Servlet invokes the JSP ‘EditUnitAircraft.jsp’.

♦ EditUnitAircraft.jsp calls on the ‘Edit Unit Aircraft Action Setup’ servlet and

requests the current contents of the row that has to be edited in the Unit Aircraft

table.

♦ The Edit Unit Aircraft Action Servlet calls on the ViewObjects method of the

UOBEJB (in the application tier), which in turn requests the data from the database.

Upon receipt of data, the servlet sends the data to EditUnitAircraft.jsp.

♦ Using this data received, EditUnitAircraft.jsp displays the ‘Edit Unit Aircraft’ html

page (Figure 5.6), with filled in, editable entries, each line corresponding to the

columns of the row to be edited, in the Unit Aircraft table.

97

Editing the Table

A. High Level

The user edits the columns as desired and clicks the ‘OK’ button.

Welcome to UOB Editor

Edit Unit Aircraft

Unit Aircraft

| UH1V AIC

Unit

Id
j~ BN HQ

Aircraft

Code ;
jH H13579

Aircraft

Desc
| UH-1V Utility Helicopter

Aircraft

Qty

Reqd
I2 .

Aircraft

Qty

Auth
I2 . .

Figure 5.6: Editing the Table

B. Low Level

Table 5.6: Editing the Data in the Table

99

♦ The Controlling Servlet receives the edited contents of the row in the Unit Aircraft

table.

♦ It calls the ‘Edit Unit Aircraft Action’ servlet and passes to it the edited row.

♦ The ‘Edit Unit Aircraft Action’ servlet calls the ‘UpdateUOB’ method of the

UOBEJB bean in the Application Tier and passes to it the identity of the table (Unit

Aircraft) and the edited contents of the row in this table.

♦ The UpdateUOB method sends the data to the database for updating the specified

row in the Unit Aircraft table.

♦ The UpdateUOB method then calls the UpdateFDMS method in the UOBEJB to

update the FDMS tables, if required.

♦ The UpdateFDMS method checks in a mapping table to see if the data is mapped

into the FDMS database. If so, it creates a ‘ChangeObj’ object and inserts into it the

identity of the operation (‘update’), the identity of the table (Unit Aircraft), keys for

identifying the row to be updated and the new data itself. Then, it pushes the

‘ChangeObj’ object to the queue of the FDMS system. When done, it returns control

to the UpdateUOB method, which in turn, indicates to the Edit Unit Aircraft Action

servlet that it’s done.

♦ The ‘Edit Unit Aircraft Action’ servlet indicates to the Controlling Servlet that it is

done

♦ The Controlling Servlet calls UobView.jsp. UobView.jsp gets all the current

(including the edited row) contents of the database and displays them to the user in

the UOB Editor html page. At this point, the system waits for new user input.

100

5.2.1.3 Logging Out

A. High Level

The user clicks on the ‘Logout’ button.

B. Low Level

♦ The Controlling Servlet (in the Web Tier) receives the message that the user has

requested to log out.

♦ The Controlling Servlet invokes the JSP ‘Login.jsp’.

♦ Login.jsp displays an html page (Figure 5.1) requesting a user to enter his User name

and Password if he wishes to log back in.

♦ At this point, the system waits for new user input.

5.2.2 Component Modules of the Transmission Side (UOB)

5.2.2.1 The Presentation Tier

This consisted of the Microsoft Explorer browser on our system.

5.2.2.2 The Web Tier

The principle component modules of the web tier are Java Server Pages (JSP) and

Servlets.

5.2.2.2.1 JSPs in the Web Tier

a) Login.jsp

Task: This JSP displays a form to a user where he can enter a username and password

Function: This JSP contains html functionality to display two text boxes and a submit

button. The first text box allows entry of a username. The second allows entry of a

password. The submit button dispatches the response to the web tier.

101

b) Errorlogin.jsp

Task: Communicates login error to a user if username or password was invalid

Function: This is a very simple JSP. It contains text that displays a login error message

to a user. It also contains a submit button with the text “OK”, allowing a user to

communicate to the system that he has read the message.

c) UobView.jsp

Task: Displays contents of the UOB tables in tabular format

Function: This JSP creates four tables, one for each table in the UOB database - Unit,

Unit Aircraft, Unit Equipment and Unit Personnel. For each table, the JSP calls on the

viewObjectsO method of the UobEJBBean in the application tier, communicating the

name of the table it is currently working on, and requests all the data values in that table

from the database, which it receives in an array. It then displays all the values from that

array. For each entry in the table, the JSP displays a radio button, allowing selection of

any entry in a table. For each table (except the UNIT table), it displays three buttons,

Create, Delete and Edit, allowing a user to communicate what he intends to do next. The

JSP also displays a logout button allowing a user to signal his desire to log out of the

system.

d) CreateUnitAircraftjsp / CreateUnitPersonnel.jsp / CreateUnitEquipmentjsp

Task: Allows a user to create a new record in a table (Unit Aircraft, Unit Equipment or

Unit Personnel).

Function: The three JSPs are nearly identical and differ only in the format for their

corresponding tables. Each JSP displays a set of empty text boxes, allowing a user to

enter a set of values corresponding to a row in the appropriate (Aircraft, Personnel or

102

Equipment) table. Each also displays a submit button with the label “OK” allowing a user

to submit the values when the input is complete.

e) EditUnitAircraft.jsp / EditUnitEquipmentjsp / EditUnitPersonneLjsp

Task: Allows a user to edit one record in a table (Unit Aircraft, Unit Equipment or Unit

Personnel)

Function: This set of (nearly identical) JSPs allows a user to edit one record of a table. It

is invoked when a user selects a radio button in UobView.jsp, indicating the selection of

a record in a table and clicks on the corresponding ‘Edit’ button. The JSP displays a set of

text boxes, pre-populated with the contents of the record that the user elected to edit,

allowing a user to edit it with new values. (The values are given to the JSP by the servlet

EditUnitAircraftSetupAction, described later). It also displays a Submit button with the

label “OK”, allowing the user to indicate when he is done with the edits.

5.2.2.2.2 Servlets

Servlets contain all the logic in the web tier. The system has several servlets, named

according to the functionality they perform. Each servlet is associated with a form,

appropriately named, that contains user-entered values for that functionality. For

instance, the servlet LoginAction contains logic related to the logging in process by a

user. This servlet has the form LoginForm associated with it, which stores the username

and password values entered by a user for logging in.Each servlet is described below:

a) LoginAction

Task: Validate user login

Function: This servlet is called by the controlling servlet when a user submits a

username and password while attempting to log in. It first checks if communication with

the application tier has been initialized. Being the first servlet called by the controlling

servlet, it also serves the task of initializing communication with the application tier.

Once the communication is setup, this servlet calls the ValidateUser() method of the

UobEJBBean in the application tier, passing the user entered username and password

values to it, for validation. It receives either “true” or “false” indicating success or failure

and returns those values to the controlling servlet for further action,

b) ViewAction

Task: Process input from a user when a user clicks either a Create, Delete, Edit or

Logout button on the View page.

Function: This servlet is called by the controlling servlet when a user clicks on either a

Create, Delete, Edit or Logout button on the view page, generated by the JSP

UobView.jsp. The view page displays all the values in the tables of the UOB database

and offers a user the choice of creating a new entry in any of the tables (Create),

modifying an existing entry in the database (Edit), deleting an existing entry in the

database (Delete) or logging out (Logout). This servlet does not perform any logic of its

own; it works as a dispatcher. If the user clicked on a Create button, it informs the

Controlling Servlet the name of the table for which the Create button was clicked, so that

the appropriate JSP (CreateUnitAircraft.jsp, CreateUnitEquipment.jsp or

CreateUnitPersonnel.jsp, respectively) could be invoked to allow the user to enter

columns for a new record of that table. If the user clicked a Delete button, it informs the

Controlling Servlet the table name and the record number in that table, so it could call the

servlet DeleteAction. If the user clicked on an Edit button, it informs the Controlling

Servlet the name of the table and the record number, so it could call the appropriate

103

104

EditActionSetupServlet as defined below. If the user clicked the logout button, it informs

the Controlling Servlet accordingly, allowing it to call Login.jsp, to terminate the session.

c) DeieteAction

Task: Delete a specific record from a table in the UOB database

Function: This servlet is called by the controlling servlet when the user clicks on the

Delete button for a table. Unlike Create and Edit, all deletions for all tables are handled

from this one servlet. When called, it first obtains from the ViewForm the number of the

radio button clicked by the user. Based on the entries displayed, it makes a determination

about the table name and the record number in that table that the user would like deleted.

Once determined, it calls the method deleteUOB() in the session bean UobEJBBean of

the application tier, passing to it as arguments the name of the table and the identity of the

record, for deletion upon completion, it informs the Controlling Servlet accordingly.

d) CreateUnitAircraftAction / CreateUnitEquipmentAction

/CreateUnitPersonnelAction

Task: Create a new entry in the appropriate table.

Function: This servlet is called by the controlling servlet when a user enters data for the

columns of a table, to create a new record in it, on the form generated by the JSPs

CreateUnitAircraft.jsp, CreateUnitEquipment.jsp or CreateUnitPersonnel.jsp

respectively. It obtains all the data entered by the user from the associated form and calls

the method createUOB() in the session bean UobEJBBean of the application tier, passing

to it as arguments the name of the table for which a new record is to be created and data

for the new record. Upon completion, it informs the Controlling Servlet accordingly.

105

e) EditUnitAircraftActionSetup / EditUnitEquipmentActionSetup

/EditUnitPersonnelActionSetup

Task: User would like to edit data in a specific record in a table. This servlet reads that

data from the database to supply to one of EditUnitAircraft.jsp, EditUnitEquipment.jsp or

EditUnitPersonnel.jsp, to allow the user to interactively edit the data.

Function: This servlet is called by the Controlling Servlet when a user clicks on an Edit

button in the view window, after selecting a specific record in a table to edit. This servlet

obtains the data for that record from the database to allow the user to edit it. The servlet

first obtains the identity of the record that was clicked for editing. Next, it calls the

method viewObjects() in the UobEJBBean of the application tier, passing as an argument

the name of the table that it would like the record for. When it receives the values for that

record, it stores the values in its associated form and returns control to the Controlling

Servlet. The Controlling Servlet calls one of EditUnitAircraft.jsp, EditUnitEquipment.jsp

or EditUnitPersonnel.jsp, loading in the process the values in the associated form

supplied by this servlet, for display to the user.

f) EditUnitAircraftAction / EditUnitEquipmentAction / EditUnitPersonnelAction

Task: Receive edited values in a record of a table and send them to the database so that

the record in the table can be updated.

Function: This servlet is called by the Controlling Servlet when a user has edited values

in one of EditUnitAircraft.jsp, EditUnitEquipment.jsp or EditUnitPersonnel.jsp. The

edited values are stored in its associated form. When invoked, it reads all the updated

values from the form and calls the method updateUOBQ in the session bean

106

UobEJBBean of the application tier, passing as arguments the name of the table and the

updated values. When done, it returns control to the Controlling Servlet,

g) Controlling Servlet

Task: Main dispatcher and controller

Function: The Controlling Servlet is the central controlling and dispatching authority for

our application in the web tier. When a user submits any information in the browser by

clicking on a button, the web tier invokes this servlet. The servlet obtains all the user-

entered information from the web tier and based on the state and the logic, calls the

appropriate form to store the information in. It then calls an action servlet to take

appropriate action (which obtains user-entered information from that form)). When the

action is complete and control returns to this servlet, based on the state, it calls a JSP to

display the next page to the user.

5.2.2.3 The Application Tier

All logic in the application tier resides in the session bean UobEJBBean.java. The

methods of this bean receive requests from the servlets in the web tier and process them,

communicating with the database in the process, either to obtain stored data or to update

the data stored there. The methods are logically named, indicating their functionality.

They are defined below.

a) updateUOB (Unit) / updateUOB (UnitAircraft) / updateUOB (

UnitEquipment)/

updateUOB (UnitPersonnel)

Task: Update a record in a table in the UOB database with the values sent as an

argument. Send a (synchronizing) update packet to the FDMS system if required.

107

Function: This is a set of overloaded methods, called by the EditAction servlets (one of

EditUnitAircraftAction, EditUnitEquipmentAction or EditUnitPersonnelAction) in the

web tier. After a user has edited values in a record in a table, the servlet calls this method,

passing as an argument an object containing the updated values. The type of object

determines which one of these methods is invoked. The method extracts those values

from the object and calls the database multiple times, each time to update one column in

the record. Each call to the database is done using a JDBC statement, with a string

containing an embedded SQL command to update the appropriate record in the table with

the specified column, thereby updating the record in the database for that table. Once the

UOB database is updated, it calls the method updateFDMS() of the session bean to

update the FDMS database if required, passing to it the name of the table, the operation

(update) and the object containing the updated values.

b) createUOB (Unit) / createUOB (UnitAircraft)/ createUOB (UnitEquipment)/

createUOB (UnitPersonnel)

Task: Create a new record in a table in the UOB database with the values sent as an

argument. Send a (synchronizing) update packet to the FDMS system if required.

Function: This is a set of overloaded methods, called by the CreateAction servlets (one

of CreateUnitAircraftAction, CreateUnitEquipmentAction or

CreateUnitPersonnelAction) in the web tier. After a user has entered values to create a

new record in a table, the servlet calls this method, passing as an argument an object

containing the column values for the new record. The type of object determines which

one of these methods is invoked. The method extracts those values from the object and

calls the database using a JDBC statement, with a string containing an embedded SQL

108

command to create a new record in the table using the values supplied, thereby creating a

new record in the database for that table. Once the creation is done, it calls the method

updateFDMS() of the session bean to update the FDMS database if required, passing to it

the name of the table, the operation (create) and the object containing the new values.

c) deleteUOB (Unit) /deleteUOB (UnitAircraft) / deleteUOB (UnitEquipment)

deleteUOB (UnitPersonnel)

Task: Delete a specific record in a table in the UOB database. Send a (synchronizing)

update packet to the FDMS system if required.

Function: This is a set of overloaded methods, called by the DeleteAction servlet in the

web tier. After a user has selected a record in a table and clicked on the Delete button, the

servlet calls this method, passing as an argument an object containing the values for the

record to delete. The type of object determines which one of these methods is invoked.

The method extracts those values from the object and calls the database using a JDBC

statement, with a string containing an embedded SQL command to delete the record in

the specified table. Once the deletion is done, it calls the method updateFDMS() of the

session bean to update the FDMS database if required, passing to it the name of the table,

the operation (delete) and the object containing the old (deleted) values.

d) ReadUnitDataO /ReadUnitAircraftDataO /ReadUnitEquipmentData()

ReadUnitPersonnelDataO

Task: Read from the database all the records from the appropriate table.

Function: These are internal methods in the session bean, called from the method

viewObjects(), defined below. Each method reads all the records from a table in the

database, as per its name. The set of records is returned in an array of objects, each object

109

representing one record of the table. The method first sends a SQL query to the database,

requesting the count (number) of records in the table. Upon receiving the count, it creates

an array of that size. It then sends another SQL query to the database requesting all the

records in the table. An object is created for each record in the table, containing all the

columns of the record and stored in the array. When all the records have been read and

stored in the array, it is returned to the viewObjects() method.

e) viewObjects (CJassName)

Task: Read all the records of a table

Function: This method of the session bean reads all records of a table in the database.

The name of the table is specified by the ClassName argument. Depending on the name

(Unit, Unit Aircraft, Unit Equipment or Unit Personnel), it calls one of ReadUnitData(),

ReadUnitAircraftDataO, ReadUnitEquipmentData or ReadUnitPersonnelData

respectively. Upon receipt of data in an array of objects, it returns the data to the calling

servlet in the web tier.

f) checkMappingTable(TableName)

Task: Check if records in this table are mapped in the FDMS database.

Function: This method is an internal method in the session bean, called by the

updateFDMS() method of the bean, defined below. When updateFDMSQ is called by any

method of the bean, it has to make a determination whether to send a ‘change’ packet to

the FDMS system. In turn, it calls the checkMappingTable() method, passing it the table

name as an argument. This method checks the table name against an internal map and

returns a ‘true’ or ‘false’ value, based on the mapping of the records in the table.

110

g) updateFDMS (TableName, Operation, Object)

Task: Check if records in this table are mapped to FDMS. If so, create and send a

‘change’ object to the queue in the FDMS system.

Function: This is an internal method of the session bean UobEJBBean. It is called by the

various update, create and delete methods of this bean to synchronize changes made in

the UOB database with the FDMS database. This method first calls the

checkMappingTable() method of the bean to check whether the operation on the table

requires a synchronization with the FDMS database. If ‘true’, it creates a ‘ChangeObj’

object, storing within it the table name, the operation (update, create or delete) and a copy

of the UOB object that was the subject of change. It then creates a session to connect with

the FDMS system. Once it has a session object, it creates a publisher object to publish a

message on the queue of the FDMS system. Once it has the publisher object, it publishes

a message to the FDMS system, sending along with it the ‘ChangeObj’ object as an

argument. Once done, it then closes the session.

h) vaiidateUser (UserName, Password)

Task: Validate a password for UserName

Function: This method is called by the LoginAction servlet in the web tier, to validate

that the username and password entered by a user to access the system are valid. The

method makes a SQL query (using JDBC) to get the password column, corresponding to

the column Username in the Users table of the database. It then matches the password

received from the web tier with the one obtained from the database. If they match, it

returns ‘true’. Else, it returns false.

I l l

i) dblnito / dbCloseO

Task: Initialize the close the connections with the database

Function: These methods initialize and close connections with the MySQL database.

Before any function makes a JDBC call embedding a SQL statement to the database, it

calls on the dblnit() method to initialize the connection. When done, it closes the

connection.

5.2.2.4 The Database Tier

The database tier we created for our purpose is consisted of the MySQL database system.

‘Unit’, ‘Unit Aircraft’, ‘Unit Equipment’ and ‘Unit Personnel’ were the four tables

created on this system

The database was accessed from the application tier of our system (the various methods

of our session bean, UobEEJBBean) using JDBC calls. Each access to the database

consisted of the following steps:

1. Establish a connection with the database.

2. Create a JDBC statement object.

3. Attach a string containing a SQL command to the statement object.

4. Execute the statement object.

5. Close the statement object.

6. Close the connection to the database.

The SQL commands are described under their sending methods.

112

5.3 Receiving Side

5.3.1 Implementation Description of Receiving Side Modules

5.3.1.1 Data is accepted by the Receiving Side (FDMS)

A. High Level

System Accepts the ‘change’ data sent from the Transmission Side (UOB), via a network.

System

Figure 5.7: Data Accepted by Receiving Side (FDMS)

113

B. Low Level

A Message Driven Bean (kind of EJB), residing in the application server fundamentally

does the receiving side work.

1
Message Driven Bean

EJB

Application Server (Receiving Side)

Figure 5.8: Data Transferred to Application Server (FDMS)

The MDB (Message Driven Bean) listens on the Message Queue for this system. In

normal mode, it is passive and not in execution mode. When a message is received in this

queue, the application tier invokes the MDB and calls its OnMessage() method, passing

to it the contents of the message received.

5.3.1.2 Different Kinds of ‘Change’ Data Accepted

We will recall that when a user edits a UOB table (Create / Delete / Update), the

UpdateFDMS method in the UOB EJB (in the application tier of that system) creates and

loads a ‘ChangeObj’ packet and dispatches it to the Message Queue of the Receiving

system.

114

Upon receipt of this packet, the application tier of this system wakes up the MDB (creates

a session object of this bean), calls its OnMessage() method and passes to it the packet

received in the queue.

1. The ‘create’ operation

Database Visualizer Application Tier Database Tier

MDB

Receives message Object

Database
Displayed

On message
method

(extracts the
‘changeobject’)

CALLS

DBUpdate
Method

(Compares new
data to be

added)
Added to

Appropriate Table

Table 5.7 Creating a New Row in Database

MDB receives a packet from the message queue. This packet contains a ‘ChangeObj’

object, specifying an operation to be performed. This operation is one of ‘create’, ‘delete’

or ‘update’.

♦ For the ‘create’ operation, the MDB receives a message object containing a

‘ChangeObj’ object, which in turn contains the following data:

1. Identity of the table in UOB where a row was created (example Unit Aircraft).

2. Identity of the operation (‘create’).

3. Data for insertion in the FDMS tables corresponding to the creation of a new

row in the Unit_Aircraft table in the UOB database. This is the data to be

synchronized.

♦ The OnMessage method extracts the ChangeObj object from the message object. It

then calls the DbUpdate method, passing the object to it.

♦ The DbUpdate method compares the new data to be added with the existing data in

the tables to ensure that it’s not going to duplicate an existing record. Specifically, it

checks the AIC and the UIC of the incoming object with the ‘Component Entity SDS

ID’ and ‘Composite Entity SDS ID’ of the Entity Component table in the FDMS

database. If a record is found that matches this data, the entry is deemed to be

duplicate and rejected. Else, it is accepted for addition within the FDMS tables.

♦ A new record is first created in the Entity Component Table. The ‘Component-

Entity-RDS-ID’ value is deduced programmatically based on incrementing the

highest existing value. The incoming AIC and the UIC represent the ‘Component

Entity SDS ID’ and the ‘Composite Entity SDS ID’ respectively. The ‘Composite-

115

116

Entity-RDS-ID’ is obtained from the Component Entity table, based on the value of

the ‘Composite Entity SDS ID’. The Cardinality is maintained as ‘1’.

♦ Next, a new record is inserted into the Entity table. The ‘Entity RDS ID’ and the

Entity-SDS-ID values correspond to the ‘Component-Entity-RDS-ID’ and the

‘Component Entity SDS ID’ values in the Entity Component table. The ‘Entity

Name’ is derived from the ‘Aircraft Description’ in the incoming message object.

The ‘Entity Stereotype’ and the ‘Entity Type’ are deduced from the identity of the

UOB table created, in this instance the Unit Aircraft table.

♦ Finally, two new entries are inserted in the Entity Characteristic table. For each

entry, the ‘Entity RDS ID’ and the Entity-SDS-ID correspond to the values in the

Entity table. The Characteristic-RDS-ID and the Characteristic-SDS-ID are obtained

from the FDMS Characteristic table, corresponding to the UOB table created - the

Unit Aircraft table for Aircraft Quantity Required and Aircraft Quantity Authorized.

The numeric data for each of these is contained within the incoming data in the

ChangeObj object.

♦ This completes the data synchronization on the FDMS side for the ‘create’ operation.

117

2. The ‘delete’ operation

Database Visualizer Application Tier Database Tier

MDB

Receives message Object

Database
Displayed

T

On message
method

(extracts the
‘changeobject’)

CALLS

DBUpdate
Method

(Identifies the
row to be
deleted)

Deleted from the
Appropriate Table

◄-

Table 5.8: Deleting a Row in Database

♦ For the ‘delete’ operation, the MDB message bean receives a message object

containing a ‘ChangeObj’ object, which in turn contains the following data:

1. Identity of the table in the UOB where a row was deleted (assume Unit

Aircraft).

2. Identity of the operation (‘delete’).

3. Data corresponding to the deleted row in the Unit_Aircraft table, in the UOB

database.

♦ The OnMessage method extracts the ChangeObj object from the message object. It

then calls the DbUpdate method, passing the object to it.

♦ The DbUpdate method identifies and deletes corresponding rows in the Entity

Component, the Entity and the Entity Characteristic tables of the FDMS database as

follows.

♦ The first table selected is the Entity Component table. The incoming AIC and the

UIC correspond to the ‘Component Entity SDS ID’ and the ‘Composite Entity SDS

ID’ respectively, in this table. Together, they form a unique identity for each row in

the table. The row corresponding to the incoming values is found, giving us the

Component-Entity-RDS-ID. This row of the table is deleted.

♦ The next table selected is the Entity table. The ‘Component-Entity-RDS-ID’

obtained in the previous step from the Entity Component table corresponds to the

‘Entity RDS ID’ of this table and identifies each row uniquely. The row is found and

deleted.

♦ The last table is the Entity Characteristic table. The ‘Component-Entity-RDS-ID’ of

the Entity Component table corresponds to the ‘Entity RDS ID’ of this table. The

table contains two rows corresponding to this value. Both are deleted.

♦ This completes the data synchronization on the FDMS side for the ‘delete’ operation.

118

119

3. The ‘update’ (Edit-Data) operation

Database Visualizer Application Tier Database Tier

MDB

Receives message Object

Database
Displayed

On message
method

(extracts the
‘changeobject’)

CALLS

DBUpdate
Method

(Locate new
data to be

added)
Appropriate Table

Row Edited

Table 5.9: Updating (Edit-Data) the Database

♦ For the ‘update’ operation, the MDB receives a message object containing a

ChangeObj object, which in turn contains the following data:

1. Identity of the table in the UOB where a row was updated (assume Unit

Aircraft).

2. Identity of the operation (‘update’).

3. Data corresponding to the updated row in the Unit_Aircraft table, in the UOB

database.

♦ The OnMessage method extracts the ChangeObj object from the message object. It

then calls the DbUpdate method, passing the object to it.

♦ The DbUpdate method identifies and updates corresponding rows in the Entity

Characteristic table of the FDMS database as follows.

♦ The identity of the rows to be updated in the Entity Characteristic table is partly

determined from the Entity Component table. The incoming AIC and the UIC

correspond to the ‘Component Entity SDS ID’ and the ‘Composite Entity SDS ID’

respectively, in the Entity Component table. Together, they form a unique identity

for each row in the table. The row corresponding to the incoming values is found,

giving us the Component-Entity-RDS-ID.

♦ The identity of the table updated (Unit Aircraft) gives us the Characteristic-RDS-IDs

from the Characteristic table, corresponding to Aircraft Quantity Required and the

Aircraft Quantity Authorized. Two values for Characteristic-RDS-IDs are obtained.

♦ The ‘Component-Entity-RDS-ID’ of the Entity Component table corresponds to the

‘Entity RDS ID’ of the Entity Characteristic table. This value and the Characteristic-

RDS-IDs obtained from the Characteristic table form unique keys for identifying the

rows to be updated in the Entity Characteristic table. The Entity-Characteristic-

120

Numeric-Value for each of these rows is updated with the incoming values for

Aircraft Quantity Required and Aircraft Quantity Authorized.

121

♦ This completes the data synchronization on the FDMS side for the ‘update’

operation.

FDMS Data displayed to the User.

The contents of the FDMS database are displayed to the user using an application, the

Database Visualizer. This application is in the public domain and was downloaded

specifically for this purpose.

♦ Setting Up the Database Visualizer

The setup of the application is extremely simple. It is interactively set up to identify the

database drivers to use for the MySQL database on our system. Additionally, the name of

the database and the tables to be viewed are specified. The application automatically

connects to the database and displays the tables.

For our purpose, we set it up with the Entity, Entity Component, Characteristic and the

Entity Characteristic tables of the FDMS database. All changes made to these tables

could be viewed in this manner.

Updated Data

User Database Visualizer FDMS Database

Figure 5.9: FDMS Data Display

122

5.3.2 Component Modules of the Receiving Side (FDMS)

5.3.2.1 Database Visualizer

It is interactively set up to identify the database drivers to use for the MySQL database on

our system. Additionally, the name of the database and the tables to be viewed are

specified. The application automatically connects to the database and displays the tables.

5.3.2.2 Application Tier

All logic in the application tier of the FDMS system resides in one Message Driven

Bean, DbUpdate. This bean subscribes as a ‘Listener’ to the queue in the application

server of the FDMS system such that, when a message is received in the queue, its

onMessage() method is called by the application server. The onMessage() method,

described below, calls other methods of DbUpdate, to update the FDMS database, based

on the contents of the message received.

a) OnMessageO

Task: Decode the incoming ‘change’ message packet to extract the ‘ChangeObj’ object

sent by the FDMS system

Function: This method is invoked by the application server upon receipt of a message in

the queue. The message packet is passed as an argument to the method. Upon receipt, the

method first isolates and extracts the ChangeObj object sent by the UOB system. Once

done, the method checks the operation involved in the synchronization and based on it,

calls one of dbUpdate(), dbDelete() or dbCreate() methods in the message driven bean.

b) DbUpdate(ChangeObj)

Task: Update the FDMS database corresponding to the modification (editing) of an

existing record in a UOB table, mapped to entries in the FDMS database

123

Function: This function is invoked by the onMessage() method of the MDB. The change

object, ChangeObj is passed to it as an argument. We will describe the program process

for a change in the Unit Aircraft table of the UOB database. The process for the Unit

Equipment and the Unit Personnel tables is identical.

The mapped values between the UOB and FDMS databases happen to be ‘Quantity

Required’ and ‘Quantity Authorized’. Since the entire UOB record is sent in the

‘ChangeObj’ object, these columns are first obtained from the incoming object. These are

the values that will ultimately be updated in the FDMS tables.

♦ The method first obtains the ‘Component-Entity-RDS-ID’ from the ‘Entity

Component’ table of FDMS, using the incoming AIC column as the “ Component

Entity SDS ID” column and the incoming UIC column as the “ Composite Entity

SDS ID” column of the ‘Entity Component’ table, as primary keys. The database is

accessed using SQL queries embedded in JDBC statements, identical to the way it

was used in the UOB system.

♦ It then obtains the ‘Characteristic-RDS-IDs’ from the Characteristic table of FDMS,

corresponding to ‘Characteristic-Names’ ‘Aircraft Quantity Required’ and ‘Aircraft

Quantity Authorized’.

♦ Finally, it updates two ‘Entity-Characteristic-Numeric-Value’ columns in the Entity

Characteristic table using the ‘Entity Component RDS ID’ as ‘Entity RDS ID’ and

each ‘Characteristic Component RDS ID’ as ‘Characteristic-RDS-ID’ used as

identifying keys to uniquely identify the records to update.

♦ The program process corresponding to the editing of Unit Equipment and Unit

Personnel tables is nearly identical to the one described above. The only difference is

124

in the Characteristic-RDS-IDs obtained from the Characteristic table; they are

obtained for Equipment/Personnel Quantity Required and Equipment/Personnel

Quantity Authorized. All else is identical.

♦ This completes the synchronization of the FDMS system corresponding to the

editing of UOB tables.

d) DbDelete (ChangeObj)

Task: Update the FDMS database corresponding to the deletion of an existing record in a

UOB table, mapped to entries in the FDMS database.

Function: This function is invoked by the onMessage() method of the MDB. The change

object, ChangeObj is passed to it as an argument. We will describe the program process

for a record deletion in the Unit Aircraft table of the UOB database. The process for the

Unit Equipment and the Unit Personnel tables is identical.

The mapped values between the UOB and FDMS databases happen to be ‘Quantity

Required’ and ‘Quantity Authorized’. Since the entire UOB record is sent in the

‘ChangeObj’ object, these columns are first obtained from the incoming object. The

records corresponding to these values will be deleted in the Entity Characteristic FDMS

table. In addition, entries will be deleted from the Entity and Entity Component tables as

below.

♦ The method first obtains the ‘Component-Entity-RDS-ID’ from the ‘Entity

Component’ table of FDMS, using the incoming AIC column as the “ Component

Entity SDS ID” column and the incoming UIC column as the “ Composite Entity

SDS ID” column of the ‘Entity Component’ table, as primary keys. After obtaining

the ‘Component-Entity-RDS-ID’, the record corresponding to this column in the

125

Entity Component table is deleted. The database is accessed using SQL queries

embedded in JDBC statements, identical to the way it was used in the UOB system.

♦ It then deletes a record in the Entity table, using the ‘Component-Entity-RDS-ID’

obtained earlier as the ‘Entity RDS ID’ in this table, as the identifying key.

♦ It then obtains the ‘Characteristic-RDS-IDs’ from the Characteristic table of FDMS,

corresponding to ‘Characteristic-Names’ ‘Aircraft Quantity Required’ and ‘Aircraft

Quantity Authorized’.

♦ Finally, it deletes two records in the ‘Entity Characteristic’ table using the ‘Entity

Component RDS ID’ as ‘Entity RDS ID’ and each ‘Characteristic Component RDS

ID’ as ‘Characteristic-RDS-ID’, used as identifying keys to identify the records to

delete.

♦ The program process corresponding to the deletion of a record in the Unit Equipment

and Unit Personnel tables is nearly identical to the one described above. The only

difference is in the Characteristic-RDS-IDs obtained from the Characteristic table;

they are obtained for Equipment/Personnel Quantity Required and

Equipment/Personnel Quantity Authorized. All else is identical.

♦ This completes the synchronization of the FDMS system corresponding to the

deletion of a record in one of the UOB tables.

e) DbCreate(ChangeObj)

Task: Update the FDMS database corresponding to the creation of a new record in a

UOB table, mapped to entries in the FDMS database.

Function: This function is invoked by the onMessage() method of the MDB. The change

object, ChangeObj is passed to it as an argument. We will describe the program process

126

for a new record creation in the Unit Aircraft table of the UOB database. The process for

the Unit Equipment and the Unit Personnel tables is identical.

As before, incoming values for ‘Aircraft Quantity Required’ and ‘Aircraft Quantity

Authorized’ are first obtained from the incoming object.

♦ The method first checks in the ‘Entity Component’ table to make sure that an

incoming record supposed to be new does not already exist in the table. Using the

incoming ‘AIC’ column as the ‘Component Entity SDS ID’ and the incoming ‘UIC’

column as the “ Composite Entity SDS ID” , used as unique identifying columns, it

tries to find an existing record with these values. If a record already exists, the

incoming creation is rejected and the method returns. If not, the method continues.

♦ The method next creates a new record in the ‘Entity Component’ table. To do so, it

must first have a unique value for the ‘Component-Entity-RDS-ID’, not already in

the table. The method reads all values in this table and finds the highest existing

value corresponding to Aircraft type records. Once the highest value is found in the

table, it increments it by one to get the new value for the ‘Component-Entity-RDS-

ID’.

♦ The method next obtains the ‘Component-Entity-RDS-ID’ from the Entity

Component table, using the incoming UIC as the “ Component Entity SDS ID” . This

becomes the ‘Composite-Entity-RDS-ID’ for the new record to be created.

♦ Finally, cardinality is selected as 1 for the operation involved.

♦ The method now has all the columns needed to create a new record in the Entity

Component table. It makes a SQL call to the database to do so. This updates the

Entity Component table.

127

♦ The method next creates a new record in the Entity table of FDMS. It already has

two columns for the new record - the ‘Component-Entity-RDS-ID’ and the

“ Component Entity SDS ID” of the ‘Entity Component’ table are used as the

‘Entity RDS ID’ and the ‘Entity SDS ID’ for this table, respectively. The ‘Entity

Name’ column is obtained from the incoming ‘Aircraft Description’ column of the

ChangeObj object. Given the nature of the record (Aircraft), the ‘Entity Stereotype’

column is chosen as “Equipment” and the ‘Entity Type’ column is chosen as

“Aircraft”. With this, the method now has all the columns needed for the creation of

a new record in the Entity table. It makes a SQL call to do so. This updates the Entity

table.

♦ The method finally creates two new entries in the Entity Characteristic table. To do

so, it first obtains the ‘Characteristic-RDS-IDs’ corresponding to ‘Characteristic-

Names’ ‘Aircraft Quantity Required’ and ‘Aircraft Quantity Authorized’ in the

Characteristic table. These will be the ‘Characteristic-RDS-IDs’ for the two new

entries in the ‘Entity Characteristic’ table. The ‘Characteristic-SDS-ID’ and the

‘Entity-Characteristic-String-Value’ for each record is null. The ‘Entity RDS ID’ and

the ‘Entity SDS ID’ for each record correspond to the ‘Entity RDS ID’ and the

‘Entity SDS ID’ used for the new record in the Entity table. With this, the method

has all the columns needed for the creation of two new records. The first record is

created with the values specified and the ‘Entity-Characteristic-Numeric-Value’

corresponding to the incoming ‘Aircraft Quantity Required’ value. The second is

created with the same values and with ‘Entity-Characteristic-Numeric-Value’ equal

128

to the incoming ‘Aircraft Quantity Authorized’ value. The method makes a SQL call

to create the records in the Entity Characteristic table.

The program process corresponding to the creation of a new record in the Unit

Equipment and Unit Personnel tables is nearly identical to the one described above. The

only difference is in the Characteristic-RDS-IDs obtained from the Characteristic table;

they are obtained for Equipment/Personnel Quantity Required and Equipment/Personnel

Quantity Authorized. All else is identical.

This completes the synchronization of the FDMS system corresponding to the creation of

a new record in one of the UOB tables.

5.3.2.3 Database Tier

The database tier we created for our purpose consisted of the MySQL database system.

‘Entity’, ‘Entity-Component’, ‘Characteristic’ and ‘Entity-Characteristic’ were the four

tables created on this system

The database was accessed from the application tier of our system using JDBC calls.

Each access to the database consisted of the following steps:

1. Establish a connection with the database.

2. Create a JDBC statement object.

3. Attach a string containing a SQL command to the statement object.

4. Execute the statement object.

5. Close the statement object.

6. Close the connection to the database.

The SQL commands are described under their sending methods

129

5.4 Summary

This chapter describes the high-level and the low-level implementation process of

database synchronization that the user and the system go through.

The next chapter draws conclusions for the work we have performed, and suggests

possible future work.

130

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

All needs and requirements of our project were met through the execution of our systems.

The databases synchronized successfully for all operations performed.

The J2EE framework provided an excellent system for the execution of this project. It

provided all the tools needed for the various aspects our two systems:

♦ Provided a Web Tier for the presentation of html pages to the user, thereby providing

an easy to use, interactive platform for user interaction.

♦ Provided a sophisticated Application Tier that allowed us to contain all logic in one

location. It communicated with the database for all our needs. Additionally, it

provided us with a sophisticated messaging mechanism that was so vital for the

success of our project. This mechanism allowed us to synchronize the data in

separate databases through the Internet.

♦ It provided us with a fully developed database to take care of all our data needs.

♦ Above all, all the systems we used were available free, through a general public

license.

131

6.2 Future Work

♦ Perform on the Actual UOB and FDMS Databases

Although the project was successful, it was simulated due to the unavailability of the

actual UOB and FDMS databases to us. The system should be used on the real

databases and enhanced to provide full synchronization on these databases.

♦ Security Issues

No identity validation was performed for this synchronization. Hence, any client that

knows the Internet Protocol address of the messaging queue could send a message

packet to alter the contents of the FDMS database, thereby corrupting the data. The

UOB side system should perform an identity validation.

♦ Confirmation can be sent back to the transmitting side about the receiving of

the data.

There is currently, no acknowledgement from the FDMS system to the UOB system

about messages received. Hence, if the message queue was unavailable or

overflowed, data could be lost. The system should be enhanced to account for

transmission errors.

GLOSSARY

API - Application Programming Interface

When applied to Java programming language, this is a set of classes and interfaces that

specify a particular functionality.

Asynchronous Messaging - allows applications or components to communicate with

other applications or components by exchanging messages in such a way that senders are

independent of receivers. The sender sends its message and does not need to wait for the

receiver to receive or process the message. The sender’s message is delivered when the

server is rebooted.

Business Logic - The code that implements the functionality of an application. In the

Enterprise JavaBeans model, this logic is implemented by the methods of an enterprise

bean.

Business Tier - The set of machines on which the business components execute in an

n-tier application.

Component - A component in J2EE architecture is a grouping of functionality that forms

a coherent unit. This unit can be deployed in a component container independently of

other components. Applications can then be built by calling on the functionality of

multiple, specialist components.

133

Containers - A container provides services for a component. These services can include

lifecycle management, security, connectivity, transactions, and persistence. Each type of

J2EE component is deployed into its own type of J2EE container.

Database - provides the basic storage and access to the organizations data.

Deployment - The process whereby software is installed into an operational

environment.

EJB - Enterprise JavaBeans.

EJB is a component technology that helps developers create business object in the middle

tier. These business objects consist of columns and methods that implement business

logic. EJBs are building blocks of enterprise systems. They perform specific tasks by

themselves or forward operations to other enterprise beans. EJBs are under control of the

J2EE application server.

EJB Container - Manages the execution of enterprise beans for J2EE applications. A

J2EE server provides an EJB container.

FDMS - Functional Descriptions of the Mission Space Model.

Functional mission space models are simulation implementation-independent functional

descriptions of the real-world processes, entities, environmental factors, and their

associated relationships and interactions within the context of a set of military missions,

operations, or tasks.

FDMS DIF - FDMS Data Interchange Format.

HTML - HTML is the language used to define Web Pages that display in a Web

browser.

134

HTTP - Hypertext Transfer Protocol. The Internet protocol used to fetch hypertext

objects from remote hosts. HTTP messages consist of (architecture independent display

specifications) requests from client to server and responses from server to client.

IP - Internet Protocol

J2EE - Java 2 Enterprise Edition.

J2EE is an environment for developing and deploying enterprise applications. The J2EE

platform consists of a set of services, application programming interfaces, and protocols

that provide the functionality for developing multitiered, Web-based applications.

J2EE Server - The runtime portion of a J2EE product. A J2EE server provides Web and

EJB containers.

JBOSS - Integrates data in the Application Server.

JDBC - Java Database Connectivity.

JDBC technology allows an application component provider to perform connection and

authentication to a database server, manage transactions, move SQL statements to a

database engine for preprocessing and execution and execute stored procedures.

JMS - Java Messaging Service.

JMS provides a single standard, unified message API for five different message formats

(including XML). It encapsulates and exchanges asynchronous messages reliably

between enterprise Java applications regardless of the operating systems, platform,

architecture, and computer languages being used.

JMS API - allows applications and components to create, send, receive, and read

messages. It enables communication that is loosely coupled, asynchronous, and reliable

135

and allows applications and components written in the Java programming language to

communicate with applications that use other messaging implementations.

JMS Provider - JMS provider is a server that provides messaging services such as

routing messages, persistent message handling, and destination service to both the

producer and receiver of a given message. It implements the JMS API for an enterprise

messaging system and provides access to the services provided by the underlying

message system.

JNDI - Java Naming Directory Interface.

JNDI is a directory that provides naming and directory functionality. It provides

applications with methods for performing standard directory operations, such as

associating attributes with objects and searching for objects using their attributes. Using

JNDI, an application can store or retrieve any type of named Java object.

JSP - Java Server Pages.

An extensible Web technology that uses template data, custom elements, scripting

languages, and server-side Java objects to return dynamic content to a client.

Multitier - A business system structured with two or more tiers or layers. The distributed

application is generally defined with 3 layers, the presentation, business (application) and

database. Applications can have many tiers each of which can be some specialization and

three tiers listed.

Protocol - Protocol is precise set of rules defining how computers communicate: the

format of addresses, how data is split into packets, etc. In networking terms, a protocol is

used to address and ensure delivery of packets across a network.

RMI - Remote Method Invocation

RMI allows a Java object that executes on one machine to invoke a method of a Java

object that executes another machine. It also provides support for network calls used by

EJB in the J2EE architecture. RMI is a simple and powerful way to write distributed

applications, but it works only in Java environment.

Servlets - A sevlet is a component that extends the functionality of a Web server in a

portable and efficient manner. It is written entirely in Java language. Extracts logic

information from incoming html, and inserts variable information into outgoing html.

A servlet is a program that executes the code.

SQL - Structured Query Language. Also known as SEQUEL (Structured English Query

Language). SQL is a language used to communicate messages to the database server to

create, update, retrieve, delete and manage data in the database.

TCP - Transmission Control Protocol.

SQL database - is a collection of tables and indexes to store various kinds of data in.

Tiers - A tier is a logical partition of the separation of concerns in the system. They are

logical machines that may or may not be on separate physical machines.

Tiered structuring allows wrapping of functionality in familiar application programming

interfaces, and independent development and maintenance of separate tiers.

Tomcat - The Tomcat servlet engine is an open-source Java implementation delivered by

the Apache software Foundation. Tomcat can run as a standard server, or it can be

plugged into most Web servers.

UOB - Unit Order of Battle.

UOB employs authoritative unit order of battle data to select the forces and to task-

organize the functional mission requirements.

137

Web Component - A component is a software entity that provides a response to a

request, either a servlet or a JSP page.

Web Container Manages the execution of JSP page and servlet components for J2EE

applications. Web components and their container run on the J2EE server.

138

APPENDIX A

UOB DATABASE TABLES

Table-1: Unit

UNIT-
IDENTIFICATION-

CODE

PARENT-
UNIT-IDENTIFICATION-

CODE UNIT-NAME
HOME-
NAME

SHIP-
CATEGORY

COUNTRY-
CODE

A R M R B N Armor Battalion Blue N1 US

BN HQ A R M R BN
Armor Battalion

Headquarters Red N2 US

A R M R CO A R M R BN Armor Com pany Brown N3 US

CO HQ A R M R CO
Armor Com pany

Headquarters W hite N4 US

A R M R PLT A R M R CO Armor Platoon Orange N5 US

C M D SN A R M R PLT
Armor Command

Section Green N6 US

A R M R SN A R M R PLT Armor Section Yellow N7 US

139

Table-2: Unit-Personnel

PIC

UNIT-
IDENT1FICATION-

CODE
PERSONNEL-
DESCRIPTION

PERSONNEL-
QUANTIITY-
REQUIRED

PERSONNEL-
QUANTITIY-

AUTHORIZED
LT COL BN HQ Lieutenant Colonel 1 1

MAJ BN HQ Major 1 1

D R IV E R BN HQ Tank Driver 2 2

G U N N E R BN HQ Gunner 2 2

LO A D ER BN HQ Loader 2 2

P ILO T BN HQ UH-1 Pilot 2 2

C A PT CO HQ Captain 1 1

1LT CO HQ First Lieutenant 1 1

D R IV E R CO HQ Tank Driver 2 2

G U N N E R CO HQ Gunner 2 2

LO A D ER C O HQ Loader 2 2

P ILO T C O H Q UH-1 Pilot 2 2

2LT C M D SN Second Lieutenant 1 1

D R IV E R C M D SN Tank Driver 1 1

G U N N E R C M D SN Gunner 1 1

LO A D ER C M D SN Loader 1 1

C H IEF A R M R SN Crew Chief 1 1

D R IV E R A R M R SN Tank Driver 1 1

G U N N E R A R M R SN Gunner 1 1

LO A D ER A R M R SN Loader 1 1

Table-3: Unit-Equipment

EIC
UNIT-

IDENTIFICATION-CODE
EQUIPMENT-

CODE
EQUIPMENT-

DESCRIPTION

EQUIPMENT-
QUANTITY-
REQUIRED

EQUIPMENT-
QUANTITY-

AUTHORIZED
M1A1 BN HQ M 1234 Main Battle Tank 2 2

M 23 BN HQ M 2345 7 62 MM Sidearm 2 2

M 1R BN HQ M 1357 Rifle 6 6

M1A1 C O HQ M 1234 Main Battle Tank 2 2

M 23 C O HQ M 2345 7.62 MM Sidearm 2 2

M 1R CO HQ M 1357 Rifle 6 6

M1A1 C M D SN M 1234 Main Battle Tank 1 1

M 23 C M D SN M 2345 7.62 MM Sidearm 1 1

M 1R C M D SN M 1357 Rifle 3 3

M1A1 A R M R SN M 1234 Main Battle Tank 1 1

M 23 A R M R SN M 2345 7.62 MM Sidearm 1 1

M 1R A R M R SN M 1357 Rifle 3 3

Table-4: Unit-Aircraft

AIC

UNIT-
IDENTIFICATION-

CODE
AIRCRAFT-

CODE
AIRCRAFT-

DESCRIPTION

AIRCRAFT-
QUANTITY-
REQUIRED

AIRCRAFT-
QUANTITY-

AUTHORIZED
U H 1V BN HQ H 13579 U H -1V Utility Helicopter 2 2

U H 1V C O HQ H 13589 U H -1V Utility Helicopter 4 4

141

APPENDIX B

FDMS DATABASE TABLES

TABLE-1: ENTITY

Entity RDS ID Entity SDS ID Entity Name Entity Stereotype Entity Type
102 BN HQ Armor Battalion Headquarters Organization Unit

103 A R M R C O Armor Com pany Organization Unit

104 CO HQ Armor Com pany Headquarters Organization Unit

105 A R M R PLT Armor Platoon Organization Unit

106 C M D SN Armor Command Section Organization Unit

107 A R M R SN Armor Section Organization Unit

401 LT COL Lieutenant Colonel Person Personnel

402 MAJ Major Person Personnel

403 D R IV E R Tank Driver Person Personnel

404 G U N N E R Gunner Person Personnel

405 LO A D ER Loader Person Personnel

406 PILO T UH-1 Pilot Person Personnel

407 C A PT Captain Person Personnel

408 1LT First Lieutenant Person Personnel

409 D R IV E R Tank Driver Person Personnel

410 G U N N E R Gunner Person Personnel

411 LO A D ER Loader Person Personnel
412 PILO T UH-1 Pilot Person Personnel

413 2LT Second Lieutenant Person Personnel

414 D R IV E R Tank Driver Person Personnel

415 G U N N E R Gunner Person Personnel

416 LO A D ER Loader Person Personnel

417 C H IE F Crew Chief Person Personnel

418 D R IV E R Tank Driver Person Personnel

419 G U N N E R Gunner Person Personnel

420 LO A D ER Loader Person Personnel

801 M1A1 Main Battle Tank Equipment Equipment

(Table 1 Continued Next Page)

142

Table 1, continued.

802 M 23 7 62 MM Sidearm Equipment Equipment

803 M 1R Rifle Equipment Equipment

804 M1A1 Main Battle Tank Equipment Equipment

805 M 23 7.62 MM Sidearm Equipment Equipment

806 M 1R Rifle Equipment Equipment

807 M1A1 Main Battle Tank Equipment Equipment

808 M 23 7 62 M M Sidearm Equipment Equipment

809 M 1R Rifle Equipment Equipment

810 M1A1 Mam Battle Tank Equipment Equipment

811 M 23 7.62 MM Sidearm Equipment Equipment

812 M 1R Rifle Equipment Equipment

1201 U H 1V U H -1V Utility Helicopter Equipment Aircraft

1202 U H 1V U H -1V Utility Helicopter Equipment Aircraft

Table-2: Entity-Component

Component
Entitv RDS ID

Component Entity
SDS ID

Composite
Entitv RDS ID

Composite Entity
SDS ID

Entity Component
Cardinalitv

102 BN HQ 101 A R M R BN 1

103 A R M R CO 101 A R M R BN 1

104 C O HQ 103 A R M R C O 1

105 A R M R PLT 103 A R M R C O 1

106 C M D SN 105 A R M R PLT 1

107 A R M R SN 105 A R M R PLT 1

401 LT COL 102 BN HQ 1

402 MAJ 102 BN HQ 1

403 D R IV E R 102 BN HQ 1

404 G U N N E R 102 BN HQ 1

405 LO A D ER 102 BN HQ 1

406 P ILO T 102 BN HQ 1

407 C A PT 104 CO HQ 1

408 1LT 104 C O HQ 1

409 D R IV E R 104 CO HQ 1

410 G U N N E R 104 CO HQ 1

411 LO A D ER 104 CO HQ 1

412 P ILO T 104 CO HQ 1

413 2LT 106 C M D SN 1

414 D R IV E R 106 C M D SN 1

415 G U N N E R 106 C M D SN 1

416 LO A D ER 106 C M D SN 1

417 C H IE F 107 A R M R SN 1

(Table 2 continued next page)

143

Table 2, continued.

418 D R IV E R 107 A R M R SN 1

419 G U N N E R 107 A R M R SN 1

420 LO A D ER 107 A R M R SN 1

801 M1A1 102 BN HQ 1

802 M 23 102 BN HQ 1

803 M 1R 102 BN HQ 1

804 M1A1 104 C O HQ 1

805 M 23 104 C O HQ 1

806 M 1R 104 C O HQ 1

807 M1A1 106 C M D SN 1

808 M 23 106 C M D SN 1

809 M 1R 106 C M D SN 1

810 M1A1 107 A R M R SN 1

811 M 23 107 A R M R SN 1

812 M 1R 107 A R M R SN 1

1201 U H 1V 102 BN HQ 1

1202 U H 1V 104 C O HQ 1

Table-3: Characteristic

C h arac te ris tic R D S ID C h aracteris tic SD S ID C h arac te ris tic N am e

201 Null COUNTRY-CODE
601 Null PERSONNEL-QUANTIITY-REQUIRED
701 Null PERSONNEL-QUANTIITY-AUTHORIZED
1001 Null EQUIPMENT-QUANTITY-REQUIRED
1101 Null EQUIPMENT-QUANTITY-AUTHORIZED
1401 Null AIRCRAFT-QUANTITY-REQUIRED
1501 Null AIRCRAFT-QUANTITY-AUTHORIZED

144

Table-4: Entity-Characteristic

Entity RDS
ID Entity SDS ID

Characteristic
RDS ID

Characteristic
SDS ID

Entity
Characteristic
Numeric Value

Entity
Characteristic
String Value

102 BN HQ 201 null 0 US

103 A R M R C O 201 null 0 US

104 C O HQ 201 null 0 US

105 A R M R PLT 201 null 0 US

106 C M D SN 201 null 0 US

107 A R M R SN 201 null 0 US

401 LT C O L 601 null 1

402 MAJ 601 null 1

403 D R IV E R 601 null 2

404 G U N N E R 601 null 2

405 LO A D ER 601 null 2

406 PILO T 601 null 2

407 C A PT 601 null 1

408 1LT 601 null 1

409 D R IV E R 601 null 2

410 G U N N E R 601 null 2

411 LO A D ER 601 null 2

412 P ILO T 601 null 2

413 2LT 601 null 1

414 D R IV E R 601 null 1

415 G U N N E R 601 null 1

416 LO A D ER 601 null 1

417 C H IE F 601 null 1

418 D R IV E R 601 null 1

419 G U N N E R 601 null 1

420 LO A D ER 601 null 1

401 LT CO L 701 null 1

402 MAJ 701 null 1

Table 4(a), Continued from Table 4

403 D R IV E R 701 null 2
404 G U N N E R 701 null 2
405 LO A D ER 701 null 2
406 PILO T 701 null 2
407 C A PT 701 null 1
408 1LT 701 null 1
409 D R IV E R 701 null 2
410 G U N N E R 701 null 2
411 LO A D ER 701 null 2
412 PILO T 701 null 2
413 2LT 701 null 1
414 D R IV E R 701 null 1
415 G U N N E R 701 null 1
416 LO A D ER 701 null 1
417 C H IE F 701 null 1
418 D R IV E R 701 null 1
419 G U N N E R 701 null 1
420 LO A D ER 701 null 1
801 M1A1 1001 null 2
802 M 23 1001 null 2
803 M 1R 1001 null 6
804 M1A1 1001 null 2
805 M 23 1001 null 2
806 M 1R 1001 null 6
807 M1A1 1001 null 1 ;
808 M 23 1001 null 1
809 M 1R 1001 null 3
810 M1A1 1001 null 1
811 M 23 1001 null 1
812 M 1R 1001 null 3
801 M1A1 1101 null 2
802 M 23 1101 null 2
803 M 1R 1101 null 6
804 M1A1 1101 null 2
805 M 23 1101 null 2
806 M 1R 1101 null 6
807 M 1 A 1 1101 null 1
808 M 23 1101 null 1
809 M 1R 1101 null 3
810 M1A1 1101 null 1
811 M 23 1101 null 1
812 M 1R 1101 null 3
1201 U H 1V 1401 null 1
1202 U H 1V 1401 null 1
1201 U H 1V 1501 null 1
1202 U H 1V 1501 null 1

146

APPENDIX C

CODE

package uob;

import java.io. Serializable;

/**
This class contains definition of the 'change' object
sent from the UOB system to the FDMS system

*/
public class ChangeObj implements Serializable
{

public String operation;
public String table;
public Object obj;

public ChangeObj (String operation, String table, Object obj)
{

this.operation = operation;
this.table = table;
this.obj = obj;

}

package uob;

import javaio.Serializable;

* @author Jasmine
*

* Definition of the Unit Class
*/

public class Unit implements Serializable
{

/* *

First item in class definition should be
primary key in database for this class
*/
public String pkey;
public String unitld;
public String parentUnitld;
public String unitName;
public String homeName;
public String shipCategory;
public String countryCode;

/**
* @author Jasmine
*
* Definition of the Unit Aircraft Class
*/

public class UnitAircraft implements Serializable
{ /**

First item in class definition should be
primary key in database for this class
*/
public String pkey;
public String alC;
public String unitld;
public String aircraftCode;
public String aircraftDesc;
public String aircraftQtyReqd;
public String aircraftQtyAuth;

package uob;

import java.io.Serializable;

}

* @author Jasmine
*
* Definition of the Unit Equipment Class
*/

public class UnitEquipment implements Serializable
{ /**

First item in class definition should be
primary key in database for this class
*/
public String pkey;
public String elC;
public String unitld;
public String equipCode;
public String equipDesc;
public String equipQtyReqd;
public String equipQtyAuth;

package uob;

import java.io.Serializable;

}

package uob;

import java.io.Serializable;

// UnitPersonneLjava

* @author Jasmine
*
* Definition of the Unit Personnel Class
*/

public class UnitPersonnel implements Serializable
{ /**

First item in class definition should be
primary key in database for this class
*/
public String pkey;
public String pIC;
public String unitld;
public String personnelDesc;
public String personnelQtyReqd;
public String personnelQtyAuth;

151

import javax.ejb.EJBObject;
import j ava.rmi.RemoteException;

//import syncobj.ChangeObj;

/**
This interface defines the 'Remote' interface for the 'UobEJB' EJB. Its
methods are the only methods exposed to the outside world. The class
UobEJBBean implements these methods.

package uob;

public interface UobEJB extends EJBObject
{

public void updateUOB(Unit obj) throws RemoteException;
public void updateUOB(UnitAircraft obj) throws RemoteException;
public void updateUOB(UnitEquipment obj) throws RemoteException;
public void updateUOB(UnitPersonnel obj) throws RemoteException;

public void
public void
public void
public void

createUOB(Unit obj) throws RemoteException;
createUOB(UnitAircraft obj) throws RemoteException;
createUOB(UnitEquipment obj) throws RemoteException;
createUOB(UnitPersonnel obj) throws RemoteException;

public void
public void
public void
public void

deleteUOB(Unit obj) throws RemoteException;
deleteUOB(UnitAircraft obj) throws RemoteException;
deleteUOB(UnitEquipment obj) throws RemoteException;
deleteUOB(UnitPersonnel obj) throws RemoteException;

public Object[] viewObjects(String className) throws RemoteException;
public boolean validateUser(String userName, String password) throws

RemoteException;
}

// UobEJB.java

package uob;

152

import j ava.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

import j avax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import javax.jms.ObjectMessage;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;
import javax.jms.TopicSession;
import j avax.jms.TopicPublisher;
import j avax.jms.Topic;
import j avax.jms.TextMessage;
import javax.jms.Session;
import javax.jms. JMSException;

import j ava.text. *;
import java.sql.*;
import j avax.naming. *;

/**
This class contains implementation methods for the UobEJB session bean

public class UobEJBBean implements SessionBean
{

// Database information
private Context dbCtx = null;
private java.sql.Connection dbCon;

// Updates a Unit table record with the record in 'obj'
public void updateUOB(Unit obj)
{

// SQL helpers...
String headStr = "update UNIT
String tailStr =" where PKey l i k e + obj.pkey +
String updateStr;
try

153

{
// Connect to the database, create a statement
dblnit();
Statement statement = dbCon.createStatement();

// Execute SQL statements to update the database
updateStr = headStr + "SET Unit_Identification_Code = + obj.unitld + +

tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Parent_Unit_Id_Code = + obj.parentUnitld + +

tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Unit_Name = + obj.unitName + + tailStr;
statement. executeUpdate(updateStr) ;
updateStr = headStr + "SET Home_Name = + obj.homeName + + tailStr;
statement. executeUpdate(updateStr) ;
updateStr = headStr + "SET Ship_Category = + obj.shipCategory + + tailStr;
statement. executeUpdate(updateStr) ;
updateStr = headStr + "SET Country_Code = + obj.countryCode + + tailStr;
statement.executeUpdate(updateStr);

// Close the database connection
statement.close();
dbClose();

}
// Trap Errors, if any
catch (SQLException e)
{

e.printStackTraceO;
}

// Update FDMS if required
updateFDMS ("Unit", "update", obj);

}

// Updates a Unit Aircraft table record with the record in 'obj'
public void updateUOB(UnitAircraft obj)
{

// SQL helpers...
String headStr = "update UNIT_AIRCRAFT ";
String tailStr =" where PKey like'" + obj.pkey +
String updateStr;
try

154

{
11 Connect to the database, create a statement
dblnit();
Statement statement = dbCon.createStatement();

// Execute SQL statements to update the database
updateStr = headStr + "SET AIC = + obj.alC + ...+ tailStr;
statement. executeUpdate(updateStr) ;
updateStr = headStr + "SET Unit_Identification_Code = + obj.unitld + +

tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET AircraftCode = + obj.aircraftCode + + tailStr;
statement. executeUpdate(updateStr) ;
updateStr = headStr + "SET AircraftDescription = + obj.aircraftDesc + +

tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Aircraft_Quantity_Required = '" +

obj.aircraftQtyReqd + + tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Aircraft_Quantity_Authorized = +

obj.aircraflQtyAuth + + tailStr;
statement. executeUpdate(updateStr) ;
//System.out.println(updateStr);

// Close the database connection
statement.close();
dbClose();

}
// Trap Errors, if any
catch (SQLException e)
{

e.printStackTraceO;
}

// Update FDMS if required
updateFDMS ("Aircraft", "update", obj);

}

// Updates a Unit Equipment table record with the record in 'obj'
public void updateUOB(UnitEquipment obj)

// SQL helpers...
String headStr = "update UNIT_EQUTPMENT ";

{

155

String tailStr = " where PKey like + obj.pkey +
String updateStr;
try

{
// Connect to the database, create a statement
dblnit();
Statement statement = dbCon.createStatement();

// Execute SQL statements to update the database
updateStr = headStr + "SET EIC = + obj.eIC + + tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Unit_Identification_Code = + obj.unitld + +

tailStr;
statement. executeUpdate(updateStr);
updateStr = headStr + "SET EquipmentCode = + obj.equipCode + + tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET EquipmentDescription = + obj.equipDesc + +

tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Equipment_Quantity_Required = +

obj.equipQtyReqd + + tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Equipment_Quantity_Authorized = +

obj.equipQtyAuth + + tailStr;
statement. executeUpdate(updateStr);

// Close the database connection
statement.close();
dbCloseQ;

}
// Trap Errors, if any
catch (SQLException e)
{

e.printStackTrace();
}

// Update FDMS if required
updateFDMS ("Equipment", "update", obj);

}

// Updates a Unit Personnel table record with the record in 'obj'
public void updateUOB(UnitPersonnel obj)
{

156

I I SQL helpers...
String headStr = "update UNIT_PERSONNEL
String tailStr = " where PKey like + obj.pkey +
String updateStr;
try

{
// Connect to the database, create a statement
dblnit();
Statement statement = dbCon.createStatement();

// Execute SQL statements to update the database
updateStr = headStr + "SET PIC = + obj.pIC + + tailStr;
statement. executeUpdate(updateStr) ;
updateStr = headStr + "SET Unit_Identification_Code = + obj.unitld + +

tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET PersonnelDescription = + obj.personnelDesc +

+ tailStr;
statement. executeUpdate(updateStr) ;
updateStr = headStr + "SET Personnel_Quantity_Required = +

obj.personnelQtyReqd + "'" + tailStr;
statement.executeUpdate(updateStr);
updateStr = headStr + "SET Personnel_Quantity_Authorized = +

obj.personnelQtyAuth + + tailStr;
statement.executeUpdate(updateStr);

// Close the database connection
statement.close();
dbCloseQ;

}
// Trap Errors, if any
catch (SQLException e)
{

e.printStackTrace();
}

// Update FDMS if required
updateFDMS ("Personnel", "update", obj);

}

// Creates a new record in the Unit table using the record in 'obj'
public void createUOB(Unit obj)
{

157

// SQL helpers...
String updateStr = "INSERT into UNIT VALUES (";

// add in the database-
try

{
dblnit();
Statement statement = dbCon.createStatement();

updateStr = updateStr + + obj.pkey + + "," + "
updateStr = updateStr + + obj.unitld +
updateStr = updateStr + + obj.parentUnitld +
updateStr = updateStr + + obj.unitName +
updateStr = updateStr + + obj.homeName +
updateStr = updateStr + + obj.shipCategory +
updateStr = updateStr + + obj.countryCode +

statement.executeUpdate(updateStr);
statement.close();
dbClose();

}
catch (SQLException e)
{

e.printStackT race() ;
}

// Update FDMS if required
updateFDMS ("Unit", "create", obj);

}

// Creates a new record in the Unit Aircraft table using the record in 'obj'
public void createUOB(UnitAircraft obj)
{

dblnitO;
Statement statement;
String queryString;
ResultSet rs;

// Make sure it's not a duplicate entry...
// Get Aircraft Description from Unit_Aircraft table to test it
queryString = "Select Aircraft_Description From Unit_Aircraft";
queryString += " where AIC like '" + obj.alC +

158

queryString += " and Unit_Identification_Code like + obj.unitld +

System.out.println(queryString);
try
{

statement = dbCon.createStatement();
rs = statement.executeQuery(queryString);
rs.next();
// If there is no exception, this is a duplicate.
String airDesc = rs.getString(l);
System.out.println("Duplicate Rej ected");
return;

}
catch (SQLException e)
{

System.out.println("Entry not found in Aircraft table");
}

// Add new entry to Aircraft Table
String updateStr = "INSERT into UNIT_AIRCRAFT VALUES (";

try
{

updateStr = updateStr + + obj.pkey + + "," + " ";
updateStr = updateStr + + obj.alC + + " ";
updateStr = updateStr + + obj.unitld + + " ";
updateStr = updateStr + + obj.aircraftCode + + " ";
updateStr = updateStr + + obj.aircraftDesc + + " ";
updateStr = updateStr + + obj.aircraftQtyReqd + + " ";
updateStr = updateStr + + obj.aircraftQtyAuth + "'" + ")";

statement = dbCon.createStatement();
statement. executeUpdate(updateStr) ;
statement.close();
dbClose();

}
catch (SQLException e)
{

e.printStackTrace();
}

// Update FDMS if required
updateFDMS ("Aircraft", "create", obj);

}

// Creates a new record in the Unit Equipment table using the record in 'obj'
public void createUOB(UnitEquipment obj)
{

dblnit();
Statement statement;
String queryString;
ResultSet rs;

// Make sure it's not a duplicate entry...
// Get Equipment Description from Unit Equipment table to test it
queryString = "Select Equipment_Description From Unit_Equipment";
queryString += " where EIC like + obj.eIC +
queryString += " and Unit_Identification_Code like + obj.unitld +

System.out.println(queryString);
try
{

statement = dbCon.createStatement();
rs = statement.executeQuery(queryString);
rs.next();
// If there is no exception, this is a duplicate.
String equipDesc = rs.getString(l);
System.out.println("Duplicate Rej ected");
return;

}
catch (SQLException e)
{

System.out.println("Entry not found in Equipment table");
}

// Add new entry to Equipment Table
String updateStr = "INSERT into UNIT_EQUIPMENT VALUES (";

try

updateStr = updateStr + + obj.pkey + + " ";
updateStr = updateStr + + obj.eIC + + " ";
updateStr = updateStr + + obj.unitld + + " ";
updateStr = updateStr + + obj.equipCode + + " ";
updateStr = updateStr + + obj.equipDesc + + " ";
updateStr = updateStr + + obj.equipQtyReqd + + " ";
updateStr = updateStr + + obj.equipQtyAuth + + ")";

statement = dbCon.createStatement();
statement. executeUpdate(updateStr) ;
statement.close();

160

dbCloseO;

}
catch (SQLException e)
{

e.printStackTrace();
}

// Update FDMS if required
updateFDMS ("Equipment", "create", obj);

}

// Creates a new record in the Unit Personnel table using the record in 'obj'
public void createUOB(UnitPersonnel obj)
{

dblnit();
Statement statement;
String queryString;
ResultSet rs;

// Make sure it's not a duplicate entry...
// Get Personnel Description from Unit_Personnel table to test it
queryString = "Select Personnel_Description From Unit_Personnel";
queryString += " where PIC like '" + obj.pIC +
queryString += " and Unit_Identification_Code like '" + obj.unitld +

System.out.println(queryString);
try
{

statement = dbCon.createStatement();
rs = statement. executeQuery(queryString);
rs.next();
// If there is no exception, this is a duplicate.
String persDesc = rs.getString(l);
System.out.println("Duplicate Rejected");
return;

}
catch (SQLException e)
{

System.out.println("Entry not found in Personnel table");
}

// Add new entry to Personnel Table

161

String updateStr = "INSERT into UNIT PERSONNEL VALUES (";

try
{

updateStr = updateStr + + obj.pkey +
updateStr = updateStr + + obj.pIC + ...+
updateStr = updateStr + ...+ obj.unitld +
updateStr = updateStr + + obj.personnelDesc +
updateStr = updateStr + + obj.personnelQtyReqd +
updateStr = updateStr + + obj.personnelQtyAuth +

statement = dbCon.createStatement();
statement.executeUpdate(updateStr);
statement.close();
dbCloseQ;

}
catch (SQLException e)
{

e.printStackT race();
}

// Update FDMS if required
updateFDMS ("Personnel", "create", obj);

}

// Deletes a record in the Unit table whose copy is in 'obj'
public void deleteUOB(Unit obj)
{

// SQL helpers...
String updateStr = "DELETE from UNIT where PKey like '" + obj.pkey +

Ml»» .

// perform the delete in the database
try

{
dblnit();
Statement statement = dbCon.createStatement();
statement. executeUpdate(updateStr);
statement.close();
dbCloseQ;

}
catch (SQLException e)
{

162

e.printStackTraceO;
}

// Update FDMS if required
updateFDMS ("Unit", "delete", obj);

}

// Deletes a record in the Unit Aircraft table whose copy is in 'obj'
public void deleteUOB(UnitAircraft obj)
{

// SQL helpers...
String updateStr = "DELETE from UMTAIRCRAFT where PKey like '"

+ obj.pkey +

// perform the delete in the database
try

{
dblnit();
Statement statement = dbCon.createStatement();
statement. executeUpdate(updateStr);
statement.close();
dbCloseQ;

}
catch (SQLException e)
{

e.printStackTraceO;
}

// Update FDMS if required
updateFDMS ("Aircraft", "delete", obj);

}

// Deletes a record in the Unit Equipment table whose copy is in 'obj'
public void deleteUOB(UnitEquipment obj)
{

// SQL helpers...
String updateStr = "DELETE from UNIT_EQUIPMENT where PKey like

'" + obj.pkey +

{

// perform the delete in the database
try

163

dblnitO;
Statement statement = dbCon.createStatement();
statement.executeUpdate(updateStr);
statement.close();
dbCloseQ;

}
catch (SQLException e)
{

e.printStackT race();
}

// Update FDMS if required
updateFDMS ("Equipment", "delete", obj);

}

// Deletes a record in the Unit Personnel table whose copy is in 'obj'
public void deleteUOB(UnitPersonnel obj)
{

// SQL helpers...
String updateStr = "DELETE from UNIT_PERSONNEL where PKey like

+ obj.pkey +
// perform the delete in the database
try

{
dblnit();
Statement statement = dbCon.createStatement();
statement. executeUpdate(updateStr);
statement.close();
dbCloseQ;

}
catch (SQLException e)
{

e.printStackTrace();
}

// Update FDMS if required
updateFDMS ("Personnel", "delete", obj);

}

// Returns all records of the table in the database

164

// whose name is in the variable className
public Object[] viewObjects(String className)
{

// Check the name of the table whose records are requested
// Call the appropriate method that reads them from the database
if (className.equals (Unit.class.toStringO))
{

return readUnitData();
}
else if (className.equals (UnitAircraft.class.toString()))
{

return readUnitAircraftData();
}
else if (className.equals (UnitEquipment.class.toString()))
{

return readUnitEquipmentData();
}
else if (className.equals (UnitPersonnel.class.toString()))
{

return readUnitPersonnelData();
}
else

}
return (Object[]) null;

// Returns all records in the Unit table
private Object[] readUnitData()
{

try
{

//System.out.println("readUnitData");
// get Unit data
dblnit();
Statement statement = dbCon.createStatement();

// Get the count
String queryString = "SELECT Count(*) FROM UNIT";
ResultSet rs = statement.executeQuery(queryString);
rs.next();
int count - rs.getlnt(l);
Object[] objArray = new Object[count];
//System.out.println("Count is :"+ count);

// get all the objects
queryString = "SELECT * FROM Unit";

165

rs = statement. executeQuery(query String);
int i = 0;

// copy all the objects in an array
while ((rs.next()) && (i < count))
{

Unit tempUnit = new Unit();

tempUnit.pkey = Integer. toString(rs.getInt(l));
tempUnit.unitld = rs.getString(2);
tempUnit.parentUnitld = rs.getString(3);
tempUnit.unitName = rs.getString(4);
tempUnit.homeName = rs.getString(5);
tempUnit. shipCategory = rs.getString(6);
tempUnit.countryCode = rs.getString(7);

tempUnit.parentUnitld);

tempUnit.homeName);

tempUnit. shipCategory);

tempUnit.countryCode);

//System.out.println("pkey: " + tempUnit.pkey);
//System.out.println("unitId:" + tempUnit.unitld);
//System.out.println("parentUnitId: " +

//System.out.println("unitName:" + tempUnit.unitName);
//System.out.println("homeName:" +

//System.out.println("shipCategory:" +

//System.out.println("countryCode: " +

obj Array [i++] = tempUnit;
}

// close the database connection
rs.close();
statement.close();
dbCloseQ;

// return all the objects in the array
return objArray;

}
catch (SQLException e)
{

e.printStackTrace();
return null;

}
}

// Returns all records in the Unit Aircraft table
private Object[] readUnitAircraftData()
{

try
{

// get Unit data
dblnit();
Statement statement = dbCon.createStatement();

// Get the count
String queryString = "SELECT Count(*) FROM Unit_Aircraft"
ResultSet rs = statement.executeQuery(queryString);
rs.next();
int count = rs.getlnt(l);
Object[] objArray = new Object[count];

// get the objects
queryString = "SELECT * FROM UnitAircraft";
rs = statement.executeQuery(queryString);
int i = 0;

// copy all the objects in an array
while ((rs.next()) && (i < count))
{

UnitAircraft tempUnit = new UnitAircraft();

tempUnit.pkey = rs.getString(l);
tempUnit.alC = rs.getString(2);
tempUnit.unitld = rs.getString(3);
tempUnit. aircraftCode = rs.getString(4);
tempUnit. aircraftDesc = rs.getString(5);
tempUnit. aircraftQtyReqd = rs.getString(6);
tempUnit. aircraftQtyAuth = rs.getString(7);

obj Array [i++] = tempUnit;
}

// close the database connection
rs.close();
statement.close();
dbCloseQ;

}

// return all the objects in the array
return obj Array;

167

}

catch (SQLException e)
{

e.printStackTrace();
return null;

// Returns all records in the Unit Equipment table
private Object[] readUnitEquipmentData()
{

try
{

// get Unit data
dblnit();
Statement statement = dbCon.createStatement();

// Get the count
String queryString = "SELECT Count(*) FROM

Unit_Equipment";
ResultSet rs = statement.executeQuery(queryString);
rs.next();
int count = rs.getlnt(l);
Object[] objArray = new Objectfcount];

// get the objects
queryString = "SELECT * FROM Unit_Equipment";
rs = statement.executeQuery(queryString);
int i - 0;

// copy all the objects in an array
while ((rs.next()) && (i < count))
{

UnitEquipment tempUnit = new UnitEquipment();

tempUnit.pkey = rs.getString(l);
tempUnitelC = rs.getString(2);
tempUnit.unitld = rs.getString(3);
tempUnit. equipCode = rs.getString(4);
tempUnit.equipDesc = rs.getString(5);
tempUnit.equipQtyReqd = rs.getString(6);
tempUnit.equipQtyAuth = rs.getString(7);

obj Array [i++] = tempUnit;
}

168

// close the database connection
rs.close();
statement.close();
dbClose();

// return all the objects in the array
return objArray;

}
catch (SQLException e)
{

e.printStackTrace();
return null;

}
}

// Returns all records in the Unit Personnel table
private Object[] readUnitPersonnelData()
{

try
{

// get Unit data
dblnit();
Statement statement = dbCon.createStatement();

// Get the count
String queryString = "SELECT Count(*) FROM Unit_Personnel";
ResultSet rs = statement.executeQuery(queryString);
rs.next();
int count = rs.getlnt(l);
Object[] objArray = new Object[count];

// get all the objects
queryString = "SELECT * FROM Unit_Personnel";
rs = statement.executeQuery(queryString);
int i = 0;

// copy them in an array that will be returned
while ((rs.next()) && (i < count))
{

UnitPersonnel tempUnit = new UnitPersonnel();

tempUnit.pkey = rs.getString(l);
tempUnit.pIC = rs.getString(2);
tempUnit.unitld = rs.getString(3);
tempUnit.personnelDesc = rs.getString(4);

169

tempUnit.personnelQtyReqd = rs.getString(5);
tempUnit.personnelQtyAuth = rs.getString(6);

obj Array[i++] = tempUnit;
}

// close the database connection
rs.close();
statement.close();
dbClose();

// return all the objects in the array
return obj Array;

}
catch (SQLException e)
{

e.printStackTrace();
return null;

}
}

// Sends an 'change' packet to the FDMS database if the change is mapped
// in the FDMS database
private void updateFDMS (String tableName, String operation, Object obj)
{

TopicConnection topicConnection;
TopicSession topicSession;
TopicPublisher topicPublisher;
Topic topic;
ChangeObj changeObj;

// Check the mapping table and continue only if needed
if ((checkMappingTable(tableName)) != true)

return;

// Set up the change packet
changeObj = new ChangeObj (tableName, operation, obj); *

* Name used to lookup TopicConnectionFactory
*/
//final String CONNECTIONJNDI =

"j ava: comp/env/j ms/MyT opicConnection";

170

/**
* Name used to lookup topic destination

//final String TOPIC_JNDI = "java:comp/env/jms/TopicName";

final String CONNECTIONJNDI = "ConnectionFactory";
final String TOPICJNDI = "topic/testTopic";

try
{

// Get the initial context
Context context = new InitialContext();

// Get the connection factory
TopicConnectioriFactory topicFactory =

(T opicConnectionFactory)
context. lookup(CONNECTIONJNDI) ;

// Create the connection
topicConnection = topicFactory. createTopicConnection();

// Create the session
topicSession = topicConnection.createTopicSession(

// No transaction
false,
// Auto ack
S ession. AUT (^ACKNOWLEDGE) ;

// Look up the destination
topic = (Topic) context.lookup(TOPIC JNDI);

// Create a publisher
topicPublisher = topicSession.createPublisher(topic);

// Create a message
ObjectMessage objectMsg = topicSession. createObjectMessage();
obj ectMsg. setObj ect(changeObj);

// Publish the message
topicPublisher .publish(obj ectMsg) ;

//close connections..
topicSession.close(); ,

topicConnection.closeQ;
}
catch (Exception ex)
{

ex.printStackTrace();

}
}

private boolean checkMappingTable (String tableName)
{

// The current table design of the UOB maps all its entries
// to the FDMS database. Hence, all changes should be sent
// to the FDMS system

return true;
}

// Validates username and password entered by a user for logging in
public boolean validateUser(String userName, String password)
{

try
{

String pw ="
dbbiit();
Statement statement = dbCon.createStatement();
String queryString =

"SELECT password FROM users WHERE name-
userName +

ResultSet rs = statement. executeQuery(queryString);
while (rs.next())
{

pw = rs.getStringO'password");
}

rs.close();
statement.close();
dbClose();

// if invalid password, return
if (pw.equals(password))

172

return true;
else

return false;
}
catch (SQLException e)
{

e.printStackTrace();
return false;

}

}

Create database connections
*/
private void dblnit()
{

try
{

dbCtx = new InitialContext();

javax.sql.DataSource ds = (javax.sql.DataSource) dbCtx.lookup
("java:MySqlDS");

//String url =
"jdbc:mysql://127.0.0.1/jdbctest?user=tester&password=tester";

dbCon = ds.getConnection("developer", "mysql");

}
catch (Exception e)

{
// a failure occurred
try
{

if (dbCon != null)
{

dbCon.close();
}
if (dbCtx !=null)
{

dbCtx.close();
}
e.printStackTrace();

}

catch (SQLException SQLe)
{
}
catch (NamingException SQLe)
{
}

}
}

Do closing housekeeping
*/
private void dbClose()
{

try
{

if (dbCon != null)
{

dbCon.close();
}
if (dbCtx!=null)
{

dbCtx.close();
}

}
catch (SQLException SQLe)
{

SQLe.printStackTrace();
}
catch (NamingException SQLe)
{

SQLe.printStackTrace();
}

}

/**
Empty method body
*/
public void ejbCreateQ {}

174

Empty method body
*/
public void ejbRemove() {}

/**
Empty method body
*/
public UobEJBBean() {}

/**
Empty method body
*/
public void ejbActivate() {}

/**
Empty method body
*/
public void ejbPassivate() {}

/**
Empty method body
*/
public void setSessionContext(SessionContext sc) {}

}

175

// UnitPersonneLjava

package uob;

import javaio.Serializable;

* @author Jasmine
*
* Definition of the Unit Personnel Class
*/

public class UnitPersonnel implements Serializable
{ /**

First item in class definition should be
primary key in database for this class
*/
public String pkey;
public String pIC;
public String unitld;
public String personnelDesc;
public String personnelQtyReqd;
public String personnelQtyAuth;

176

//

package uob;

import java.io.Serializable;
import j ava.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

This interface defines the 'home' interface for the 'UobEJB' EJB.

public interface UobEJBHome extends EJBHome
{ /**

Creates an instance of the 'UobEJBBean' class on the server, and returns a
remote reference to an UobEJB interface on the client.

*/
UobEJB createQ throws RemoteException, CreateException;

177

//

package fdms;

import javaio.Serializable;

This class contains definition of the 'change' object
sent from the UOB system to the FDMS system

*/

public class ChangeObj implements Serializable
{

public String operation;
public String table;
public Object obj;

public ChangeObj (String operation, String table, Object obj)
{

}

this.operation = operation;
this.table = table;
this.obj = obj;

178

//

package fdms;

import java.io.Serializable;

* @author Jasmine
*
* Definition of the Unit Class
*/

public class Unit implements Serializable
{

/**
First item in class definition should be
primary key in database for this class
*/
public String pkey;
public String unitld;
public String parentUnitld;
public String unitName;
public String homeName;
public String shipCategory;
public String countryCode;

179

<%-- This JSP creates a form for a user to enter values for a new record in the Unit table -
-%>

<html:html>

<head>
<title>Edit Unit</title>

</head>

<body bgcolor="#7D7DE6">

//createUnit.jsp

<%@taglib uri—'/WEB-INF/struts-html.tld" prefix-'html" %>

<html:errors/>

<p align="center"><u>UOB Editor</u></fontx/p>
<p align="center" style="margin-bottom: 30">Create Unit</bx/p>
<p align="center" style="margin-bottom: 30">Unit</p>

<html:form action="CreateUnit.do">

<table border='T" w idth-’29%" align="center">
<tr>
<td width="40%" align="center">

<p align-'center"xhtml:text property="unitid" size="32"/></p>
</td>
<td width="60%" align="center">
<p align-'center">Unit Id </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="parentunitid" size="32"/x/p>

</td>
<td width="60%" align="center">
<p align="center">Parent Unit Id </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="unitname" s iz e - '32"/x/p>

</td>
<td width="60%" align-'center">

180

<p align="center">Unit Name</p>
</td>

</tr>
<tr>
<td width="40%" align="center">

<p align="center"><html:text property="homename" s iz e - '32"/x/p>
</td>
<td width="60%" align="center">
<p align="center">Home Name</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="shipcategory" size="32"/x/p>

</td>
<td width="60%" align-'center">
<p align="center">Ship Category</p>

</td>
</tr>
<tr>
<td width="40%" align-'center">
<p align="center"><html:text property="countrycode" size="32"/x/p>

</td>
<td width-'60%" align-'center">
<p align-’center">Country Code</p>

</td>
</tr>

</table>

<BRxBRxcenter> <html: submit property="ok" value="Ok"/> </center>

</html:form>

</body>

</html:html>

181

//createUnitAircraft

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix—'html" %>

<%— This JSP creates a form for a user to enter values for a new record in the Unit
Aircraft table —%>

<html:html>

<head>
<title>Edit Unit Aircraft</title>

</head>

<body bgcolor="#7D7DE6">

<html:errors/>

<p align="center"><u>UOB Editor</u></p>
<p align="center" style-'margin-bottom: 30"xb>CreateUnit Aircraft</p>
<p align-'center" style="margin-bottom: 30">Unit Aircraft</p>

<html:form action="CreateUnitA.do">

<table border="l" width="29%" align="center">
<tr>

<td width="40%" align="center">
<p align="center"><html:text property="aic" s iz e - '32"/x/p>

</td>
<td width-'60%" align="center">
<p align="center">AIC </p>

</td>
</tr>
<tr>

<td width="40%" align="center">
<p align="center"><html:text property="unitid" size="32"/></p>

</td>
<td width-'60%" align="center">
<p align="center">Unit Id </p>

</td>
</tr>
<tr>

<td width="40%" align="center">
<p align="center"><html:text property="aircraftcode" size="32"/></p>

</td>
<td width="60%" align="center">

<p align="center">Aircraft Code</p>
</td>

</tr>
<tr>

<td width="40%" align-'center">
<p align="center"xhtml:text property="aircraftdesc" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Aircraft Desc</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="aircraftqtyreqd" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Aircraft Qty Reqd</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="aircraftqtyauth" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Aircraft Qty Auth</p>

</td>
</tr>

</table>

<center> <html:submit property="ok" value="Ok"/> </center>

</html:form>

</body>

</html:html>

183

<%— This JSP creates a form for a user to enter values for a new record in the Unit
Equipment table --%>

//createUnitEquipment

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix—'html" %>

<html:html>

<head>
<title>Edit Unit Equipment</title>

</head>

<body bgcolor="#7D7DE6">

<html:errors/>

<p align-"center"><u>UOB Editor</u></p>
<p align="center" style="margin-bottom: 30">Create Unit Equipment</p>
<p align-'center" style="margin-bottom: 30">UnitEquipment</p>

<html:form action="CreateUnitE.do">

<table border="l" width="29%" align="center">
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="eic" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">EIC </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="unitid" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Unit Id </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="equipmentcode" size="32"/></p>

</td>
<td width="60%" align="center">

184

<p align="center">Equipment Code</p>
</td>

</tr>
<tr>
<td width="40%" align="center">

<p align-'center"><html:text property="equipmentdesc" size="32"/></p>
</td>
<td width="60%" align="center">
<p align="center">Equipment Desc</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="equipmentqtyreqd" size="32"/x/p>

</td>
<td width="60%" align-'center">
<p align="center">Equipment Qty Reqd</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="equipmentqtyauth" size="32"/></p>

</td>
<td width="60%" align-’center">
<p align="center">Equipment Qty Auth</p>

</td>
</tr>

</table>

<center> <html: submit property="ok" value-'Ok"/> </center>

</html:form>

</body>

</html:html>

185

//createUnitPersonnel

<%— This JSP creates a form for a user to enter values for a new record in the Unit
Personnel table --%>

<%@ taglib uri=''/WEB-INF/struts-b.tml.tld'' prefix-'html" %>

<html:html>

<head>
<title>Edit Unit Personnel</title>

</head>

<body bgcolor="#7D7DE6">

<html:errors/>

<p align="center"xfont size="4"><u>UOB Editor</ux/b></p>
<p align-'center" style-'margin-bottom: 30">Create Unit Personnel</p>
<p align-'center" style="margin-bottom: 30"xb>Unit Personnel</p>

<html:form action="CreateUnitP.do">

<table border='T" width="29%" align="center">
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="pic" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">PIC </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property=="unitid" size="32"/x/p>

</td>
<td width="60%" align="center">
<p align="center">Unit Id </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="personneldesc" size="32"/x/p>

</td>

186

<td width="60%" align="center">
<p align—'center">Persomiel Desc</p>

</td>
</tr>
<tr>

<td w idth-’40%" align-'center">
<p align="center"xhtml:text property="personnelqtyreqd" size="32"/></p>

</td>
<td width="60%" align-'center">
<p align-'center">Personnel Qty Reqd</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="personnelqtyauth" size="32"/x/p>

</td>
<td width="60%" align="center">
<p align="center">Personnel Qty Auth</p>

</td>
</tr>

</table>

<BRxBRxcenter> <html:submit property="ok" value="Ok"/> </center>

</html:form>

</body>

</html:html>

187

//editUnit.jsp

<%— This JSP creates a form for a user to edit values of a record in the Unit table --%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix-'html" %>

<html:html>

<head>
<title>Edit Unit</title>

</head>

<body bgcolor="#7D7DE6">

<html:errors/>

<p align-'center "xfon t size="4"><u>UOB Editor</u></p>
<p align-'center" style="margin-bottom: 30"xb>EditUnit</p>
<p align-'center" style-'margin-bottom: 30"xb>Unit</bx/p>

<html:form action="EditUnit.do">

<table border="l" width="29%" align="center">
<tr>
<td width="40%" align-'center">

<p align-'center"xhtml:text property="unitid" size="32"/x/p>
</td>
<td width-'60%" align-'center">
<p align="center">Unit Id </p>

</td>
</tr>
<tr>
<td width="40%" align-'center">
<p align="center"xhtml:text property=:"parentunitid" size="32"/x/p>

</td>
<td width="60%" align="center">
<p align="center">Parent Unit Id </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="unitname" size="32"/x/p>

</td>
<td width="60%" align="center"> i

188

<p align="center">Unit Name</p>
</td>

</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="homename" size="32"/></p>

</td>
<td width="60%" align="center">

<p align="center">Home Name</p>
</td>

</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="shipcategory" size-'32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Ship Category</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="countrycode" size="32"/></p>

</td>
<td width="60%" align="center">
<p align-'center">Country Code</p>

</td>
</tr>

</table>

<center> <html:submit property="ok" value-'Ok"/> </center>

</html:form>

</body>

</html:html>

//editUnitAircraftj sp

189

<%— This JSP creates a form for a user to edit values of a record in the Unit Aircraft
table —%>

<%@ taglib uri="/WEB-INF/stmts-html.tld" prefix="html" %>

<html:html>

<head>
<title>Edit Unit Aircraft</title>

</head>

<body bgcolor="#7D7DE6">

<html:errors/>

<p align="center"><bxu>UOB Editor</u></ fontx/p>
<p align="center" style="margin-bottom: 30"xb>Edit Unit Aircraft</bx/p>
<p align="center" style="margin-bottom: 30"xb>Unit Aircraft</bx/p>

<html: form action-'EditUnitA. do">

<tableborder='T" width="29%" align="center">
<tr>
<td width—’40%" align-'center">
<p align="center"xhtml:text property="aic" size="32"/x/p>

</td>
<td width="60%" align="center">
<p align="center">AIC </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="unitid" size="32"/x/p>

</td>
<td width="60%" align="center">
<p align="center">Unit Id </p>

</td>
</tr>
<tr>
<td w idth-’40%" align="center">
<p align="center"xhtml:text property="aircraftcode" size="32'7x/p>

</td>
<td width="60%" align-'center">

<p align="center">Aircraft Code</p>

190

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="aircrañdesc" size=:"32"/x/p>

</td>
<td width="60%" align="center">
<p align="center">Aircraft Desc</p>

</td>
</tr>
<tr>
<td width="40%" align-'center">
<p align="center"><html:text property="aircraftqtyreqd" size="32"/></p>

</td>
<td width="60%" align-’center">
<p align="center">Aircraft Qty Reqd</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="aircraftqtyauth" size=:"32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Aircrañ Qty Auth</p>

</td>
</tr>

</table>

<center> <html:submit property="ok" value="Ok"/> </center>

</html:form>

</body>

</html:html>

// editUnitEquipment.j sp

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix-'html" %>

191

<%— This JSP creates a form for a user to edit values of a record in the Unit Equipment
table —%>

<html:html>

<head>
<title>Edit Unit Equipment</title>

</head>

<body bgcolor="#7D7DE6">

<html:errors/>

<p align-'center"><u>UOB Editor</u></p>
<p align="center" style="margin-bottom: 30">Edit Unit Equipment</bx/p>
<p align="center" style="margin-bottom: 30">Unit Equipment</p>

<html:form action-'EditUnitE.do">

<table border=" 1" width="29%" align="center">
<tr>
<td width="40%" align="center">
<p align="center"><html:text property=r"eic" size="32"/></p>

</td>
<td width="60%" align-'center">
<p align="center">EIC </p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="unitid" size="32"/></p>

</td>
<td width="60%" align="center">

<p align="center">Unit Id </p>
</td>

</tr>
<tr>
<td width="40%" align="center">
<p align=:"center"><html:text property="equipmentcode" size="32"/></p>

</td>
<td width="60%" align="center">

192

<p align="center">Equipment Code</p>
</td>

</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="equipmentdesc" size="32"/></p>

</td>
<td w idth-'60%" align-'center">
<p align="center">Equipment Desc</p>

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"><html:text property="equipmentqtyreqd" size="32"/></p>

</td>
<td width-'60%" align="center">

<p align="center">Equipment Qty Reqd</p>
</td>

</tr>
<tr>
<td width="40%" align="center">
<p align=="center"><html:text property="equipmentqtyauth" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Equipment Qty Auth</p>

</td>
</tr>

</table>

<center> <html:submit property="ok" value="Ok"/> </center>

</html:form>

</body>

</html:html>

// editUnitPersonnel

193

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%— This JSP creates a form for a user to edit values of a record in the Unit Personnel
table --%>

<html:html>

<head>
<title>Edit Unit Personnel</title>

</head>

<body bgcolor="#7D7DE6">

<html: error s/>

<p align="center"><u>UOB Editor</ux/b></p>
<p align-'center" style="margin-bottom: 30">Edit Unit Personnel</p>
<p align="center" style-'margin-bottom: 30">UnitPersonnel</p>

<html:form action="EditUnitP.do">

<tableborder="l" width="29%" align="center">
<tr>
<td width="40%" align="center">

<p align="center"><html:text property="pic" size="32"/></p>
</td>
<td width="60%" align="center">
<p align="center">PIC </p>

</td>
</tr>
<tr>
<td widtb="40%" align="center">

<p align="center"><html:text property="unitid" size="32"/x/p>
</td>
<td width="60%" align="center">

<p align="center">Unit Id </p>
</td>

</tr>
<tr>
<td width="40%" align="center">

<p align="center"xhtml:text property="personneldesc" size="32"/x/p>
</td>
<td width="60%" align="center">
<p align="center">Personnel Desc</p>

194

</td>
</tr>
<tr>
<td width="40%" align="center">
<p align="center"xhtml:text property="personnelqtyreqd" size="32"/></p>

</td>
<td width="60%" align="center">
<p align="center">Personnel Qty Reqd</p>

</td>
</tr>
<tr>

<td width="40%" align="center">
<p align="center"><html:text property="persomielqtyauth" size-'32'7></p>

</td>
<td width="60%" align="center">
<p align="center">Personnel Qty Auth</p>

</td>
</tr>

</table>

<center> <html:submit property="ok" value="Ok"/> </center>

</html:form>

</body>

</html:html>

//Errorlogi.jsp

<%— This JSP informs a user about login errors --%>

<html>

<head>
<title>

UOB Editor: Error!!
</title>

</head>

<body bgcolor="#7D7DE6">

<center>

<h2>UOB Data Editor: Login Error! !</h2>
</center>

<center>

Login activity had error(s):
<P>
Please try again...
<P>

<fomi action="/DbUobWT/form/login.jsp">

<input type="submit" name = "ok" value="OK">

<form>

</center>

</body>

</HTML>

//login.jsp

<%— This JSP creates a login form where a user can enter a username and password -

<%@ taglib uri='VWEB-INF/struts-html.tld" prefix-'htmr%>

<html>

<head>
<title>

UOB Data Editor Login
</title>

</head>

<body bgcolor="#7D7DE6">

<html:errors/>

<html:form action-71ogin">

<center>

<h2>UOB Editor: Login</h2>
</center>

<center>
<table border=l cellpadding=4 cellspacing=8>

<!— input name —>

<tr bgcolor=#9D9DE6>
<td>User Name</td><td><html:text

property="name"/x/td><td><html:errors property="name"/x/td>
</tr>

<!— input password —>

<tr bgcolor=#9D9DE6>
<td>Password</td><td><html:password

property="password"/></td><td><html:errorsproperty="password"/></td>
</tr>

</table>
</center>

<center><html:submit property="ok" value="Login7x/center>

</html:form>
</body>

</html>

//uobView.jsp

<%@ page language="java" %>

<%@ taglib uri="/WEB-INF/strats-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix-'html" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<%— This JSP displays all records of all the UOB tables —%>

<html:html>

<head>
<title>

UOB Data Editor: View Tables
</title>

</head>

<script>
function go(action)
{
doeument.forms[0].action. value=action;

}

</script>

<body bgcolor="#7D7DE6">

198

<%@ page import="uob.*" %>
<jsp:useBean id="uobEditor" class-'uob.UobEJB" scope="session" />

<html:errors/>

<html:fonn action-'/View">

<p align="center"><bxu>Welcome to UOB
Editor</u></p>
<p align="center" style="margin-bottom: 30">Table View</p>

<p align-'left''xb>Unit

<html:submit onclick="go('login')" value="Logout"/>

<input type=hidden name=action>
</p>

<tableborder="l" width-'100%">
<tr>
<td width-'19%" align-'center"xb>Unit Identification Code</td>
<td width="19%" align="center"xb>Parent Unit Id. Code</td>
<td width="19%" align-'center">UnitName</td>
<td width-'19%" align="center"xb>Home Name</td>
<td width="19%" align="center"xb>Ship Category</td>
<td width-'19%" align="center">Country Code</td>

199

</tr>
<%
int kk=0;
int unitStart=0,unitEnd=0,unitAStart=0,unitAEnd=0;
int unitEStart=0,unitEEnd=0, unitPStart=0, imitPEnd=0;

Unit unit = new Unit();
Object[] readObj=null;
try{

readObj = uobEditor.viewObjects(unit.getClass().toStringQ);
}catch (Exception e) { e.printStackTrace(); }

//session.setAttribute("sizeOfUnit", Integer.toString(readObj.length));
unitStart = 0;
unitEnd = unitStart + readObj. length;
session.setAttribute("unitStart", Integer.toString(unitStart));
session.setAttribute("unitEnd", Integer.toString(unitEnd));
for (int i=0; i < readObj.length; i++)
{

unit = (Unit)readObj[i];
kk++;

%>
<tr>
<td width="19%" align-'center"><%= unit.imitld%></td>
<tdwidth-'19%" align="center"><%= unit.parentUnitId%></td>
<td width="19%" align="center"> <%- unit.unitName%> </td>
<td width—’19%" align="center"> <%= unit.homeName%> </td>
<td width="19%" align="center"> <%= unit.shipCategory%> </td>
<td width="19%" align="center"> <%= unit.countryCode%> </td>

</tr>
<%
}

%>

</table>

< p x b rx /p >
<pxb>Unit-Aircraft

<html:submit onclick:="go('ua_create')" value="Create"/>
<html:submit onclick="go('delete')" value="Delete"/>
<html:submit onclick="go('edit')" value-' Edit "/>
</p>

200

<td width="19%" align="center">AIC</td>
<td width="19%" align="center">Unit Identification Code</bx/td>
<td width="19%" align-'center">Aircraft Code</td>
<td width-'19%" align="center">Aircraft Description</td>
<td width-'19%" align="center">Aircraft QtyRequired</td>
<td width-'19%" align="center">Aircraft Qty Auth</td>
<td width="5%" align="center">Select</td>

</tr>
<%
Unit Aircraft unit A = new UnitAircraft();
readObj = uobEditor.viewObjects(unitA.getClass().toString());
//session.setAttribute("sizeOfUnitA", Integer.toString(readObj.length));
unitAStart = unitEnd;
unitAEnd = unitAStart + readObj. length;
session.setAttribute("unitAStart", Integer.toString(unitAStart));
session.setAttribute("unitAEnd", Integer.toString(unitAEnd));
for (int i=0; i < readObj.length; i++)
{

unitA = (UnitAircraft)readObj[i];
%>
<tr>
<td width="19%" align="center"> <%= unitA.aIC%> </td>
<td width="19%" align="center"> <%= unitA.unitId%> </td>
<td width-'19%" align="center"><%= unitA.aircraftCode%></td>
<td width="19%" align="center"> <%= unitA.aircraftDesc%> </td>
<td width="19%" align="center"> <%= unitA.aircraftQtyReqd%> </td>
<td width="19%" align="center"> <%= unitA.aircraftQtyAuth%> </td>
<td width="5%" align="center"> <html:radio property="optionSelect" value="<%=

String.valueOf(kk++) %>"/></td>
</tr>

<%
}

%>

</table>

<p>
</p>
<p>Unit-Equipment

<html:submit onclick="go('ue_create')" value="Create"/>
<html:submit onclick="go('delete')" value="Delete"/>
<html:submit onclick-'go('edit')" value=" Edit "/>
</p>

ctable border=”l" width="100%">
<tr>

<td width-'19%" align=”center">EIC</td>
<td width="19%" align="center">Unit Identification Code</td>
<td width="19%" align="center"xb>Equipment Code</td>
<td width="19%" align-'center">Equipment Description</td>
<tdwidth-' 19%" align="center">Equipment QtyRequired</bx/td>
<tdwidth-'19%" align="center">Equipment Qty Auth</td>
<td width="5%" align="center"xb>Select</bx/td>

</tr>
<%
UnitEquipment unitE = new UnitEquipment();
readObj = uobEditor.viewObjects(unitE.getClass().toString());
// session, setAttribute(" sizeOfUnitE", Integer, to String(readObj .length));
unitEStart = unitAEnd;
unitEEnd = unitEStart + readObj.length;
session, setAttribute("unitEStart", Integer.toString(unitEStart));
session.setAttribute("unitEEnd", Integer.toString(unitEEnd));
for (int i=0; i < readObj.length; i++)
{

unitE = (UnitEquipment)readObj[i];
%>
<tr>
<td width="19%" align="center"> <%= unitE.eIC%> </td>
<td width="19%" align="center"> <%= unitE.unitId%> </td>
<td width="19%" align="center"> <%= unitE.equipCode%> </td>
<td widths" 19%" align="center"> <%= unitE.equipDesc%> </td>
<tdwidth-'19%" align="center"><%— unitE.equipQtyReqd%></td>
<td width="19%" align-'center"> <%= unitE.equipQtyAuth%> </td>
<td width-'5%" align="center"> <html:radio property="optionSelect" value="<%

String.valueOf(kk++) %>"/></td>
</tr>

<%
}

%>

</table>

<p>
</p>
<p>Unit-Personnel

 ;
<html:submit onclick-'go('up_create')" value="Create"/>
<html:submit onclick-'go('delete')" value="Delete"/>
<html:submit onclick="go('edit')" value=" Edit "/>

<table border="l" width="100%">
<tr>

202

</p>

<td width="19%" align="center">PIC</td>
<td width-'19%" align="center">UnitIdentificationCode</bx/td>
<td width="23%" align="center">Personnel Description</td>
<td width-'23%" align="center">Personnel Qty Required</td>
<td width="23%" align="center">Personnel Qty Auth</td>
<td width="8%" align="center">Select</td>

</tr>
<%
UnitPersonnel unitP = new UnitPersonnel();
readObj = uobEditor.viewObjects(unitP.getClass().toString());
//session.setAttribute("sizeOfUnitP", Integer.toString(readObj.length));
unitPStart = unitEEnd;
unitPEnd = unitPStart + readObj. length;
session.setAttribute("unitPStart", Integer.toString(unitPStart));
session, setAttribute("unitPEnd", Integer.toString(unitPEnd));

// logout value is same as P End
session.setAttribute("logoutValue", Integer.toString(unitPEnd));
for (int i=0; i < readObj.length; i++)
{

unitP = (UnitPersonnel)readObj[i];
%>
<tr>
<td width-'19%" align-'center"><%= unitP.pIC%></td>
<td width="19%" align="center"> <%= unitP.unitld%> </td>
<td width="23%" align="center"> <%= unitP.personnelDesc%> </td>
<td width-'23%" align-'center "> <%- miitP.personnelQtyReqd%> </td>
<td width="23%" align="center"> <%= unitP.personnelQtyAuth%> </td>
<td width="8%" align="center"> <html:radio property="optionSelect" value="<%=

String.valueOf(kk++) %>"/></td>
</tr>

<%
}

%>

<table border="l" width="100%">
<tr>

</table>

<p>
</p>

</html:form>

203

</body>

</html:html>

//createUnitAction.j sp

package uobwt;

import j ava.io.IOException;

import j avax. servlet. *;
import j avax. servlet.http. *;

import org.apache.struts.action. Action;
import org. apache, struts, action. ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import uob.*;

/#*
* @author jasmine
*
* This servlet class creates a new record in the Unit table
*/

public class CreateUnitAction extends Action
{

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

204

//System.out.println("CreateUnitAction");

// Setup the associated form
EditunitForm unitForm = (EditunitForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor == null)
{

return (mapping.findForward("error"));
}

// Create a new Unit (record) object and copy form values in it
Unit unit = new Unit();

unit.pkey = "0";
unit.unitld = unitForm.unitid;
unit.parentUnitld = unitForm.parentunitid;

unit.unitName = unitF orm. unitname;
unit.homeName = unitForm.homename;
unit.shipCategory = unitForm.shipcategory;
imit.countryCode = unitForm.countrycode;

// do the update
uobEditor.createUOB(unit);

// return success to controlling servlet
// That means, display the view window next
return mapping.findForward("view");

}
}

package uobwt;

import j ava.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.strats.action.ActionMapping;

import uob.*;

//createUrdtAircrafl.java

* @author jasmine
*
* This servlet class creates a new record in the Unit Aircraft table
*/

public class CreateUnitAircraftAction extends Action
{

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

{
//System.out.println("CreateUnitAircraftAction");

// Setup the associated form
EditunitAircraftForm unitaForm = (EditunitAircraftForm) form;
// Get the session variable for the application tier session bean
FlttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error! !
if (uobEditor = null)
{

return (mapping. findForward("error")) ;
}

206

// Create a new Unit Aircraft (record) object and copy form values in it
UnitAircraft unit A = new UnitAircraft();

unitA.pkey = "0"; .
unitA.aIC = unitaForm.aic;
unitA.unitId = unitaForm.unitid;
unitA.aircraftCode = unitaForm.aircraftcode;
unitA.aircraftDesc = unitaForm.aircraftdesc;
unitA.aircraftQtyReqd = unitaForm.aircraftqtyreqd;
unitA.aircraftQtyAuth = unitaForm.aircraftqtyauth;

//System.out.println("pkey; " + unitA.pkey);
//System.out.println("aircraftQtyAuth;" + unitA.aircraftQtyAuth);

// do the update
uobEditor.createUOB(unitA);

// return success to controlling servlet
// That means, display the view window next
return mapping.findForward("view");

}
}

207

//createUnitEquipment.j ava

package uobwt;

import j ava.io.IOException;

import javax.servlet.*;
import j avax.servlet.http.*;

import org. apache, struts, action. Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import uob.*;

* @author jasmine
*
* This servlet class creates a new record in the Unit Equipment table
*/

public class CreateUnitEquipmentAction extends Action
{

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

{
//System.out.println("CreateUnitEAction");

// Setup the associated form
EditunitEquipmentForm uniteForm = (EditunitEquipmentForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error! !
if (uobEditor == null)
{

return (mapping.findForward("error"));

208

}

// Create a new Unit Equipment (record) object and copy form values in it
UnitEquipment unitE = new UnitEquipment();

unitE.pkey = "0";
unitE.eIC = uniteForm.eic;
unitE.unitld = uniteForm.unitid;
unitE.equipCode = uniteForm.equipmentcode;
unitE.equipDesc - uniteForm.equipmentdesc;
unitE.equipQtyReqd = uniteForm.equipmentqtyreqd;
unitE.equipQtyAuth = uniteForm.equipmentqtyauth;

// do the update
uobEditor.createUOB(unitE);

// return success to controlling servlet
// That means, display the view window next
return mapping.fmdForward("view");

}
}

//createUnitPersonnel.j ava

package uobwt;

import java.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import uob.*;

/**

209

* @author jasmine
*
* This servlet class creates a new record in the Unit Personnel table
*/

public class CreateUnitPersonnelAction extends Action
{

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

{
//System.out.println("CreateUnitPersonnelAction");

// Setup the associated form
EditunitPersonnelForm unitp Form = (EditunitPersonnelForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error! !
if (uobEditor = null)
{

return (mapping. findForward(" error")) ;
}

// Create a new Unit Personnel (record) object and copy form values in it
UnitPersonnel unitP = new UnitPersonnelO;

unitP.pkey = "0";
unitP.pIC = unitpForm.pic;
unitP.unitld = unitpForm.unitid;
unitP .personnelDesc = unitpForm.personneldesc;
unitP .personnelQtyReqd = unitpForm.personnelqtyreqd;
unitP .personnelQtyAuth = unitpForm.personnelqtyauth;

// do the update
uobEditor.createUOB(unitP);

// return success to controlling servlet
// That means, display the view window next
return mapping.findForward("view");

}
}

210

//Delete Action.j ava

package uobwt;

import j ava.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.struts.action. Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import uob.*;

* @author jasmine
*
* This servlet class deletes a record in the specified table
*/

public class DeleteAction extends Action
{

* @see org.apache.struts.action.Action#execute(ActionMapping, ActionForm,
HttpServletRequest, HttpServletResponse,)

*/
public ActionForward execute(

ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

{
//System.out.println("DeleteAction");

211

// Setup the associated form
ViewForm welcomeForm = (ViewForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor == null)
{

return (mapping.fmdForward("error"));
}

// Get the number of the selection that the user made
String optionSelect = welcomeForm.getOptionSelect();
//System.out.println("OptionValue: " + optionSelect);
int optionValue=0;
try
{

optionValue = Integer.parselnt(optionSelect);
}
catch (NumberFormatException e)
{

// Ignore wrong input and return to the 'uobview' page
return (mapping.fmdForward("view"));
//e.printStackTrace();

}

// Get the boundaries for the records in each table
int unitStart = Integer.parseInt((String)session.getAttribute("unitStart"));
int unitEnd = Integer.parseInt((String)session.getAttribute("unitEnd"));

int unitAStart =
Integer.parseInt((String)session.getAttribute("unitAStart"));

int unitAEnd = Integer.parseInt((String)session.getAttribute("imitAEnd"));

int unitEStart =
Integer.parseInt((String)session.getAttribute("imitEStart"));

int unitEEnd = Integer.parseInt((String)session.getAttribute("unitEEnd"));

int unitPStart =
Integer.parseInt((String)session.getAttribute("unitPStart"));

int unitPEnd = Integer.parseInt((String)session.getAttribute("unitPEnd"));

// If a unit record, delete it

212

if ((optionValue >= unitStart) && (optionValue < unitEnd))
{

// find the record
Unit unit = new Unit();
Object[] readObj =

uobEditor.viewObjects(unit.getClass().toString());
unit = (Unit)readObj[optionValue-unitStart];

// delete the record
uobEditor.deleteUOB(unit);

// return to view screen
return (mapping.findForward("view"));

}

// Else, if a unit aircraft record, delete it
else if ((optionValue >= unitAStart) && (optionValue < unitAEnd))
{

// find the record
UnitAircraft unita = new UnitAircraft();
Object[] readObj =

uobEditor.viewObjects(unita.getClass().toString());
unita = (UnitAircraft)readObj[optionValue-unitAStart];

// delete the record
uobEditor.deleteUOB(unita);

// return to view screen
return (mapping.findForward("view"));

}
// Else, if a unit equipment record, delete it
else if ((optionValue >= unitEStart) && (optionValue < unitEEnd))
{

// find the record
UnitEquipment unite = new UnitEquipment();
Object[] readObj =

uobEditor.viewObjects(unite.getClass().toString());
//System.out.println("optionvalue: " + optionValue);
unite = (UnitEquipment)readObj[optionValue-unitEStart];

// delete the record
uobEditor.deleteUOB(unite);

// return to view screen
return (mapping.findForward("view"));

}

213

// Else, if a unit personnel record, delete it
else if ((optionValue >= unitPStart) && (optionValue < unitPEnd))
{

// find the record
UnitPersonnel unitp = new UnitPersonnel();
Object[] readObj =

uobEditor.viewObjects(unitp.getClass().toString());
unitp = (UnitPersonnel)readObj[optionValue-unitPStart];

// delete the record
uobEditor.deleteUOB(unitp);

// return to view screen
return (mapping. findForward("view"));

}
// return error if the selection value is invalid
else return (mapping.findForward("error"));

}
}

//EditAction.j ava

package uobwt;

import j ava.io.IOException;

import javax.servlet.*;
import javax.servlet.http.*;

import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import uob.*;

/**
* @author jasmine
*
* This servlet class processes the editing of a record in the specified table

*/
public class EditAction extends Action
{

214

* @see org.apache.struts.action.Action#execute(ActionMapping, ActionForm,
HttpServletRequest, HttpServletResponse,)

*/
public ActionForward execute(

ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

{

// Setup the associated form
ViewForm welcomeForm = (ViewForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor = null)
{

return (mapping. findForward("error"));
}

// Get the number of the selection that the user made
String optionSelect = welcomeForm.getOptionSelect();
//System.out.println("OptionValue:" + optionSelect);
int optionValue=0;
try
{

optionValue = Integer .parselnt(optionSelect);
}
catch (NumberFormatException e)
{

return (mapping.findForward("view"));
//e. prints tackT race();

}

// Get the boundaries for the records in each table
int unitStart = Integer.parseInt((String)session.getAttribute("unitStart"));
int unitEnd = Integer.parseInt((String)session.getAttribute("unitEnd"));

215

int unitAStart =
Integer.parseInt((String)session.getAttribute("unitAStart"));

int unitAEnd = Integer.parseInt((String)session.getAttribute("unitAEnd"));

int unitEStart =
Integer.parseInt((String)session.getAttribute("unitEStart"));

int unitEEnd = Integer.parseInt((String)session.getAttribute("unitEEnd"));

int unitPStart =
Integer.parseInt((String)session.getAttribute("unitPStart"));

int unitPEnd = Integer.parseInt((String)session.getAttribute("unitPEnd"));

// Depending on the table, request the controlling servlet to display
// the form for editing the appropriate record.

// unit record
if ((optionValue >= units tart) && (optionValue < unitEnd))
{

session.setAttribute("EditValue", optionSelect);
return (mapping.findForward("editunitsetup"));

}
// unit aircraft record
else if ((optionValue >= unitAStart) && (optionValue < unitAEnd))
{

session, setAttribute("EditV alue", optionSelect);
return (mapping.findForward("editunitasetup"));

}
// unit equipment record
else if ((optionValue >= unitEStart) && (optionValue < unitEEnd))
{

session.setAttribute("EditValue", optionSelect);
return (mapping.findForward("editunitesetup"));

}
// unit personnel record
else if ((optionValue >= unitPStart) && (optionValue < unitPEnd))
{

session.setAttribute("EditValue", optionSelect);
return (mapping. findForward("editunitpsetup "));

}
// return error if the selection value is invalid
else return (mapping.findForward("error"));

}
}

//Editunit Action.j ava

package uobwt;
import j avaio.*;
import java.util.*;
import org.apache.stmts.action.*;
import j avax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import j avax.servlet.http.HttpSession;

import uob.*;

public class EditunitAction extends Action {

/**
* This servlet class processes the editing of a record in the Unit table
*/
public ActionForward execute(ActionMapping mapping,

ActionForm form,
HttpServletRequest request,
HttpServletResponse response
) throws Exception

{
// Setup the associated form
EditunitForm unitForm = (EditunitForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor == null)
{

return (mapping.findForward("error"));
}

// Create a new Unit (record) object and copy form values in it
Unit unit = new Unit();

unit.pkey = (String)session.getAttribute("currentPkey");
unit.unitld = unitForm.unitid;
unit.parentUnitld = unitForm.parentunitid;

unit.unitName = unitForm.unitname;
unit.homeName = unitForm.homename;

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpSession

217

unitshipCategory = unitForm.shipcategory;
unit.countryCode = unitForm.countrycode;

// do the update
uobEditor.updateUOB(unit);

// return success to controlling servlet
// That means, display the view window next
return mapping.findForward("view");

}
} //End class

//EditunitActionSetup.java

package uobwt;
import java.io.*;
import j ava.util. *;
import org.apache.struts.action.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import uob.*;

/**
* @author jasmine
*
* This servlet class is called after a user selects a Unit record
* in the View window and clicks the Edit button of that table. It identifies
* the record that the user would like to edit, reads it from the application-tier
* session bean and loads the values of its columns in the associated form, to allow
* the controlling servlet to display those values in the form displayed by
* EditUnit.jsp. The user can then edit the displayed values
*/

public class EditunitActionSetup extends Action
{

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpSession

218

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response
) throws Exception

{
//System.out.println("EditunitActionSetup");

// Setup the associated form
EditunitForm unitForm = (EditunitForm) form;

// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor = null)
{

return (mapping.findForward("error"));
}

// get the record selection number that the user made
String editValue = (String)session.getAttribute("EditValue");
int unitStart = Integer.parseInt((String)session.getAttribute("unitStart"));

int unitEnd = Integer.parseInt((String)session.getAttribute("imitEnd"));

// make sure it's valid and within range of the values for the unit table
if (editValue = null)
{

return (mapping.findForward("error"));
}

int optionValue^O;
try
{

// make sure it's in range; else, return error
optionValue = Integer.parselnt(editValue);
if ((optionValue < unitStart) || (optionValue >= unitEnd))

return (mapping.findForward("error"));
// adjust optionValue for local index
optionValue = optionValue - unitStart;

}
catch (NumberFormatException e)
{

219

e.printStackT race();
}

// create a new unit object
Unit unit = new Unit();

// read all the records in the unit table
Object[] readObj = uobEditor.viewObjects(unit.getClass().toString());

// using the selection made by thee user,
// copy the record we want in the new object
unit = (Unit)readObj[optionValue];

// copy the values of the record we just read into the associated form
session.setAttribute("currentPkey", unit.pkey);
unitForm.pkey = unit.pkey;
unitForm.unitid = unitunitld;
unitForm.parentunitid = unit.parentUnitld;
imitForm.unitname = unit.unitName;
unitForm.homename = unithomeName;
unitForm.shipcategory = unit.shipCategory;
unitForm.countrycode = unit.countryCode;

// return success to the controlling servlet
// that means, display the Edit Unit form
return mappmg.findForward("editunit");

}
} //End class

// EditunitAircraftAction

package uobwt;
import java.io.*;
import j ava.util. *;
import org.apache.struts.action.*;
import javax.servlet.http.HttpServletRequest;
import j avax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import uob.*;

/**
* @author jasmine

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpSession

220

* This servlet class edits a record in the Unit Aircraft table
*/

public class EditunitAircraftAction extends Action
{

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response
) throws Exception

{
// Setup the associated form
EditunitAircraftForm unitaForm = (EditunitAircraftForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor == null)
{

return (mapping.findForward("error"));
}

// Create a new Unit Aircraft (record) object and copy form values in it
UnitAircraft unitA = new UnitAircraft();

unitA.pkey = (String)session.getAttribute("currentPkey");
unitA.aIC = unitaForm. aic;
unitA.unitld = unitaForm.unitid;
unitA. aircraftCode = unitaForm.aircraftcode;
unitA. aircraftDesc = unitaForm.aircraftdesc;
unitA. aircraftQtyReqd = unitaForm. aircraftqtyreqd;
unitA. aircraftQtyAuth = unitaForm. aircraftqtyauth;

//System.out.println("pkey; " + unitA.pkey);
//System.out.println("aircraftQtyAuth;" + unitA.aircraftQtyAuth);

// do the update
uobEditor.updateUOB(unitA);

// return success to controlling servlet
// That means, display the view window next
return mapping.findForward("view");

221

}
} //End class

//EditunitAircraftActionSetup.j ava

package uobwt;
import java.io.*;
import j ava.util. *;
import org.apache.struts.action.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlethttp.HttpServletResponse;
import javax.servlet.http.HttpSession;

import uob.*;

/**
* @author jasmine
*
* This servlet class is called after a user selects a Unit Aircraft record
* in the View window and clicks the Edit button of that table. It identifies
* the record that the user would like to edit, reads it from the application-tier
* session bean and loads the values of its columns in the associated form, to allow
* the controlling servlet to display those values in the form displayed by
* EditUnitAircraft.jsp. The user can then edit the displayed values
*/

public class EditunitAircraft Actions etup extends Action
{

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpSession

222

HttpServletResponse response
) throws Exception

{
//System.out.println("EditunitAircraftActionSetup");

// Setup the associated form
EditunitAircraftForm unitaForm = (EditunitAircraftForm) form;

// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor = null)
{

return (mapping.findForward("error"));
}

// get the record selection number that the user made
String editValue = (String)session.getAttribute("EditValue");

// make sure it's valid and within range of the values for the unit aircraft table
int unitAStart = Integer.parseInt((String)session.getAttribute("unitAStart"));

int unitAEnd = Integer.parseInt((String)session.getAttribute("unitAEnd"));
if (editValue == null)
{

return (mapping.findForward("error"));
}

int optionValue=0;
try
{

// make sure it's in range; else, return error
optionValue = Integer .parselnt(editValue);
if ((optionValue < unitAStart) || (optionValue >= unitAEnd))

return (mapping.findForward("error"));
// adjust optionValue for local index
optionValue = optionValue - unitAStart;

}
catch (NumberFormatException e)
{

e.printStackTrace();
}

// create a new unit aircraft object

223

Unit Aircraft unit A = new UnitAircraft();

// read all the records in the unit aircraft table
Object[] readObj = uobEditor.viewObjects(unitA.getClass().toString());

// using the selection made by thee user,
// copy the record we want in the new object
unit A = (UnitAircraft)readObj[optionValue];

// copy the values of the record we just read into the associated form
session.setAttribute("currentPkey", unitA.pkey);
unitaForm.pkey = unitA.pkey;
unitaForm.aic = unitA.alC;
unitaForm.unitid = unitA.unitld;
unitaForm.aircraftcode = unitA.aircraftCode;
unitaForm.aircraftdesc = unitA.aircraftDesc;
unitaForm.aircraftqtyreqd = unitA.aircraftQtyReqd;
unitaForm.aircraftqtyauth = unitA.aircraflQtyAuth;

//System.out.println("pkey:" + unitaForm.pkey);

// return success to the controlling servlet
// that means, display the Edit Unit Aircraft form
return mapping.frndForward("editunitA");

}
} //End class

//EditunitAircraftForm

/**
* This class defines a form for storage of values of a Unit Aircraft record

package uobwt;
import org.apache.struts.action.ActionForm;

public class EditunitAircraftForm extends ActionForm
{

* Member variable declaration

protected String pkey;
protected String aic;
protected String unitid;
protected String aircraftcode;
protected String aircraftdesc;
protected String aircrafitqtyreqd;
protected String aircraftqtyauth;
protected String ok;

/**
* method to set the value
* @param String
* @retum void
*/

public void setAircraftdesc(String aircraftdesc)
{

this.aircraftdesc = aircraftdesc;
} //End method setAircraftdesc

* method to get the value
* @retum String
*
*/

public String getAircraftdesc()
{

return this.aircraftdesc;

225

} //End method getAircraftdesc

/**
* method to set the value
* @param String
* @retum void
*/

public void setOk(String ok)
{

this.ok = ok;
} //End method setOk

* method to get the value
* @retum String
*
*/

public String getOk()
{

return this.ok;
} //End method getOk

/**
* method to set the value
* @param String
* @retum void
*/

public void setAircraftqtyauth(String aircraftqtyauth)
{

this.aircraftqtyauth = aircraftqtyauth;
} //End method setAircraftqtyauth

/**
* method to get the value
* @retum String

*/
public String getAircraftqtyauth()
{

return this.aircraftqtyauth;
} //End method getAircraftqtyauth

* method to set the value
* @param String
* @retum void
*/

public void setAircraftqtyreqd(String aircrafiqtyreqd)
{

this.aircraftqtyreqd = aircrafiqtyreqd;
} //End method setAircrafiqtyreqd

* method to get the value
* @retum String

public String getAircraflqtyreqdO
{

return this.aircraftqtyreqd;
} //End method getAircraflqtyreqd

/**
* method to set the value
* @param String
* @retum void
*/

public void setUnitid(String unitid)
{

this.unitid = unitid;
} //End method setUnitid

/**
* method to get the value
* @retum String
*
*/

public String getUnitid()
{

return this.unitid;
} //End method getUnitid

227

* method to set the value
* @param String
* @retum void
*/

public void setAic(String aic)
{

this.aic = aic;
} //End method setAic

* method to get the value
* @retum String
*
*/

public String getAic()
{

return this.aic;
} //End method getAic

/**
* method to set the value
* @param String
* @retum void
*/

public void setAircraftcode(String aircraftcode)
{

this.aircraftcode = aircraftcode;
} //End method setAircraftcode

/**
* method to get the value
* @retum String
*
*/

public String getAircraftcode()
{

return this.aircraftcode;
} //End method getAircraftcode

/**
* method to set the value
* @param String

* @retum void
*/

public void setPkey(String pkey)
{

this.pkey = pkey;
} //End method setPkey

* method to get the value
* @retum String
*
*/

public String getPkeyO
{

return this.pkey;
} //End method getPkey

} //End class

//EditunitEquipmentActionj ava

package uobwt;
import java.io.*;
import java.util.*;
import org.apache.struts.action.*;
import javax.servlethttp.HttpServletRequest;
import j avax. servlet.http .HttpS ervletResponse;
import javax.servlethttp.HttpSession;
import uob.*;

/**
* @author jasmine
*
* This servlet class edits a record in the Unit Equipment table

http://http.HttpServletRequest
http://http.HttpSession

229

public class EditunitEquipmentAction extends Action
{

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response
) throws Exception

{
// Setup the associated form
EditunitEquipmentForm uniteForm = (EditunitEquipmentForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor == null)
{

return (mapping.findForward("error"));
}

// Create a new Unit Equipment (record) object and copy form values in it
UnitEquipment unitE = new UnitEquipment();

unitE.pkey = (String)session.getAttribute("currentPkey");
unitE.eIC = uniteForm. eic;
unitE.unitld = uniteForm.unitid;
unitE.equipCode = uniteForm.equipmentcode;
unitE.equipDesc = uniteForm.equipmentdesc;
unitE.equipQtyReqd = uniteForm.equipmentqtyreqd;
unitE. equip QtyAuth = uniteForm. equipmentqtyauth;

// do the update
uobEditor.updateUOB(unitE);

// return success to controlling servlet
// That means, display the view window next
return mapping.findForward("view");

}
} //End class

230

// EditunitEquipmentActionS etup .j ava

package uobwt;
import java.io.*;
import j ava.util. *;
import org.apache.struts.action.*;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import uob.*;

* @author jasmine
*
* This servlet class is called after a user selects a Unit Equipment record
* in the View window and clicks the Edit button of that table. It identifies
* the record that the user would like to edit, reads it from the application-tier
* session bean and loads the values of its columns in the associated form, to allow
* the controlling servlet to display those values in the form displayed by
* EditUnitEquipment.jsp. The user can then edit the displayed values
*/

public class EditunitEquipmentActionSetup extends Action
{

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response
) throws Exception

{
//System.out.println("EditunitEquipmentActionSetup");

// Setup the associated form
EditunitEquipmentForm uniteForm = (EditunitEquipmentForm) form;

// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor - (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpSession

231

if (uobEditor = null)
{

return (mapping. findForward("error"));
}

// get the record selection number that the user made
String editValue = (String)session.getAttribute("EditValue");

// make sure it's valid and within range of the values for the unit equipment table
int unitEStart = Integer.parseInt((String)session.getAttribute("unitEStart"));

int unitEEnd = Integer.parseInt((String)session.getAttribute("unitEEnd"));
if (editValue — null)
{

return (mapping.findForward("error"));
}

int optionValue=0;
try
{

// make sure it's in range; else, return error
optionValue = Integer.parselnt(editValue);
if ((optionValue < unitEStart) || (optionValue >= unitEEnd))

return (mapping.findForward("error"));
// adjust optionValue for local index
optionValue = optionValue - unitEStart;

}
catch (NumberFormatException e)
{

e.printStackTrace();
}

// create a new unit equipment object
UnitEquipment unitE = new UnitEquipment();

// read all the records in the unit equipment table
Object[] readObj = uobEditor.viewObjects(unitE.getClass().toString());

// using the selection made by thee user,
// copy the record we want in the new object
unitE = (UnitEquipment)readObj [optionValue];

// copy the values of the record we just read into the associated form
session.setAttribute("currentPkey", unitE.pkey);
uniteForm.pkey = unitE.pkey;
uniteForm.eic = unitE.eIC;
uniteForm.unitid = unitE.unitld;

uniteFomi.equipmentcode = unitE.equipCode;
uniteForm.equipmentdesc = unitE.equipDesc;
uniteForm.equipmentqtyreqd = unitE.equipQtyReqd;
uniteForm.equipmentqtyauth = unitE.equipQtyAuth;

// return success to the controlling servlet
// that means, display the Edit Unit Equipment form
return mapping.findForward("editunitE");

233

// EditunitEquipmentForm.java

/**
* This class defines a form for storage of values of a Unit Equipment record

package uobwt;
import org.apache.struts.action.ActionForm;

public class EditunitEquipmentForm extends ActionForm
{

* Member variable declaration
*/

protected String pkey;
protected String unitid;
protected String equipmentcode;
protected String equipmentdesc;
protected String equipmentqtyreqd;
protected String equipmentqtyauth;
protected String eic;
protected String ok;

/* **
* method to set the value
* @param String
* @retum void
*/

public void setEquipmentqtyauth(String equipmentqtyauth)
{

this.equipmentqtyauth = equipmentqtyauth;
} //End method setEquipmentqtyauth

* method to get the value
* @retum String
*
*/

public String getEquipmentqtyauth()

{

} //End method getEquipmentqtyauth
return this.equipmentqtyauth;

* method to set the value
* @param String
* @retum void
*/

public void setEquipmentqtyreqd(String equipmentqtyreqd)
{

this.equipmentqtyreqd = equipmentqtyreqd;
} //End method setEquipmentqtyreqd

/**
* method to get the value
* @retum String
*
*/

public String getEquipmentqtyreqd()
{

return this.equipmentqtyreqd;
} //End method getEquipmentqtyreqd

/**
* method to set the value
* @param String
* @retum void
*/

public void setEquipmentcode(String equipmentcode)
{

this.equipmentcode = equipmentcode;
} //End method setEquipmentcode

* method to get the value
* @retum String
*
*/

public String getEquipmentcode()
{

return this.equipmentcode;

} //End method getEquipmentcode

/**
* method to set the value
* @param String
* @retum void
*/

public void setOk(String ok)
{

this.ok = ok;
} //End method setOk

* method to get the value
* @retum String
*
*/

public String getOk()
{

return this.ok;
} //End method getOk

/**
* method to set the value
* @param String
* @retum void
*/

public void setEquipmentdesc(String equipmentdesc)
{

this.equipmentdesc = equipmentdesc;
} //End method setEquipmentdesc

* method to get the value
* @retum String
*
*/

public String getEquipmentdesc()
{

return this.equipmentdesc;
} //End method getEquipmentdesc

* method to set the value
* @param String
* @retum void
*/

public void setUnitid(String unitid)
{

this.unitid = unitid;
} //End method setUnitid

* method to get the value
* @retum String
*
*/

public String getUnitidO
{

return this.unitid;
} //End method getUnitid

/*#
* method to set the value
* @param String
* @retum void
*/

public void setEic(String eic)
{

this.eic = eic;
} //End method setEic

/**
* method to get the value
* @retum String
*
*/

public String getEic()
{

return this.eic;
} //End method getEic

/**
* method to set the value

237

* @param String
* @retum void
*/

public void setPkey(String pkey)
{

this.pkey = pkey;
} //End method setPkey

/**
* method to get the value
* @retum String
*
*/

public String getPkey()
{

return this.pkey;
} //End method getPkey

} //End class

//EditunitForm.j ava

* This class defines a form for storage of values of a Unit record
*/

package uobwt;
import org.apache.struts.action.ActionForm;

public class EditunitForm extends ActionForm
{

* Member variable declaration
*/

protected String pkey;
protected String shipcategory;
protected String countrycode;
protected String unitname;
protected String homename;
protected String ok;
protected String unitid;
protected String parentunitid;

* method to set the value
* @param String
* @retum void
*/

public void setShipcategory(String shipcategory)
{

this, shipcategory = shipcategory;
} //End method setShipcategory

/**
* method to get the value
* @retum String
*
*/

public String getShipcategory()
{

return this.shipcategory;

} //End method getShipcategory

/**
* method to set the value
* @param String
* @retum void
*/

public void setCountrycode(String countrycode)
{

this.coimtrycode = countrycode;
} //End method setCountrycode

/**
* method to get the value
* @retum String

*/
public String getCountrycode()
{

return this.coimtrycode;
} //End method getCountrycode

/**
* method to set the value
* @param String
* @retum void
*/

public void setUnitname(String unitname)
{

this.unitname = unitname;
} //End method setUnitname

* method to get the value
* @retum String
*
*/

public String getUnitname()
{

return this.unitname;
} //End method getUnitname

/**
* method to set the value
* @param String
* @retum void
*/

public void setHomename(String homename)
{

this.homename = homename;
} //End method setHomename

* method to get the value
* @retum String
*
*/

public String getHomename()
{

return this.homename;
} //End method getHomename

* method to set the value
* @param String
* @retum void
*/

public void setOk(String ok)
{

this.ok = ok;
} //End method setOk

* method to get the value
* @retum String
*
*/

public String getOk()
{

return this.ok;
} //End method getOk

* method to set the value
* @param String
* @retum void
*/

public void setUnitid(String unhid)
{

this.unitid = unitid;
} //End method setUnitid

* method to get the value
* @retum String

public String getUnitid()
{

return this.unitid;
} //End method getUnitid

* method to set the value
* @param String
* @retum void
*/

public void setParentunitid(String parentunitid)
{

this.parentunitid = parentunitid;
} //End method setParentunitid

* method to get the value
* @retum String
*
*/

public String getParentunitid()
{

return this.parentunitid;
} //End method getParentunitid *

* method to set the value
* @param String
* @retum void

242

*/
public void setPkey(String pkey)
{

this.pkey = pkey;
} //End method setPkey

* method to get the value
* @retum String

public String getPkeyO
{

return this.pkey;
} //End method getPkey

} //End class

//EditunitPersonnelAction.j ava

package uobwt;
import java.io.*;
import j ava.util. *;
import org.apache.struts.action.*;
import j avax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import j avax. servlet.http .HttpS ession;
import uob.*;

http://http.HttpServletRequest
http://http.HttpServletResponse

243

* @author jasmine
*
* This servlet class edits a record in the Unit Personnel table
*/

public class EditunitPersonnelAction extends Action
{

public ActionForward execute(ActionMapping mapping,
ActiohForm form,
HttpServletRequest request,
HttpServletResponse response
) throws Exception

{
// Setup the associated form
EditunitPersonnelForm unitpForm = (EditunitPersonnelForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!
if (uobEditor == null)
{

return (mapping.findForward("error"));
}

// Create a new Unit Personnel (record) object and copy form values in it
UnitPersonnel unitP = new UnitPersonnel();

unitP.pkey = (String)session.getAttribute("currentPkey");
unitP.pIC - unitpForm.pic;
unitP.unitld = unitpForm.unitid;
unitP .personnelDesc = unitpForm.personneldesc;
unitP .personnelQtyReqd = unitpForm.personnelqtyreqd;
unitP.personnelQtyAuth = unitpForm.personnelqtyauth;

// do the update
uobEditor.updateUOB(unitP);

// return success to controlling servlet
// That means, display the view window next
return mapping.fmdForward("view");

}
} //End class

244

//EditunitPersonnelActionSetup.java

package uobwt;
import java.io.*;
import j ava.util. *;
import org.apache.struts.action.*;
import javax.servlet.http.HttpServletRequest;
import j avax.servlet.http.HttpServletResponse;
import javax.servlethttp.HttpSession;

import uob.*;

* @author jasmine
*
* This servlet class is called after a user selects a Unit Personnel record
* in the View window and clicks the Edit button of that table. It identifies
* the record that the user would like to edit, reads it from the application-tier
* session bean and loads the values of its columns in the associated form, to allow
* the controlling servlet to display those values in the form displayed by
* EditUnitPersonnel.jsp. The user can then edit the displayed values
*/

public class EditunitPersonnelActionSetup extends Action
{

public ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response
) throws Exception

{
//System.out.println("EditunitPersonnelActionSetup");

// Setup the associated form
EditunitPersonnelForm unitpForm = (EditunitPersonnelForm) form;

// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If didn't come here the right way, generate error!!

http://http.HttpServletRequest
http://http.HttpServletResponse
http://http.HttpSession

245

if (uobEditor = null)
{

return (mapping.findForward(" error"));
}

// get the record selection number that the user made
String editValue = (String)session.getAttribute("EditValue");

// make sure it's valid and within range of the values for the unit personnel table
int unitPStart = Integer.parseInt((String)session.getAttribute("unitPStart"));

int unitPEnd = Integer.parseInt((String)session.getAttribute("unitPEnd"));
if (editValue = null)
{

return (mapping.fmdForward("error"));
}

int optionValue=0;
try
{

// make sure it's in range; else, return error
optionValue = Integer .parselnt(editValue);
if ((optionValue < unitPStart) || (optionValue >= unitPEnd))

return (mapping.findForward("error"));
// adjust optionValue for local index
optionValue = optionValue - unitPStart;

}
catch (NumberFormatException e)
{

e.printStackTrace();
}

// create a new unit personnel object
UnitPersonnel unitP = new UnitPersonnelO;

// read all the records in the unit personnel table
Object[] readObj = uobEditor.viewObjects(unitP.getClass().toString());

// using the selection made by thee user,
// copy the record we want in the new object
unitP = (UnitPersonnel)readObj [optionValue];

// copy the values of the record we just read into the associated form
session.setAttribute("currentPkey", unitP .pkey);
unitpForm.pkey = unitP .pkey;
unitpForm.pic = unitP .pIC;
unitpForm.unitid = unitP .unitld;

246

unitpForm.personneldesc = unitP.personnelDesc;
unitpFonn.persomielqtyreqd = unitP.personnelQtyReqd;
unitpForni.personnelqtyauth = unitP.personnelQtyAuth;

// return success to the controlling servlet
// that means, display the Edit Unit Personnel form
return mapping.findForward("editunitP");

}
} //End class

//EditunitPersonnelForm.java

* This class defines a form for storage of values of a Unit Personnel record
*/

package uobwt;
import org.apache.struts.action.ActionForm;

public class EditunitPersonnelForm extends ActionForm
{

* Member variable declaration
*/

protected String pkey;
protected String personnelqtyauth;
protected String personnelqtyreqd;
protected String ok;
protected String pic;
protected String personneldesc;
protected String unitid; *

* method to set the value
* @param String
* @retum void

247

*/
public void setPersonnelqtyauth(String personnelqtyauth)
{

this.personnelqtyauth = personnelqtyauth;
} //End method setPersonnelqtyauth

/* **
* method to get the value
* @retum String
*
*/

public String getPersonnelqtyauth()
{

return this.personnelqtyauth;
} //End method getPersonnelqtyauth

* method to set the value
* @param String
* @retum void
*/

public void setPersonnelqtyreqd(String personnelqtyreqd)
{

this.personnelqtyreqd = personnelqtyreqd;
} //End method setPersonnelqtyreqd

* method to get the value
* @retum String
*
*/

public String getPersonnelqtyreqd()
{

return this.personnelqtyreqd;
} //End method getPersonnelqtyreqd

* method to set the value
* @param String
* @retum void
*/

public void setOk(String ok)

{
this.ok = ok;

} //End method setOk

248

* method to get the value
* @retum String
*
*/

public String getOk()
{

return this.ok;
} //End method getOk

* method to set the value
* @param String
* @retum void
*/

public void setPersonneldesc(String personneldesc)
{

this.personneldesc = personneldesc;
} //End method setPersonneldesc

* method to get the value
* @retum String
*
*/

public String getPersonneldesc()
{

return this.personneldesc;
} //End method getPersonneldesc

* method to set the value
* @param String
* @retum void
*/

public void setUnitid(String unitid)
{

this.unitid = unitid;

} //End method setUnitid

* method to get the value
* @retum String
*
*/

public String getUnitidO
{

return this.unitid;
} //End method getUnitid

* method to set the value
* @param String
* @retum void
*/

public void setPic(String pic)
{

this.pic = pic;
} //End method setPic

* method to get the value
* @retum String
*

*/
public String getPic()
{

return this.pic;
} //End method getPic

* method to set the value
* @param String
* @retum void
*/

public void setPkey(String pkey)
{

this.pkey = pkey;
} //End method setPkey

/**
* method to get the value
* @retum String
*
*/

public String getPkey()
{

return this.pkey;
} //End method getPkey

} //End class

//LoginAction.j ava

package uobwt;

import java.io.IOException;
import j avax. servlet. *;
import javax.servlet.http.*;
import javax.naming.*;
import j ava.util.Hashtable;
import javax.rmi.PortableRemoteObj ect;
import j avax.ejb. *;
import java.rmi.RMISecurityManager;

import org. apache, struts, action. Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import uob.*;

/**
* @author jasmine

251

* This servlet class processes user input for log in
*/

public class LoginAction extends Action
{

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws Exception

{
// Setup the associated form
LoginForm loginForm = (LoginForm) form;
// Get the session variable for the application tier session bean
HttpSession session = request.getSession();

UobEJB uobEditor = (UobEJB)session.getAttribute("uobEditor");

// If the session variable for the application tier session bean is null,
// initialize a connection to the middle tier
if (uobEditor = null)
{

// if not created yet, create a new one
uobEditor = this.createReference();

// Save the bean in session scope
session.setAttribute("uobEditor",uobEditor);

}

// call the application tier session bean to validate user log in
boolean status = uobEditor.validateUser(loginForm.getName(),

loginForm.getPasswordO);

// reset, so that next login does not see this...
loginForm.reset(mapping, request);

//Inform the controlling servlet about success or failure
if (status != true)

return (mapping.findForward("error"));
else
{

//request. setAttribute("readerData", readerData);
return (mapping.findForward("view"));

}

252

}

// Initializes a connection to the application tier session bean
// and creates a reference
private UobEJB createReference()
{

UobEJB uobEditor=null;

try
{

// Get a naming context
InitialContext jndiContext = new InitialContext();
//System.out.println("Got context");

// Get a reference to the UobEJB Bean
Object ref = jndiContext.lookup("uobejb/UobEJBHome");
//System.out.println("Got reference");

// Get a reference from this to the Bean's Home interface
UobEJBHome home = (UobEJBHome)

PortableRemoteObject.narrow (ref, UobEJBHome.class);

// Create a UobEJB object from the Home interface
uobEditor = home.create();

return (uobEditor);

}
catch(Exception e)
{

System.out.println(e.toString());
return (UobEJB) null;

}

}
}

253

//LoginForm.j ava
package uobwt;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionErrors;
import org. apache, stmts, action. ActionForm;
import org.apache.struts.action.ActionMapping;

/**
* @author jasmine
*
* This class defines a form for storage of values entered by a user in the login form

*/

public class LoginForm extends ActionForm
{

/** name properties */
private String name = null;

/** password properties */
private String password = null;

/**
* @see org.apache.stmts.action.ActionForm#reset(ActionMapping,

HttpServletRequest,)
*/
public void reset(ActionMapping mapping, HttpServletRequest request)
{

name = "";
password = "";

* @see org.apache.stmts.action.ActionForm#validate(ActionMapping,
HttpServletRequest,)

*/
/**
public ActionErrors validate(

ActionMapping mapping,
HttpServletRequest request)

{
throw new UnsupportedOperationException("Easy Stmts :

com.acsoft.stmts.form.LoginForm.validate(...) not yet implemented.");
}

http://http.HttpServletRequest

254

*/

* Returns the name.
* @retum String
*/

public String getName()
{

return name;
}

* Sets the name.
* @param name The name to set
*/

public void setName(String name)
{

this.name = name;
}

* Returns the password.
* @retum String
*/

public String getPassword()
{

return password;
}

* Sets the password.
* @param password The password to set
*/

public void setPassword(String password)
{

this.password = password;

}
}

255

//View Action.j ava

package uobwt;

import java.io.IOException;

import j avax.servlet.*;
import j avax. servlet.http .* ;

import org.apache.struts.action.Action;
import org. apache, struts. action. ActionF orm;
import org.apache.strats.action.ActionForward;
import org.apache.struts.action.ActionMapping;

import uob.*;

* @author jasmine
*
* This servlet is called after a user makes a selection in the
* View window. It returns the identity of the button clicked
* to the controlling servlet to allow it to process it further
*/

public class View Action extends Action
{

public ActionForward execute(
ActionMapping mapping,
ActionForm form,
HttpS ervletRequest request,
HttpServletResponse response)
throws Exception

{
//System.out.println("ViewAction");

// Return the identity of the clicked button to the controlling servlet
retirai mapping. findForward(request.getParameter(" action")) ;

}
}

//V iewF orm.j ava

package uobwt;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;

* @author jasmine
*
* This class defines a form for storage of edit/delete selections
* made by a user in the View window

public class ViewForm extends ActionForm
{

/** OptionSelect properties */
private String OptionSelect = null;

* @see org.apache.struts.action.ActionForm#reset(ActionMapping,
HttpServletRequest,)

*/
public void reset(ActionMapping mapping, HttpServletRequest request)
{

OptionSelect =
}

* Returns the OptionSelect.
* @retum String
*/

public String getOptionSelect()
{

return OptionSelect;
}

* Sets the OptionSelect.
* @param OptionSelect The OptionSelect to set
*/

public void setOptionSelect(String OptionSelect)

http://http.HttpServletRequest

this.OptionSelect = OptionSelect;

258

REFERENCES

[AnAn02] Anderson, G, and Anderson, P. Enterprise JavaBeans Component
Architecture. Prentice Hall PTR, 2002.

[BDBS00] Beneventana D., Bergamaschi S., et al. “Information Integration: The
MOMIS Project Demonstration.” International Conference on Large Databases, 2000.

[FDMS00] “Functional Description of Mission Space (FDMS) Model Representation
Data Interchange Format, Version 1.6.” Defense Modeling and Simulation Office,
November 2000.

[HaFuOl] Haddix, Furman, “Conceptual Modeling Revisited: A Developmental Model
Approach for M&S.” Proceedings of1999 Fall Simulation Interoperability Workshop
2001.

[HSH99] Haddix, Furman, Scrudder, Roy, Hopkins, Mike, “Unit Order of Battle
Toolset.” Proceedings of1999 Fall Simulation Interoperability Workshop, 1999.

[JT02] “J2EE Tutorials” Java.sun.com/i2ee/tutoriak 2002.

[PDS03] Platt, D.S. Introducing Microsoft .NET, 3rd Edition, Microsoft Press, 2003.

[SJHF00] Sheehan, Jack, Haddix, Furman, “Knowledge Acquisition for Simulation
Requirements: Exchange of Mission Space Models using the Conceptual Models of the
Mission Space (CMMS) Data Interchange Format (DIF).” Proceedings of2000 Fall
Simulation Interoperability Workshop, 2000.

[SSJ02] Singh, I., Steams, B., and Johnson, M. Designing Enterprise Applications with
the J2EE Platform, 2nd Edition, Addison-Wesley, 2002.

[TPV02] Tulachan, P.V. Developing EJB 2.0 Components. Prentice Hall PTR, 2002.

[UOB99] “Unit Order of Battle (UOB) Data Interchange Format (DIF), Version 4.1.”
Defense Modeling and Simulation Office, March 1999.

259

[XPS02] XPS notes provided by Jim Lin. His Company had purchased the software
from Sequoia Software Corporation, January 2000

[YA96] Yigal Arens et. Al, “Query Reformulation for Dynamic Information
Integration.” Journals of Intelligent Information System, 6(2/3); 99-130, 1996.

260

BIBLIOGRAPHY

Anderson, G., and Anderson, P. Enterprise JavaBeans Component Architecture.
Prentice Hall PTR, 2002.

Coulouris, G., Dollimore, J., and Kindberg, T. Distributed Systems Concepts and Design,
3rd Edition. Addison-Wesley, 2002.

Farley, J,. Java Distributed Computing. O’Reilly and Associates, 1998.

Fisher, M., Ellis, J., and Bruce, J., JDBC API Tutorial and Reference, 3rd Edition.
Addison-Wesley, 2003.

Habraken, J.W., Absolute Beginner’s Guide to Networking, 3rd Edition. Que Publishing
Company, 2001.

Hall, M. Core, Servlets and Java Server Pages. Prentice Hall PTR, 2001.

Haywood, D., Bond, M., Law, D., Longshaw, A., and Roxburgh, P. SAMS Teach
Yourself J2EE in 21 Days. SAMS Publishing, 2002.

Java.sun.com/i2ee/tutorial. (Internet), 2002.

Lee, R., and Seligman, S. JNDI API Tutorial and Reference: Building Directory-
Enabled Java™ Applications. Addison-Wesley, 2000.

O’Neil, J., Teach Yourself Java. McGraw-Hill Osborne Media, 1998.

Platt, D.S., Introducing Microsoft .NET, 3rd Edition. Microsoft Press, 2003.

Rolland, F.D., The Essence of Database, Prentice hall PTR, 1998.

Sharma, R., Steams, B., and Ng, T., J2EE Connector Architecture and Enterprise
Application Integration. Addison-Wesley, 2001.

Singh, I., Steams, B., and Johnson, M., Designing Enterprise Applications with the
J2EE Platform, 2nd Edition. Addison-Wesley, 2002.

Taylor, A., and Preis, S. J2EE and Beyond. Prentice Hall PTR, 2002.

Tulachan, P.V. Developing EJB 2.0 Components. Prentice Hall PTR, 2002.

261

VITA

Jasmine Pabby was bom in Pune, India, on December 1,1962. She is the daughter of
Iqbal Singh and Harmohan Kaur. She completed her high school at Divine Child, her
undergraduate education in accountancy at Mithibai College, and masters in Social Work
at Nirmala Niketan, all colleges in Bombay, India. She worked for approximately eleven
years as a part-time social worker.

After her separation she came to the United States in Fall, 1998 with her eight-year old
son and joined the graduate program in the Computer Science Department at Texas State
University-San Marcos (formerly Southwest Texas State University).

Permanent address : 3050 Tamarron Blvd, #3307
Austin, TX 78746

This theses was typed by Jasmine Pabby.

