AUTOMATED NATURAL LANGUAGEEVALUATORS- (ANLE)

Khosrow Kaikhah
Assistant Professor
Department of Computer Science

Southwest Texas State University
601 University Dr.
San Marcos, Texas 78666

Final Report for:
Research InitiationProgram
Rome Laboratory

Sponsored by:
Air Force Office of Scientific Research
Boling Air Force Base, Washington, D.C.
and

Southwest Texas State University

December 1993

5-1



AUTOMATED NATURAL LANGUAGE EVALUATORS - (ANLE)

Khosrow Kaikhah
Assistant Professor
Department of Computer Science
Southwest Texas State University

Abstract

By the turn of the century, it is expected that most computer applications will include a natural language
processing component Both developers and consumers of NLP systems have expressed a genuine need for standard
natural language system evaluators. Automated natural language evaluators appear to be the only logical solution to the

overwhelming number of NLP systemsthat have been produced, are being produced, and will be produced.

The system developed here is based on the Benchmark Evaluation Tool [7] and is the first attempt to fully
automate theevaluationprocess. This effort was accomplished in two phases. In phase one, weidentified a subset of the
Benchmark Evaluation Tool for each class of NLP systems. And in phase two, we designed and implemented a natural
language generationsystemte generate non-causal semantically meaningful test sentences. The generation system can be

queued for each classof NLP systems.

Wefollowed an Object-Oriented Design (OOD) strategy. In this approach all concepts, including semantic and
syntacticrules, aredefined as objects. Each test sentence is generated as achain of words satisfying anumber of semantic,
syntactic, pragmétic, and contextual constraints. The constraints imposed on the generation process increase dynamically
while the sentence is being generated. Thi S strategy guarantees semantic cohesiveness while maintaining syntactic
integrity. In this approach, syntactic and semantic knowledge were utilized concurrently in word-objects. Each word-
object isan independent knowledge source with local knowledgethat can decide whether it can bea part of the sentence

being generated, when called upon by the sentence-generator tojoin the chain.



1.0

2.0

3.0
3.1

3.2

4.0
5.0

6.0

Abstract

Table of Contents

Introduction

Discussion of the Problem

Methodology
Phase Cne
Phase Two
321 System Overview
322 Templates and Expansions
323 Lexicon
324 Constraints and CLOS
3.25 System Flow
3.2.6 Example 1
3.27 Example 2
Results
Conclusions

References

Page #

21

28

35

38

40



AUTOMATEDNATURAL LANGUAGE EVALUATORS - (ANLE)

Khosrow Kaikhah

1.0 Introduction

The NLP community is rapidly growing, as a consequence, so is the number of NLP systems. However,
evauationof such systems hasnot received as much attention. In an effort to standardizethe evaluation process, Calspan
Corporation proposed and implementedthe Benchmark Eval U?ti onTool for evaluating natural language processing systems
[7] Thetool was designed to measure the linguistic capabilities of NLP systems regardlessof the domainfor which the

NLP system wasintendedfor.

The Benchmark Evaluation Tool was applied to PUNDIT during the summer of 1992 with the following
conclusions[5]: A) Theevauation processmust be customized for each class of natural |anguage processing system, since
NLP systems are designed for well-defined objectives and domains; and B) The evaluation process must be automated,
sinceit isextremely longand timeconsuming. Generally, the NLP systems can be categorizedintofive classes: Database
Management Systems, Command & Control Systems, Decision-Aiding Systems, Engineering Design Systems, and
Diagnogtic Systems. We attempted the automationprocessin two phases. In phase one, we identitied an applicable subset
of the Benchmark Evaluation Tool for each of the five NLP system classes; and in phase two, we designed and
implemented an object-oriented system for generating non-causal meaningful sentences. The system isimplemented in

CLOS (COMMON LISP Object System), an object-oriented extension of COMMON LISP.

Thisreport will cover the object-oriented analysis, design, and implementation of the system. It will describethe
objectsthat were used in generating a sentence and the way these objects interact to constrain the generation process. It
highlights the major design and implementation issues and demonstrates the internal behavior of the system with two

detailed examples. We conclude the report with sample sentences and a discussion of extension possibilities.

5-4



2.0 Discussion of the Problem

Both NLP developers and consumers have expressed a genuine need and desire for a standard evaluation
procedure. NLP systems can be evaluated in several areas including: linguistic competence, end user issues such as
reliability and likability, system development issuessuch as maintainability and portability, and intelligent behavior issues
such as learning and cooperativediadogue. The underlying goal of the Benchmark Evaluation Tool was to create a product
to test the linguistic capabilitiesof NLP systems, independent of the application under investigation. Thisfeature isunique,

in that, thetool is sensitive to each individual linguistic capability and not to each individual application.

The Benchmark Evaluation Tool [7] is composed of twetve independent sections which are designed to
progressively test different linguistic features of an NLP system. The twelve sections are: 1) Basic Sentences, 2)
InterrogativeSentences, 3) Noun Phrases, 4) Adverbials, 5) Verbs and Verb Phrases, 6) Quantifiers, 7) Comparatives, 8)
Connectives, 9) Embedded Sentences, 10) Reference, 11) Ellipsis, 12) Semantics of Events. Each section iscomposed of
a collection of evaluation procedures, each designed to test a single linguistic feature. These procedures include: an
explanation of the feature being tested, a sentence template, example sentences, and criteria to use in evaluating the

behavior of the NLP system.

After using the Benchmark Evaluation Tool to evaluate an NLP system, PUNDIT, we concluded that although
thetool wasextremely helpful in providing a guidelinefor testing the system, there were a number of clashes between the
wide scope of the evaluation tool and the narrow application domain of the NLP system. Each class of NLP system
possesses certain attributes that are unique. Each class has strengths and weaknesses which are directly associated with
thegoasand objectives of the system. Therefore, the evaluation procedure should place more emphasis on the class and
objectivesof the system and should be designed to test the applicable sentences to the system rather than the non-applicable
sentences. For instance, if the NLP system is a Database Management System, the evaluation tool should place more

emphasis on interrogative and basic sentences rather than ellipsis or quantifiers.



There are, naturally, sentences that are applicable to NLP systems and their domains. However, there are two
completely distinct types of non-applicable sentences: A) non-applicable to the system, and B) non-applicable to the
domain. Non-applicable to the system type sentences are those sentences where a meaningful sentence can not beformed
with the suggested grammatical structure and availablevocabulary. For instance, aDataBase Management system is not
designed to handlea passivevoicesentence. Non-applicableto the domain type sentences are those where a sentence can
be constructed with the available vocabulary that can satisfy the suggested grammatical structure, but is not semantically
meaningful FOr instance, the sentence: 'Doesthe Atlantato Atlantaflight have astop in Atlanta? should not be generated.
Instead, the sentence: 'Does the Atlantato Denver flight have astop in Boston? may be generated. Thefirst phase of our
project isdesigned to eliminatethe non-applicabl eto the system sentences, while the second phase concentrates on the non-

applicableto the domain sentences.

5-6



3.0 Methodology

A sentence at differentlevelsiscontrolled by different forces. For instance, at the top level, acomplete sentence
iscontrolled by itsmain verb. The main verb determinesthe type, person, and in some cases the number of its subject and
direct or indirect objects as well astheir modifiers. Each phrase is aso dominated by different forces. For instance, in a
noun phrase, the noun determines the type and number of modifiers; in a prepositional phrase, the preposition isthe
driving force; and in a,verb phrase, the verb isthe dominatingforce. In our approach, asentence is generated as achain
of words satisfying a number of semantic, syntactic, pragmatic, and contextual constraints concurrently. This chaining

processensures the compatibility of different components and resultsin acohesive and unambiguous sentence.

Qur god wasto design and develop asyst emthat could generate semantically meaningful English sentences. The
sentenceswere to be built according to agrammatical structure, or template, for a specified NLP system class, and were
tobenon-causd. In other words, therewas no desired intention or content specified for the sentences. In our design we
have utilized Object-Oriented Design (OOD) techniques [1] to develop asystem where static objects of knowledge interact
with dynamic elementsof contextin order to recursively build a sentence piece by piece. In this interactive mode, objects
that have a ready been built are used to adjust the syntactic and semantic requirements of future sentence objects. We chose
the object-oriented approach for thefollowingtworeasons: @ Knowledgecan be divided into two general categories, static
or functional. The object-oriented framework provides aconvenient way to combinethe two in the same data structure,
anobject; b) A largeamount of datais used to acquire different types of knowledge. The uniform treétment of dataand
knowledge facilitates the maintenance of the system and promotes the reuse of system functionalities. This section

describes, in detail, the design and implementationof our system.

3.1 Phase One

Although the ideaof testing the sensitivity of individua linguistic capabilitiesof NLP systemsrather than the
sengitivity of the systemsto individual applicationsis extremely attractive, it has neverthel ess proved to be an ambitious

task [5]. Most NLP systems are designed for well-defined domains and applications. Therefore, a general purpose

5-7



evaluationtool may not be suitablefor al classes of NLP systems. This was evident from our prior experience. In order
for an automated evaluator to be successful, the evaluation should be performed within the scope of the NLP system.
Therefore, there should be several different automated eval uatorseach specializedfor adifferent class of NLP system. Each
automated eval uator would have syntactic, semantic, and pragmatic knowledge of only one class of NLP system and would
generateappropriatetest sentences. Inan effort to accomplishthi s goal, we attempted to identify asubset of the Benchmark

Evauation Tool for each class of NLP systems.

Thefirst phase of our work involved building tables, similar to Table |, for each of the twelve sections outlined
in the Benchmark Evaluation Tool [7]. We evaluated each syntacticfeature, proposedfor testing, for its applicability to
each of thefollowingNLP system classes: DatabaseM anagement Systems, Command & Control Systems, Decision-Aiding
Systems, EngineeringDesign Systems, and Diagnostic Systems. If the feature seemed applicable, it was marked with an
"X", otherwise it was left blank. NA was entered in the columns, if the feature was not applicable to any class. For
example, every template, except Passive Voice, was selected as applicablefrom the Basic Sentences section for Database
Management Systems. Fromthi s effort wewereable to build a profile of applicable sentencesfor each system class to use
in thegenerationof sentences. These profiles were usad to limit the template choices available to the selected NLP system
and dlow access to only a subset of al the grammatical structures. Therefore, if the classof NLP system being evaluated

is Command & Control, only thosefeatures applicableto its classwill be examined.

! The completeset of profilesare availableupon request.

5-8



PDatabase ommand Eecision- Engineering Piagnostic
"~ Management Control iding Design Systems
Systems Systems Bystems [Bystems
I. Basic Sentences
1. Basic Sentence Types
1.1 Déclarative Sentences X X X X X
1.2 Imperative Sentences X X X X X
1.3 Interrogative Sentences X X X X
2. Simple Determiners
2.1 The Indefinite Article X X X X X
2.2 The Definite Article X X X X X
3. Simple Noun Phrases
3.1 Count Nouns X X X X X
3.2 Proper nouns X X X X X
3.3 Mass Nouns X X X X X
4. Simple Verb Phrases -
4.1 Copular Verb Phrases X X X
4.2 VP Involving the Verb Do
4.2.1 DO used in Interr. X X X X
4.2.2 The Emphatic DO X X X X X
4.3 Transitivity
4.3.1 Simple Transitive VP X X X X X
4.3.2 Simple Intransitive VP X X X
4.3.3 Simple Ditransitive VP X X X X X
4.4 Voice
4.4.1 Active Voice X X X X X
4.4.2 Passive Voice NA NA NA NA NA

Tablel: Section| - Basic Sentences

5-9




32 Phase Two

Based on our previousexperience, ahuman evaluator testsan NLP system by inputting a number of random
sentences and observing the system's response[5]. These random sentences are not constructed to express a particular
intention, but rather are constructed to be within the scope of the NLP system in termsof grammar and vocabulary. Hence
they are non-causal. Qr goal was to automate the generation process of these non-causal sentences. Therefore, we

concentrated on generating semantically meaningful and syntactically correct non-causal sentences and ignored intention.

321 System Overview

Contextual
Knowledge
Pads
= Cantextual
Knowledge
Sentence A S
Level RARASAMAIATN
NARAAARARALN
Pad ARANARANALZ
CRARARARA’
N A AL ATAS
ARALZ
I:l //\/
,\;\’ 5\’\
NNNNN,
——— o o SR
—_— X X AN
ot ANNNNANA
Phrase X AARARA
L 'o%s \,\/\/\/\/
evel RANANA
Pad o AAAARA
3 ARAARA
O \/\,\,\,\,\
et AL
X \,\,\,\,\/
RAANANAS
Controler AR
AR
NNNNNNNNG
OO0
290000
2%0%0%% %% Structural
090000000
Word 020%%0%0%%%% Knowledge
200000000
Level 9000000000
9.90009 00000
Pad 9.00.0000 000
9900000000
9.00.09000.00 9
900009900
9,0.0.0.0.0.90.0.0
e 990000000
900900009
959,9,9,9.0
OO0
Object
Lexicon

Figurel: System Diagram

5-10



Randomly generatingasent ence from atemplatewith afixed vocabulary can yield many unusual and humorous
combinationsof words. Obviously, not al words can be combined to create ameaningful, sentence. The central ideaof
our syst emisthat the decisionswhich aremadetoformone part of the template should limit the availablechoicesfor other
parts of the template. We view the process of generating a sentence as a series of phrase generation sub-goals.
Furthermore, each phrase generation is divided into word generation sub-goals. The generation is performed on a
prioritized basis, so that the most important phrases within a sentence, and the most important parts within a phrase are
completed fust. Itisimportant to point out that most of the constraints used during the generation process are formed
dynamically. Each phrase and each component of a phrase can be constructed in anumber of ways. However, as parts
of each phrase are being constructed, so are the constraints limiting the choicesfor the subsequent parts. The primary

components (figure 1) and the objects used to implement our ideasare described below.

System Components
Controller:
As its name implies this component is responsible for controlling the entire generation process. It
creates and prioritizes new sentence, phrase, and word objects. Using the contextual knowledgeand
objects on the contextual knowledge pads the controller builds the constraints used in generation.

Finaly, it completesthe process by forming the words, phrases, and sentences.

Obiect Lexicon:

This module contains the lexical objects and the knowledge about words that each object contains.

Structural Knowledge:

Thestructures used in building sentences and phrases are stored in the template and expansion objects

in this module.

5-11



Contextual Knowledge:

This component isacollection of constraint generating rules.

Contextual Knowledge Pads:

Thethree areasthat comprisethe contextual knowledge pads are used to store objects that have already
been creasted These dynamically crested objects along with the contextual knowledge rules regulatethe

generation process of subsequent parts of the sentence.

System Objects

The system is implemented in an object-oriented environment [1]. The objects utilized in the system are

described below:

Template Obiects:
The syntactic knowledge obtained from the Benchmark Evaluation Tool is stored in template objects.
This knowledge is organized in a tree tuerarchy with branch nodes and leaf nodes. The leaf nodes
contain the template string, an internal parsed representation of the template, selection flags, and

sentencelevel constraints.

Expansion Obiects:

A templateisacollectionof grammatical patterns, each pattern (such as [NP]) may have multipleways
that can be satisfied {2,10]. The expansion of the patterns found in the templates are stored in
expansionobjects. Theseobject are also organized in atree tuerarchy. The leaf nodesfor these objects
are specific parts of speech, for example count nouns or transitiveverbs. The branch nodes, from the

bottom of the tree up, haveincreasingly general patterns.

5-12



Lexical Obiects:
Theseobjects are the words that make up the system'svocabulary. They store syntactic, semantic, and
morphological information. The syntactic elementsinclude parts of speech, and any syntactic limitations
asociated with aword Themorphol ogical informationis used to form the word when it deviatesfiom
the normal rules of English orthography {3]. The semantic information is used to enforce semantic

agreement, it containsconceptsor qualitiesthat the word possessesor requires.

Constraint Obiects:

Constraint objects are built for every phrase and for every word. They contain the information to be
used to limit the generation. These objects have dotsfor theroof type, number, person, tense, form,

case, gender, concept, quality, and quantifier [2,10].

Sentence Obiects:

The sentence abjects contain the instructionsfor building the sentence and the final version of the

sentence. Sentence object sub-classesinclude: declarative, imperative, interrogative, and clauses.

Phrase Obiects:
The phrase objects are the most complex objects in the system. Most phrase objects inherit fiom
semantic, syntactic, and phrase-typesuper-classes{6]. For instance, the phrase object, agn-sub-np, is
acombination of agent (semanticrole), subject (syntacticrole), and noun phrase (phrase type). The
dotsfound in any one phrase object will vary, however, any information that could be needed later in

the generation processis stored in aphrase object (4].

Word Obiects:
The word objects store the expansion pattern for the word, the lexical object selected, and thefinal

version of theword. Each part of speech recognizedin the system has a word object sub-class.

5-13



3.2.2Templates and Expansions

The template and expansion objects store the structure upon which a sentence is constructed. They serve asa
blueprint and a scaffold for the sentence. The template objects contain the instructions for building a sentence from
phrases, while the expansion objects contain the instructionsfor building a phrasefrom words. The knowledge in both
templateand expansionobjectsisdistributed in a tree hierarchy with more specific knowledge contained at the roots. This

organization allowsfor avariety of general requests, while still maintaining the ability for specific requests.

Thetemplateobjects consist of atextual template, the sentence type, selectionflagsfor the NLP system classes,

the template parse, and any sentence level constraints.

The templateparse, which isstored in the templatel eaf-node object, is a generalized representation of the phrases
within a template. In this representation, a sentence is viewed as a collection of phrases. Each phrase has semantic
knowledgeas well as theexpansion objects which are used in generation process. The semantic knowledge describes the
roleeach phraseplayswthi n the sentence and is used to avoid structural ambiguity and to prioritize the phrase generation
wthi n asentence. The possiblesemanticrolesare agent (subject), action (verb), patient (direct-object), recipient (indirect-
object), attribute (adjectival), manner (adverbial), auxiliary (auxiliary verb) and literal. For the modifiers (attribute and

manner) additional information about what they medify and the type of phrase used for the modification is required.

The system provides a template to match varioustypes of selection requests. If the NLP classis specified, the
system will use the selection flags to prune the tree so that only those templates appropriateto the selected class will be
available. A request can be madefor any node on the tree. If the requested node is aleaf node the template information
will be returned. However, if the requested node is a branch node, one of its children will be selected at random. This

process will continue recursively until the selected child is aleaf node.

The expansion objects contain the grammatical patterns used to build phrases. The system fills an expansion

request by returning aflat list of all possible expansionsof theinput. Each element of thislistisalist of expansion leaf-



nodeobjects. Theexpansion of abranch-nodeproceedsby expanding each of itschildren nodes and then combines them
for and branchesor joining themfor or branches [9]. Theexpansion process continues recursively until al branch-nodes

are converted into lists of |eaf-nodes.

323 Lexicon

The lexicon contains a collection of lexical objects which store syntactic, semantic, and morphological
information. Furthermore, the obj ectsin thelexicon aredivided into subcategories based on their part of speech. The object

categoriesinclude: noun, verb, adjective, adverb, preposition, pronoun, article, and conjunction.

The syntacticinformationincludesthe part of speech, the subtype of the word (such as count, mass, or proper for
nouns), and any syntactic restrictions. For example, proper nouns are restricted to having a single number. The
morphological information contains exceptions to the normal formation rules of the English language [3]. This includes
tenseformation for verbs, plural formation for nouns, comparative and superlative formation for adverbs and adjectives,
and caseand gender formationfor pronouns. For example, the objectfor theverb "give" has a past tenseform "gave" stored

init.

The lexical objects aso store the semantic information that is used to enforce semantic agreement. This

information variesfor different partsof speech and isasfollows:

Nouns & Pronouns:

The nounsand pronouns have two slots for concepts and qualities {8]. The concept slot containsalist of broad
categoriesin which the noun or pronoun can be classified. The quality slot containsa list of attributes on which

the noun or pronoun can be modified.

5-15



Verbs:
Verbs have the following additional slots: agent, patient, recipient, and quantifiers [8]. The agent, patient, and
recipient dots contai n semanticconceptsthat must be present in the candidate nouns. The quantdier slot contains

alist of attributes on which theverb can be moddied.

Adjectives & Adverbs:

Adjectivesand adverbs each have one additiona slot that is used to ensure agreement with the object or action
they mod@. The Adjectives have a qualifier-list slot which contains a list of attributes they can modify.

Likewise, the adverbs have a quantifier-listslot which contains alist of attributes they can modify [8].

Prepositions:
Prepositionshave one additional dot, concept-list,which contains concepts that must be present in the head noun
of the preposition phrase [8]. Agreement between prepositions and the nouns or verbs they mod@ will be

enforced through the preposition'ssubtype and the noun's quality slot or theverb's quantifier slot.

3.24 Constraints& CLOS

The constraints built during theformation of phrases and words are vital to thefunctionality of this system, for
without them the system would be merely an over elaborate method of generatingrandom sentences. This section describes

the typeof constraintsand the method of their implementation.

Congtraints, both static and dynamic arisefrom almost al componentsof the system. Static constraints comefrom
templateobjects (in theform of sentence level restrictions), from the expansion objects (in the way they request specific
words, word subtypes, aspecific tense, or form), and from lexical objects (through syntactic restrictions). Constraintsare
a0 added dynamically during the interaction of sentence, phrase, and word objects according to the rulesin the contextual

knowledgecomponent.

5-16



Before discussing the implementation of these dynamic constraints, we need to explain the behavior of CLOS
(COMMON LISPObject Sysgem), an object-oriented extension of COMMON LISP. CLOS supports the object-oriented
concept of polymorphism through a mechanism of methods. Generic functions are functions whose behavior can vary
based onthe objects they receivein their parameter list [6,11]. They have asingle Primary-method which gets executed
regardlessof parameter values, and optional Before-methods and After-methods which are executed conditionally before
and after the primary method when the parameter objects, or any superclasses of the objects, are of the type specified. For
instance, the generate-word functionin our system receives as parameters a phrase object, aword object, aword constraint
object, and the phrase level knowledge pad Thisfunction hassevera Before-methods which execute depending on the type

of objects received in thefirst two parameters.

As an example, letsl ook a the situation where the generate-word function iscalled with a phrase object of agn-
sub-np and aword object of noun. This parametercombination triggers a Before-method that islookingfor anoun-phrase
object and a noun word object. Therefore, before the Primary-method can be executed, the Before-method must be
executed. Noticethat (FigureIl) the phrase object, agn-sub-np, inherited the noun-phrase type fiom one of the superclasses
fiomwhichitiscomposed Because of thisinheritancesome parameter combinationsmay cause multiple Before- or After-

methods to be executed.

5-17



Noun
Agent Phrase

Agn-Sub-NP Noun

(generate-word (phrase noun-phrase) (word noun) constr pad)

Before-Method /

(generate-word phrase word word—constr phrase—pad)

Primary-Method

FigureII - Before-Method for Agn-Sub-NP

The two main functions of our system, generate-phrase and generate-word, are both implemented as generic
functions. It isthrough Before-methods and After-methodsthat the dynamic constraints are built. When thesefunctions
arefirst called the constraint objects in their parameter lists are empty. Before-methods examine other objects in the
environment and build theconstraints according to the needs of the objects that are being generated. For example, before
aagn-sub-np phrase object is created the number, person, and concept slots of the phrase constraint are copied from the
act-pred-vp object that had been previously created. Before-methods are also used to copy the static constraints to the
constraint objects.  After-methods are used to store information for future reference. For example, after the main verb
has been selected the number, person, tense, agent, patient, and recipient concepts are stored in the phrase object for future

use in constraint building.

5-18



325 System Flow

This section describes the function calls made by the controller in generating a sentence. The next section

providestwo detailed example tofurther explain the process.

Sentence Level

After a template has been selected the appropriate sentence type subclass is built using the textual
template and the template parsefrom the templateobject This sentence isinput to the function generate-sentence
which returnsthe object with the sentence string slot filled in. Thetextual template and the sentence string are

displayed asthe system'’s output.

The generate-sentence function transformsthe template parseinto alist of phrase objects. These phrase
objectsarethen sorted into alist of goals. Each subgeal phrase isformed by thefunction generate-phrase. After
al the phrases have been generated, the form-sentence function builds the sentence string. The completed

sentence object is then returned.

The order of the phrases is based on their semantic roles and is as follows: action, agent, patient,

recipient, attribute, manner, auxiliary, literal.

Phrase Levdl

The build-phrasefunction takesthe phrase information in the parsed template and builds the appropriate
phrase object. This information includesthe semantic role and an expansion object. For attribute or manner
semantic object, it also includes the object being modified and the type of modifying phrase. During the

construction of this phrase object, theexpansion object istransformedintothelist of possible expansions.

5-19



The generate-phrase function selectsone of possible expansions randomly and transforms it into alist
of word objects. Theseword objects are ultimately sorted into alist of goals, based on the type of phrase. Each
word in each goal isformed through thefunction generate-word. After all the words have been generated, the

form-phrase function buildsthe phrase string. The completed phrase object is then returned.

Word Leve

Build-words creates alist of word objects by simply copying each expansion leaf-node object in the

phrase's expansion list to anewly created word object.

The generate-word function receives the current phrase object, the current word object, a constraint
object, and the phrase-level knowledge pad asinput. Before any code isexecuted in the primary-method the
multiple Before-methods are evoked to build the complete constraint object. Included in this process is the
selection of those lexical entries which match the part of speech for the target word. Next, dl the constraintsare
applied in order to select only those words that can passthefilter conditionsfrom the selected lexical list. One

of the candidatesis then chosen at random, the word string isformed and the modified word object is returned.

Thefollowing rulesillustrate how aregular verb isformed [2].

Present tense: 3rd Pars. Sing: root+"s' otherwiseroot

Past tense: root +"ed"

Future: "will " + root

Present Progressive: (appropriate present tenseof "be") +" " + root + "ing"

Past Progressive: (appropriate past tense of "be") +" " + root + "ing"

Any verbwhich deviatesfrom the aboverules, al irregular verbs expect for the verb "to be", will have

an entry in the morphology slot that will explicitly form the verb.

5-20



Theverb "to be" isformed asfollows[2]:

Present tense; 1st Pars. Sing. = "am" 3rd Pars. Sing. ="is' otherwise"are"
Past tense: 1st or 3rd Pars. Sing. ="was"' otherwise "were'

Future tense: "will be"

3.2.6 Examplel

Toseehow asent ence isgenerated we will walk throughthe generation processesfor thefollowing sentence: " The
supervisor hired anew employee”. The templatefor this sentenceis. [NP] [Verb] [Det] [Adj] [Noun].

Create sentence object from knowledge stored in template object. Generate a sentence from this object.

Generate Sentence:

Build phraseobjectsfrom the parse stored in the sentence object. For our sample sentence three objects are created:
agn-sub-np (agent-subject-nounghrase),  act-pred-vp (action-predicate-verbghrase), pnt-do-np (patient-

direct—object-nounghrase). Each object includesall expansion possibilitiesfor that object.

Order phrasesby priority based on their semanticroles. The ordered phrase ligt is act-pred-vp, agn-sub-np, pnt-do-np.

Generate each phrase.

Form the sentence by combining the phrases.

5-21



AgN-Sub-NP Act-Pred-\vP,

Generate Act-Pred-VP:

Before: No action, however, sentence-level constraintswould be copied to the phrase constraint here.
Primary: Select one of the possible expansions at random. For thistemplate [verb-tran] isthe only choice.
Build word object(s) for each expansion element.
Order words by priority based on part of speech. Generate each word.

After: No action taken.

5-22



Generate Verb-Tran:

Before: Build word constraint object:
Word List = Verbs
Type = Transitive
Primary: Apply constraints to reducelist of verbs.
Choose word randomly. "hire" is chosen.

Form word and store in word object

Choose number, person and tense at random. Singular, third, past are chosen.

Use standard formation rules or lexical object morphology to build correct form of the

word Thestring "hired" isbuilt.

After: Copy predicate,number, person, tense, agent-concepts, patient-concepts and quantifier-list to

act-pred-vp object.

The phrase "hued" isformed.

PNnt-DO-NP

N

AR A
R
AT AL LLLL A
AANNNNNNNNNNN

AgN-Sub-NP

Generate Agn-Sub-NP:

Before: Build Phrase Constraint:
Copy number, person, and agent-conceptsfrom the act-pred-vp object.




Primary: Select one of the possible expansions at random. [art-def] [noun-count] ischosen.
Build word object(s) for each expansion element.
Order words by priority based on part of speech. Generate each word.

After: No action taken.

PNnt-DO-NP

E Art-D e j ([Noun C:ounta

GenerateNoun-Count:

Before: Build word constraint object:
WordList = Nouns
Type= Count
Number = Singular
Person = Third
Concept-List= (Individua Management Personal)
Primary: Apply constraints to reduce list of nouns.
Choose word randomly. "supervisor" ischosen.
Form word and storein word object
Use standard formation rules or lexical object morphology to build correct form of the

word. The string "supervisor” is built.

5-24




After: Copy subject, number, person, agent-concepts and quality-list to agn-sub-np object.

Generate Art-Def:

Before: Build word constraint object:
Word List = Articles
Type = Definite
Primary: Apply constraints to reduce list of articles.
Only the word "the" meets the constraints.
Store "the" in word object

After: No action taken.

AoN-Sub-NP

N,
AT
AN
AAARAAL 2

CA AR XXX XN NN XX D) ACAR X XXX XXX RRNN XN NN
RRRRRLIRRLALIILLSLRLLIISA RARLRLALIL, AR
RIS L LRI L LIS LLILLe ARSI LS R
NANNANAANNIANNINNANANANANS fs

RRASLLIPLLLLLLLLLLLRS AR

the supeorvieor

The phrase "the supervisor" isformed.

NN,
A AT, AN Y
AL NN NSRRI
AL LI LRI LLLLRRL IR R PRI SLLLLLLLLINAG:
NN NNNNNNNNNNNNNNNNNN NNNNNNNNNNNNNNNN N,
LR LRALLRLLLIRIALALTRL, AL AL LI LLLLLLLLN
AL PN L LLLLLL L, AR ARRLRALLLLL LI,
AANNANNANABANA NN, NN NN NN NN NN - -
LR LL TR L LTI LTI PP LR LLRILRLLRLLLLLY,
NN NN NN NN AN, NN N NN AN NN
LT LTI LI LLL I RALLIR RN LN L LA LL AL LA
AR R R AR AR AR AR ALY NN AN AN NN NN
AN NN NN NN NN NN AN NN AN N NN NN NN NN
RN N NSRS SN S RRAARALLIAILA
NNNNNNANA A

5-25



GeneratePnt-DO-NP:

Before: Build Phrase Constraint:

Copy patient-conceptsfrom the act-pred-vp object.

Copy subject (so subject and object aren't the same) from the agn-sub-np object.

Primary: Select one of the possible expansions at random. [art-mndef] [adj] [noun-count] is chosen.
Build word object(s) for each expansion element.

Order words by priority based on part of speech. Generate each word.

After: No action taken.

R
AR NN

X
A

A

NNNNNN, NNNNN

A AN

NN NNNNNNNNNNNY
RRLLLLSPLLLIN

Generate Noun-Count:

Before: Build word constraint object:
Word List = Nouns
Type = Count
Concept-List = (Individual Labor Personal)

Root <> "supervisor”

5-26



Primary: Apply constraints to reducelist of nouns.
Choose word randomly. "employee"ischosen.
Form word and store in word object
Choose number, person at random. Singular, third are chosen.

Use standard formation rules or lexical object morphology to build correct form of the

word. The string "employee” isbuilt.

After: Copy direct object, number, person, patient-concepts and quality-listto agn-sub-np object.
Generate Adj:
Before: Build word constraint object:

WordList = Adjectives
Type = Qual
Quality-List= (Age Intellect Size Marital-StatusSex Work-Hist)
Primary: Apply constraintsto reducelist of adjectives.
Choose word randomly. "new" ischosen.
Store"new" in word object.

After: No Action taken.

Generate Art-Indef:

Before: Build word constraint object:
WordList = Articles
Type= Indefinite
Primary: Apply constraintsto reducelist of articles.
Only theword"a" meetsthe constraints.

Store "a" in word object

5-27



After: No action taken

the supervisor

AUV NN NN N NN SN, ASANNNNNNN N X,
NI, NN NN,
R AR ARRLRRLLLRILLLL, / N RAAALIRLLIRIA
AN NANAAAANAAANAA AN RS
NN AL L L L L LIS, > R NIRRT L RLL LSRR ISRS

The phrase "anew employee” isformed.

4
N,
AN

A
NN
N

N
A
N

NNNNN N
AR
N

Y
Y

YA
\\A\\

A

A
N

N,
NN

NNN
NN

7\

VA
A
,\

NN
NG

A
YA

A
N
N
¥
ARA
X
N
Y
RN
N

N
YR A
X
A
AAAT
A

A
NN,
A
)
A

N
NN
NN
\»
NN,
4{
NNNN

A
A
S
A
&
S

NN
N
AR
2
A
A
N

N,
S

N

N
A
A
A
~

A
AN
o
A
N

R
N

A
N
N
N

ks
A
K
4
hA
A
N
kA
A
ks

the supervisor hired = Nnew empioyea

Finally, the complete sentence "The supervisor hired anew employee." is generated.

3.2.7 Example 2

Let's now look &t the generation of the following sentence: "Who did the supervisor hire?'. The templatefor this

sentenceis Who [DO-Verb] [NP] [VP].

Create sentence object from information stored in templateobject. Generate a sentence from this object.

5-28



Generate Sentence:

Build phraseobjectsfrom theparse stored in the sentenceobject.. For this sentencefour objects are created: pnt-do-

np, aux-vp, agn-sub-np, and act-pred-vp.

Order phrasesby priority based on semanticrole. The ordered phrase list is act-pred-vp, agn-sub-np, pnt-do-np, aux-

vp. Generate each phrase.

Form the sentence by combining the phrases.

[Act-Prod-\/FP])

[AQGN-Sub-NFP]

[PRnt-DO-NP]

Generate Act-Pred-VP:

Before: No action taken.

Primary: Select one of the possible expansions at random. For thistemplate [verb-root] isthe only choice.
Build word object(s) for each expansion element.
Order words by priority based on part of speech. Generate each word.

After: No action taken.

5-29




Generate Verb-Root:

Before: Build word constraint object:
WordList = Verbs
Type= Transitive
Tense = Root
Primary: Apply constraints to reduce list of verbs.
Chooseword randomly. "hire" ischosen.
Store root form "hire" in word object.

After: Copy predicate, agent-concepts, patient-concepts and quantifier-list to act-pred-vp object.

The phrase"hue" isformed.

[IPNt-DO-NPFP] [AgN-Sub-NP]

Generate Agn-Sub-NP:

Before: Build Phrase Constraint:

Copy agent-conceptsfrom the act-pred-vp object.

5-30



Primary: Select one of the possibleexpansions at random. [art-def] [noun-count] is chosen.
Build word object(s) for each expansion element

Order words by priority based on part of speech. Generate each word.

After: No action taken.

Generate Noun-Count:

Before: Build word constraint object:
WordList = Nouns
Type= Count
Concept-List= (Individual Management Personal)
Primary: Apply constraintsto reducelist of nouns.
Choose word randomly. "supervisor" ischosen.
Form word and store in word object
Choose the number and person a random. Singular, thud is.chosen.
Use standard formation rules or lexical object morphology to build correct form of the
word. Thestring"supervisor" isbuilt

After: Copy subject, number, person, agent-concepts and quality-list to agn-sub-np object.

Generate Art-Def:

Before: Build word constraint object:
Word List = Articles
Type =Definite
Primary: Apply constraints to reducelist of articles.
Only the word "the" meetsthe constraints.
Store "the" in word object

After: No action taken.

5-31



The phrase "the supervisor" isformed.

(Poat-DO-NP)

GeneratePnt-DO-NP:

Before: Build Phrase Constraint:
Copy patient-conceptsfrom the act-pred-vp object.
Copy subject from the agn-sub-np object.
Primary: Select one of the possible expansions a random. For thistemplate [who-pro] isthe only choice.
Build word object(s) for each expansion element.
Order words by priority based on part of speech. Generate each word.
Form the phrase by combining the generated words. Phraseis"who".

After: No action taken.

Generate Who-Pro:

Before: Build word constraint object:
Word List = Pronouns
Root = "who"
Concept-List = (Individual Labor Personal)

Root < "supervisor”

5-32




Primary: Apply constraints to reduce Lig of pronouns.
Only theword "who" meetsthe constraints.
Store"who" in word object

After: No action taken.

The phrase "who" isformed.

NN,
NNNNNNNNNNNAL A AAAARY d

Generate Aux-VP:

Before: No action taken.

Primary: Select one of the possible expansions at random. For this template[DO-Verb] isthe only choice.
Build word object(s) for each expansion element.
Order words by priority based on part of speech. Generate each word.
Form the phrase by combining the generated words. Phrase is"did".

After: No action taken.

5-33



GenerateDO-Verb:

Before: Build word constraint object:
Word List = Verbs
Root = "do"
Primary: Apply constraintsto reduce list of verbs.
Only theword "do" meetsthe constraints.
Form word and store in word object.
Choose tense at random. Past is chosen.
Use standard formation rules or lexical object morphology to build correct form of the
word. Thestring "did" isbuilt.

After: No action taken.

The phrase "did" isformed.

Finally, the complete sentence "Who did the supervisor hire?" is generated.

5-34



4.0 Results

The system can operate on one of five modes. Each mode represents a class of NLP system and is an input to the
system. Thisinput is utilized to limit thetemplate choices a the top level and does not alter the functionality of the system
inany way. The sentencesare generated to satisfy the semantic, pragmatic, and contextual constraints. The semantic and
pragmaticconstraintsare stored as stetic objectsin contextual knowledge base aswell asin object lexicon. The contextual
congtraintsar e also stored as objects in contextual knowledge pad but are generated dynamically during the generation of
each sentences. These constraints are only kept temporarily during each sentence generation and are erased from the

contextual knowledge pad once the sentence is compl eted.

This generation system is a tool to assist the human evaluator with the evaluation process. The human evaluator
indicates the class of NLP system being evaluated and the system generates semantically meaningful applicable test
sentences. The human evauator can then scorethe NLP system'sresponse. Our objective has been to increase the human
evauator's productivity by automating the test sentence generation phase of evaluation process. This way, the evaluator
can spend more time analyzing and scoring the NLP system's response rather than forming sentences that are applicable

to the system.

Dueto our highly modular design which is based on an object-oriented framework, adding additiona functionalities
to the existing system is extremely simple. With relatively afew number of words, approximately 100, we were able to
demonstratethe power of our system. Expanding the object lexicon, by adding new words, will dramatically enhance the
strength and flexibility of the system. The system operatesin real time. The average generation timefor each test sentence,
after all superclass objects have been instantiated, is approximately 1.3 seconds. Thefollowing is a sample set of test

sentences aong with their syntactic and semantic templatesthe system generated.

5-35



[PP] [NP] [VP]
(Mnr-Mod-PP) (Agn-Sub-NP) (Act-Pred-VP)

On Monday Mary Smith produced the computers.

[WH-Word] (INP]) [Verb] [NP] [PP]
(Agn-Sub-NP) (Act-Pred-VP) (Pnt-DO-NP) (Mnr-Mod-PP)

Who sdlIsthe booksto Texas?

[NP] [Verb] ([Det]) [Count Noun]
(Agn-Sub-NP) (Act-Pred-VP) (Pat-DO-NP)

The directors hired a salesperson.

[Verb] ([Det]) [Count Noun]
(Act-Pred-VP) (Pt-DO-NP)

Hire the salesperson.

[NP] [Verb] [NP] [PP]
(Agn-Sub-NP) (Act-Pred-VP) (Pnt-DO-NP) (Mnr-Mod-PP)

The salesperson sells the book on Monday.

[NP] [BE-Verb] [Ad]j]

(Agn-Sub-Np) (Act-Pred-V P) (Atr-Mod-Adjp)

JaneDoeislarge.

5-36



Who [Verb] [NP]
(Agn-Sub-NP) (Act-Pred-VP) (Pnt-DO-NP)

Who will hire the engineers?

List [NP] [Rel Pronoun] [Verb] [NP]
(Act-Pred-VP) (Pnt-DO-NP) (Atr-Mod-RC)

List the presidents who hue the engineers.

[NP] [Verb] anyone [PP]
(Agn-Sub-NP) (Act-Pred-VP) (Pat-DO-NP) (Atr-Mod-PP)

John Doe will fire anyone in Austin.

List [NP] [Rel Pronoun] [Verb +pres-prog] [NP]
(Act-Pred-VP) (Pnt-DO-NP) (Atr-Mod-RC)

List the directorswho are hiringthe engineers.

[DO-Verb] [NP] [VF]
(Aux-VP) (Agn-Sub-NP) (Act-Pred-VP) (Pnt-DO-NP)

Did the directorsfire Mary Smith?

[Det] [Adj] [Noun] [VP]

(Agn-Sub-NP) (Act-Pred-VP) (Pnt-DO-NP)

The smart manager hires an engineer.

5-37



5.0 Conclusions

Evauatingan NLP syst emisacomplicatedtask Thereare several areasinwhich NLP systemscan be evaluated. They
include: @) linguistic competence, b) end user issues such asreliability and likability, ¢) system development issuessuch
as maintainability and portability, and d) intelligent behavior issues such as learning and cooperative dialogue. The
Benchmark Evaluation Tool wasvery thorough in its coverage of the English language, but wefeel that itsexpectations
for linguisticcompetence and for domain independence are not attainablegiven the current state of technology. Thetask
in thefirst phase of our project wasto compile acollection of sentencesfrom the Benchmark Evaluation Tool that were
appropriateto each of five NLP systems classes. Based on our previous exper\ifence with the Benchmark Evaluation Tool

limiting the scope of the evaluation appeared to be the most realistic and constructive approach.

Therefore, in the first phase of this project, we attempted to define boundaries for each of thefive classes of NLP
systems. Inthesecond phase of our project we attempted to automate the sentence generation process. We designed and
implemented an object-oriented framework for generating non-causal sentences. In this system, syntactic and semantic
knowledgewere embedded concurrently in our design. Each word-object, for instance, haslocal static knowledgewhich
enablesit to make decision. Hence, each word is an independent knowledge source. In addition, contextual constraints
are generated dynamically which will limit the availablechoicesfor the subsequent parts of the sentence. This approach,
which mimics the way human form sentences, worked well and showed much future promise. Thi s isthe only way to
preserve the cohesiveness and to maintain the compatibility of parts of each sentence. The object-oriented viewpoint
proved extremely beneficial in coding rules, in that the same object could be viewed in avariety of ways. The modular
design allowsfor the addition of lexical entries and templatesthat can increase the expressive power of the system with

little or no changesto the core code

Our objectivehere has been to automatethe sentence generation process. Hence, we have concentrated on generating
non-causal sentences. We believe that we have broken new ground. A natural extension of thiswork is to modify the

system to generate causal sentences, sentences which express adesired meaning.

5-38



The proposed system would add another layer on top of the current system. This layer would receive as input a
collection of objects, each object expressing a segment of the desired intention, and collectively expressing the complete
theme or intention. This information is used to select the appropriate sentence structure and to construct the proper
thematicconstraintsand would then serve as input to the current system to guide the generation process. For instance, the
followingrepresentsapartia overview of three objects: (agent john) (action ptrans past) (recipient store (category old)).
To express the desired intention, the following surface structure: [NP] [verb] [PP] along with thefollowing semantic
structure: (Agn-Sub-NP) (Act-Pred-VP) (Pnt-DO-NP) may be selected. These structures along with the three objects
above guide the system to generate the sentence: 'John went to the old store."  Thisextension would require very little
changein the current system. The mechanismfor allowing sentence level constraintsaready existsin the current system.
The thematic constraints would sSimply need to be expressed as sentence level constraintsin order to be passed throughout

the system.

The system developed here is the first step in completely automating the entire evaluation process. The entire
evauation processof an NLP system performed by ahuman evaluator requires three stages. In stage one, atest sentence
isgenerated; in stage two, the NLP system'sresponseisanalyzed; and in stage three, the NLP system'sresponseis scored.
Thecurrent state of our generation system performs stage one of the evaluation process. We plan to continue this effort

by extending the system to generate causal sentencesand to perform stage two and three of the evaluation process.



6.0 References

(1]

[2]

[3]

[4]

(5]

[6]

(8]

[9

Booch G. 1991. Object Oriented Design with Applications. Benjamin/Cummings Publishmg Company.

Fowler H., 1980. The Little, Brown Handbook. Little, Brown and Company.

Gazdar G, and Mellish C.,, 1989. Natural Language Processing in LISP. Addison-Wed ey Publishmg Company.

Hirst G., 1987. Semantic Interpretation and the Resolution of Ambiguity. Cambridge University Press.

Kaikhah, K., 1992. An Investigation of the Benchmark Evaluation Tool. Technical Report, Air Force Office of
Scientific Research (AFOSR), Summer 1992.

KeeneS., 1989. Object-Oriented Programming in Common LISP. Addison-Wesley.

Ned J., Feit E., Funke D., and Montgomery C. 1992. Benchmark Investigation/Identification Program. Technical
Report, Calspan Advanced Technology Center.

SowaJ., 1988. Using aL exicon of Canonical Graphsin a Semantic Interpreter in Relational Models of the Lexicon:
Representing Knowledge in Semantic Networks. ed Evans, M.. Cambridge University Press.

Stedle G., 1990. Common LISP - Second Edition. Digital Press.

[10] Thomson A, and Martinet A, 1986. A Practical English Grammar - Fourth Edition. Oxford University Press.

[11] Winston P., and Horn B., 1989. LISP - Third Edition. Addison-Wesey Publishmg Company.





