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AN APPLICATION OF THE DUAL VARIATIONAL PRINCIPLE
TO A HAMILTONIAN SYSTEM WITH DISCONTINUOUS

NONLINEARITIES

CLAUDIANOR O. ALVES, DANIEL C. DE MORAIS FILHO, & MARCO AURELIO S.
SOUTO

Abstract. In this article, we study the existence of solutions to the Hamil-
tonian elliptic system with discontinuous nonlinearities

−∆u = au + bv + f(x, v),

−∆v = cu + av + g(x, u)

on a bounded subset of Rn, with zero Dirichlet boundary conditions. The
functions f and g have a finite number of jumping discontinuities.

1. Introduction

Differential equations with discontinuous nonlinearities play an important role in
modelling problems in mathematical physics and in different applications in other
fields. In this work, we give some contributions to the study of systems of equations
with discontinuous nonlinearities. Our goal concerns finding non-trivial solutions
to the system

−∆u = au + bv + f(x, v) in Ω

−∆v = cu + av + g(x, u) in Ω
u = v = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 3 is a smooth bounded domain, A =
(

a b
c a

)
is a matrix

of real entries, f, g : Ω × R → R are functions with a finite number of jumping
discontinuities whose properties will be detailed later.

In the scalar case, problems with discontinuous nonlinearities have been studied
in the previous decades; see for example [3, 4, 6, 7, 8] and the references therein.
These problems model many physical phenomena, [9, 10], such those of plasma
physics in the case of the distribution of temperature in an electric arc for which
the constitutive law contains a discontinuity [2, 1]. Many physical interesting cases
also arise when the discontinuity is of the form h(s − θ)f(s) where h(s) = 0, for
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s ≤ 0 and h(s) = 1, for s > 0, is the Heaviside function, and f is a continuous
function.

Form the mathematical point of view we observe that the classical variational
method can not be used directly to these problems since the Euler-Lagrange func-
tionals associated to them are not of class C1. In these cases, Convex Analysis and
the Dual Variational Method are powerful tools to be employed.

Motivated by the aforementioned facts in the scalar case, more specifically, by
the papers [3] and [4], we study a class of hamiltonian systems with discontinuous
nonlinearities such those introduced in (1.1). With this intention, we had to develop
some specific techniques and procedures in order to apply the Dual Variational
Method to attack the system case problems.

This article is schemed as follows: In Section 2 we state some preliminaries
definitions and results in order to state the main results (Theorems 3.1 and 3.2)
in Section 3. In Section 4 we prove Theorem 3.1, and in Section 5 we give an
application of this theorem. Finally in Section 6 we prove Theorem 3.2.

2. Preliminaries

To state our main theorem we need to establish some notation. Let us consider
a function f : R → R discontinuous only at x = θ, but such that the limit from the
right f(θ+) and from the left f(θ−) exist, where

f(θ±) = lim
x→θ±

f(x).

Suppose that there is m > 0 such that the function ms+ f(s) is strictly increasing.
We set the interval

Tf,θ = [f(θ−), f(θ+)]

and define the following multivalued function induced by “filling in” the jump of
the discontinuous function ms + f(s) at x = θ:

f̂ m(s) =

{
f(s) + ms, s 6= θ

Tf,θ + mθ, s = θ.

Now it is possible to define a single valued function (the “inverse” of f̂m)

fm(t) =

{
θ, if t ∈ Tf,θ + mθ

s, with ms + f(s) = t, if t /∈ Tf,θ + mθ

such that fm(t) = s if and only if t ∈ f̂m(s). It is easy to check that fm ∈ C(R).

Let us go back to system (1.1). Add
(

mu
nv

)
, m,n > 0, to both sides of (1.1), so

that the right hand side functions become

fm(v) := f(v) + mv, gn(u) := g(u) + nu

which are strictly increasing. Following the previous discussion, we may define the
functions f̂m, ĝn, and their respective “inverses”, fm, gn. For simplicity, we denote
f−1 = fm and g−1 = gn.



EJDE-2004/46 AN APPLICATION OF THE DUAL VARIATIONAL PRINCIPLE 3

Remarks. (i) The results proved in this paper also work for functions with a finite
number of jumping discontinuities. Moreover, it completes the study made in [3]
and [4] for the elliptic systems case.
(ii) For simplicity we shall deal with the autonomous case, when f(x, v) = f(v) and
g(x, u) = g(u). The stated general case follows with simple changes.

Let us denote

p(λ, A) = (λ− a)2 − bc

Jm,n =
(

0 m
n 0

)
Am,n = A− Jm,n

We denote by λj the eigenvalues of the eigenvalue problem (−∆,H1
0 (Ω)), subjected

to Dirichlet boundary condition, and by ϕj its corresponding eigenfunctions.

We define system (1.1) as resonant if p(λ1, A) = 0 and nonresonant otherwise.

2.1. The Linear Case. To apply the dual variational method to system (1.1), we
have to study, for m,n > 0 to be picked up later, the system

−∆u = au + (b−m)v + f(x) in Ω

−∆v = (c− n)u + av + g(x) in Ω
u = v = 0, on ∂Ω

(2.1)

where f, g ∈ L2(Ω).

Theorem 2.1. For small m,n > 0, system (2.1) has a unique solution (u, v) ∈
H1

0 (Ω)×H1
0 (Ω) for each pair (f, g) ∈ L2(Ω)× L2(Ω).

Proof. The Laplacean operator −∆ subjected to Dirichlet boundary conditions is
invertible and

(−∆)−1 : L2(Ω) → H1
0 (Ω) ∩H2(Ω) ⊂ H1

0 (Ω).

Thus, it is possible to define the operator

TAm,n
: L2(Ω)× L2(Ω) → H1

0 (Ω)×H1
0 (Ω)

F = (f, g)) 7→ TAm,n
F

where

−TAm,nF =
(

a(−∆)−1 (m− b)(−∆)−1

(n− c)(−∆)−1 a(−∆)−1

) (
f
g

)
.

Now, system (2.1) is equivalent to

U + TAm,nU = G, in Ω
U = 0 on ∂Ω

where U = (u, v) and G = ((−∆)−1f, (−∆)−1g).
The proof of the proposition relies on the following remarks:

TAm,n is a continuous operator, since (−∆)−1 is.
By the compact Sobolev embedding, the operator TAm,n : L2(Ω)×L2(Ω) →
L2(Ω)× L2(Ω) is compact.
I + TAm,n

is a one-to-one operator for small m and n.
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Indeed, suppose that (u, v) 6= (0, 0) satisfy (2.1) with f = g = 0. Then( ∫
Ω

uϕjdx,

∫
Ω

vϕjdx
)

:= (X, Y ) 6= (0, 0)

for some j. Hence, multiplying both equations in (2.1) by ϕj and integrating by
parts we achieve

(Am,n − λjI)
(

X
Y

)
= 0.

Since (X, Y ) 6= (0, 0), we have that p(λj , Am,n) = 0. However it is possible to find
small m and n, such that p(λj , Am,n) 6= 0. Hence (u, v) = (0, 0).

The proposition follows from the Fredholm Alternative. �

The solution operator. The above proposition allows us defining the continuous
operator (In fact, a compact operator)

B : L2(Ω)× L2(Ω) → L2(Ω)× L2(Ω)
(ω1, ω2) 7→ (u, v)

where B(ω1, ω2) = (u, v) if and only if for (u, v) ∈ H1
0 (Ω)×H1

0 (Ω),

−∆u = au + (b−m)v + ω2, in Ω

−∆v = (c− n)u + av + ω1, in Ω .
(2.2)

3. The Dual Variational Framework and the main Theorems

The use of the Dual Variational Principle allows us to find a solution for (1.1)
as a minimum or as a critical point of a certain C1 functional associated with the
system.

Let the Hilbert space W := L2(Ω)× L2(Ω) be endowed with the norm.

‖(u, v)‖2W := |u|22 + |v|22
where |u|22 =

∫
Ω
|u|2dx. We define the functional Ψ : W → R by

Ψ(ω1, ω2) =
∫

Ω

G(ω1)dx +
∫

Ω

F (ω2)dx− 1
2

∫
Ω

〈Bω, ω〉dx

where ω = (ω1, ω2), G(t) =
∫ t

0
g−1(σ)dσ, F (t) =

∫ t

0
f−1(σ)dσ, and

〈Bω, η〉 =
∫

Ω

(u1η1 + u2η2)dx,

if Bω = (u1, u2) and η = (η1, η2). Since A is symmetric, we have 〈Bω, η〉 = 〈ω, Bη〉.
With additional hypotheses on the non-linearities we assure that Ψ ∈ C1(W, R).

Hence, a straightforward calculation leads to

〈Ψ′(ω1, ω2), (η1, η2)〉 =
∫

Ω

(g−1(ω1)η1 + f−1(ω2)η2)dx−
∫

Ω

〈Bω, η〉dx. (3.1)

We see that a pair (ω1, ω2) ∈ W is a critical point of Ψ if and only if

B(ω1, ω2) = (g−1(ω1), f−1(ω2)).

Therefore, if (u, v) = (g−1(ω1), f−1(ω2)), then

(−∆u− au + (m− b)v,−∆v + (n− a)u− cv) ∈ (f̂m(v), ĝn(u)). (3.2)

In our context, a pair (u, v) satisfying the above inclusion is said to be a solution
to (1.1).
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The following are our main results.

Theorem 3.1 (The nonresonant case). Suppose that f and g are real functions
with jumping nonlinearities at θ and ξ, respectively. If (ω1, ω2) ∈ W is a minimum
for Ψ,

p(λ1, A) > 0 (3.3)

holds and
(u, v) := (g−1(ω1), f−1(ω2))

then

−∆u(x) = au(x) + bv(x) + f(v(x))

−∆v(x) = cu(x) + av(x) + g(u(x))

a.e. for x ∈ Ω, i. e. (u, v) is a strong solution for system (1.1).

Theorem 3.2 (A resonant case). Let f(v) = αv + a(v) and g(u) = βu + b(u), be
real functions with jumping nonlinearities at θ and ξ, respectively, such that

0 < α, β ; α, β = λ2
1 (3.4)

lim
v→±∞

a(v) = a± , a− < 0 < a+

lim
u→±∞

b(u) = b± , b− < 0 < b+.
(3.5)

If
(0, 0) /∈ (Tf,θ, Tg,ξ) (3.6)

then the system
−∆u = αv + a(v), in Ω

−∆v = βu + b(u), in Ω
u = v = 0, on ∂Ω

(3.7)

has a strong solution.

Regarding the proofs of the previous theorems, following our approach, we will
see that the variational techniques lead to a pair (u, v) ∈ H1

0 (Ω)×H1
0 (Ω) such that

(3.2) holds. Hence, to assure that (u, v) is in fact a solution for (1.1) it suffices to
prove that the sets

Ωξ = {x ∈ Ω : u(x) = ξ} and Ωθ = {x ∈ Ω : v(x) = θ}

have zero Lebesgue measure. These sets play an important role when inverting the
functions f̂m, ĝn.

For the well known example in the scalar case

−∆u = h(θ − v)f(v),
u = 0, on ∂Ω

(3.8)

by a result of Stampacchia [5], ∆u = 0 a.e. on Ωθ. Therefore, the set Ωθ does
not play any important role in this case, and follows immediately that the found
wanted critical point u is a strong solution for (3.8), since h(0) = 0. However due
to the coupling of similar equations in the system case, this fact does not occur
and others procedures are demanded. Theorem 3.1 may be applied to study these
cases.
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4. Proof of Theorem 3.1

As mentioned before, the proof consists in showing that the sets Ωθ and Ωξ have
zero Lebesgue measure. Firstly, let us prove that |Ωξ| = 0, where |•| is the Lebesgue
measure. Let

T = Tg,ξ + nξ = [c1, c2], T+ = [c1, 1/2 (c1 + c2)], T− = T − T+,

where c1 = g(ξ−) + nξ, c2 = g(ξ+) + nξ and Ω± = {x ∈ Ωξ : ω1(x) ∈ T±}. Define
the function χ ∈ L2(Ω) by

χ(x) =


1, x ∈ Ω+

−1, x ∈ Ω−

0, x ∈ Ω− Ωξ.

(4.1)

For t > 0, small enough, we have that

ω1(x) + tχ(x) ∈ T, a.e. for x ∈ Ωξ.

Since (ω1, ω2) ∈ E is a minimum for Ψ, we have that

d

dt
Ψ(ω1 + θtχ, ω2) ≥ 0

for some 0 < θ < 1. Hence, by (3.1)

〈Ψ′(ω1 + θtχ, ω2), (χ, 0)

=
∫

Ω

g−1(ω1 + θtχ)χdx−
∫

Ω

uχdx− θt

∫
Ω

〈B(χ, 0), (χ, 0)〉dx ≥ 0.
(4.2)

On the other hand∫
Ω

g−1(ω1 + θtχ)χdx =
∫

Ωξ

g−1(ω1 + θtχ)χdx = ξ

∫
Ωξ

χdx

and ∫
Ω

uχ dx =
∫

Ωξ

uχ dx = ξ

∫
Ωξ

χdx.

Accordingly, the difference between the first two members of the right hand side of
(4.2) is zero and thus ∫

Ω

〈B(χ, 0), (χ, 0)〉dx ≤ 0. (4.3)

For t < 0, replacing χ by −χ in the afore steps we get that∫
Ω

〈B(χ, 0), (χ, 0)〉dx ≥ 0. (4.4)

Consequently, by (4.3) and (4.4)

〈B(χ, 0), (χ, 0)〉dx = 0. (4.5)

Let B(χ, 0) = (u1, v1). Then by (2.2) and (4.5)

−∆u1 = au1 + (b−m) v1, in Ω

−∆v1 = (c− n) u1 + av1 + χ, in Ω
u1 = v1 = 0, on ∂Ω∫

Ω

χu1dx = 0.

(4.6)
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Claim. Let u, v ∈ H1
0 (Ω) and χ ∈ L2(Ω) satisfy (4.6). If (3.3) holds, then u = v =

0.

Proof. Multiplying the first equation in (4.6) by v1, the second by u1 respectively,
and integrating by parts we achieve∫

Ω

v2
1dx =

c− n

b−m

∫
u2

1, for small m,n > 0. (4.7)

Hence both c− n and b−m have the same signs. By the first equation in (4.6)

λ1

∫
Ω

u2
1dx ≤

∫
Ω

|∇u1|2dx = a

∫
Ω

u2
1dx + (b−m)

∫
u1v1.

Therefore, if b−m > 0

λ1

∫
Ω

u2
1dx ≤ a

∫
Ω

u2
1dx + (b−m) |u1|2 |v1|2. (4.8)

By (4.7) and (4.8),

(λ1 − a)
∫

Ω

u2
1dx ≤ (b−m)

√
(c− n)
(b−m)

∫
Ω

u2
1dx

and thus {
(λ1 − a)−

√
(b−m) (c− n)

}∫
Ω

u2
1dx ≤ 0.

But (λ1−a) >
√

(b−m) (c− n), for small m and n, since p(λ1, A) > 0. This yields
that u1 = 0. Then v1 = 0. When b−m < 0 the proof follows analogous steps. �

By the above claim, we infer that u1 ≡ v1 ≡ 0 and hence χ ≡ 0.
By the definition of the function (4.1) we conclude that |Ωξ| = 0. A similar

reasoning applies to show that |Ωθ| = 0.

5. An application of Theorem 3.1

Our application of Theorem 3.1 consists of coercive functional bounded from
below and associated to system (1.1). It is well known that this kind of functional
has a minimum.

Theorem 5.1. Let f and g satisfy

|f(s)| ≤ c1 + k1|s|, |g(s)| ≤ c2 + k2|s| (5.1)

and define

0 < K := max{k1, k2} < λ̃1(A) :
(λ1 − a) + max{|b|, |c|}

p(λ1, A)
.

Suppose that
a < λ1, bc > 0 (5.2)

and that (3.3) holds. Then, system (1.1) possesses a strong solution (u, v) ∈
H1

0 (Ω)×H1
0 (Ω).
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Proof. By (5.1) ∫
Ω

G(w1)dx ≥ 1
2K

|w1|22 − C|w1|2, (5.3)∫
F (w2)dx ≥ 1

2K
|w2|22 − C|w2|2. (5.4)

Let us estimate
∫
Ω
〈Bw, w〉dx. Let us first suppose that b, c > 0. By (2.2), Poincaré

inequality and Hölder inequality we have

(λ1 − a)|u|2 ≤ (b−m)|v|2 + |w2|2
(λ1 − a)|v|2 ≤ (c− n)|u|2 + |w1|2.

Since λ1 > a, by the above inequalities

p(λ1, Am,n)
λ1 − a

|u|2 |w1|2 ≤
|b−m|
λ1 − a

|w1|22 + |w1|2 |w2|2

p(λ1, Am,n)
λ1 − a

|v|2 |w2|2 ≤
|c− n|
λ1 − a

|w2|22 + |w1|2 |w2|2.
(5.5)

If m,n are such that p(λ1, Am,n) > 0, inequalities (5.5) yields

|u|2|w1|2 + |v|2 |w2|2 ≤
(λ1 − a) + max{|b−m|, |c− n|}

p(λ1, Am,n)
(
|w1|22 + |w2|22

)
.

Denoting

a(m,n) =
(λ1 − a) + max{|b−m|, |c− n|}

p(λ1, Am,n)

we see that ∫
〈Bw, w〉 dx ≤ a(m,n)

(
|w1|22 + |w2|22

)
. (5.6)

If b, c < 0 a similar reasoning leads to the last inequality.
Observe that limm,n→0 a(m,n) = 1/λ̃1. Choosing m,n such that 1

K < a(m,n) <
1

λ̃1
, by (5.3), (5.4) and (5.6) we get

Ψ(w1, w2) ≥
1

2K

(
|w1|22 + |w2|22

)
− a(m,n)

2
(
|w1|22 + |w2|22

)
− C (|w1|2 + |w2|) .

Thus, Ψ(w) is bounded from below and coercive and hence it has a minimum
(w1, w2). �

6. Proof of Theorem 3.2

In this resonant case, the operator B is compact and defined as

B(w1, w2) = (u, v) ⇐⇒

{
−∆u = w2

−∆v = w1

(6.1)

The proof follows from the next two theorems. Firstly let us prove that the func-
tional Ψ associated to the system in this case has a linking at the origin.
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Theorem 6.1. Suppose that (3.4) and (3.5) hold. Then Ψ has a linking at the
origin, i.e., there exist two subspaces Z, V ⊂ W (:= L2(Ω) × L2(Ω) ) such that
W = Z ⊕ V , dim Z < ∞ and there exists (z1, z2) ∈ Z such that

lim
|t|→+∞

Ψ(tz1, tz2) = −∞ (6.2)

inf
V

Ψ > −∞ (6.3)

Proof. For short notation we shall consider m = n = 0. By (3.4) and (3.5) it follows
that

G(w1) =
w2

1

2β
− p(w1)

F (w2) =
w2

2

2α
− q(w2) .

(6.4)

Where (w1, w2) = w ∈ W,p and q are functions with linear growth such that

lim
s→±∞

p(s) = lim
s→±∞

q(s) = ±∞. (6.5)

Accordingly, by (6.4), we have that

Ψ(w1, w2) =
1
2

∫ (w2
1

β
+

w2
2

α

)
dx−

∫
(p(w1) + q(w2))dx− 1

2

∫
〈Bw, w〉dx (6.6)

Let us choose (w1, w2) = (aφ1, bφ1) := (z1, z2), where a, b ∈ R will be picked up
later. If B(z1, z2) = (u, v), then∫

〈Bz, z〉dx =
2ab

λ1

∫
φ2

1dx, z = (z1, z2). (6.7)

Hence, if a0, b0 > 0 is chosen such that(a0

b0

)2 =
β

α
(6.8)

using (3.4) we have

1
2

[ ∫ (z2
1

β
+

z2
2

α

)
dx−

∫
〈Bz, z〉dx

]
=

1
2
[a2

0

β
+

b2
0

α
− 2a0b0

λ1

] ∫
φ2

1

=
1
2
( a0√

β
− b0√

α

)2
∫

φ2
1 = 0

Therefore, by (6.5) and the above result, we obtain

Ψ(tz1, tz2) = −
∫

(p(tz1) + q(tz2))dx → −∞, as |t| → +∞. (6.9)

�

Before proving (6.3) we need some remarks. Observe that we may decompose
W = Z ⊕ V . Where Z = 〈(z1, z2)〉 (the space generated by (z1, z2) ∈ W ) and

V = {(rφ1 + v1, sφ1 + v2) : v1, v2 ∈ 〈φ1〉⊥ and r, s ∈ R, a0r + b0s = 0}.
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Claim. If v = (v1, v2) ∈ E, and v1, v2 ∈ 〈φ1〉⊥, then∫
〈Bv, v〉dx ≤ 2

λ2
|v1|2|v2|2. (6.10)

Indeed, it follows from (6.1) that if Bv = (u, v), then∫
〈Bv, v〉dx =

∫
uv1 + vv2 = 2

∫
∇u∇v.

If {φj} is the orthonormal base of L2(Ω) composed of eigenvalues of the Laplacean
we may write

v1 =
∑∞

j=2
α1

jφj

v2 =
∑∞

k=2
α2

kφj

and hence

u =
∑∞

j=2

α1
jφj

λj

v =
∑∞

k=2

α2
kφk

λk

Using that λ1 < λ2 ≤ λ3 . . . . and the liner product properties it follows that∫
∇u∇v ≤ 1

λ2
|v1|2 |v2|2 . (6.11)

Thus, (6.10) is proved.
Now, by (6.10), if v = (v1, v2) ∈ 〈φ1〉⊥ × 〈φ1〉⊥ we obtain that

1
2

∫
(
|v1|22
β

+
|v2|22
α

)dx− 1
2

∫
〈Bv, v〉 ≥ 1

2
[(
|v1|2√

β
)2 − 2|v1|2|v2|2

λ2
+ (

|v2|2√
α

)2]

since the discriminant of this quadric for is negative, because
1
λ2

2

<
1√
αβ

=
1
λ2

1

,

there exists k > 0 such that it is greater or equal to k(|v1|22 + |v2|22). Thus

1
2

∫ ( |v1|22
β

+
|v2|22
α

)
− 1

2

∫
〈Bv, v〉 ≥ k(|v1|22 + |v2|22). (6.12)

Let (rφ1 + v1, sφ1 + v2) ∈ V . Therefore, by (3.4) and (6.12),

Ψ(rφ1 + v1, sφ1 + v2)

=
1
2

[(r2

β
+

s2

α

) ∫
φ2

1dx−
∫
〈B(rφ1, sφ1), (rφ1, sφ1)〉dx

]
+

1
2

[( |v1|2

β
+
|v2|2

α

) ∫
φ2

1dx−
∫
〈Bv, v〉dx

]
−

∫
(p(rφ1 + v1) + q(sφ1 + v2)dx

≥ 1
2

[(r2

β
− 2rs

λ1
+

s2

α

) ∫
φ2

1dx + k

∫ (
|v1|2 + |v2|2

)]
−

∫
(p(rφ1 + v1) + q(sφ1 + v2)dx

and since r
β −

s
α 6= 0 and the functions p and q have linear growth we have that

infV Ψ > −∞.
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Theorem 6.2. With the hypotheses of Theorem 3.2, the functional Ψ has a critical
point (w1, w2) ∈ W at the level c. We also have that if (u, v) := B(w1, w2), then
(u, v) is a strong solution for system (3.7).

Proof. Since Ψ has a linking geometry, if we prove that it satisfies (PS)c condition,
by the Saddle Point, [11, Theorem 1.2], it has a critical point.

Let (w1
n, w2

n) ⊂ W be a sequence such that for some c ∈ R,

Ψ(w1
n, w2

n) → c ∈ R, (6.13)

Ψ′(w1
n, w2

n) → 0 in W ′ (6.14)

We have that w1
n = t1nφ1 + v1

n and w2
n = t2nφ1 + v2

n for some real sequences t1n
and t2n. Substituting these sequences in (6.2) and (6.3) and using (3.5) we have
the boundedness of (w1

n, w2
n). Therefore, up to subsequences, we may suppose that

w1
n ⇀ w1 and w2

n ⇀ w2 in L2(Ω) for some w1 and w2 ∈ L2(Ω). Since B is a
compact operator,

B(w1
n, w2

n) → B(w1, w2) := (u, v). (6.15)
By (6.14) we achieve that

g−1(w1
n) → u and f−1(w2

n) → v in L2(Ω) and a.e. in Ω. (6.16)

Thus

w1
n(x) → g(u(x)) a.e. in Ω− Ωξ (6.17)

w2
n(x) → f(v(x)) a.e. in Ω− Ωθ

g−1(w1
n(x)) → u(x) = ξ in Ωξf

−1(w2
n(x)) → v(x) = θ in Ωθ. (6.18)

Our next step is proving that

g−1(w1
n) → g−1(w1) in L2(Ωξ)∫

Ω−Ωξ

G(w1
n)dx →

∫
Ω−Ωξ

G(w1)dx
(6.19)

f−1(w2
n) → f−1(w2) in L2(Ω− Ωθ)∫

Ω−Ωθ

F (w2
n)dx →

∫
Ω−Ωθ

F (w2)dx.
(6.20)

|Ωξ| = 0 (6.21)

|Ωθ| = 0.

Hence, using the above assertions in (6.13) and (6.14), we have that Ψ′(w1, w2) = 0
and Ψ(w1, w2) = c. �

Proof of (6.19). Firstly, since g(s) = βs + b(s) with b bounded, we have that
|w1

n(x)| ≤ c1|g−1(w1
n(x))|+c2, and by (6.16), |w1

n(x)| ≤ c1h(x) for some h ∈ L2(Ω).
By (6.17) and Lebesgue Theorem we have that w1

n → g(u) in L2(Ω − Ωξ). But
w1

n ⇀ w1, which implies that w1
n → w1 in L2(Ω−Ωξ). Since g−1 is asymptotically

linear, assertion (6.19) follows. �

Proof of (6.21). With the hypothesis (3.6) we may suppose that Tg,ξ = [c1, c2] with
c1 > 0. (The case c2 < 0 follows in the same way). Let

hξ(x) =

{
1, x ∈ Ωξ

0, x ∈ Ω− Ωξ .
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By a result of Stamppachia [5] already mentioned in the Introduction, w1 = 0 a.e.
in Ωθ and w2 = 0 a.e. in Ωξ. But, since (6.17) holds we also have that u(x) = g−1(0)
a.e. in Ωθ and by the same reasoning, v(x) = f−1(0) a.e. in Ωξ. Hence, by (6.1)
we also have that w1 = 0 a.e. in Ωξ and w2 = 0 a.e. in Ωθ.

On the other hand∫
Ωξ

w1
ndx = 〈w1

n, hξ〉 → 〈w1
n, hξ〉 =

∫
Ωξ

w1dx. (6.22)

Since g−1 is strictly monotonic, we see that lim inf w1
n(x) ≥ c1 a.e. in Ωξ. But as

|w1
n| ≤ h ∈ L2(Ω), Fatou’s Lemma and (6.22) imply that

0 = lim inf
∫

Ωξ

w1
n(x)dx ≥ c1

∫
Ωξ

dx = c1|Ωξ|

and consequently (6.21) holds. The remaining part of the proof follows by making
the respective changes. �
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Departamento de Matemática e Estat́ıstica, Universidade Federal de Campina Grande,

Cx Postal 10044, 58109-970-Campina Grande (PB), Brazil
E-mail address, C. O. Alves: coalves@dme.ufpb.br

E-mail address, D. C. de Morais Filho: daniel@dme.ufpb.br

E-mail address, M. A. S. Souto: marco@dme.ufpb.br


	1. Introduction
	2. Preliminaries
	Remarks
	2.1. The Linear Case
	The solution operator

	3. The Dual Variational Framework and the main Theorems
	4. Proof of Theorem ??
	Claim

	5. An application of Theorem ??
	6. Proof of Theorem ??
	Claim

	References

