
 

 

DETERMINATION OF EMOTIONAL STATE THROUGH PHYSIOLOGICAL 

MEASUREMENT 

by 

Lee B. Hinkle, B.S. 

 

A thesis submitted to the Graduate Council of 

Texas State University in partial fulfillment 

of the requirements for the degree of 

Master of Science 

with a Major in Computer Science 

December 2016 

 

 

 

 

 

 

Committee Members:  

Vangelis Metsis, Chair  

Mina Guirguis 

Yijuan Lu 



 

 

COPYRIGHT 

by 

Lee B. Hinkle 

2016 



 

 

FAIR USE AND AUTHOR’S PERMISSION STATEMENT 

Fair Use 

This work is protected by the Copyright Laws of the United States (Public Law 94-553, 

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations 

from this material are allowed with proper acknowledgment. Use of this material for 

financial gain without the author’s express written permission is not allowed.  

 

Duplication Permission 

 

As the copyright holder of this work I, Lee B. Hinkle, authorize duplication of this work, 

in whole or in part, for educational or scholarly purposes only. 



 

 

DEDICATION 

 

To the memory of my mother and father, Irene M. and Glenber L. Hinkle who 

consistently stressed the importance of education and helping others. 

 



v 

 

ACKNOWLEDGEMENTS 

One of my favorite metaphors is “we stand on the shoulders of giants”.   The 

work presented here is the result of the efforts of many people who have generously 

shared their knowledge and support with me directly and indirectly.   As I sit here writing 

on a Friday night I am reminded that the research and discovery is the fun part but real 

value comes from documenting the information so it can be used by others.   I am 

particularly grateful to those who teach and share their knowledge broadly.  

I want to thank my advisor Dr. Vangelis Metsis for establishing the Intelligent 

Multimodal Computing and Sensing lab which I am proud to be a part of as both student 

and a researcher.  I am grateful for his guidance on deeply technical topics as well as 

presentations and papers.   My fellow researcher and frequent lunch buddy Kamrad 

Roudposhti was always willing to help me with MATLAB and machine learning 

principles.   I learned a great deal during our frequent brain storming sessions at the 

whiteboard.  I would like to thank a full cast of fellow researchers and students with 

whom I have enjoyed spirited discussions and in some cases collaborated with on 

graduate projects:  Alakh Biniwale, Sahar Azimi, Jayadharini Jaiganesh, Justin May, 

Xiaoqing Liao, Iaonnis Rigas, Priyank Trivedi, Adam Anderson, Thomas Hsiao.  

I would like to thank Dr. Yijuan Lu and Dr. Mina Guirguis for agreeing to serve 

on my committee.  Molly O’Neil generously provided me with many great pointers and 

bits of advice and also serves as an inspiration through the care she shows for her 



vi 

 

students and the effort she puts into teaching.  Susan Alexander helped me immensely 

with the purchasing and receipt of equipment, many times from non-traditional suppliers.  

Shannon Hicks was always helpful when I really didn’t know who else to ask. 

I would like to thank Texas State University for offering options for those of us 

working in industry to continue our education at the Graduate Level.   The Support Grant 

Fellowship awarded to me by the Graduate College was critical for the purchase of the 

virtual reality and recording equipment and is very much appreciated.   I am hopeful that 

this equipment will serve the needs of future Computer Science students for many years. 

I would like to thank Dr. Kenneth Smith for the use of the Virtual Reality Lab and 

David Morely for helping me with some of the early and very critical VR runs. 

 Although we have only met via email I would like to thank Bernard Tarver at 

Great Lakes Neurotechnologies for his prompt and patient replies to my frequent 

questions regarding the BioRadio. 

 Finally, I would like to thank my wife Christine for her support while returned to 

full time student status and focused on my studies and research.   I would also like to 

thank my wonderful daughters; Paige lent me the original Oculus DK2 while Shawn 

shared her MATLAB experiences and opinions. 

  



vii 

 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ................................................................................................ v 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES ............................................................................................................ x 

LIST OF ABBREVIATIONS ........................................................................................... xii 

ABSTRACT ..................................................................................................................... xiii 

CHAPTER 

1 INTRODUCTION ............................................................................................... 1 

1.1 Motivation ............................................................................................. 2 
1.2 Challenges ............................................................................................. 3 
1.3 Applications .......................................................................................... 4 

2 BACKGROUND AND RELATED WORK ....................................................... 6 

2.1 Human Emotional Response ................................................................. 7 

2.2 Physiological Signals ............................................................................ 7 
2.2.1 Electrical Physiological Signals ............................................. 8 

2.2.1 Non-Electrical Physiological Signals .................................. 10 
2.3 Emotional Classification Labels ......................................................... 11 
2.4 Experimental Elicitation of Emotional Response ............................... 12 

2.5 Data Processing and Feature Extraction ............................................. 15 

3 METHODOLOGY ............................................................................................ 17 

3.1 Experimental Design for Elicitation of Response ............................... 17 

3.2 Data Collection ................................................................................... 20 

3.2.1 Physiological Signals Measured .......................................... 20 
3.2.2 Skin Preparation and Electrode Placement .......................... 22 

3.3. BioRadio mounting and cabling ........................................................ 25 
3.3.1 Video Collection and Event Markers ................................... 28 
3.3.2 Subject Feedback Regarding Arousal and Valence ............. 28 



viii 

 

3.4 Signal Processing and Classification .................................................. 30 
3.4.1 Data Export .......................................................................... 30 
3.4.2 Data Import, Table Join, and Labeling ................................ 32 
3.4.3 Feature Extraction ................................................................ 36 

3.5 Institutional Review Board ................................................................. 36 

4 EXPERIMENTS AND RESULTS .................................................................... 38 

4.1 Self-Reported Data – Range of Responses during Simulations.......... 38 
4.2 Initial Signal Analysis and Data Conversion ...................................... 42 

4.2.1 Rose and I Movie ................................................................. 43 
4.2.2 Roller Coaster ...................................................................... 49 

4.2.3 Pendulum Swing .................................................................. 55 
4.3 Feature Extraction and Segment Size ................................................. 61 

4.3.1 Simple Mean and Standard Deviation Feature Extraction ... 61 
4.3.2 Temporal and Frequency Based Feature Extraction ............ 64 
4.3.3 Domain Specific Feature Extraction .................................... 65 

4.4 Feature Selection ................................................................................. 67 
4.4.1 Simple Mean and Standard Deviation Feature Selection .... 67 

4.4.2 Temporal and Frequency Based Feature Selection .............. 67 
4.4.3 Domain Specific Feature Extraction .................................... 68 

4.5 Classification Accuracy ...................................................................... 68 

5 CONCLUSION .................................................................................................. 70 

LITERATURE CITED ..................................................................................................... 72 

 

  



ix 

 

LIST OF TABLES 

Table                                                                                                                              Page 

1. Electrical Physiological Signal Names and Sensor Types ............................................ 10 

2. Non-Invasive Physiological Signal Names and Sensor Types (partial list) ................. 11 

3. Emotion Elicitation Techniques and States .................................................................. 14 

4. Physiological Signals Recorded .................................................................................... 21 

5. Summary of Subject Reponses ..................................................................................... 38 

6. Subject 1-3 Detailed Responses .................................................................................... 39 

7. Subject 4-5 Detailed Responses .................................................................................... 39 

8. MATLAB Classifier Accuracy with 5 fold cross-validation, 1 second epoch,            

and mean + standard deviation features ................................................................ 63 

9. MATLAB Classifier Accuracy with 5 fold cross-validation, 5 second epoch,            

and mean + standard deviation features ................................................................ 64 

10. List of Temporal and Frequency Based Features ....................................................... 65 



x 

 

LIST OF FIGURES 

Figure                                                                                                                            Page 

1. Placement of Electrodes on Left and Right Hands ....................................................... 23 

2. Placement of Electrodes on Face .................................................................................. 24 

3. “Head” BioRadio mounting improvements .................................................................. 26 

4. Body BioRadio mounting with Back Support Belt ...................................................... 27 

5. Emotion and Range Subject Response Form – too complex ........................................ 29 

6. Directory Listing showing Data Files and Size after Export ........................................ 31 

7. Raw Subject 1 Data after Import as MATLAB Table .................................................. 32 

8. Screenshot of Excel Spreadsheet used for Timing Synchronization ............................ 34 

9. Sequence Diagram of Import from .csv ........................................................................ 35 

10. Subject Responses marked on Arousal-Valence axis ................................................. 40 

11. Summary of all Subject Responses marked on Arousal-Valence axis ....................... 41 

12. Side by side screenshot of Signal Data shown in BioCapture Software ..................... 42 

13. Subject Heart Rate during Rose and I Segment .......................................................... 44 

14. Peripheral Blood Volume during Rose and I Segment ............................................... 45 

15. EEG during Rose and I Segment ................................................................................ 46 

16. EMG during Rose and I Segment ............................................................................... 47 

17. GSR during Rose and I Segment ................................................................................ 48 

18. Peripheral Temperature during Rose and I Segment .................................................. 49 



xi 

 

19. Subject Heart Rate during Roller Coaster Segment .................................................... 50 

20. Subject Peripheral Blood Pulse Volume Roller Coaster Segment .............................. 51 

21. Subject EEG f4 during Roller Coaster Segment ......................................................... 52 

22. Subject EMG signal during Roller Coaster Segment ................................................. 53 

23. Subject Galvanic Skin Response signal during Roller Coaster Segment ................... 54 

24. Subject Peripheral Skin Temperature during Roller Coaster Segment ....................... 55 

25. Subject Heart Rate during Pendulum Swing Segment ............................................... 56 

26. Subject Peripheral Blood Pulse Volume Pendulum Swing Segment ......................... 57 

27. Subject EEG f4 during Pendulum Swing Segment..................................................... 58 

28. Subject EMG signal during Pendulum Swing Segment ............................................. 59 

29. Subject Galvanic Skin Response signal during Pendulum Swing Segment ............... 60 

30. Subject Peripheral Skin Temperature Pendulum Swing Segment .............................. 61 



xii 

 

LIST OF ABBREVIATIONS 

Abbreviation    Description 

Ag/AgCl    Silver/Silver Chloride 

CSV     Comma Separated Value    

ECG     Electrocardiogram     

EDA     Electrodermal Activity     

EEG     Electroencephalogram     

EMG     Electromyography      

EOG     Electrooculography     

GSR     Galvanic Skin Response    

HRV     Heart Rate Variability     

kNN     k-th Nearest Neighbor     

PPG     Photoplethysmogram      

PPV     Pulse Pressure Variation    

PulseOx    Pulse Oximetry     

RIP     Respiratory Inductance Plethysmography  

SKT     Skin Temperature     

SpO2     Oxygen saturation of arterial hemoglobin  

SVM     Support Vector Machine    



xiii 

 

ABSTRACT 

The goal of this thesis is to develop and evaluate methods of emotional response 

classification using human physiological data. With the continued development of 

automated systems that interact closely with humans in a more natural manner the ability 

of such systems to determine the emotional state of nearby subjects and adapt 

accordingly is increasingly important.   Applications include the broad area of affective 

computing as well as more specific areas such as evaluating the effectiveness of virtual 

reality based treatment for social phobias. In this work, various non-invasive sensors are 

used to collect physiological data during virtual reality simulations. Feature extraction, 

feature selection, and machine learning is performed on the data to determine which 

signals and algorithms produce the most accurate classification of the subject’s emotional 

response to the simulations.    
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1 INTRODUCTION 

The primary goal of this research is to determine emotional state through the non-

invasive collection and analysis of physiological data during virtual reality or other 

immersive audio/visual simulations.  Physiological data is data pertaining to biological 

systems.  Physiological signals, also known as biosignals, such as the appearance of the 

skin, the mechanical response to light tapping, and acoustic data such as heart, breathe, 

and gastrointestinal sounds have been collected and used to assess overall health for 

many centuries [1].  Humans have the ability to determine if a person is upset or ill based 

on observation and experience without formal medical training.   Pale skin, sluggish 

movement, and raspy voice are all common clues that a person might be ill.   Similarly, 

we are able to detect if a person is upset, happy, or sad by observing physical clues, 

actions, and environmental factors.   Humans however are not able to directly measure 

the electrical potentials that exist on and within the body.  As we think and move our 

bodies develop electrical potentials that can be measured.  With current technology we 

have the ability to measure very small signal electrical differences through the use of 

non-invasive adhesive sensors connected to very sensitive amplifiers.   The data collected 

can be processed using digital signal processing and machine learning classification 

algorithms to perform meaningful work such as sleep analysis and disease diagnosis. 

  Continued technological advancements combined with existing and new needs is 

driving significant work in the field of human computer interaction.   One the technical 

side the incredible growth in smartphones has not only provided easy access to data 

acquisition at almost any time it has also brought about a significant increase in 
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performance while lowering of cost of many sensors.  Cameras, ambient light detectors, 

and accelerometer/gyroscope combination sensors have all benefited significantly due to 

the popularity of smartphones.   When incorporated into a smartphone or wearable device 

these sensors can provide significant information about the owner’s activities and the 

environment surrounding them.   Additionally, significant improvements in processing 

power due to the availability of cloud based computing and massively parallel graphical 

processing units allow us to run much more sophisticated and computationally complex 

algorithms on ever increasing amounts of collected sensor data. 

This research will be applicable to many real-world problems including: the 

evaluation of the effectiveness of various addiction treatments, the study of the impact of 

media and/or audio/visual stimuli such as gaming, and the ability to monitor emergency 

responders during crisis simulations.  

1.1 Motivation 

There are multiple technological and demographic changes that highlight the need 

for evermore human aware computing.   As more automated systems replace roles 

previously performed by humans it will be beneficial to provide the systems with some 

level of simulated empathy.   This ability to adapt based on human emotion has been 

termed Affective Computing by Rosalind Picard [2].  The driverless car is an appropriate 

and familiar example of an emerging computing category that will benefit from 

additional information regarding the passengers and bystanders emotional state.   Another 

example is home health devices and even robotic assistants where natural language 

interfaces can lower the barrier and obvious divide between human and computer.   
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Today many facilities are outfitted with emergency defibrillators which upon removal 

from the storage container provide spoken instructions on how to properly connect to the 

person requiring assistance.   Once connected data sensor will be used to control the 

actions of the defibrillator or provide further vocal instructions.   Lowering the barrier 

and facilitating more natural interaction between humans and the device will clearly 

improve the outcome in what is likely a life-or-death situation. 

1.2 Challenges 

In the following sections greater depth and detail will be provided on some of the 

challenges that can lead to poor prediction of emotional response.   One of, if not the, key 

challenges is the obtainment of accurate measurements.   There are a number of aspects 

that need to be considered.   Some are inherent in the biology of the subjects; these 

include the fact that the signals themselves are very small and the body generates a 

variety of different electrical potentials in response to brain activity, muscle activity, and 

involuntary reactions to stimuli [3].  On the sensor side there is a constant struggle 

between the need for very good electrical conductivity to the skin and the non-invasive 

least intrusive goals for a system which would ideally be used continuously.  For 

example, highly accurate measurement of muscle activity typically entails the use of a 

needle electrode in the muscle itself [4].   For the best non-invasive signal on the skin 

surface, skin preparation such as an alcohol scrub to remove dead cells and a strong 

adhesive electrode with pre-applied electrolyte gel is typically used.   If the location has 

hair it may be shaved beforehand to facilitate a better connection and lessen the difficulty 

in removal of the electrode [5].  Given these hassles widespread adoption is unlikely.  
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However, it is easy to foresee that electrodes will be incorporated into clothing, jewelry, 

and other worn accessories.   Currently the signals available through these types of 

sensors are far weaker and noisier than securely attached disposable electrodes [6].  

Similarly, the results for replacing a gelled EEG electrode, one of the most cumbersome 

electrodes due to the quantity required along with hair interference for skin preparation 

are improving. [7] 

This research is focused on the evaluation of current techniques from a technical 

perspective however, there are significant personal and privacy issues that will need to be 

addressed as data from sources such as webcams, wearable devices, and smartphones are 

used to give systems and their developers the ability to classify a person’s emotional 

state.   Stephen Fairclough provides a brief introduction to some of these considerations 

in his argument for stronger privacy protections of physiological data [8].  

1.3 Applications 

As machines become more human-like through emerging capabilities such as 

natural language recognition and response and they are used even more pervasively to 

complete tasks currently performed by humans such as home health care the importance 

of proper emotion state classification will increase [9].   For example, a taxi driver would 

be able to tell if a passenger appears uncomfortable and potentially nauseous.   In that 

case the driver would likely take action such as providing fresh air, describing the current 

traffic situation and expected arrival time, or even modifying the route to limit the 

number of turns and curves.   As self-driving cars replace this human task, it will be 

essential to have the capability to use the information regarding the passengers emotional 
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and physical well-being to perform the proper actions to ensure that their comfort is 

maximized and needs are met. 

Despite many advances in sensor technologies, amplification techniques, filtering 

and machine learning algorithms the ability to predict emotional response is still quite 

low even with fairly cumbersome sensors, in controlled environments, and with limited 

classification labels [10].  However, the number of sensors worn or near a person will 

continue to increase significantly.   Ultimately accurate prediction will likely require a 

significant amount of sensor fusion [11] with input not only from a number of sensors but 

also from a number of different types of sensors.   With so many sensors techniques to 

eliminate noisy or erroneous data will have to be developed and improved so that a single 

bad sensor does not disrupt the accuracy of the entire system.   Three broad categories of 

sensors are in use today to detect physiological data [12].  These include imaging via 

cameras, surface electrical sensors as described here, and the 6-axis 

accelerometer/gyroscope combination sensor [13] that is present in virtually every 

modern smartphone and tablet [14].    
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2 BACKGROUND AND RELATED WORK 

Human observable physiological data plays and important role in many areas 

ranging from social interaction, parenting, and the practice of medicine.  The discovery of 

the electrical nature of living organisms and improvements in the ability to measure very 

small signal electrical differences have enabled the collection of physiological data that is 

useful for sleep analysis [15] and disease diagnosis [16].   Early work regarding 

emotional states includes that by Ekman and Friesen on universal facial behaviors.  This 

study used six emotional states: happiness, anger, sadness, disgust, surprise, and fear 

[17].   The interactions of the sympathetic and parasympathetic nervous system cause 

physiological changes that are measurable.  Work in this area includes Emotion 

Classification based on Bio-Signals, [18] which measured electrodermal activity (skin 

resistance), electrocardiograph (heart activity), peripheral temperature, and blood oxygen 

levels.  Image processing and machine learning techniques have been used to classify 

emption based on facial images and voice recordings [19]. 

 From end to end the process of classification of human state followed by the 

research studies surveyed can be summarized as: 

 

 Collect Data preferably utilizing multiple subjects who are experiencing a wide 

range of emotions. 

 Process the data to remove noise and erroneous samples. 

 Add labels with the emotional state information. 

 Parse the data into fixed time segments e.g. 2.56 seconds for 50 Hz sampling 

yields 128 data points. 
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 Perform feature extraction on each data type and time segment e.g. the mean 

value and fundamental frequency. 

 Separate the data into training and testing portions.   Typically, the training data 

is significantly larger, a common split is 70% training, 30% testing. 

 Use the training data to train the targeted classifier. 

 Use the trained classifier to predict the emotional state of the testing data 

samples. 

 Compare the predicted and actual results to establish the accuracy of the 

predictions. Actual versus predicted results are shown in a confusion matrix 

from which an overall accuracy and error rate can be computed. 

2.1 Human Emotional Response 

The prediction of human emotional response via biosignals is based on the 

relationship between the parasympathetic and sympathetic branches of the autonomic 

nervous system [20] [21] [22] [23].   Further details of the signals used are provided in 

the following sections. 

2.2 Physiological Signals 

This research includes only physiological signals that can be measured non-

invasively.   Specifically, sensors which involved puncturing of the skin or contact with 

mucosal membranes (e.g. oral thermometer) were excluded when determining the signals 

to be monitored.   The remaining signals can be separated into two distinct categories – 

electrical biosignals and physical biosignals.   The electrical signals are monitored via 

adhesive electrodes connected to a highly sensitive amplifier.  The physical signals are 
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monitored with a variety of sensors which sense some physical aspect of the subject such 

as movement or surface skin temperature.   

2.2.1 Electrical Physiological Signals 

 Significant information can be gained through the collection of electrical 

physiological data.     The most commonly accessed electrical physiological signals are 

summarized in Table 1 and include: 

Electroencephalogram (EEG):  An external measure of the activity occurring in the 

brain.   EEG signals are categorized based on location of measurement and frequency.   

They are among the most difficult electrical signals to measure due to the low signal 

amplitude, the difficulty in securing electrodes through the hair and to the scalp, and the 

likelihood of other signals such as facial muscle movement induced EMG to overwhelm 

the EEG signal [24]. 

Electrocardiogram (ECG): A measure of the electrical activity driving the heart [25].   

Typically measured as a differential signal across the heart with electrodes placed on both 

wrists or both shoulders with a ground reference on the elbow.  For medical applications 

additional electrodes are typically placed at predefined locations on the chest; the 

resulting signals provide insight in the sequence of contractions of the heart. 

Electrodermal Activity (EDA):  Electrodermal activity is historically referred to as 

Galvanic Skin Resistance (GSR).   It is commonly recognized as a key signal in lie 

detector equipment [26] that includes two electrodes strapped to the tips of two fingers on 

the same hand.   The fundamental observation is that during periods of increased arousal 

the electrical conductance of the skin decreases especially when measured across the 
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palm of the hand or sole of the foot [27].  It is one of the earliest electrical physiological 

signals to be associated with changes in emotions. 

Electromyography (EMG):  A measure of the electrical potential between two points 

along a muscle which indicates the level of muscle activity.   Due to the inherent 

electrical resistance of the skin surface EMG measurements have limitations over needle 

based electrodes but meet the non-invasive criteria.   To detect emotion response EMG 

measurements are typically made on muscles that tense under stress such as the jaw and 

shoulder muscles [28]. 

Electrooculography (EOG):  The eyeball exhibits a voltage potential from front to back.   

By analyzing signals obtained from electrodes placed above/below and left/right of the 

eye the position and movement of the eye can be calculated [29].   This is especially 

useful for sleep studies where eye movement cannot be determined visually.   Because 

the eye is so closely coupled to our vision system which represents a significant portion 

of our brain factors such as speed of movement and duration of held gaze are likely more 

important to emotional state than the actual direction the subject is looking. 
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Table 1: Electrical Physiological Signal Names and Sensor Types 

Signal Name Sensor Type 

Sensor 

Location 

Physiological Data 

Electroencephalogram 

(EEG) 

Ag/AgCl 

electrode 

Scalp Brain Activity 

Electrocardiogram 

(ECG) 

Disposable 

electrode 

Wrists or 

Chest 

Heart Rate, Heart Rate 

Variability 

Electrodermal Activity 

(EDA) aka GSR 

Finger 

Electrode 

Hand or Foot 

Skin Resistance, Sweat 

Gland Activity 

Electromyography 

(EMG) 

Disposable 

electrode 

Arms, Legs, 

Face 

Muscle Activity 

Electrooculography 

(EOG) 

Ag/AgCl 

electrode 

Face Eye Movement, Position 

 

2.2.1 Non-Electrical Physiological Signals 

The common electrical signals described previously represent only a subset of the 

possible physiological measurements that can be made.   Many wrist or waist-worn 

fitness trackers can accurately measure movement and therefore they are able determine 

the number of steps taken.   Mechanical or digital thermometers are frequently used to 

measure body core temperature.   A partial list of non-electrical physiological 

measurements is in Table 2.  In the field of emotion recognition and classification image 
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processing and machine learning techniques can be used on images of a person’s face to 

classify emotion.   Similar techniques have been applied to voice. 

Table 2: Non-Invasive Physiological Signal Names and Sensor Types (partial list) 

Signal Name Sensor Type Sensor 

Location 

Physiological Data 

Photoplethysmogram 

(PPG) 

Photoelectric 

Pulse Oximeter  

Finger, 

Earlobe 

Heartrate, Blood 

Oxygen Level 

Respiration Belt, Flow 

Sensor 

Chest, Face Respiration Rate, 

Volume 

Pupil Imaging Near Eye Pupil Dilation, Eye 

Movement 

Position Accelerometer, 

Gyroscope 

Torso, Head, 

Limbs 

Movement 

Peripheral Temperature 

(SKT) 

Thermistor Hand Skin Temperature 

 

2.3 Emotional Classification Labels 

As mentioned previously the goal of this research is to accurately determine a 

person’s emotional state.  It follows therefore that some standard and widely recognized 

set of emotional state labels should be used.  Unfortunately, there is not general 

agreement on a single set of labels that can correctly and accurately reflect a person’s 

range of emotions and categorize them completely. 
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There does seem to be general agreement that two broad indicators underpin 

emotional state classification.   The first is a measure of arousal or overall physiological 

activity.   Minimum arousal would be reflective of calm, relaxed, bored states while high 

arousal would indicate excitement or fear.   The second attribute is valence which is a 

measure of positive versus negative emotion.   For example, is a person is in a highly 

aroused state they might be experiencing extreme joy or extreme terror.   This difference 

would be reflected in the value of the valence [30]. 

One measure of the difficulty for an emotional classification problem is the 

number of possible outcomes, specifically the number of distinct emotional states that are 

to be determined.  A binary classifier might obtain 50% accuracy by selecting only a 

single output state given an input of random data.   Similarly, a classifier with six 

potential outcomes would achieve an accuracy of only 16.7% by pure chance.   Given the 

wide variably and lack of clear consensus in the industry the labels used in classification 

by the studies that reported results varies considerably.  The classification labels are listed 

in Table 3. 

2.4 Experimental Elicitation of Emotional Response 

The generation of intense physiological responses spanning a range of emotions is 

a challenge.   Ethical aspects and subject health must be taken into account when 

planning experiments.   Some of the least upsetting stimuli include colors, music, and 

self-directed thought experiments e.g. “Imagine a time when you were very happy”.  

With such an experimental setup the degree to which the emotion is experienced and 

consequently the level of physiological response will be limited [31].   In order to elicit 
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stronger emotional responses different and likely more upsetting or deceitful techniques 

have been used.   This type of experimental setup necessitates a careful and thorough 

review by an independent Institutional Review Board (IRB) to insure the protection of 

the research subjects. 

One surveyed study [32] utilized the existing International affective picture 

system (IAPS) photoset which is available upon request and approval from the National 

Institute of Mental Health Center for Emotion and Attention at the University of Florida 

[33]. Several benefits of this photo set include its availability and broad usage and its 

well-developed classification and categorization of the images.  In order to induce a range 

of emotions the photoset include images which may be disturbing and therefore careful 

experimental procedures must be followed to insure proper outcomes and protect the 

subjects. 

Two related studies utilized video game techniques [34] [35].   Given the ubiquity 

of video games and simulated environments this experimental setup poses less risk with 

the tradeoff that the range of emotions may be reduced.   Of particular note is that [34] 

utilized the expertise of three trained physiologists to perform the labeling of the 

subjects’ emotions based on the game scenario and direct observation of the subject. 

Other experimental techniques employed by the studies surveyed include film 

clips, a board game, startling noises, and music.   Other possible methods of inducing an 

emotional response include placing the hand in ice water also known as the “cold 

pressor” test [36], public speaking, “floor drop” or other startling scenarios within VR 

environments. 
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A summary of the techniques used by the surveyed studies during experimentation is 

included in Table 3. 

Table 3: Emotion Elicitation Techniques and States 

Ref. Technique Assessment Emotional States (Labels) 

[32] IAPS Photoset Based on IAPS 

classification 

Arousal and Valence 

[18] Film clips, a 

game, unexpected 

noise 

Subject Self-

Reporting 

Joy, Sadness, Anger, Fear, 

Surprise, Neutral 

[34] Simulated (VR) 

Driving 

Experienced 

Psychologists 

Arousal and Valence + High Stress, 

Low Stress, Disappointment, 

Euphoria 

[37] Music from 

Existing Corpus 

Subject Self-

Reporting 

Anger, Joy, Sadness, Pleasure 

[35] Video Game – 

NHL 2003 

against Friend, 

Stranger, 

Computer 

Self-Reporting plus 

Survey Questions 

Boredom, Challenge, Excitement, 

Frustration, Fun 

[38] Film Fragments Prior Classification 

of Film Fragments 

and Self-Reporting 

Neutral, Positive, Mixed, Negative 
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2.5 Data Processing and Feature Extraction 

Since the signals measured are very small the effect of noise must be mitigated. 

Electrical systems in the facilities where the data is collected usually operate at 50 or 

60Hz and therefore a band pass or notch filter is typically employed to eliminate any 

noise inducted via the building wiring and resulting electromagnetic fields [39]. 

Many of the studies reviewed employed fairly standard feature extraction 

techniques that are applicable to time based signals.  Typical features include the mean 

value, root mean squared (RMS) value, mean max amplitude, rise duration, and heart 

rate.   Proper feature extraction is a key component of the process to insure good results 

and includes some amount of domain knowledge.   For example, heart rate can increase 

for non-emotional reasons such as increased physical activity.  It has been shown that 

heart rate variability – the difference in timing between adjacent beat has been shown to 

have some level of correlation to the level of arousal present [40]. 

There are a number of machine learning classifiers available [41].   The topic of 

machine learning and classifiers is extensive, only a brief overview will be provided here.   

In a typical case the classifier is provided with an array consisting of multiple columns 

which contain attributes that have a measured value or calculated feature and one column 

with the label for training sets [42].   For a classic home price prediction example 

attributes might be total square footage and number of bedrooms.  In this example the 

label would be last selling price and this would also be the value to be predicted for new 

samples. Each row of the input matrix represents a sample.   When the training data is 

input into the classifier it determines the best set of values to fit the provided labels. 

Three of the most popular machine learning classifiers are: 
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k-Nearest Neighbor – the predicted value is the most prevalent value among the k 

samples that are closest to the input value in multidimensional space [43]. 

Support Vector Machines – the multidimensional solution space is separated by 

hyperplanes that are determine based on the training data.   The input data prediction is 

determined by its location relative to the hyperplane divided space [44]. 

Artificial Neural Networks – modeled after the human brain these classifiers are 

constructed of neuron like nodes which can take multiple inputs to determine a single 

output [45].   The output of each node is typically connected to multiple additional nodes. 

The prediction accuracy when using electrical physiological signals and machine 

learning techniques is typically low especially in juxtaposition with some current 

successes in the areas of voice recognition, facial recognition, and spam filtering [46] 

[47].  
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3 METHODOLOGY  

The general activities included in this research are: Eliciting Emotional Response 

and Data Collection, Data Processing, Labeling, and Feature Extraction, Feature 

Selection, Training and Validation of Multiple Classifiers, Evaluation Using New Subject 

Data.  Additional detail on each of these steps is provided in the following sections. 

3.1 Experimental Design for Elicitation of Response 

The Virtual Reality sessions were chosen from applications available for the Oculus 

Rift [48] that were also compatible with the Oculus DK2 headset with the following 

general criteria: 

 Readily available content – free on Oculus web store 

 Range of relaxing to exciting, while avoiding disturbing or mature content 

 Both passive (movies, demos) and active (games) subject involvement. 

The targeted total time wearing the VR headset was slightly more than 60 minutes.   

Early experiments showed that after approximately 1 hour subjects began to tire of the 

VR environment.   The final session was a game which could be terminated at any time 

based on the subject’s fatigue and desired to continue.    The total time required to 

describe and launch the application plus the recording of subject’s responses after each 

session so the actual in VR time was significantly less.  The total time required per 

subject was approximate 2 ½ hours.   This included skin preparation and application of 

the adhesive electrodes, connection of the electrodes to the BioRadio, adjusting and 

donning the RIP bands, and mounting of both radios as well as removal of the equipment 

after the conclusion of the VR sessions. 
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Session 1:  Introduction to Virtual Reality Movie/Demo 

This is a short film/animation that introduces the 3D capabilities of the VR 

headset.   It was selected at the first session in order to get the subject used to the Virtual 

Reality headset and provide time to verify that all the sensors were recording properly.   

It contains several short 3D movies and is in general neutral. 

 

Session 2:  The Rose and I Movie 

 

A short animated VR film by Penrose Studios that made its World Premiere in the 

New Frontier section at the Sundance Film Festival 2016.   It is largely relaxing and 

pleasant with one potentially startling event where the flower “coughs.” 

 

Session 3:   Discovery VR Action Videos 

The application contains a number of videos and the following two were selected: 

Video 1 “Get Ready for the Drop” is a 360° Video of a Rollercoaster ride 

Video 2 “Jump into the Unknown” is 360° Video of a Rope Pendulum Swing 

As both the rollercoaster and the pendulum swing would be considered “thrill” rides 

these were chosen to represent more exciting segments.   In addition, the pendulum swing 

contained scenes that would be unsettling to someone with a fear of heights. 

 

Session 4:  InCell Game 

An interactive game where you ride along a tubular track and try to capture white 

and green objects while avoiding red obstacles.  This application was chosen to represent 
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game play where concentration is required and positive and negative consequences could 

be observed. 

 

Session 5:  Lost Movie 

The second 3D Virtual Reality movie which takes place in a dark forest with 

multiple startling events such as a bird swooping by.   It was anticipated that this movie 

would score higher arousal marks than the previous Rose and I movie. 

 

Session 6:  Dream Deck 

A 3D Virtual Reality demo including multiple short demos.   The city scene, alien 

encounter, and dinosaur were specifically singled out for subject response with the intent 

of invoking emotions including fear (of heights), anxiety (non-human experience), and a 

frightening (charging dinosaur) emotions. 

 

Session 7:  Lucky’s Tale Game 

A 3D adventure game using 3rd person perspective in a VR environment.   This 

was chosen as the final session that the subject might find enjoyable and interactive.   The 

subjects were given the option of stopping at any time or continuing to finish a full game 

which took approximately 15 minutes.  For all the game the hope is that some in-game 

event will elicit an emotional response that can be analyzed however given the variation 

in game play this is very difficult to guarantee and the timing can vary considerably. 
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3.2 Data Collection 

3.2.1 Physiological Signals Measured 

Data collection was limited to non-invasive techniques, which include disposable 

adhesive electrodes on the skin, wearable type sensors such as respiration straps, finger 

electrodes, ear clips, motion, and potentially optical imaging.    The physiological data 

was measured using two BioRadio Wireless Physiology Monitor and associated 

peripherals from Great Lakes Neurotechnology.   The BioRadio provides 4 differential 

inputs that can be configured for a variety of electrical biosignals and an additional 

expansion pod that can be used for temperature sensing and pulse oximetry. As described 

in the BioRadio User’s Guide “The BioRadio is worn by the person and is designed for 

acquiring physiological signals from sensors attached on the body. Physiological signals 

are amplified, sampled, and digitized, which can be wirelessly transmitted to a computer 

Bluetooth receiver and/or recorded to onboard memory for post-analysis.”   More details 

can be found in the user manual which is available online. [49].   Respiration was 

measured using Inductive Interface Cables and Universal Adjustable Respiratory 

Inductive Effort (RIP) belts made by SleepSense (S.L.P. Inc).  The RIP bands and 

Interface Module provide a voltage input to the BioRadio which varies based on the 

measure chest and abdomen volume.  This technique has been shown to reliably measure 

respiration [50].   The finger based pulse oximeter used was Model 3012LP by Nonin 

Technologies.   Pulse Oximetry utilizes two types of LEDs to measure the absorption of 

light within the finger or earlobe to determine pulse, SpO2, and peripheral blood volume 

[51]. 
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Table 4: Physiological Signals Recorded 

Radio Signal Location Qty 

H_Ch1 EEG f4 High right forehead 1 

H_Ch2 EOG - Horizontal Outside of eyes 1 

H_Ch3 EOG - Vertical Above and below right eye 1 

H_Ch4 EMG – Zygomaticus “smile” muscle Right cheek 1 

H_int Accel XYZ, Gyro XYZ Rear of head 6 

B_Ch1 GSR (Electrodermal Activity) Right index & pointer finger 1 

B_Ch2 ECG Left and right wrists 1 

B_Ch3 Chest Respiration (RIP) Chest strap 1 

B_Ch4 Abdomen Respiration (RIP) Stomach strap 1 

B_Aux Peripheral Temperature Right pinkie finger 1 

B_Aux Heart Rate via PulseOx Right ring finger 1 

B_Aux Blood Volume (PPG) via PulseOx Right ring finger 1 

B_Aux Blood Oxygen (SpO2) via PulseOx Right ring finger 1 

B_int Accel XYZ, Gyro XYZ Right waist 6 
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3.2.2 Skin Preparation and Electrode Placement 

Each subject was provided with an instruction sheet guiding them in the skin 

preparation and electrode application.  They were asked to clean the skin where the 

electrode will be attached with an alcohol swab to remove any oils, lotions, makeup, etc. 

as well as dead skin.  They were specifically told that was not necessary to scrub 

vigorously.   They were also instructed to take care particularly around the eyes and 

installed the under eye electrode down far enough to avoid the sensitive under eye skin. 
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After the alcohol was allowed to dry, the cloth electrodes were removed from the 

backing (it helps if the facilitator removes the electrode and hands it to the subject) and 

applied to the skin as shown below. 

Wrist/Hands 

1 Middle segment of right index finger, palm side 

2 Middle segment of right pointer finger, palm side 

3 Left wrist, palm side 

4 Right wrist, palm side 

5 Right elbow 

 

Figure 1: Placement of Electrodes on Left and Right Hands 
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Face 

6  High on right forehead near hairline 

7  Center of forehead ~2 cm above brow line 

8  Above right eye and eyebrow 

9  Right of right eye 

10 Below right eye - careful not too close - skin is sensitive here 

11 Most prominent point of right cheek bone 

12 Above and slightly to right of mouth “dimple” area 

13 Left of left eye 

IMPORTANT:  This diagram is mirrored for use while looking in mirror 

 

Figure 2: Placement of Electrodes on Face 
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The electrodes used in this study were MVAP-II Electrodes containing a 

Silver/Silver Chloride Sensing Element with Hydro Gel and manufactured by MVAP 

Medical Supplies 1415 Lawrence Drive, Newbury Park, CA 91320.   During early testing 

two other electrode types were evaluated: The Skintact Premier 3415 by Leonhard Lang 

GmbH and TD-141C square cloth electrodes from Florida Research Instruments.   The 

Skintact electrodes adhered well but were uncomfortable to remove after testing.   The 

Florida Research Instruments electrodes were more comfortable but came off several 

times during evaluation.   These observations are noted for the adhesive only; no 

comparison of the relative electrical signal performance was made. 

3.3. BioRadio mounting and cabling 

A seemingly simple but significant issue was mounting the BioRadio uniformly 

and securely.  The BioRadio is equipped with a removable belt clip however since the 

accelerometer and gyroscope are internal to the radio a uniform mounting independent of 

clothing was desired.   The characteristics of the radio attached to an elastic waist band 

might vary significantly versus one clipped to a tighter belt. 

For the head radio the first attempts were to simply clip the radio onto the straps 

of the Oculus DK2.   The Oculus is fairly immobile on the head however the BioRadio 

moved significantly when just clipped to the strap.   A big improvement in mounting was 

made by using a plastic mounting bracket modified from an inexpensive LED headlamp 

which was secured to the straps at the cross point directly in the back of the head.   The 

BioRadio clip was still used but given the thickness of the plastic bracket the radio’s 
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movement independent of the head was significantly reduced as shown in the right hand 

picture in Figure 3. 

 

Figure 3: “Head” BioRadio mounting improvements 

In order to eliminate the possibility of clothing affecting the motion capture of the 

“body” radio a back supporting belt was utilized.   This belt attaches securely around the 

waist and the Velcro closures were used to hold the body radio tightly against the right 

side of the waist.   Additionally, it was possible to also use the Velcro flaps to secure the 

cables and sensor pods associated with the RIP belts. 
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Figure 4: Body BioRadio mounting with Back Support Belt 

As can be seen in these photographs, cable management remained somewhat 

cumbersome.   This is a problem for several reasons.   First the subject’s movement is 

somewhat limited.   This did not prove to be an issue for these activities that consisted 

only of sitting and standing in a limited area but it will be a greater problem as movement 

is increased.   Directly related to this is the fact that the cable can become snagged and 

disconnect during the activities.   This required special attention especially with respect to 

the ergonomic armrests and adjustment knobs on the chair.   Finally cable movement can 

induce noise into the signals.   Best practices include taping or affixing the cables tightly 

to the body but this was not practical in a non-medical setting.   Future setups would 

benefit from a fixed harness where the cables are joined into less cumbersome bundles.   

Once wireless transmission and device power reaches maturity eliminating the cables 

completely through the use of Bluetooth LE enabled sensors would result in a much more 

pleasant experience for the subject. 
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3.3.1 Video Collection and Event Markers 

 All data collection experiments were recorded with a high definition video 

recorder and external microphone.   This video and audio record proved very valuable 

when labeling the sessions.  In addition, the marker functionality of the BioRadio was 

used to mark key segments such as the start of a VR application in the data set. 

3.3.2 Subject Feedback Regarding Arousal and Valence 

 Initial experimentation showed that getting consistent and reliable feedback from 

the subject is challenging.   It is quite difficult to describe many of the experiences in 

consistent emotional terms.   Indeed, the question “How did that make you feel?” is an 

opened ended on often used in therapy.   Even members of the research team who were 

familiar with the classification of emotion and the arousal-valence model struggled to 

enunciate what types of emotion a specific video or game induced. 

 Initial attempts to simplify this process included several variation of multiple 

choice selections.   One was specifically based on the six universal emotion categories 

used by Ekman and Friesen [3] which are: happiness, anger, sadness, disgust, surprise, 

and fear.   Unfortunately, while these emotions may be present in all subjects they did not 

cover the range of emotion reported during the experimentation.    After watching what 

could be best described as either a relaxing or boring video there is no best fit response 

available with these six categories. 
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Figure 5: Emotion and Range Subject Response Form – too complex 

Figure 5 shows a second iteration, which included a listing of emotions along with 

a ranking.   Subjects were asked to complete the table after each session.  Two 

fundamental issues arouse with the use of this form.   First the revised categories still did 

not match with the subject’s expressed emotion during the simulation.   Second the 

addition of a range considerably lengthened the time that subjects required to complete 

the feedback. 

Another issue arose once the testing was moved exclusively to the Virtual Reality 

environment.   The initial thinking was that the subjects would welcome a brief break 

between the 3 to 8 minute sessions to remove the Virtual Reality headset and complete 

the survey form.   However, the frequent removal of the headset proved to be annoying 

and broke the flow of the simulations.   Once “inside” the Virtual Reality world it was 

much preferred to continue with the sessions.   Furthermore, many of the electrodes and 

wires are located on the face and hands so the removal of the headset was much more 
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cumbersome than it would be during traditional usage.   This also increased the risk that 

one of the cables or electrodes could be disconnected. 

The final methodology employed was a simplified version of the arousal-valence 

model.   Instead of removing the headset to fill out a form, the subject was asked verbally 

the following questions after each session: 

Did you find this [movie, game, demo] exciting, relaxing, or neutral? 

Did you find this [movie, game, demo] pleasant, unpleasant, or neutral? 

While there was still some hesitation on the subject’s part especially during longer 

sessions that had multiple parts this simplified oral response method worked much better 

than the prior methods.  

3.4 Signal Processing and Classification 

3.4.1 Data Export 

The collected data was stored on a laptop running Windows 10 and two instances 

of the BioCapture program.   Each instance of BioCapture linked to one radio:   Instance 

on left was linked to the head radio, instance on right was linked to the body radio.   For 

consistency the recording was started on the head radio first and then on the body radio.   

The typical offset involved with switching instances and setting up the second recording 

was approximately 17 seconds.   The keyboard was configured for a marker in the head 

radio instance of BioCapture.   All marker data was captured in the head instance.   The 

naming convention used was Sx_VRy[H,B].bcrx for subject x and session y and Head, 

Body. 
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After the session was completed the files were exported from the BioCapture 

program into standard comma delimited text (.csv) format.   Two versions were exported, 

one with RealTime information (used for synchronization) and an ElapsedTime version 

(smaller and easier to handle in MATLAB). 

 Given the 250 Hz sampling rate each minute of collected data generated 15,000 

rows in the table.   The total number of rows depends on the session length and ranges 

from approximately 70,000 to 140,000 rows for sessions 1 - 6.  Due to the fact that it was 

left to the subject as to how long to continue Session 7 has a broader range and can 

exceed 250,000 rows if the subject completes the entire game.   The head configuration 

has 13 columns and the body configuration has 16 columns. 

 

 

Figure 6: Directory Listing showing Data Files and Size after Export 
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3.4.2 Data Import, Table Join, and Labeling 

After conversion to .csv format each of the 14 data files (7 sessions x 2 for Head 

and Body) was imported in to a MATLAB table and stored on the University server.   

MATLAB Version R2016a was used for this analysis.   Product details can be found on 

the MathWorks website [52] 

 

Figure 7: Raw Subject 1 Data after Import as MATLAB Table 

Since the head and body recording are separate they need to be joined prior to 

classification.   Unfortunately, there is no common signal nor ability to add a marker in 

each file.   There are known techniques of synchronizing the files based on cross 

correlation however given that each of the signals is discrete and the times involved are 

based on human reaction the files were synchronized using the real time data available 

via the BioRadio.   Specifically, an offset was calculated by subtracting the delay from 



33 

 

the start of the head recording to the start of the body recording and this was used to align 

the rows prior to performing a table join.   In addition, the start and stop times were also 

used to discard the setup and takedown segments of each session. 

A separate table containing column vectors with the subject and session data was 

also created.   This metadata was present in the file name and would be lost when all of 

the data was combined.   The table and its column vectors were joined to the initial table. 

Classification labeling within each segment was much more manual and required the time 

information gleaned from the video.    A point was made to include a start mark (by 

pressing the ‘S’ button on the laptop) in the head file that was audibly and visually visible 

in the video.   Since this data was also clearly present in the data file it served as the 

alignment index between the video data and the signal data.   For several of the sessions 

the activities were further broken down into segments as previously described in the 

subject self-reporting section.   The video was viewed and time manually input into a 

spreadsheet to convert to elapsed time in the data file. 
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Figure 8: Screenshot of Excel Spreadsheet used for Timing Synchronization 

MATLAB was used to process the raw data into a single “mega table” that 

included the 24 signal data, subject, session, self-reported arousal, self-reported valence, 

and segment column vectors.   In keeping with good programming practice the 

experiment specific information was imported from separate .csv files with the hope that 

future sessions could be processed without modifications to the MATLAB code itself. 
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Figure 9: Sequence Diagram of Import from .csv 
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3.4.3 Feature Extraction 

Feature extraction was performed in a series of several experiments once the 

dataset was available.   For the very first runs a simple mean and standard deviation 

feature table was built.   Given the 24 time based signal present in the dataset this yielded 

a table containing 48 feature vectors.   A time sweep was performed from 1 second to 20 

seconds to see what epoch size yielded the best results. 

A second more complex set of feature extraction was performed using existing 

code from the research group that extracted a total of 90 features for each signal. 

3.5 Institutional Review Board 

As this research involved human subjects, review and approval by the Texas State 

Intuitional Review Board was required. 

“Texas State University, by action of the President, has established an institutional review 

board (IRB) to review human subject research. This board is supported by The Office of 

Research Integrity and Compliance (ORIC). The IRB reviews research that is conducted 

or supported by the Texas State University faculty, students or staff in order to determine 

that the rights and welfare of the human subjects are adequately protected. The IRB is 

guided by the ethical principles described in the 'Belmont Report' and by the regulations 

of the U.S. Department of Health and Human Services found at Title 45 Code of Federal 

Regulations, Part 46. Texas State maintains an approved Federal wide Assurance 

(FWA00000191) of Compliance with the Office for Human Research Protection 

(OHRP).” [53] 

 



 

37 

 

Application #2016M7258 Version #1 was approved 7/12/2016 and expires 6/30/2017. 

All subjects signed an informed consent form prior to the virtual reality sessions.  

Subjects were briefed on the content and approximate duration of each session 

immediately prior to the session during the data collection.   Subjects were periodically 

reminded that they were free to stop at any time without repercussion or harm to the 

research.  Subjects were also told to be aware of the possibility of nausea and 

read/accepted the in session Oculus health warning. 

 

The collected dataset does not contain subject names or other known identifiable 

information.  All data is stored on the Texas State TRACS system with controlled access 

by Dr. Vangelis Metsis. 
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4 EXPERIMENTS AND RESULTS 

4.1 Self-Reported Data – Range of Responses during Simulations 

Table 5: Summary of Subject Reponses 

 
 

The subject self-reported data to the questions described in Section 3.3.3 are 

shown in Table 5.   The results are very asymmetrical with the majority of the segments 

rated as ‘Exciting’ and ‘Pleasant’.    This is likely due to the conservative selection of 

stimuli and the limited number of subjects.   For example, only one subject expressed any 

trepidation regarding heights and therefore the Pendulum Swing and City Scene which 

both involved a view from very high perspective with a large potential drop off was not 

rated as unpleasant.   By subject data is shown in Table 6 and Table 7. 
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Table 6: Subject 1-3 Detailed Responses 

 

 

 

Table 7: Subject 4-5 Detailed Responses 
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Figure 10: Subject Responses marked on Arousal-Valence axis 



 

41 

 

Figure 10 shows the individual subject responses represented on a 3 x 3 grid which 

reflect the arousal (y-axis) and valence (x-axis) of the rated response. 

 

Figure 11: Summary of all Subject Responses marked on Arousal-Valence axis 

Figure 11 shows the sum of the total subject responses represented on a 3 x 3 grid which 

reflect the arousal (y-axis) and valence (x-axis) of the rated response. 
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4.2 Initial Signal Analysis and Data Conversion 

Signals were plotted using the BioCapture software tool provided by the 

BioRadio vendor for quick inspection and verification that the signal data was good. 

 

Figure 12: Side by side screenshot of Signal Data shown in BioCapture Software 

Figure 12 shows an initial visualization of the signals during an early run.   The 

signals on the left are from the “head” BioRadio and the signals on the right are from the 

“body” BioRadio.  The red line on these graphs represent the moment when the subject is 

pushed from a cliff in the virtual reality simulation.   Several interesting and encouraging 

aspects are present.  First the EEG f4 (labeled fR on the figure) shows a distinct change 
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after the “push”.   This is in the absence of a significant change in EOGV and EOGH 

which could also affect the EEG measurement.   The EMG cheek signal shows an 

increase which would be associated with a smile, laugh, or potentially jaw clench.  The 

GSR is increasing for a period of several seconds which is consistent with a stress or 

excitement reaction.  Finally, the heart rate rises also consistent with an increase in 

arousal. 

4.2.1 Rose and I Movie 

The Rose and I Movie was rated as pleasant and relaxing or neutral by all 

subjects.   As such we would not anticipate any significant reactions or events during the 

course of the session.   The graphs below show six selected signals and represent a 

baseline for comparison.   The session itself is approximately 4 minutes long, the graphs 

show a 90 second window which is similar in duration to the rollercoaster and pendulum 

swing sessions.   At the 45 second mark there is a scene in the movie where a flower 

sneezes and the main character is startled. 
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Figure 13: Subject Heart Rate during Rose and I Segment 

The heart rate remains relatively low and unchanged throughout this video as expected.  

There is a difference in the base heart rate among the subjects that is evident during this 

typically relaxing session. 
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Figure 14: Peripheral Blood Volume during Rose and I Segment 

The peripheral blood pulse volume exhibits some variation but with no discernable 

pattern related to the session stimuli. 
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Figure 15: EEG during Rose and I Segment 

The EEG f4 signal exhibits some variation but with no discernable pattern related to the 

session stimuli. 
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Figure 16: EMG during Rose and I Segment 

The EMG signal exhibits some variation but with no discernable pattern related to the 

session stimuli. 
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Figure 17: GSR during Rose and I Segment 

Subject 3 shows a potential response at time 20 seconds however there is no in session 

stimuli at this point.   Subject 4 shows a response at time 45 seconds which is at the time 

of the previously mentioned sneeze/startle scene.   Subject 2 and 3 have potential 

responses as well but less pronounced.   No response can be seen in Subject 1 data.   

Unfortunately, Subject 5’s data in invalid due to a disconnection of the finger electrode. 
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Figure 18: Peripheral Temperature during Rose and I Segment 

The peripheral skin temperature for Subjects 1,3,4, and 5 increases during this session 

while Subject 2 decreases.   This is in contrast to the tendency of the peripheral 

temperature to decrease during the rollercoaster and pendulum swing segments. 

 

4.2.2 Roller Coaster 

The rollercoaster segment includes climbing the ramp from time 0 to 24 seconds 

with the remainder of the time being the actual ride.   Subject 2 reported mild nausea 

immediately following the ramp segment.  
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Figure 19: Subject Heart Rate during Roller Coaster Segment 

Only Subject 2 who reported mild nausea and Subject 3 showed a significant increase in 

heart rate during the roller coaster segment.   Subjects 1 and 2 had steady heart rates and 

Subject 5 had slightly decreasing heart rate during the ride segment. 
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Figure 20: Subject Peripheral Blood Pulse Volume Roller Coaster Segment 

The peripheral blood pulse volume exhibits some variation but with no discernable 

pattern related to the session stimuli. 
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Figure 21: Subject EEG f4 during Roller Coaster Segment 

No consistent time related pattern is seen in the EEG f4 signal during the roller coaster 

segment.   Much of the variation here is likely due to the head and eye movement 

resulting in artifacts in the f4 signal. 
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Figure 22: Subject EMG signal during Roller Coaster Segment 

The EMG signal for S2 and S3 increases significantly at the point of the first drop 

however the DC component is less meaningful and needs to be filtered out. 
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Figure 23: Subject Galvanic Skin Response signal during Roller Coaster Segment 

The Galvanic Skin Response for all 4 Subjects increases about the time of the roller 

coaster reaching the top of the ramp and during the first drop.   Unfortunately, Subject 5’s 

electrode came loose and the data is invalid. 
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Figure 24: Subject Peripheral Skin Temperature during Roller Coaster Segment 

The peripheral skin temperature for all subjects trended down during this session. 

4.2.3 Pendulum Swing 

This session was intended to cause height related anxiety.   Subject 1 was the only 

participant who expressed a moderate fear of heights and consequently this segment was 

ranked pleasant and exciting by 4 of the 5 participants.   The most significant event 

occurs at 57 seconds on the following graphs; it is when the participant is pushed off of 

the cliff in the virtual reality simulation. 



 

56 

 

 

Figure 25: Subject Heart Rate during Pendulum Swing Segment 

The heart rate of Subject 1 shows an increase following the “push” at 57 seconds.   A 

very slight increase can also be seen in subjects 2, 3, and 4 with no meaningful change in 

Subject 5. 
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Figure 26: Subject Peripheral Blood Pulse Volume Pendulum Swing Segment 

Peripheral blood pulse volume appears to decrease slightly in Subject 4 at the 57 second 

“push” point but no clear trend can be seen across all subjects. 
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Figure 27: Subject EEG f4 during Pendulum Swing Segment 

The promising rise in EEG f4 in Subject 1 previously discussed in Section 4.2 did not 

appear in any of the remaining four subject’s EEG signal. 
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Figure 28: Subject EMG signal during Pendulum Swing Segment 

The EMG signal charted here (auto-scaled) shows no specific markers at the 57 second 

“push” point.   For Subject 1 there appeared to be an increase in EMG at this time as 

described in Section 3.3.   That graph was also auto-scaled but across a much shorter time 

window.   Further processing of the EMG signal to remove the low frequency DC voltage 

component is needed. 
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Figure 29: Subject Galvanic Skin Response signal during Pendulum Swing Segment 

Subjects 2 and 4 seem to exhibit a galvanic skin response with a timing and that is 

consistent with the “push” at the 57 second point.   However, no clear rise/fall is seen in 

Subjects 1, 3, and 5. 
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Figure 30: Subject Peripheral Skin Temperature Pendulum Swing Segment 

The peripheral skin temperature for all subjects trended down during this session.   There 

is no specific response at the 57 second “push” event.    This segment was completed 

standing and it is possible that this had an impact causing the general downward trend in 

the peripheral skin temperature.  Further investigation regarding the effect of sitting 

versus standing is warranted. 

4.3 Feature Extraction and Segment Size 

4.3.1 Simple Mean and Standard Deviation Feature Extraction 

For initial quick analysis very simple mean and standard deviation features were 

extracted with a 1 second (250 sample) window.   The resulting MATLAB table 
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contained 48 features, 2 for each of the 24 time based input signals.   The response class 

was the session – in this case the relaxing VR2 and the exciting VR3 sessions. 

The table was input in to the MATLAB classification tool [54] and all available 

classifiers were run and evaluated with 5-fold cross validation for a range of epoch sizes.   

While the accuracy is higher for a 1 second epoch this is likely due to overfitting as the 

physiological signals and emotional response will not very significantly in such a short 

time span.   In addition, because data from all 5 subjects is used during the cross 

validation the results are much higher than found during hold-one-out analysis where the 

test set consists of the data from a subject who is not included in the training set. 
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Table 8: MATLAB Classifier Accuracy with 5 fold cross-validation, 1 second 

epoch, and mean + standard deviation features 
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Table 9: MATLAB Classifier Accuracy with 5 fold cross-validation, 5 second 

epoch, and mean + standard deviation features 

 

 

4.3.2 Temporal and Frequency Based Feature Extraction 

For second pass analysis utilized existing feature extraction algorithms that were 

developed for a previous sleep study also using physiological data.   For each signal the 

90 features shown in Table 10 were generated resulting in a total of 2160 feature vectors.  



 

65 

 

Table 10: List of Temporal and Frequency Based Features 

 

 

4.3.3 Domain Specific Feature Extraction 

For the final pass feature extraction algorithms were developed based on existing 

knowledge regarding the behavior of the physiological signals with respect to emotional 

response.   Each of the 15 features were computed by subject and are described briefly 

below. 
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meanHR – the mean of the heart rate as reported by the pulse oximeter is calculated for 

each epoch and is normalized by subtracting the mean of the subject’s heartrate for the 

entire dataset (the base heart rate) 

magPPV – the magnitude of the peripheral blood volume as reported by the pulse 

oximeter was calculated for each epoch by subtracting the minimum value from the 

maximum value. 

slopeGSR – the slope of the electrodermal activity (EDA) or skin resistance was 

calculated by subtracting the value of the last sample in the epoch from the value of the 

first sample in the epoch. 

meanGSR – the mean value of the skin resistance was calculated as the average of all 

samples within each epoch. 

slopePT – the slope of the peripheral skin temperature (SKT) was calculated for each 

epoch by subtracting the minimum value from the maximum value. 

mECGHR – the mean heartrate based on the ECG signal was calculated by counting the 

number of peaks which were greater than 0.5 seconds apart during each epoch. 

HRV – heart rate variability is a better predictor of emotion than raw heartrate [55].  The 

variability of the heart rate was computed by taking the maximum distance between 

adjacent peaks minus the minimum distance between adjacent peaks divided by the 

average distance between peaks for a given epoch. 

minHRV – is calculated as HRV except the min peak distance only is used. 

maxHRV – is calculated as HRV except the max peak distance only is used. 

respA, respC – a similar peak counting method as mECGHR is applied with a 2 second 

peak to peak minimum for the abdomen and chest RIP signals. 
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respVA, respVC – the minimum peak to peak distance divided by the mean peak to peak 

distance is computed for each epoch from the abdomen and chest RIP signals. 

meanfR – the mean value of the f4 EEG signal is computed.  This signal is previously 

normalized by subject 

magEMG – the magnitude of the EMG signal is calculated by subtracting the minimum 

value in the epoch from the maximum value in the epoch. 

The results using this mix of features were better than those using the simple 

mean/standard deviation features and the temporal and frequency based features.    The 

highest results were achieved via feature selection and will be discussed in the next two 

sections. 

4.4 Feature Selection 

4.4.1 Simple Mean and Standard Deviation Feature Selection  

 For the simple mean and standard deviation feature set only a few feature 

selection experiments were run.   The accelerometer and gyroscope data from both the 

head and body radios were eliminated and did not significantly impact the results.   Most 

of the feature selection efforts were on the large temporal and frequency based feature set 

and the smaller but varied domain based feature set which will be detailed in the next two 

sections. 

4.4.2 Temporal and Frequency Based Feature Selection  

Feature selection was performed on the 2160 features individually using a sparse 

technique as it was not possible to run feature selection on all features simultaneously.   
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The resulting 161 features identified were then again processed with a sparse technique 

resulting in 30 final features.  

4.4.3 Domain Specific Feature Extraction 

Multiple combinations of features were run during the development of the domain 

based features as well as some automated testing.   The accuracy was found to be highest 

with the following set of features:   meanHR, magPPV, slopeGSR, mECGHR, HRV.   

When each feature was evaluated individually the top 3 performing features were 

meanHR, magPPV, and HRV.  With leave one out analysis the best results were achieved 

when the slopePT feature was removed.    For a complete description of these features 

see section 4.3.3. 

4.5 Classification Accuracy 

 As discussed earlier the classification accuracy results calculated using 5 fold 

cross-validation in the MATLAB Classification learner were much higher than leave on 

out by subject results.    Given the small dataset and the goals of the research to be able to 

determine emotional response on new subjects the validation used for the following 

results was based on hold one out by subject.    Specifically, for each subject a test set 

was built containing that subjects 24 time based signal data along with their reported 

arousal response.    Given the limitations of the response data, valence was not used and 

arousal was classified as binary with 1 corresponding to an “exciting” response and a 0 

corresponding to a “neutral” or “relaxing” response.   The default MATLAB r2016a 

SVM classifier was used with a 10 second epoch. 
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 For the simple mean and standard deviation feature set utilizing all 48 features 

(without feature selection) the hold one out accuracy was 74%.   Using all 2160 temporal 

and frequency based features the hold one out accuracy was 57%.   After feature selection 

to 30 total features the temporal and frequency based feature set hold one out accuracy 

was 72%. 

 The highest overall hold one out accuracy of 80% was achieved using a Support 

Vector Machine and the following five features:  meanHR, magPPV, slopeGSR, 

mECGHR, HRV.    
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5 CONCLUSION 

Experimental design is critical to the success of this research.   Testing the stimuli 

and subject self-reporting responses prior to the more complex experiments with the full 

sensor setup would be beneficial.   Unfortunately, this will likely require a much larger 

subject population as some level of desensitization will occur therefore it would be best 

to perform the data collection on subjects who have not previously participated in the 

virtual reality simulations. In order to better cover the relaxing portion of the arousal-

valence space, calming or meditative segments should be added.  More challenging will 

be the identification of emotionally unpleasant stimulus.   Given the immersive nature of 

the virtual reality environment care must be taken not to cause undue stress with explicit 

or unsettling content.   A thorough IRB review of the stimulus, subject selection, and 

procedures would be warranted with this type of content. 

Much larger number of subjects with multiple runs are needed.  Some 

physiological signals varied significantly between subjects with no universal telltale 

markers found.  If possible, selecting subjects based on presence or absence of sensitivity 

to the intended stimuli would be beneficial.   For example, a dataset with 50% of the 

subjects expressing a fear of heights and 50% having no fear of heights engaged in a 

virtual reality simulation that involves height and drop simulations would be very 

interesting. 

In order to increase the number of subjects several elements will need to be 

improved. Less cumbersome equipment with better cable management and/or wireless 

sensors along with sensors built into headset or other wearable type garments instead of 

adhesive type electrodes would make the simulations much more pleasant and also 
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decrease the required setup time.  Event marking should be as automated as possible.   

Video recording with remote audio capabilities was invaluable for this preliminary 

research but reviewing each video to determine event label start and stop points required 

a large amount of time.   This manual technique also increases the risk of error and timing 

inaccuracies. 

Feature extraction using both simple and complex techniques that were not 

domain specific did not yield robust results when tested on subject data not in the training 

set.   Domain knowledge will likely need to be incorporated for each type of signal.   For 

example, the rise and recovery of a GSR event is well documented and fairly easy to spot 

visually on a graph however specific feature extraction will be required to form a marker 

for this type of event in the feature table.   In addition, motion is likely not relevant for 

the direct prediction of emotional response, however it could prove to be valuable in 

detecting and eliminating noise and motion related artifacts from the signals that are 

relevant. 

With the continued progress in sensing technology and through the application of 

machine learning on large datasets, the classification of human emotion will help guide 

therapy, training, and the development of improved experiences with automated systems 

that include affective computing capabilities. 
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